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Abstract

Spatial context in images induces perceptual phenomena associated with salience and modulates the responses of neurons
in primary visual cortex (V1). However, the computational and ecological principles underlying contextual effects are
incompletely understood. We introduce a model of natural images that includes grouping and segmentation of
neighboring features based on their joint statistics, and we interpret the firing rates of V1 neurons as performing optimal
recognition in this model. We show that this leads to a substantial generalization of divisive normalization, a computation
that is ubiquitous in many neural areas and systems. A main novelty in our model is that the influence of the context on a
target stimulus is determined by their degree of statistical dependence. We optimized the parameters of the model on
natural image patches, and then simulated neural and perceptual responses on stimuli used in classical experiments. The
model reproduces some rich and complex response patterns observed in V1, such as the contrast dependence, orientation
tuning and spatial asymmetry of surround suppression, while also allowing for surround facilitation under conditions of
weak stimulation. It also mimics the perceptual salience produced by simple displays, and leads to readily testable
predictions. Our results provide a principled account of orientation-based contextual modulation in early vision and its
sensitivity to the homogeneity and spatial arrangement of inputs, and lends statistical support to the theory that V1
computes visual salience.
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Introduction

Contextual influences collectively denote a variety of phenom-

ena associated with the way information is integrated and

segmented across the visual field. Spatial context strongly

modulates the perceptual salience of even simple visual stimuli,

as well as influencing cortical responses, as early as in V1 [1–12]

(for a review, see [13]).

At least two main lines of theoretical inquiry have addressed these

influences from different perspectives. First, computational models

have related perceptual salience to low-level image features [14–18].

Of particular note for us, [14,19–21] proposed that V1 builds a

visual saliency map, performing segmentation where the spatial

homogeneity of the input breaks down (e.g., at the border between

textures). A model of the dynamical, recurrent, interactions among

nearby cortical neurons induced by long-range horizontal connec-

tions realized this theory, accounting for cortical and perceptual

contextual data, including popout, visual search asymmetries, and

contour integration [14,19–24]. Second, the hypothesis that sensory

processing is optimized to the statistics of the natural environment

[25–27], has led to successful models of the linear and non-linear

properties of V1 receptive fields (RFs) [21,28–35].

However, although collectively covering a huge range of

computational, psychophysical, and neural data, these two theoret-

ical approaches have not been unified. To this end, we introduce a

computational model of the statistical dependencies of neighboring

regions in images, rooted in recent advances in computer vision [36–

39]. This model provides a formal treatment of the idea of statistical

homogeneity vs heterogeneity of visual inputs, to which V1 has been

proposed to be sensitive [20]. Correct inference in the model involves

a novel, generalized, form of divisive surround normalization

[30,40–43], that is engaged by stimuli comprising extended single

objects (e.g. in Fig. 1 the image patch inside the region with uniform

vertical texture), but not by stimuli involving independent visual

features (e.g. in Fig. 1 the patch across the zebra and the

background).

We focused in particular on the dependencies between

orientations across space, optimizing model parameters based on

natural scenes. We used the resulting model to simulate neural and

perceptual responses to stimuli used in physiological and

perceptual experiments to test orientation-based surround modu-

lation. Note that we did not fit the model to experimental data

from individual cells or subjects, but rather compared the

qualitative behavior of a model trained on ecologically relevant

stimuli with general properties of early visual surround modula-

tion.

There is a wealth of experimental results on surround

modulation, some classical, and some still subject to debate. We
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chose to model a set of findings that we intend to be canonical

examples of both sorts of results. We included data that have been

the subject of previous theoretical treatments, but paid particular

attention to phenomena that lie at the boundary between

integration and segmentation. Indeed, one claim from our

approach is that subtleties at this border might help explain some

of the complexities of the experimental findings. We make

predictions for regions of the stimulus space that have not yet

been fully tested in experiments.

In sum, we show that the statistical principles introduced can

account for a range of neural phenomena that demand tuned

surround suppression as well as facilitation, and encompass V1 as

a salience map [20].

Materials and Methods

We first illustrate a class of characteristic statistical dependencies

across space in natural scenes, and we outline a model of such

dependencies. We provide implementation details and model

equations, and describe how model parameters were optimized for

an ensemble of natural scenes. Further, we explain how the model

relates to contextual modulation in the visual cortex. We

specifically focus on relating the statistical model of images to

V1 neural firing rates, and also illustrate how this constitutes a

generalized form of divisive normalization.

Statistical model of spatial dependencies in scenes
We concentrated on the statistical dependencies between V1-

like filters (or receptive fields, RFs; see also Text S1) across space in

natural images (the images are shown in Fig. S1). We adopted RFs

derived from the first level of a steerable pyramid [44]; more

details are provided below. For conciseness, we will refer to the

projection of a visual stimulus onto an RF as the RF output.

Fig. 2A–D show the joint conditional histograms of the output of

one vertical RF given the output of another vertical RF in a

different spatial position. In the case of white noise image patches,

outputs are linearly correlated for RFs that overlap in space

(Fig. 2A), but not for RFs that are farther apart and so non-

overlapping (Fig. 2B). Natural scenes differ from white noise. The

characteristic bowtie shape of Fig. 2C,D indicates statistical

coordination in the form of a higher-order variance dependency

[30]: i.e., the variance of one RF depends on the magnitude of the

output of the other. Further, elongated structures, such as edges

and contours, cause strong co-activation of RFs with particular

geometrical configurations such as collinearity, leading to linear

correlations between non-overlapping collinear RFs (the tilted

bowtie shape of Fig. 2D), but not parallel RFs (Fig. 2C). Natural

images are also spatially heterogeneous: different image regions

can elicit different levels of dependence between RFs outputs [45].

Extreme examples are regions involving single objects with a

uniform texture (homogeneous patches) which show a strong

variance dependence (Fig. 2E), as opposed to regions spanning

multiple objects or objects and background (heterogeneous

patches) for which the dependence is weaker (Fig. 2F).

We extended a well-known probabilistic model of the variance

dependence of Fig. 2C,D (the Gaussian Scale Mixture, or GSM;

[46]) to capture the variability across image regions exemplified in

Fig. 2E,F. The GSM describes an RF output, k, as a random

variable obtained by multiplying a Gaussian variable (i.e. a

random variable that is Gaussian distributed), k, and a second

random variable that takes only positive values, n, also called the

mixer.

k~nk ð1Þ

The mixer n in the model can be shared between multiple RFs (we

then describe these RFs as being co-assigned to the same mixer),

and can therefore generate statistical coordination, and can be

intuitively thought of as representing a relatively global image

property, such as contrast, that changes smoothly across space. In

contrast, the Gaussian variable k in the model is local to each RF.

Consider the case of two RFs, (k1, k2), whose respective Gaussian

variables are multiplied by a common mixer n. Then the

Figure 1. Stimulus-dependent divisive normalization. Top row:
cartoon of a divisive normalization model that accounts for surround
modulation of V1 responses. In a textured, homogeneous visual
stimulus, the center and surround of a V1 neuron’s RF (schematically
illustrated by red and orange circles, respectively) receive similar inputs.
The model pools together the corresponding outputs (computed by
oriented linear filters), and combines them (here generically denoted by
a function h; see Equations 4,6) to generate the signal that divisively
normalizes the center output. Bottom row: cartoon of a divisive
normalization model that accounts for the absence of surround
modulation on heterogeneous visual stimuli (i.e., different features or
textures stimulate the center and surround). The model uses only the
center outputs to compute the normalization signal (see Equations 5,6).
doi:10.1371/journal.pcbi.1002405.g001

Author Summary

One of the most important and enduring hypotheses
about the way that mammalian brains process sensory
information is that they are exquisitely attuned to the
statistical structure of the natural world. This allows them
to come, over the course of development, to represent
inputs in a way that reflects the facets of the environment
that were responsible. We focus on the case of information
about the local orientation of visual input, a basic level
feature for which a wealth of phenomenological observa-
tions are available to constrain and validate computational
models. We suggest a new account which focuses on the
statistics of orientations at nearby locations in visual space,
and captures data on how such contextual information
modulates both the responses of neurons in the primary
visual cortex, and the corresponding psychophysical
percepts. Our approach thus helps elucidate the compu-
tational and ecological principles underlying contextual
processing in early vision; provides a number of predic-
tions that are readily testable with existing experimental
approaches; and indicates a possible route for examining
whether similar computational principles and operations
also support higher-level visual functions.

Surround Modulation via Scene Statistics
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coordination is generated in the following way: in a specific

instance where n has a large value, both Gaussian variables are

multiplied by a large value and therefore k1 and k2 are more likely

to be large together. Conversely, when n takes a small value, k1 and

k2 will likely be small together. This generates precisely the type of

dependency observed in Fig. 2C,D. The tilt of the bowtie evident

in Fig. 2C comes from linear correlation between the Gaussian

variables, captured by their covariance matrix C.

We then introduced a variant of the GSM (see also [37–39,47])

that could capture both dependent and independent RFs outputs.

Since we were interested in center-surround effects, we designed the

model to approximate variance dependencies between a center

group of RFs and a surround group, using a combination of: 1) a

standard GSM for the case in which the center and surround groups

are dependent (they are co-assigned to a common mixer, and can be

linearly correlated); and 2) an independent GSM model, whereby

the center and surround do not share a common mixer and lack

linear correlation. This model, which combines the two extreme

cases, is technically a Mixture of GSMs (MGSM [39,47]).

Implementation details and model parameters
We implemented the model with a bank of 72 bandpass

oriented filters or RFs taken from the first level of a steerable

pyramid [44,48] (see Text S1). We used 8 RFs in a central position

(center group, whose outputs are denoted in the following by k,

and the corresponding Gaussian variables by k) comprising 4

orientations, 0, 45, 90 and 135 degrees from vertical, each at 2

phases. The inclusion of multiple orientations in the center group

was motivated by the strong variance dependence typically

observed across oriented RFs at a fixed position; it also guaranteed

local contrast normalization of the model responses (see below) as

commonly assumed in divisive normalization [41]. The 2 phases

correspond to a pair of even- and odd-symmetric RFs (quadrature

pair). For the surround we used 64 RFs (whose outputs are

denoted in the following by S, and the corresponding Gaussian

variables by S) comprising 4 orientations, 2 phases, and 8 positions

on a circle surrounding the center RFs with radius 6 pixels. We

organized the surround RFs into 4 separate groups, each including

all RFs of a given orientation. RFs had peak spatial frequency of

1/6 cycles/pixel, and a diameter of 9 pixels and were partly

overlapping. The orientation bandwidth was chosen to approxi-

mate the median value found in V1 by Ringach et al. ([49] 23.5

degrees half-width at 70% height of the tuning curve). The

qualitative character of the results did not change when using

different bandwidths. We included multiple surround groups to

guarantee that all orientations were treated equally.

Fig. 3 illustrates the spatial layout of the RFs, and their

structural dependencies in the different mixture components. The

leftmost panel depicts the component (denoted by j�) in which

none of the surround groups is co-assigned with the center (each

RF group in the surround has a different color). The remaining

four components (denoted by jq for q[D~ 0:45,90,135f g)
comprise the cases in which all the center RFs, and just those

surround RFs that favor orientation q, are co-assigned to a

common mixer. For example, under j0 the same mixer multiplies

all the center Gaussian variables and the Gaussian variables for the

vertical surround, and the corresponding RFs are co-assigned

(indicated by black color). Note that even when the center and

surround are independent, we still assume that the RFs in the

surround share the same mixer, an approximation that was

needed for computational tractability (see Discussion).

The parameters governing RF interactions – i.e. the covariance

matrices and the prior probability of each component of the

MGSM – were optimized by maximizing the likelihood of an

Figure 2. Dependencies amongst oriented filters vary with
spatial layout, image set, and across image regions. (A–D)
Histograms of the outputs of one RF (k1) given the outputs of the other
RF (k2). We computed these conditional histograms based on 100,000
Gaussian white noise image patches (A,B), or 100,000 natural image
patches (C,D; the images are shown in Fig. S1). Pixel intensity is
proportional to probability, larger values correspond to brighter pixels; we
rescaled each column independently to fill the range of intensities. Solid
and dashed lines denote the mean and standard deviation, respectively,
of k1 for each given value of k2. We matched the average RMS contrast of
noise and natural images; the larger range of RFs responses to natural
images reflects the abundance of oriented features that are optimal for
the RFs. The insets illustrate the orientation and relative position of the
RFs: (A) collinear RFs with large overlap (3 pixels separation); (B,D)
collinear, and (C) parallel but not collinear RFs, with minimal overlap (6
pixel separation). The bowtie shape in (C,D) shows that the variance of k1

depends on the magnitude of k2, which is typical of natural images.
Further, we report the Pearson correlation coefficient between k1 and k2

at the bottom: the stronger linear dependence between collinear filters
reflects the predominance of elongated edges and contours in scenes.
(E,F) Histograms of the outputs of two spatially separated vertical RFs, at
center (Y axis) and surround (X axis) locations, averaged across 8 surround
locations as illustrated in the axis labels (black bars denote filters, the red
cross denotes the center position; surround RFs are 6 pixels away from the
center). In (E) we included only the subset of the patches in (C,D) that
were best described by a model with statistically dependent center and
vertical surround RFs; whereas in (F) we used the patches best described
by a model that assumes independence between center and surround
RFs (see Materials and Methods for model details). The variance
dependence is weaker in (F) than (E).
doi:10.1371/journal.pcbi.1002405.g002
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ensemble of natural scenes (downloadable from http://neuroscience.

aecom.yu.edu/labs/schwartzlab/code/standard.zip). Mathematical

details are provided at the end of Materials and Methods. Fig. 4A

depicts the resulting covariance matrices. Notice that in the co-

assigned components (top row) but not in the independent

component (bottom row), the model found larger variances for each

central RF and its collinear neighbors, and larger covariance between

them, than for its parallel neighbors. For all the results in the

paper except where noted, and in Text S4, we renormalized

the covariance matrices to make them identical under rotation of the

spatial configuration of RFs: e.g., the covariance between the

vertical central RF and its collinear neighbors (vertical, above and

below the center) under j0, was forced to be the same as the

covariance between the horizontal central RF and its collinear

neighbors (horizontal, left and right of the center) under j90.

In practice, the effect of the renormalization is to guarantee that

model responses corresponding to different RF orientations are

identical when the respective input stimuli are rotated copies of

each other.

However, to explore the effects of cardinal axis biases and

variability across different scenes, we also trained the model

separately on each of 40 natural images from the Berkeley

Segmentation Dataset (http://www.eecs.berkeley.edu/Research/

Projects/CS/vision/bsds), and did not renormalize the covariances.

The training was repeated 3 times for each image from random

starting points. Training on individual images converged to similar

values each time, except for one image on which it did not converge.

This image was therefore excluded from further analysis.

Figure 3. Center-surround configurations corresponding to the different mixture components of the model. We used a bank of linear
filters, depicted as colored bars in the top row, comprising 4 orientations at 1 center position and 8 surround positions. We grouped surround RFs
according to their orientation, each labeled with a different color. A surround group can be either co-assigned with the center group (i.e., the model
assumes dependence between center and surround groups, and includes them both in the normalization pool for the center, as in Fig. 2-top), or not
co-assigned (i.e. the model assumes independence between center and surround groups, and does not include the latter in the normalization pool,
as in Fig. 2-bottom). The leftmost column depicts the configuration (denoted by j�) in which none of the surrounds is co-assigned with the center; j�
best describes image patches such as those identified by the circles in the bottom row (red and orange circles denote center and surround
respectively, as in Fig. 1). The second column depicts the configuration (denoted by j0) in which the vertical surround is co-assigned with the center;
black bars (top) identify the co-assigned groups, circles (bottom) the image patches best described by j0 . The same conventions are used in the
remaining columns.
doi:10.1371/journal.pcbi.1002405.g003

Figure 4. Visualization of the covariance matrices learned from scenes between the Gaussian variables associated with center and
surround RF outputs in the mixture components of Fig. 3. Top row: co-assigned components (from left to right, j0,j45,j90,j135); bottom row:
independent component (j�). Black bars denote the orientation and relative position of the RFs; bar thickness is proportional to the variance. The
thickness of the red lines connecting pairs of bars is proportional to the absolute value of the covariance. For each surround group, we show only the
covariance with the center of the same orientation; the covariance with center RFs of different orientations is one to three orders of magnitude
weaker. Similarly, we show only the covariances between RFs with even phase; the covariances for the odd phase are similar, while those across
different phases are negligible. In each mixture component the variances of the center RF and its collinear neighbors, as well as the covariance
between them, are larger reflecting the predominance of collinear structure in scenes.
doi:10.1371/journal.pcbi.1002405.g004
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Relating inference in the model to V1 responses
To relate the model to contextual modulation in the visual

cortex we assume that firing rates in V1 represent information

about the Gaussian variables k associated with the center RFs. We

choose k because it represents the local structure of the RFs, which

is what contains specific information about the local input image

patch. By contrast, n encodes more general information, i.e. the

average level of activity in a neighborhood of RFs across

orientations and spatial locations.

The MGSM is a statistical model of images, which is sometimes

called a generative or graphics model [50]. The task as a whole for

vision is to invert this model – using Bayes rule to find the posterior

distribution over k and n. However, here, we compute just the

expected value of the Gaussian variables, which we assume to be

related to V1 firing rates (via Equation 3, below): in the rest of the

paper we also call such estimates the model responses.

In practice, we obtained model responses in two steps, i.e. we

first collected linear RFs outputs with a given input stimulus, and

then we used them to compute the Gaussian estimates; this is an

abstract schematization of how V1 firing rates are produced,

conceptually similar to the canonical linear-nonlinear scheme [51],

and does not imply that the two steps are actually preformed by

separate V1 mechanisms. We will address in the following section

the relation with divisive normalization and the possible neural

mechanisms underlying the computations presented in the

remainder of this section.

For a given input stimulus, we first collected the outputs of

center RFs k and surround RFs S. We then computed the

expected value k0 of the Gaussian variable corresponding to a

center RF (e.g., tuned to vertical):

k0~p j�jk,Sð Þ:k�0z
X
q[D

p jqjk,Sð Þ:kq
0

h i
ð2Þ

Equation 2 comprises the sum of the estimates under each of the

mixture components (respectively denoted k�0 and kq
0 ), weighted by

the posterior probability of the components, p j�jk,Sð Þ and

p jqjk,Sð Þ. In the first term the surround is not co-assigned. The

second term sums over each of the components corresponding to

the co-assigned surround orientations. We derived an analytical

form for both the mean estimates and the posterior probability, as

described below. Eventually, we combined the estimates (Equation

2) for the two phases of the RF (denoted by k0 and g0), to obtain

orientation tuned, phase invariant responses:

R~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k0ð Þ2z g0ð Þ2

q
ð3Þ

We obtained the mean estimates under each of the components as

follows. In the GSM, given knowledge of the value of the mixer n,

one can obtain k by definition as k~k=n. However, the visual

system does not know the value of n, and so can only perform

statistical Bayesian inference using information about the prior

distribution of n. We chose a Rayleigh prior for the mixer variables

which gave analytically tractable solutions; however, the qualita-

tive behavior of our simulations would be the same for a range of

priors (similar to [37,47]; and see also priors in [46]). This choice

resulted in the following estimates for the co-assigned components:

kq
0~

k0ffiffiffiffiffiffiffi
lh

kS

q B 1{n
2

; lh
kS

� �

B 2{n
2

; lh
kS

� � ð4Þ

and similarly, we obtained the estimate for the component in

which the surround is not co-assigned:

k�0~
k0ffiffiffiffiffi
lk

p
B 1{nk

2
; lk

� �

B 2{nk
2

; lk

� � ð5Þ

where nk represents the number of RFs in the center group, and n

the total number of center and surround RFs. The terms denoted

by l are generically defined as follows:

l~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xTC{1xze

p
ð6Þ

where, in lk, x is to be replaced with the center filter outputs and

C is to be replaced with Ck; and in lw
kS, x is to be replaced with the

center filters and the surround filters with orientation w, and C is

to be replaced with C
w
kS . We introduced a small constant e which

sets a minimal gain when the filter activations are zero, to prevent

infinities in Equations 4,5 when the RF outputs are zero. In all the

simulations, e was set to a value (10210) several orders of

magnitude smaller than the smallest value observed for the other

term under the square root. B is the modified Bessel function of

the second kind, and the ratio of Bessel functions diverges at l~0
and asymptotes to 1 at infinity, at a rate that depends on n; it

remains approximately constant over the range of values of l in all

our simulations.

Eventually, we inferred the posterior probability, p jqjk,Sð Þ, that

the center group shares a common mixer with the surround group

labeled h, using Bayes rule:

p jhjk,Sð Þ!p jhð Þp k,Sjjhð Þ ð7Þ

and substituting the first term on the r.h.s. with the learned co-

assignment prior, and the second term with its analytic form (see

below, Equation 10).

A generalized form of divisive normalization
The inferred model responses (Equations 2,4,5) thus constitute a

form of divisive normalization [40–42], where the terms l in the

denominator represent the normalization signal, and the RFs that

contribute to l form the normalization pool. It has been shown

that divisive normalization has the effect of reducing the higher-

order dependencies illustrated in Fig. 2C,D, and accounts for some

data on V1 surround modulation [30].

However, our model generalizes standard divisive normaliza-

tion in two substantial ways. First, consider the effect of

covariance. Normalization allows cells to discount a global

stimulus property that is shared across RFs, i.e. contrast in simple

divisive normalization, or the mixer value in the GSM. The mixer

corresponds to RFs that are statistically coordinated and tend to be

high or low together in their absolute value. However, in the

generative model, large outputs from RFs that often respond

together (i.e. RFs with large covariance or linear correlations)

could be generated either by a large value of the mixer or by

similar draws from the correlated Gaussians; whereas similar, large

outputs from RFs that rarely respond together (small covariance)

are more likely to have been generated by a large value of the

mixer. Therefore linearly correlated RFs should contribute less to

the estimate of the mixer (which is loosely proportional to the

normalization signal). This arises in the model since the covariance

matrices learned from scenes weight the contribution of the RFs to

the normalization signal l (Equation 6). For instance, a pair of RFs

Surround Modulation via Scene Statistics
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with large variances and large covariance between them (often

leading to negative values in the corresponding off-diagonal term

of C21) exerts less normalization than a pair of RFs with the same

variances but small covariance. In addition, an RF with large

variance (corresponding to small diagonal terms in the inverse

covariance) weights less than one with small variance. In the visual

cortex, the effect of such weights may be represented indirectly in

the strength of excitatory connections that are set with

development; indeed the higher correlations, in the model,

between overlapping RFs, as well as non-overlapping collinear

RFs, are qualitatively in agreement with the known specificity and

anisotropy of horizontal and feedback connections [52–58] (see

also Discussion).

Second, Equation 2 uses a stimulus-dependent normalization

pool, since, for any given input stimulus, only RFs that are inferred

as being statistically coordinated and thus to share a common

mixer, are jointly normalized (the normalization pool comprises

different RFs for each mixture component in Equations 4,5). The

same RFs can be coordinated for some stimuli and not for others.

The computation involved, which in the model is distinct from

the evaluation of the corresponding normalization signals

(Equation 6), does not necessarily have to be segregated in the

biological system, and may be achieved by a number of neural

mechanisms. One possibility may be that the normalization signals

are computed by inhibitory interneurons that pool the outputs of

distinct subpopulations: the different firing thresholds or diversity

across types of interneurons [59,60] have been previously

indicated as mechanisms that may control whether or not

surround inhibition is active on a given input. A complementary

view is that surround modulation is an emergent property of the

cortical network; in this scenario, the strength of the surround

influence may be determined by stimulus-dependent switching

between cortical network states [61] or changes in functional

connectivity [62], or by the exact balance between excitatory and

inhibitory conductances, which are known to change in parallel

with surround stimulation [63].

For a given input stimulus, we inferred the posterior co-

assignment probabilities of each mixture component, p jqjk,Sð Þ,
using Bayes rule (see Equation 7). These probabilities measure

how well each component explains the input data. Intuitively, the

probability is large when the stimuli in the center and surround are

similar (e.g. for gratings of similar orientation and contrast), and

for a given stimulus, it tends to be larger at high contrast as

illustrated in Fig. 5. More precisely, p jqjk,Sð Þ is a function of the

center and surround RFs outputs, combined using the corre-

sponding covariance matrices as in Equation 6. In our

implementation, for a given input stimulus the probability of co-

assignment does not vary across center orientations (because we

grouped together all center RFs with different orientations). The

surround RFs are grouped together according to their orientation,

and so all RFs within one surround group have the same

probability of being co-assigned with the center, but each surround

group has a different probability (e.g. for a large vertical grating,

the vertical surround has high probability, while the horizontal

surround has low probability). On each given stimulus, the

probabilities across the 4 surround groups, plus the probability of

no assignment (i.e. that no one of the surrounds is co-assigned with

the center), jointly add up to 1.

Note also that, differently from standard divisive normalization

which is inherently suppressive, our model encompasses both

surround suppression and facilitation as summarized in Fig. 6: a

strongly driven surround suppresses center responses, whereas a

weakly driven surround facilitates, and the relative modulation is

larger when the center RF is weakly driven.

Model equations
The full distribution of the RFs variables under the MGSM is

given by the mixture model:

p(k,S)~p(j�)p(k,Sjj�)z
X
q[D

p(jq)p(k,Sjjq) ð8Þ

in which the terms p(k,Sjj) represent the joint distribution of the

center and surround RF outputs k and S under each of the five

possible mixture components, weighted by their prior probabilities

p(j). The terms p(k,Sjj) can be derived analytically as follows.

First, we assumed a Rayleigh prior on the mixer variables:

p(n)~ne{n2=2 ð9Þ

Under the configuration jw in which the surround of orientation w

is co-assigned with the center, we can exploit the independence

among groups that do not share a mixer, and obtain:

p k,SDjw

� �
~p k,SwDjw

� �
P

q=w
p SqDj=j�
� �

~
det C

w
kS

� �{1
2

(2p)
n
2

B 1{ n
2
; lw

kS

� �

lw
kS
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2
{1

� �

P
q=w

det Cq
S

� �{1
2

(2p)
nS
2

B 1{
nS
2

; lq
S

� �

lq
S

� � nS
2

{1
� �

ð10Þ

where, in the first line, Swdenotes the surround RFs with

orientation w, and similarly for Sq. In the second line the factors

are derived as in a standard GSM, as detailed in [37,47]; nk and nS

Figure 5. Co-assignment probability depends on image
contrast. (A) Probability for the vertical center and surround RFs as
a function of grating contrast. The stimulus diameter is 7 pixels. All the
RFs have diameter 9 pixels, and the mid point of each surround RF is
located 6 pixels away from the mid point of the center RF, so a stimulus
7 pixels wide encroaches on the surround RFs. Although it does so only
by 2 pixels, in the simulations this leads to a large co-assignment
probability at high contrast; we have verified that this is not the case for
a stimulus 5 pixel wide (in which case the overlap with surround RFs is
even smaller, and not enough to recruit the surround). (B) Probability
for the vertical center and surround RFs on natural images. The X axis

represents values of lkS~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(k,S)T(CkS){1(k,S)ze

q
for vertical RFs (k,

S), with covariance matrix CkS . The term lkS therefore increases for
larger values of the RF outputs (note that for any fixed image, scaling
the contrast by a factor c also scales lkS by c). For each input image, we
computed lkS and the co-assignment probability for the configuration
j0 ; the Y axis represents the mean of such probability across the inputs
corresponding to given values of lkS . The dashed line corresponds to
the prior probability learned by the model on natural images.
doi:10.1371/journal.pcbi.1002405.g005
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represent the number of RFs in the center and surround groups

respectively, and n = nk+nS; C
w
kS is the covariance matrix among

the center group and the surround group with orientation w; Cq
S is

the covariance of the surround with orientation q; B is the

modified Bessel function of the second kind. The terms denoted by

l are defined as in Equation 6.

Similarly, we can derive the distribution conditional on j�,
namely in the case that all groups are mutually independent:

p k,Sjj�ð Þ~ det Ckð Þ{
1
2

(2p)
nk
2

B 1{
nk

2
; lk

� �

lkð Þ
nk
2

{1
� �

P
q[D

det Cq
S

� �{1
2

(2p)
nS
2

B 1{
nS

2
; lq

S

� �

lq
S

� � nS
2

{1
� � ð11Þ

where Ck is the covariance matrix of the center Gaussian

variables, and lk is defined as in Equation 6.

Model training
The parameters governing RF interactions – i.e. the covariance

matrices and the prior probability of each component of the

MGSM – need to be optimized for an ensemble of natural scenes.

The training data were obtained by randomly sampling 25000

patches from an ensemble of 5 natural images from a database of

standard images used in image compression benchmarks (known

as Einstein, boats, goldhill, mountain, crowd; see Fig. S1; the

images are downloadable from http://neuroscience.aecom.yu.

edu/labs/schwartzlab/code/standard.zip). The parameters to be

estimated were the covariance matrices associated to the different

components of the model, collectively denoted by

H~fCk,C0
S,C45

S ,C90
S ,C135

S ,C0
kS,C45

kS,C90
kS,C135

kS g, as well as the

prior probability of each component, denoted by qq~p jqð Þ and

q�~p j�ð Þ. The model learned the full covariances, including the

terms coupling opposite RFs phases which were typically close to

zero. To find the optimal parameters we maximized the likelihood

of the data under the model; we implemented a Generalized

Expectation-Maximization (GEM) algorithm, where a full EM

cycle is divided into several sub-cycles, each one involving a full E-

step and a partial M-step performed only on one covariance

matrix. In the E-step we computed an estimate, Q, of the posterior

distribution over the assignment variable, given the RF responses

and the previous estimates of the parameters (denoted by the

superscript old). This was obtained via Bayes rule:

Q jqð Þ~p jqjk,S;Hold
� �

!qq,oldp k,Sjjq;Hold
� �

ð12Þ

and similarly for Q j�ð Þ. Then in the M-step we adopted conjugate

gradient descent, to maximize the complete–data Log Likelihood,

namely:

f ~

Q j�ð Þlog q�p j�jk,S;Hð Þ½ �z
X
q[D

Q jqð Þlog qqp jqjk,S;Hð Þ
� � ð13Þ

The training was unsupervised, i.e. we did not pre-specify the co-

assignments of the training set, but rather let the model infer them at

each E-step. The EM algorithm is not guaranteed to find a global

maximum; however, repeated training runs with different randomly

chosen starting points produced convergence to similar parameter

values. More details are provided in Text S2 (see also [47]).

Results

Our hypothesis, illustrated schematically in Fig. 1, is that

contextual modulation in V1 is sensitive to the statistical

homogeneity of the visual inputs; or, more specifically, that it is

engaged by homogeneous stimuli (e.g. an image patch entirely

embedded within a single object, such as the one on the right in

the figure), but not by heterogeneous stimuli (e.g., an image patch

that includes different objects, such as the one on the left). In order

to test the hypothesis, we introduced a model of spatial

dependencies in natural images that formalized this intuitive

notion of homogeneity. The model used a mixture of two

components, which describe respectively image patches that elicit

statistically independent, or dependent, RFs outputs across center

and surround locations. We then related correct (i.e. Bayesian)

inference in the model (specifically, the expected value of the local

Gaussian variable; Equations 2,3), to the firing rates of V1

neurons. This resulted in a divisive form of surround modulation

that is related to descriptive [40,41] and statistical [30] models, but

substantially extends them. Below, we provide further intuition

into two key features of the model; then, in the following sections,

we compare the model simulations to experimental data on V1

firing rates and perceptual effects.

First, the model uses a normalization pool (i.e., the group of RFs

whose outputs contribute to the normalization signal) that depends

on the input stimulus (see Equations 2,4,5): when center and

Figure 6. The model encompasses both surround suppression
and facilitation. Modulation of simulated model responses when the
surround is co-assigned (Rco-assign; e.g. with a large, homogeneous
grating) relative to when it is not co-assigned (Rno-assign; e.g. with a
grating smaller than the central RF). Percent surround modulation is
computed as 100*(Rco-assign2Rno-assign)/Rno-assign. This quantity depends
on RFs outputs only via lk and lkS . Since lkS appears in the denominator
of Equation 3, the larger the lkS the smaller the model response. We
choose three representative values of lk (note that lk increases with
larger center RF output). Surround modulation in the model can facilitate
center responses for weak surrounds (lkS comparable with lk), and
gradually switch to suppression as surround strength (and therefore lkS)
increases (relative to lk). No surround modulation (dashed line) is
observed e.g. with small stimuli or large, non-homogeneous stimuli for
which center and surround RFs are not co-assigned.
doi:10.1371/journal.pcbi.1002405.g006
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surround RFs outputs are statistically coordinated (i.e. they lead to

high posterior co-assignment probability, Equation 10), then both

are included in the normalization pool for the center; whereas,

when they are independent, the surround RFs are excluded from

the normalization pool. For a given input stimulus, we measured

the degree of homogeneity (and therefore involvement of the

surround RFs) by the probability of co-assignment. Intuitively, this

probability is larger for stimuli that elicit similar outputs for center

and surround RFs; and this indeed turns out to be true of Bayesian

inference in our model. In addition, the probability tends to be

larger for high contrast. The grating patch of Fig. 5A provides a

simple, specific example, showing that the probability for the

vertical surround RFs increases monotonically with image

contrast. We also explored the co-assignment probability as a

function of the combined outputs of both center and surround RFs

(lkS ; see Equation 6) with natural image patches. Fig. 5B shows

that on average the probability increases with lkS (note that for

any fixed image, scaling the contrast by a factor c also scales lkS

by c).

Second, the linear correlations between center and surround

RFs, captured by their covariance matrix C when the surround is

co-assigned, affect the normalization signal, since in lkS the RFs

outputs are weighted by C21 (see Equation 6). Thus, the

normalization signal can be reduced, and the model response

enhanced, when the covariance between RFs is large or when a

given RF variance is larger (as described in Materials and

Methods). This, as shown below, plays an important role in the

perceptual effects related to collinear facilitation. In addition our

model encompasses both suppressive and facilitating surround

influences – in this it is different from standard divisive

normalization models, which are inherently suppressive. In Fig. 6

we compared model responses to simulated inputs (i.e., preset

values of lkS and lk), when the surround is not co-assigned (e.g. as

would be obtained with a grating smaller than the central RF)

relative to when it is co-assigned (e.g. when the same grating is

expanded beyond the central RF). We observed suppression for

stimuli that drive the surround strongly (i.e., large values of lkS for

fixed lk); decreasing the surround strength led to a gradual

reduction of the suppression, which eventually turned into

facilitation for stimuli that drive the surround weakly (i.e., small

values of lkS for fixed lk). By definition, no surround modulation

(dashed line) is observed e.g. with stimuli much smaller than the

RF, or large non-homogeneous stimuli, for which center and

surround RFs are not co-assigned.

Contrast dependence of RF size
We learned the parameters of the model (i.e., the covariance

matrices and the prior co-assignment probabilities) entirely from

the natural scenes, and then fixed them. We first evaluated the

model by comparing its response (Equation 3) to presentations of

different forms and sizes of sinusoidal gratings with those described

in previous neurophysiological studies of spatial contextual

modulation. Physiology experiments have made extensive use of

gratings to show that stimuli presented in regions of visual space

that do not drive the neuron (i.e. the surround) can still strongly

modulate the responses to a stimulus presented within the RF.

First, we tested gratings of variable size and contrast whose

orientation and spatial frequency match the chosen RF.

Experiments in cat and macaque monkey V1 [8,64,65] show that

at fixed contrast, neural responses typically increase as a function

of stimulus size up to a peak value, and then decrease for larger

stimuli that recruit the suppressive surround. The peak responses

correspond to larger diameters at low than high contrasts (Fig. 7A-

left; the studies cited above reported an average expansion factor

across the population in the range 2.3 to 4). Fig. 7A-right shows

the similar behavior of our model, including a contrast-related

expansion of similar magnitude from high to low contrast in our

model. For intermediate contrasts we observed a gradual peak

shift.

The contrast-dependence of size tuning has previously been

ascribed to divisive normalization [30,35]. Cavanaugh et al. [8]

showed that a divisive model with variable gains for the center

(numerator) and surround (denominator) accounted well for the

contrast-related expansion; model parameters obtained from data

Figure 7. Expansion of receptive field size at low contrast. (A) Normalized mean response rate of a V1 neuron (left; [8]) and the model (right)
as a function of stimulus size at two contrasts. The largest size we used to test the model covers the full extent of the surround RFs, and larger sizes
will not change RFs outputs; for the 5 largest sizes tested, we observed little change in surround RFs outputs and model responses. Stimulus
orientation and spatial frequency are optimal for the neuron. The insets show some example stimuli. The arrows (gray, low contrast; black, high
contrast) indicate peak response diameter - or RF size. (B) Probability that center and vertical surround RFs are co-assigned to the same normalization
pool, and therefore contribute to the divisive normalization of the model response; the stimuli are the same as in (A). At the smallest non-zero size,
surround RFs are silent and therefore the surround is not co-assigned. At intermediate sizes, surround RFs outputs are weaker than center RFs
outputs and co-assignment probability increases with contrast, as illustrated in Fig. 5. At the largest sizes, RFs outputs are similar between center and
surround and the surround is co-assigned.
doi:10.1371/journal.pcbi.1002405.g007
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fitting showed that the relative influence of the surround increased

with contrast, suggesting that the inhibitory surround is less

sensitive than the center at lower contrasts (but see also [62], that

supported the alternative hypothesis that low contrast enhances

recurrent excitatory interactions). In our model, the flexible

assignment process provided a related, but statistically motivated

explanation of the expansion. For gratings of intermediate sizes

that covered the surround only partially, the co-assignment

probability was larger when the contrast was high than when it

was low (Fig. 7B; see also Fig. 5). Therefore larger stimuli were

necessary to recruit surround modulation at low than high

contrast. This pattern of assignments was obtained directly from

statistical inference rather than from data-fitting constraints, and

did not depend on any asymmetry between center and surround.

Orientation tuning of surround modulation
We next addressed three sets of data related to the orientation

tuning of surround modulation (Fig. 8), for which the involvement

of multiple surround normalization pools in the model provided a

novel, potentially unifying explanation.

We first verified that the model produces contrast-invariant

orientation tuning curves (Fig. S2). We then assessed how a

surround annular grating modulated the response to a fixed,

optimally-oriented central grating, as a function of their

orientation difference. Without loss of generality, we refer to the

central grating as being vertical, both for the data and the model.

Several studies, e.g. [7,9,10,66–68], reported that the strongest

suppression (relative to the response to the center grating alone)

occurred when the center and surround were similar in

orientation, while large orientation differences led to little or no

suppression, as exemplified by the cell in Fig. 8A-top-left [10]. Our

model reproduced these features of surround orientation tuning

(Fig. 8A-top-right).

We also explored the model behavior as a function of the

stimulus contrast and the sizes of the central grating patch and

surround annulus (see Text S3). Generally speaking, in the model

we observed surround facilitation when the center was not

optimally stimulated, and the surround was weakly driven and

co-assigned (Fig. 6). For instance, when we introduced a gap to

make the center patch smaller than the center RFs, and with the

surround annulus covering only part of the surround RFs, we

found facilitation for large orientation differences between center

and surround. The response was maximized with annuli tilted less

than 90 degrees relative to the center (Fig. 8A-bottom-right).

These conditions have not been explored systematically in

experiments, but some evidence for the above effects was reported

by studies that tested surround orientation finely (e.g., Fig. 8A-

bottom-left, reported in [10] using mid contrast; [67] using low

contrast in the center and high in the surround), and recent models

of the perceptual tilt illusion have implicated facilitation from non-

orthogonal surrounds [69,70]. On the other hand, other

experimental studies have not reported facilitation at all [7,68],

and [8] reported that an iso-oriented surround stimulus is always

suppressive, regardless of the contrast of the center and surround

stimulus. Our model partly failed to reproduce this observation,

since it produced facilitation when we combined small center

patches with large gap sizes at low contrasts (see Discussion; see

also Text S3). The dependence of surround tuning on contrast,

and more generally on how strongly the RF is driven, has yet to be

explored more systematically.

The responses of the model (Fig. 8A-right) depended on the

interaction between different surround components as follows

(Fig. 8B; see also Text S3 for more examples). In the top row, the

center grating patch partly activated surround RFs, leading to a

high co-assignment probability for the vertical surround, regard-

less of the annulus orientation: the strength of the suppression then

simply depended on how much the surround annulus increased

the outputs of the vertical surround RFs. In the bottom row, we

reduced the size of the center stimulus. In this case, for stimuli with

small orientation differences (less than 45 degrees) between the

(vertical) center and the surround we observed large co-assignment

probability for the vertical surround group: in this regime,

surround modulation was suppressive. Modulation switched to

facilitation as the orientation difference increased and surround

strength decreased (corresponding to reducing lkS for fixed lk in

Fig. 6). At much larger orientation differences, the co-assignment

probability decreased for the vertical surround group, but

increased for the surround groups oriented similarly to the

annulus, leading to less, and eventually no, facilitation. The model

response thus combined, via Equation 2, facilitation from the

(weakly driven) vertical surround with the suppressive influence of

the (strongly driven) diagonal and horizontal surrounds.

Interestingly, the presence in the model of multiple surround

groups also allowed it to reproduce data on surround modulation

of a non-optimal center stimulus (Fig. 8C). With this type of

stimulus, several groups reported that maximal suppression occurs

more often when the surround is oriented similarly to the center,

than when the surround is oriented similarly to the cell’s

preference [9,10,54,71]. For the simulations we fixed the

orientation of the central patch to 45 degrees from vertical, but

continued to report the posterior mean of k0. Model responses

showed the same effect, since stimuli with small orientation

differences between center and surround led to large co-

assignment probability for the surround group oriented 45 degrees

from vertical (Fig. 8D), even though this orientation differed from

the vertical orientation on which the model’s response was based.

To our knowledge, the result of Fig. 8C has not previously been

modeled. Our statistical explanation is based on the possibility of

using several, differently tuned normalization pools.

Finally, we compared the orientation tuning curves measured

with small gratings confined to the center RF, and large

homogeneous (single orientation) gratings that also covered the

surround. Chen et al. [11] reported that increasing the grating’s

diameter, up to 5 times the center RF size, often leads to narrower

tuning curves in V1 (Fig. 8E; Vinje and Gallant [72] previously

reported that, with natural images, stimulation of the RF surround

enhanced the cells’ selectivity). In our simulations, the surround

was not co-assigned when the grating was small. For large gratings

that covered the full extent of the surround, center responses were

normalized by the surround group with orientation closest to that

of the stimulus (Fig. 8F). Therefore, when the orientation changed

gradually from optimal to orthogonal, the vertical central RF

output decreased, but the outputs of the co-assigned surround

group remained approximately constant. This led to stronger

suppression (relative to the small stimuli) at non-optimal

orientations, i.e. a narrower tuning curve.

Spatial asymmetry of surround modulation
We then addressed the spatial organization of surround

modulation, to illustrate the interplay between the assignment

process and the spatial structure of correlations learned by the

model from natural images. Different regions of the RF surround

can produce different levels of modulation when stimulated with

grating patches oriented similarly to the center (called positional

bias). Walker et al. [7] and Cavanaugh et al. [9] reported that the

location of the surround that elicits maximal suppression varies

across the population, but is found approximately 2 to 3 times more

often near the end of the RF (a collinear arrangement) than near the
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Figure 8. Orientation tuning of surround modulation. (A) Normalized mean response rate of V1 neurons (top and bottom left; [10], their
Fig. 1A and 4D, respectively) and the model (right) to mid contrast stimuli comprising an optimally oriented grating presented to the RF center, and
an annular grating of variable orientation in the surround. The insets show some example stimuli. The outer diameter of the annular patches used to
test the model covers the full extent of the surround, and the inner diameter (11 pixels) is larger than the center RF to ensure that the surround
stimulus does not encroach on the center. In the top-right panel, the center stimulus equals the center RF diameter (9 pixels), in bottom-right panel it
is smaller (5 pixels). Responses (circles) are plotted as a function of the difference between center and surround orientation. The dashed line denotes
the response to an optimal grating patch not surrounded by an annulus. (B) Probability that center RFs and surround RFs of each orientation (colors
indicated in the legend) are co-assigned to the same normalization pool; the stimuli are the same as in (A), and some examples are depicted in the
icons. The bounding circle (dashed line) represents a probability of 1. Probabilities are plotted in polar coordinates: angular position represents the
orientation of the surround stimulus; distance from the origin represents the probability. (C) Circles and thick lines: Normalized mean response rate of
a V1 neuron (left; [9]) and the model (right) to stimuli similar to (A), except that the central grating is tilted 45 degrees away from the neuron’s
preference. Thin lines: Orientation tuning curves measured with a small grating. (D) Probability that center RFs and surround RFs of each orientation
are co-assigned. The conventions are the same as in (B). (E) Orientation tuning curves of a V1 neuron (left; [11]) and the model (right) measured with
small gratings confined to the center RF (thin line), and large gratings covering also the surround (thick line and circles): narrower tuning curves are
observed with large stimuli. Each curve is normalized by the response to the optimal orientation. In the experiment, the diameter of large gratings is
5 times the center RF size; in our simulations, we used large gratings that cover the full surround extent. (F) Probability that center RFs and surround
RFs of each orientation are co-assigned, for the large gratings. For each stimulus orientation, the surround group with orientation closest to the
stimulus is co-assigned with center RFs.
doi:10.1371/journal.pcbi.1002405.g008
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sides (a parallel arrangement). The cell of Fig. 9A-left illustrates the

positional bias with stronger suppression for collinear stimuli. The

model reproduced the same qualitative behavior with similar stimuli

(Fig. 9A-right), reflecting a higher co-assignment probability for the

collinear arrangement (Fig. 9E) as explained below.

To elucidate the origins of this response of the model, we

systematically tested a larger range of contrast and size values than

has so far been experimentally examined (Fig. 9B,C). First,

consistent with the above, we observed strong suppression for large

collinear stimuli at moderate to high contrasts. We also found that

collinearity could lead to facilitation under some conditions such as

low contrast, thin, stimuli. Conversely, the parallel arrangement

produced little modulation, mostly suppressive. Direct comparison

of the two arrangements (Fig. 9D) showed that, depending on

where the stimuli fell in the contrast/size space, the collinear

surround could elicit both larger (low contrast, thin stimuli) and

smaller (mid contrast, fat stimuli) model responses than the parallel

arrangement. Model simulations across such stimulus space thus

offered a specific, testable prediction.

Our model explains the observed spatial asymmetry of

modulation by the form of the covariance matrices learned from

natural scenes. In the mixture component with dependent center

and vertical surround groups, the variances of the vertical center

RF and its collinear neighbors were similar, and higher than the

variances of the parallel neighbors (Fig. 4A). Recall that the co-

assignment probability is a function of the terms lkS , lk and it is

larger when they have a similar magnitude; these terms are

computed using the covariance matrices (see Materials and

Methods) and were more similar between center and surround

for stimuli that covered the center and collinear surround, than for

stimuli covering the parallel surround. This made collinear stimuli

more likely to be co-assigned (Fig. 9F,G) and modulate center

responses. At mid contrast, fat surround, this led to stronger

collinear suppression. The sign of the modulation switched to

facilitation when we used low contrast, thin collinear stimuli

(thinner stimuli produce weaker surround RFs outputs thus

reducing lkS for fixed lk; see Fig. 6).

Collinear facilitation with grating stimuli has been observed in

V1, although with the contrast not matched between center and

surround; for instance, Polat et al. [73] reported that a high

contrast collinear surround could facilitate the responses to a low

contrast central grating patch, but suppress a high contrast center.

Kasamatsu et al. [74] quantified the average modulation across

their population for collinear flankers presented at 0.5 and 0.8

contrast, and reported a peak facilitation of approximately 17%

when the center contrast was similar to the contrast threshold of

the cells, and weak suppression in the range 2–5% for larger center

contrasts (up to .10 times the cells’ threshold). We observed

similar changes in model responses: the average modulation, for

flankers presented at contrasts ranging between 0.5 and 0.8,

showed 16% peak facilitation at low center contrast (0.2), and

suppression in the range 1–6% for larger center contrast (0.35 to

0.8). Interestingly, the model also reproduced ‘‘far’’ surround

facilitation (see e.g. large gap sizes in the first figure of Text S3),

which was observed in [12] often with low contrast center but only

rarely with high contrast center. Our model provides a common

explanation for the two phenomena: A low contrast central grating

by itself did not recruit surround modulation (see Fig. 5B), but the

composite stimuli did. In both experiments, the surround was

weakly driven, thus leading to facilitation (corresponding to small

lkS for fixed lk in Fig. 6). Conversely, a high contrast center

grating by itself recruited the surround, and so the addition of the

surround stimuli only increased the normalization signal, albeit

weakly, and therefore became suppressive.

Figure 9. Spatial asymmetry of surround modulation. (A) Normalized mean response rate of an example V1 neuron (left; [9]) and the model
(right), to optimally oriented stimuli comprising a grating presented to the center of the RF, and peripheral patches confined to specific regions of the
surround. Icons depict the stimulus configurations. The bounding circle represents the normalized response to the center stimulus alone. Responses
are plotted in polar coordinates: angular position represents the location of the surround stimulus; distance from the origin represents the magnitude
of response. In the experiments the size of the surround stimuli is optimized individually for each cell. For the model, we used annular sectors, rather
than circular patches: first, this allowed us to explore systematically the changes in responses as a function of the surround stimulus angular size (thus
making predictions beyond the original experiment); and, second, this was needed to recruit a sufficient number of surround RFs, given the coarse
spatial sampling of the surround (Materials and Methods). (B,C) Suppression ratio (coded by pixel intensity) as a function of stimulus contrast and
angular size of the peripheral patches (B collinear; C parallel). Suppression ratio is the ratio between the full-stimulus response and the response to
the central grating alone; values greater than 1 denote facilitation, smaller than 1, suppression. (D) Difference of suppression ratios (coded by pixel
intensity) between collinear and parallel configurations. Negative values imply that the collinear configuration is more suppressive than the
orthogonal, and vice versa for positive values; the red contour denotes zero-crossing. (E) Probability that center and vertical surround RFs are co-
assigned to the same normalization pool, and therefore contribute to the divisive normalization of the model response, for the stimuli of (A). (F,G)
Co-assignment probability (coded by pixel intensity) as a function of stimulus contrast and angular size of the peripheral patches (F collinear; G
parallel).
doi:10.1371/journal.pcbi.1002405.g009
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In addition to the effect we discussed, Cavanaugh et al. [7]

reported a complementary, although weaker, positional bias when

using surround patches orthogonally oriented relative to the center

grating: They observed more often stronger suppression from

orthogonal patches placed at the side, rather than at the end, of

the RF. Our model qualitatively reproduced this finding, as

illustrated in Text S4.

However, that there is a considerable scatter of positional biases

due to cell-to-cell variability in [7,9] (Fig. 10A–C). We explored in

the model whether some of the variability could relate to the

properties of natural scenes; note that for these simulations (Fig. 10

and Text S4) we did not impose the rotational invariance of the

covariances, as explained in Materials and Methods. First, we

found that, due to the predominance of cardinal orientations in

scenes, the bias was stronger for the model units with cardinal

orientations than with diagonal orientations (Text S4). We then

expanded on the previous observation, by optimizing the model on

several different natural images separately, and indeed found a

large scatter of positional biases (Fig. 10D–F) qualitatively

consistent with the data, although to a smaller degree. Our model

may be missing an additional source of variability related to scene

statistics, due to the constraint of always grouping together iso-

oriented RFs at all surround locations: it is possible that a more

flexible assignment scheme with multiple mixer pools and RFs

across space (e.g. [37]) could capture statistical regularities in

scenes beyond collinearity (see also Discussion).

The data presented so far provided an illustration of the

biological significance of the two key components of the model, i.e.

the assignment and the covariances. As a control, we presented the

same stimuli to a reduced model that ignored the assignments and

assumed that center RFs were always normalized by the vertical

surround group. Such reduced model produced a much weaker

contrast-dependence of size tuning of the surround compared to

Fig. 7; and it did not produce maximal responses for intermediate

orientation differences as in Fig. 8A, nor could it capture the

effects of Fig. 8C,E. We also considered a reduced model that

assumed diagonal covariance matrices, rather than learning them

from natural images. As opposed to Fig. 9, this model produced no

Figure 10. Variability of positional biases. (A–C) V1 population data from [9], N = 113. (D–F) model simulations for 4 center orientations, 2
contrasts (0.25, 0.5) and 39 parameter sets resulting from different natural image training sets (see Materials and Methods). (A,D) were obtained with
the surround stimuli of Fig. 9. The magnitude of the suppressive effect and surround location of greatest suppression are plotted in polar coordinates
(duplicated around the circle for visualization): points farther from the origin correspond to stronger suppression than those closer to the origin. The
location of maximal suppression is the angle of the vector computed from the response reduction, as in [9]. Black circles represent cases with a strong
effect (i.e. the magnitude of the orientation bias estimate was at least 0.2 and the maximum suppression was at least 0.3; 42/113 cells in [9] and 83/
272 instances of the model matched both criteria). The gray line shows the angle estimate for the cluster of such points. (B,E) were obtained with
surround stimuli presented in the same locations as in Fig. 9, but oriented orthogonally to the center (see also Text S4). All conventions are the same
as in (A,D). The effect was strong in 33/113 cells in [9], and 106/272 model instances. (C,F) represent, only for the cases with a strong effect, the
distribution of the difference between the most suppressive surround location and the axis of preferred orientation.
doi:10.1371/journal.pcbi.1002405.g010
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difference in co-assignments, nor in surround strength, from

different surround locations.

Perceptual salience
We then asked whether the same statistically motivated compu-

tational principles underlie perceptual salience: local image regions

are deemed salient when e.g. they can be detected more readily,

appear to have higher luminance, or attract human gaze more often

compared to the remaining parts of the image (see [15,20] and

references therein). Several models [15–18] have related bottom-up

salience to the local contrast in image features (e.g., luminance,

orientation, color channels). Most pertinently for us, the idea that V1

is a neural substrate of salience processing has been formalized

theoretically and supported experimentally [20,21,75–77].

To address saliency effects, we combined model responses

corresponding to all four center orientations, as is typical in

saliency computations. Specifically, for a given image, at each

input location we computed the responses as in Equation 3

separately for each orientations, and then took the maximum [22].

The result was interpreted as a (statistically-based) salience map.

The stimulus shown in Fig. 11A-left illustrates the phenomenon

of perceptual pop-out of a central target that differs from a

uniform background of distractors by a single feature, in this case

orientation. Consistent with the percept, the target has by far the

greatest salience in the output salience map (Fig. 11A-right).

Nothdurft [3] reported that — with a luminance matching

experiment above detection threshold — the relative target

saliency saturated with a center-surround orientation difference

around 45u (Fig. 11B). By comparison, many salience models

exhibit a linear increase in response (see [16] for discussion). Our

model correctly captured the form of the nonlinearity, with the

specific nature of the saturation depending on stimulus design:

with high contrast, 5 pixels long bars, the vertical surround group

always normalized the responses at the location of the center bar,

and therefore surround bars oriented 45 degrees or more from

vertical modulated center responses only weakly (Fig. 11C; see Fig.

S3 for examples with different bar contrasts/sizes/separations).

Another important class of saliency effects involves collinear

facilitation. We tested the model with simple arrangements of bars

that are known to produce higher perceptual salience for collinear

(Col) than parallel sets of bars (Par), relative to a homogeneous

texture (Txt) of iso-oriented bars (Fig. 12). We used the same

length, contrast, and spacing of bars as in Fig. 11. To explain the

salience maps, first note that model responses at the center of each

bar were always normalized by the outputs of the surround group

with the same orientation (i.e. the co-assignment probability was

large at every location, due to partial encroachment of the center

bar on surround RFs and vice versa); therefore the differences

between Col and Par could not be attributed to different

assignments as in Fig. 9, but rather to the asymmetry of the

covariance matrices as explained below.

First, we consider the bars on the boundary regions. In Fig. 12A,

the boundary includes the middle row of collinear horizontal bars

(Col), and the neighboring rows of parallel vertical bars above and

below (Par). For such bars, only a portion of the surround has the

same orientation as the center, leading to overall less surround

activation at the boundary than inside the homogenous regions

(Txt; i.e., in Fig. 12A, where each vertical bar is entirely

surrounded by vertical bars). Since the co-assignment probability

was large for both the border and homogenous region, we

observed weaker surround suppression, and thus larger salience, at

the border than in the homogenous regions.

In addition, we observed a larger salience enhancement for the

middle row of bars, relative to the homogeneous region, when they

were collinear (Fig. 12A) than parallel (Fig. 12B). Collinear and

parallel salience enhancement were defined as (Col-Txt)/Txt and (Par-

Txt)/Txt, respectively. The larger collinear enhancement was due only

in part to the stronger RF linear outputs for collinear stimuli (since

surround bars encroached on the center RF) and was largely

attributable to the covariance matrices learned from scenes. As

explained in Materials and Methods, in the co-assigned model

components, the collinear surround RFs had higher variance, and

higher covariance with the center RF, than the parallel RFs. This led

to smaller normalization signals, and therefore weaker suppression, for

collinear than parallel stimuli. As a control, we computed the salience

maps with a reduced version of the model that assumed diagonal

covariance matrices and equal variances, and found that the difference

of salience enhancement between Col and Par was reduced for

Fig. 12A, while it was increased for Fig. 12B, relative to the full model.

Therefore, the control was less compatible with collinear facilitation.

The two examples above are to some extent combined in the

border effect in stimuli such as Fig. 12C, where the side of the

border on which the set of bars adjacent to and defining the

border are collinear is perceptually more salient than the other

[75]. The salience map computed by the model also showed this

effect, due to the covariance structure, as explained above.

Discussion

We have addressed spatial contextual influences in early vision by

introducing a statistical model that is rich enough to capture the

coordination that exists amongst spatially distributed V1-like RFs in

Figure 11. Perceptual pop-out in a population of model
neurons. (A) Example stimulus (left) and the corresponding salience
map (right). Bars are 5 pixels long (i.e., smaller than RFs) and separated
by 6 pixels (equal to RFs spacing; see Materials and Methods). Pixel
intensity codes for salience, with brighter pixels denoting higher
salience. (B) Mean perceived luminance [3] of a target defined by
orientation-contrast, such as the vertical bar in the icon on (A, left).
Perceived luminance is defined as the luminance of a luminance-
contrast target (i.e. a bar with the same orientation as the background
distractors, but higher luminance), required for it to be perceived as
salient as the orientation-contrast target. Values are rescaled to a
maximum of 1; the relative perceived luminance of the background
bars is 0.36. (C) Saliency computed by the model for the orientation-
contrast targets. Values are rescaled to a maximum of 1; the relative
saliency of the background bars is 0.51.
doi:10.1371/journal.pcbi.1002405.g011
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natural scenes. Our model took explicit account of the spatial

heterogeneity of scenes. Inference in the model amounted to a

generalized form of divisive normalization from each RF’s

surround. The model reproduced a host of V1 neural surround

nonlinearities, including both suppression and facilitation, such as

RF expansion at low contrast (Fig. 7); a number of phenomena

relating to orientation tuning (Fig. 8); and spatial asymmetry

(Fig. 9,10) of surround modulation. Combining model responses

across orientations yielded perceptual salience phenomena of pop-

out, enhancement of collinear borders and texture border

assignment (Fig. 11,12). Thus, we have shown that a whole range

of qualitative behaviors can be captured by a model that is based on

encoding the statistical properties of natural images. This provides a

principled account of contextual phenomena which makes specific

predictions (such as Fig. 9B–D) that are straightforward to test using

existing methods and techniques. It can also explain contextual

effects well beyond the examples we provided.

Many important mechanistic accounts of contextual interac-

tions have included ideas about excitatory and inhibitory

connections and their links to divisive normalization, e.g.

[42,78–80], and surround effects, e.g. [59,63]. Our model is not

a competitor to these, but rather is complementary, adding a layer

of interpretation that indicates the nature of the information

processing implemented by mechanistic approaches. Specifically,

we suggested that contextual modulation is sensitive to the

statistical homogeneity of the inputs. Clarifying the underlying

mechanisms is an issue that deserves further exploration, and

might involve the different firing thresholds or diversity across

types of interneurons [59,60], or may be a property of the cortical

network involving input-dependent state switching (e.g. [61]),

changes in functional connectivity [62], or the exact balance

between excitatory and inhibitory conductances [63].

In addition, surround modulation was more often engaged

when stimulating collinear than parallel regions of the surround;

but, when surround modulation was engaged, collinear responses

were enhanced relative to parallel. These behaviors, due to the

form of the covariances learned from natural scenes, may also find

a basis in the known specificity and anisotropy of horizontal (e.g.

[52–55]) and feedback connections (e.g. [56–58]) that are thought

to mediate V1 contextual interactions. It is important to note also

that, differently from most of the mechanistic models mentioned

above, our model in its current form does not include free

parameters that can be fit to specific experimental datasets; the

parameters are instead learned from natural scenes, in a process

analogous to development, and then fixed.

Stimulus-dependent surround normalization
Two main statistical innovations were critical for capturing the

full set of biological data. First, our model provides a formal

Figure 12. Perceptual saliency of collinear stimuli. (A,B) Illustration of the collinear enhancement of salience. Left: Original stimulus. Bars are 5
pixels long and separated by 6 pixels (equal to RFs spacing; see Materials and Methods). Center: salience map (pixel intensity codes for salience, with
brighter pixels denoting higher salience). Symbols on the map identify regions of homogeneous texture (Txt, green), and the boundary regions
formed by collinear (Col, red) or parallel (Par, blue) bars. Right: salience enhancement (Y axis) is quantified as (Col-Txt)/Txt (red line and symbols, for
the collinear side) and (Par-Txt)/Txt (blue line and symbols, for the parallel side); the enhancement is 0 by definition for the homogeneous texture
regions (green line and symbols). On the X axis, Full stands for the results obtained with the full model, whereas Diag stands for a reduced model that
sets the covariance between center and surround RFs proportional to the identity matrix, rather than learning it from scenes. (C) Illustration of the
border effect. All conventions are the same as in (A,B).
doi:10.1371/journal.pcbi.1002405.g012
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treatment of the idea of statistical homogeneity vs heterogeneity of

visual inputs. We proposed that V1 is sensitive to whether center

and surround responses to a given stimulus are inferred to be

dependent or independent based on the statistical structure of

natural scenes. This sensitivity is actually required to capture the

stronger statistical dependence apparent within spatially extended

visual objects. In our model, it implies that surround modulation is

fully engaged by stimuli comprising extended single objects, but

disengaged by stimuli with entirely independent center and

surround.

This (dis)engagement proved to be crucial to obtain the neural

effects in Fig. 7–9. In particular, the model, by choosing among

multiple normalization pools with different tuning characteristics,

captured the observation that the most suppressive surround

orientation is the one matched to the center stimulus, not the

center preference (Fig. 8C), which had not previously been

modeled. Cavanaugh et al. [9] attributed the effect partly to the

encroachment of the surround annulus on the center RF, a factor

that they reduced, but could not eliminate entirely, by introducing

a gap in the stimuli. In the model we had fuller control over the

RFs and the encroachment for the stimuli of Fig. 8A,C, suggesting

that at least in part the effect might reflect genuine surround

modulation, and can be explained on a statistical basis. The

inclusion of multiple surround pools also allowed our model to

capture the narrowing of orientation tuning curves with large

stimuli (Fig. 8E; see also [35,81]). The assignments inferred in

Fig. 8A are also consistent with (and thus provide statistical

support for) those assumed by fiat in the idealized model of [70],

where they were important for capturing repulsive and attractive

perceptual biases in the tilt illusion.

The flexibility of the normalization pool also implied that the

model could exhibit surround facilitation. While a strong (and co-

assigned) surround was suppressive, a weak (and co-assigned)

surround was facilitative, when compared to responses in the

absence of surround (not co-assigned). The magnitude of the

modulation was larger for weaker center RFs outputs (Fig. 6). We

suggest that this feature of the model can unify disparate

experimental observations that weak surround stimulation (e.g.

using large gaps, or small collinear stimuli) in conjunction with

weak center stimulation (e.g. low contrast) can lead to facilitation

[10,12,73,74]. However, the precise dependence of surround

tuning, and facilitation, on the optimality of the center stimulus

has not been explored systematically, and further experiments will

be required to test this general prediction of the model. We should

note also that facilitation of an optimal center stimulus by a

surround stimulus with largely different or orthogonal orientation,

which has also been observed experimentally [9,10,67], could be

explained more simply by dis-inhibition (or inhibition of the

suppressive surround, [9,35]). Such an explanation demands some

form of recurrent processing that is missing in our current model.

The impact of linear correlations
The second key statistical feature in our model, namely the RFs

covariance matrices, reflects the structure of linear correlations found

in natural images. For image patches that the model determined to

be homogenous, we observed larger variance for the central RF and

its collinear neighbors, and larger covariance between the collinear

neighbors, than for any other surround location (Fig. 4). This

impacted divisive normalization in two important ways that have not

been explored previously, and that allowed us to address both the

spatial asymmetry of cortical surround modulation, and collinear

enhancement of salience with simple displays.

At high contrast, collinear surrounds suppress targets more than

parallel surrounds. The model reproduced this characteristic

(Fig. 9A) because collinear stimuli are more likely to engage

surround modulation. In addition, it predicted that whether

collinear grating patches suppress or facilitate a target depends on

stimulus contrast and angular size (Fig. 9B), consistent with the

limited data on collinear facilitation for unmatched contrasts (low

in the center, high in the surround [73]). The latter crucially

depended on the larger probability for a high than low contrast

central stimulus to engage surround normalization by itself, a fact

that also led to ‘‘far’’ surround facilitation [12]. Also, by learning

the covariance structure individually for different natural images

(Fig. 10), we suggested a possible relation between the scatter of

positional biases observed experimentally with both iso- and

orthogonally oriented surround patches, and scene statistics.

Furthermore, the model generated salience maps that exhibited

collinear enhancement and texture border assignment with simple

bar displays (Fig. 12). These stimuli always engaged surround

modulation in the model. Due to the correlation structure of Fig. 4,

for any bar in the display, the collinear neighbors contributed less to

the normalization signal, and so were less suppressive, than the

parallel neighbors (Materials and Methods). This might also provide

a basis for contour integration, namely the pop-out of a contour

composed by collinear, but spatially separated, oriented bars

surrounded by randomly oriented distractors. Excitatory interac-

tions among collinear RFs led to contour integration in a dynamical

model of V1 saliency [75] and in other computational approaches

[82–85]. In addition, Li et al. [86] reported that the firing rates of

V1 neurons in monkey reflect contour integration only after the

animals learned to perform contour detection. Our model produced

only marginal contour enhancement with complex bar stimuli.

However, since we derived collinear interactions from scene

statistics, it is possible that supervised training on contours may

further amplify such interactions. Alternatively, our model may

need to include higher order statistics [87–89] that could be learned

at higher processing stages [90].

Relationship to other models
Our statistical modeling relates most closely to a number of

recent powerful approaches in computer vision and statistical

learning which have not been directly applied to contextual effects

in neuroscience. These include hierarchical models for unsuper-

vised learning of statistical structure in images (e.g. [91]),

extensions of Independent Component Analysis (e.g. [31,92]),

and models that explain image patches based on the competition,

rather than linear superposition, of independent components (e.g.

[93]). Other variants of the GSM have proposed schemes to learn

RF covariance matrices with applications to computer-vision

problems such as image denoising and quality assessment (e.g.

[94,95]); in particular, Hammond and Simoncelli, 2008 [96] used

a mixture of GSMs that allowed for mixing based on an

orientedness prior and allowed them to improve noise removal

in local oriented structure.

The model of Schwartz et al. [37] allowed for arbitrary pooling of

RFs under multiple mixers. This started from a bank of linear RFs

over the full visual field, and a collection of normalization pools.

Each RF learned a prior affiliation with a number of the pools across

a whole collection of image patches; but for any single patch, could

only be normalized by a single pool. This resulted in an

arrangement in which pools varied in shape and composition thus

covering a region of visual space with some probabilistic overlap (see

Fig. 11 of [37]). This, and other related scene statistics models [36],

perhaps suggest some analogy of RF arrangements to what has been

found in the visual periphery (e.g. [97]). However, the models in

[36,37] were not examined from the perspective of biological data.

In order to address cortical data, our current approach explored the
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simplest alternative which still permitted formal separation between

center and surround: this required an approximation in which

multiple surround RFs can coordinate with a center RF as a group,

but not individually. This simplification was crucial to make the

covariance optimization computationally tractable, but in the

simulation results it was counterbalanced by the fact that the

covariance allowed for different weightings of the surround (e.g.

Fig. 9,10 where the collinear and parallel regions of the surround

receive different assignments). However, for more complex stimuli

than those considered in this paper, it remains to be seen how well

the approximation works in capturing neural outputs; furthermore,

relaxing the approximation will be necessary when considering e.g.

simultaneous responses of populations of neurons. It will be

important in future work to explore models of intermediate

complexity that would still allow flexibility in the surround

assignments.

Certain other statistically-minded approaches to computer

vision have addressed the implications for biological vision.

Schwartz and Simoncelli [30] linked surround divisive normali-

zation to scene statistics by learning divisive weights; however they

did not consider linear correlations, nor the concept of stimulus-

dependent normalization pools. Karklin and Lewicki [34] also

proposed that neural responses encode local statistical variations in

the inputs. This led to an impressive set of complex-cell non-

linearities, though not explicitly related to divisive normalization,

nor covering as wide a range of surround effects. Other

computational paradigms of predictive coding [98] modeled

divisive surround modulation in depth [35], but did not address

spatial non-homogeneities. Some models (e.g. [15,16]) explained a

large range of perceptual salience effects based on cortical-like

center-surround interactions, but these have not reproduced V1

surround modulation in detail. Furthermore, by contrast with the

dynamical modeling [14,19–21,75,76], none of the above accounts

tied together neural and perceptual salience effects.

Future directions
A natural extension of our approach would be to optimize the

sampling of visual features and test how well the model predicts V1

responses to complex scenes; and their effects on perceptually

assessable factors such as salience detection under controlled

manipulation of the assignments, and gaze patterns on natural

images [15]. Recurrent implementations of V1 saliency [75]

captured also subtle perceptual phenomena, such as the medial

axis effect; these elude our model, and might require more

cooperative interactions among the units. More generally, context

is pervasive in time as well as space [99]: extending the model to

learn statistical regularities in natural movies could provide an

underpinning for the temporal characteristics of V1 responses and

perceptual reports, such as adaptation and its dual in the form of

surprise responses [100]. It remains an open question as to

whether these contextual effects collectively represent the zenith of

V1 processing, and whether and how the same computational

principles apply to V2 and beyond.

Supporting Information

Figure S1 The natural images used to train the model.

(TIF)

Figure S2 Orientation tuning of the center is contrast-invariant.

Model tuning curves at different contrast are approximately scaled

versions of each other, a characteristic feature of V1 tuning. This

holds across different stimulus sizes, both smaller and larger than

the receptive field size.

(EPS)

Figure S3 Perceptual pop-out in the model depends on the bars

length, separation, and contrast. The red box correspond to the

configuration used in Fig. 10, main text.

(TIF)

Text S1 Equations and examples of the linear filters used in the

simulations.

(PDF)

Text S2 Mathematical details on the training algorithm.

(PDF)

Text S3 Extended simulation results on surround orientation

tuning as a function of contrast, and center and surround stimulus

size.

(PDF)

Text S4 Additional simulation results on the positional bias.

Cardinal axis effects and variability across different natural images

can produce a scatter of positional biases consistent with that

observed in V1 populations.

(PDF)
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