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Abstract

It is well established that the variability of the neural activity across trials, as measured by the Fano factor, is elevated. This
fact poses limits on information encoding by the neural activity. However, a series of recent neurophysiological experiments
have changed this traditional view. Single cell recordings across a variety of species, brain areas, brain states and stimulus
conditions demonstrate a remarkable reduction of the neural variability when an external stimulation is applied and when
attention is allocated towards a stimulus within a neuron’s receptive field, suggesting an enhancement of information
encoding. Using an heterogeneously connected neural network model whose dynamics exhibits multiple attractors, we
demonstrate here how this variability reduction can arise from a network effect. In the spontaneous state, we show that the
high degree of neural variability is mainly due to fluctuation-driven excursions from attractor to attractor. This occurs when,
in the parameter space, the network working point is around the bifurcation allowing multistable attractors. The application
of an external excitatory drive by stimulation or attention stabilizes one specific attractor, eliminating in this way the
transitions between the different attractors and resulting in a net decrease in neural variability over trials. Importantly, non-
responsive neurons also exhibit a reduction of variability. Finally, this reduced variability is found to arise from an increased
regularity of the neural spike trains. In conclusion, these results suggest that the variability reduction under stimulation and
attention is a property of neural circuits.
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Introduction

Traditionally, neuroscience aims to discover the neural

mechanisms underlying perceptual, cognitive and motor functions

by examining neural responses as subjects repeatedly perform a

behavioral task. Typically, neural responses are extracted by

averaging over those trials and the obtained firing rates are often

the only information retained. This approach discards the high

firing irregularity and the high variability across trials that

individual neurons activity exhibit [1,2], fluctuations that a priori

limit information encoding. At different scales, high fluctuations

are also observed in the so-called ongoing activity, and have been

shown to play a role on the task-induced activity [3–6]. Therefore,

the challenging question is: on a single-trial basis, how and in

which conditions these a priori detrimental fluctuations allow an

efficient information encoding?

Recent experimental studies have examined the neural

variability across a variety of species, cortical areas, brain states

and stimulus conditions [7–10]. Measuring the neural variability

with the Fano factor, the mean-normalized variance of the neural

spike counts over trials, these studies have found that stimuli

generally reduced neural variability [10], in line with previous

results in the visual system [11]. Additionally, neural variability has

been found to decrease in an attentional paradigm [7,9].

Theoretically, using a rate model, a recent study [12,13] has

proposed that variability reduction arises from a stimulus induced

suppression of an otherwise chaotic ongoing state. Using a spiking

network model, we demonstrate here that the variability reduction

can arise from an alternative network effect presented in the

framework of attractor networks. The formalism of attractor

dynamics offers a unifying principle for representation and

processing of information [14–18]. Co-activation of neurons

induces stronger mutual synaptic connections, leading to assembly

formation. Reverberatory activity between assembly members can

then lead to memory by the persistence of neural activation. The

concept of neural assemblies was later formalized in the

framework of statistical physics [14–16], where these co-activated

neurons lead to attractors in the phase space of the recurrent

neural dynamics: patterns of co-activation can represent fixed

points from which the dynamical system evolves. In this

framework, we show that during spontaneous activity, as measured

by the mean-normalized variance of the spike count (the Fano

factor), neural variability is high when the network exhibits noise-

driven excursions between multiple attractors. The application of

an external stimulation stabilizes one specific attractor and

suppresses the excursions between different attractors, leading to

a reduction of neural variability. After an exhaustive study of the

Fano factor changes in the network, we conclude that variability
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reduction is associated with one fundamental condition, namely

that in the spontaneous condition, the network working point is

around the edge of the bifurcation above which multiple stable

(multistable) activated attractors appear. Moreover, we show that

the reduced variability can be attributed to an increased regularity

of the spike trains, as measured by the coefficient of variation (CV)

of the interspike interval (ISI) distribution.

Results

We study the reduction of neural variability using a spiking

neural network model (see Materials and Methods). Real

biological networks have a priori an heterogeneous connectivity

structure, particularly due to synaptic plasticity and learning: the

present network model is an example of this. We first investigate

the neural activity and its variability when the network is in a

spontaneous state. Then, we consider the effect of the application

of an external stimulation to one neural population and how

variability is reduced relative to the spontaneous state. Therefore,

we study how attention reduces the variability, when the top-down

attentional bias is modeled as an increase in the external

stimulation. We compare these results with experimental mea-

surements [10,7,9]. As a model prediction, we consider the case

where two stimuli are presented to different network populations -

mimicking the case of two simultaneously presented stimuli in a

neuron’s receptive field, and when attention is directed towards

one of them. We analyze under which conditions the variability is

maximally reduced, i.e. when the network best encodes an

external stimulation, and conclude that it occurs when the network

working point in the spontaneous state is around the bifurcation

where multiple stable attractor states emerge. The application of

an external excitatory drive (sensory or attentional input) stabilizes

one specific attractor, eliminating in this way the transitions

between different attractors, resulting in a net decrease in neural

variability.

Stimulation Effects on Variability
In the attractor network considered here (see Figure 1A and

Materials and Methods), each excitatory population is selective for

a specific external stimulus. In each of these populations, the

recurrent weights are therefore assumed to have increased by

Hebbian learning mechanisms to a value wz, called the cohesion

level. The inhibition level wInh is regulated by the GABA synaptic

connections provided by the inhibitory population. The stationary

and stable states (attractors) of this network can be studied using a

standard mean-field approximation [16,19], applied here to the

case when input rate fluctuations are absent. Figure 1B plots the

obtained bifurcation diagram in the spontaneous condition. The

diagram shows the firing rate difference between the possible

stationary states as a function of the cohesion and inhibition levels.

Two regions can be distinguished. First, a large region where there

is a unique stationary stable state (large dark blue region): this state

corresponds to a low activation state where excitatory and

inhibitory neurons fire at a low mean rate (approximately 3 Hz

and 9 Hz when wInh~1, respectively). Second, above a bifurca-

tion, in a region of intermediate inhibition level and sufficiently

large cohesion level, the network exhibits multistability with the

coexistence of 6 stable states, namely: 5 equivalent states where

only one of the 5 specific populations is highly activated, and a low

activation state as described above. This last attractor remains

stable just above the bifurcation, because of a so-called subcritical

bifurcation. Below the bifurcation, although the activated

attractors are unstable, fluctuations can induce transient excur-

sions of the network state towards them, the dynamics around

these attractors being partially stable even if not globally.

First, we focus on spontaneous activity. For a network working

point around but below the bifurcation, for example for a cohesion

level wz~1:9 and an inhibition level wInh~1:05, Figure 2A show

the network spontaneous activity (for times less than 10 s). The

activity is irregular, not only from the timing of spikes but at the

rate level, where abrupt changes occur from time to time. Each

neural population has different rate fluctuations. The rate

distribution for all selective populations (see Figure 2B) is large

(mean rate: 3.02 Hz; standard deviation: 4.53 Hz), with a unique

peak at zero rate and with a long tail. These rate fluctuations

cannot be explained solely by the input rate fluctuations: they

reveal the excursions of the activity between the different network

attractors. This type of network dynamics may be at the origin of

the similar large firing rate fluctuations observed in the cortex of

behaving monkeys (Reynolds and Mitchell, personal communica-

tion). When an external stimulus is applied to a given population

(I~200 Hz to population 1 at time t~10 s in Figure 2A), not only

the activity of this population increases but the neural activity

fluctuations due to the wanderings between the different attractors

is sharply reduced. Actually, under stimulation, only the attractor

corresponding to high activity in this population and low activity

in all others is stable.

To study the changes in the neural variability in the network

when a specific external stimulus is applied, we investigate the

Fano factor reduction corresponding to the difference between the

spontaneous condition and when one selective excitatory popula-

tion is externally stimulated by a Poisson spike train with rate I.

The Fano factor was calculated from scatter plots of the neural

spike count variance versus mean by linear regression fits

constrained to pass through the origin. The spike counts variance

and mean were calculated for each neuron separated in windows

of 100 ms and averaging over 1000 trials. Applying the mean-

matched procedure of Churchland et al. [10], neurons in the

stimulated population define the non-matched case (as stimulation

increases their rate), whereas neurons in the non-stimulated

populations define the matched case (as stimulation changes only

slightly their rates). Figure 3 plots the Fano factor without external

stimulation, with external stimulation (I~200 Hz) and their

Author Summary

To understand how neurons encode information, neuro-
scientists record their firing activity while the animal
executes a given task for many trials. Surprisingly, it has
been found that the neural response is highly variable,
which a priori limits the encoding of information by these
neurons. However, recent experiments have shown that
this variability is reduced when the animal receives a
stimulus or attends to a particular one, suggesting an
enhancement of information encoding. It is known that a
cause of neural variability resides in the fact that individual
neurons receive an input which fluctuates around their
firing threshold. We demonstrate here that all the
experimental results can naturally arise from the dynamics
of a neural network. Using a realistic model, we show that
the neural variability during spontaneous activity is
particularly high because input noise induces large
fluctuations between multiple –but unstable- network
states. With stimulation or attention, one particular
network state is stabilized and fluctuations decrease,
leading to a neural variability reduction. In conclusion,
our results suggest that the observed variability reduction
is a property of the neural circuits of the brain.

Network Mechanisms of Neural Variability Reduction
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difference as a function of the cohesion and inhibition levels.

Figure 3A and 3B show the results for the matched condition and

for the non-matched condition, respectively. Both cases show that

a reduction of the Fano factor consistent with the experimental

findings occurs around the bifurcation line (black line). More

precisely, the matched rate case shows that multistability is

required for the Fano factor to change. The Fano factor is reduced

on the right part of the bifurcation line, for wInhw1, requiring then

sufficient inhibition. For the non-matched rate case, the Fano

factor is well reduced around the whole multistability region. Note

that, due to the presence of noise, multiple attractors manifest

themselves outside the region calculated with the mean-field

approach (see Figure 1B). Furthermore, the Fano factor level for

those regions is consistent with the observed experimental values,

namely: around 1.4 for the non-stimulated case and 1 for the

stimulated case.

Beyond the changes observed over trials, the spiking statistics,

like the neural ISI distribution, is also likely to change under

Figure 1. Network architecture and its dynamical behavior to analyze the stimulation and attention effects. (A) Network architecture.
The network contains excitatory pyramidal cells (blue triangles) and inhibitory interneurons (red circles). Neurons are fully connected and clustered
into excitatory and inhibitory (I ) populations (large circles). There are two subtypes of excitatory populations, namely selective (Ek) and non-selective
(Ens), whereby selective populations encode specific stimuli. Edges indicate recurrent connections between neurons in a population, and arrows
indicate the connections strengths (see Materials and methods). (B) Bifurcation diagram of the network obtained via the mean-field approximation.
The rate difference (in kHz) between attractors is plotted, revealing the multistability region (colors except dark blue) where two different types of
stable attractors coexist (see Results).
doi:10.1371/journal.pcbi.1002395.g001

Figure 2. Network firing activity during spontaneous and stimulated conditions. The network cohesion and inhibition levels are wz~1:9
and wInh~1:05, respectively. (A) Firing activity for network neurons (10 neurons in each population, as indicated on the right): raster plot (black)
together with the mean rate (red curves) for each population, obtained as the convolution of the spike trains with a unit Gaussian function with
50 ms width. For the first 10 s, no stimulus is applied and the resulting ongoing activity is similar in all excitatory populations: in each of them, the
firing rate fluctuates irregularly and abruptly as the result of input rate fluctuations and induced excursions between the different attractors of the
network. Besides an attractor corresponding to low activation in all populations, there are attractors corresponding to higher activation in one
selective population and low activation in all the others. From time t~10 s (green vertical line), a stimulus is presented to the selective excitatory
population 1 (I~200 Hz), increasing its mean rate and decreasing the one of the other selective pools. Moreover, all rates have now lower
fluctuations: the attractor corresponding to a high activation of population 1 and a low activation of the others is stabilized. (B) Probability
distribution of the rate fluctuations for the specific excitatory populations during spontaneous activity. The rate fluctuations are quite large (mean
rate: 3:02 Hz; standard deviation: 4:53 Hz), with no peak except at zero rate and a long tail. This behavior reveals the excursion regime between the
different attractors.
doi:10.1371/journal.pcbi.1002395.g002

Network Mechanisms of Neural Variability Reduction
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stimulation, although it has not been reported experimentally. To

compute the ISI distribution, we have simulated the network

activity over long time intervals (100 s), and have characterized the

ISI distribution by its coefficient of variation (CV ). We have

compared the CV and the Fano factor for two values of the

cohesion level wz, a low value for which there is no multistability

(wz~1:7) and a high value for which there is (wz~2:3). As

shown in Figure 4, the CV and the Fano factor are always very

similar, and vary similarly across all conditions. Therefore, our

model results suggest that the Fano factor change is due to an

underlying change in the spiking statistics.

For a fixed cohesion level allowing multistable states, Figure 5

shows for the non-matched and matched conditions the Fano

factor reduction as a function of the external stimulation and

inhibition levels. For the stimulated neurons, the neural variability

reduction appears in regions where the spontaneous state is

around the bifurcation and increases with the external stimulation.

For the non-stimulated neurons, the reduction of neural variability

emerges also in the same region. In the spontaneous state, neural

variability is high because of the network state excursions between

different attractors. The application of an external stimulation

stabilizes one specific attractor and suppresses the wanderings

between different attractors (see Figure 2A), leading to a neural

variability reduction.

Figure 6 shows in more detail the evolution of the spike count

mean, variance and Fano factor as a function of time for a network

with a cohesion level wz~1:9 and an inhibition level wInh~1:05,

as in Figure 2. The first 1000 ms were simulated in the

spontaneous condition. A specific external stimulation was applied

from 1000 to 2000 ms to the selective neural population 1. The

top part of Figure 6 corresponds to the averaged results obtained

from the 80 neurons of the stimulated population 1, whereas the

bottom part corresponds to the averaged results from the 320

neurons in the other non-stimulated populations. For the

stimulated neurons, the spike count mean and variance increase

when the stimulus is applied (at 1000 ms), but in such a way that

the Fano factor is reduced. For the non-stimulated neurons, the

stimulation effect is to reduce both spike count mean and variance,

in a way that reduces the Fano factor. The Fano factor was

calculated from the spike count variance versus mean scatter plots,

where each point represents one neuron, the Fano factor being

deduced using a linear regression fit (see Materials and methods).

Attentional Effects
Recent experiments have studied the effect of attention on the

neural variability over trials [7,9], Single V4 cells were recorded in

awake behaving monkeys when one stimulus in the neuron’s

receptive field was behaviorally attended or not. Both studies

reported a relatively small but significant decrease of the Fano

factor in the attended condition with respect to the non-attended

one. In our simulations, we modeled the attentional bias by

increasing the level of exogenous input to the stimulus-specific

population when this stimulus was attended, similar to an increase

of the stimulus-related input. In this sense, it can be regarded as a

baseline shift mechanism, or an increase in contrast (However, it

does not accommodate any attentional gain mechanism that

would be better modeled through changes in postsynaptic

sensitivity, possibly through NMDA receptor dynamics). As the

neural variability reduction increases with stimulus strength (see

Figure 5), the application of an attentional bias therefore decreases

Figure 3. Fano factor as a function of the cohesion and inhibition levels in the (A) non-matched rate and (B) matched rate
conditions. Fano factor (top) without and (middle) with external stimulation (I~200 Hz) and (bottom) their difference, i.e. the stimulus driven
reduction of the Fano factor. The difference in Fano factor between two consecutive contours is 0:2. For the Fano factor reduction, the interval
{0:1,0:1½ � is indicated by the light blue color, and values less than {0:5 are indicated in white. These results show that a reduction of the Fano factor

consistent with the experiments occurs indeed around the bifurcation line, for sufficient inhibition (wIhhw1).
doi:10.1371/journal.pcbi.1002395.g003

Network Mechanisms of Neural Variability Reduction
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the Fano factor compared to the non-attended case. The effect of

attention on the Fano factor evolution in shown in Figure 7 by

comparing with the non-attended case. These results show that the

model reproduces the range of Fano factor reductions observed

experimentally [7,9].

As a model prediction, we consider now the case where two

stimuli are presented simultaneously in a neuron’s receptive field

and when attention is allocated to only one of them, a situation

referred to lead to ‘‘biased competition’’ [20,21]. In the network,

selective populations 1 and 2 encode each one of the two

simultaneously presented visual stimuli: the target which should be

attended and the distractor which should be ignored. After 500 ms

of spontaneous activity, the two external visual stimuli are applied

to these two populations for 1000 ms. In the attended condition,

the selective population corresponding to the target receives the

attentional bias. Figure 8 plots the neural variability reduction for

the cohesion level wz~1:9. The variability reduction is obtained

as the difference of the average Fano factor for the 80 neurons in

the attended (Figure 8A) versus in the non-attended stimulated

populations (Figure 8B). For both populations, variability is

reduced by attention around the region where the system is

multistable without attention (around wInh~1). The mechanism

responsible for the reduction of neural variability is identical to the

one described above. In the condition without attention noise-

driven excursions between attractors generates a high neural

variability. Allocation of attention stabilizes one of the attractors,

namely the one corresponding to higher activation of the attended

target population and lower activation of the ignored distractor

population.

Discussion

In the spontaneous or undriven state, why do cortical circuits

exhibit a relatively high degree of neural variability across trials?

Why does this variability decrease when a stimulus is presented or

when attention is paid? Here, we investigated what could underlie

these phenomena in a realistic neural network. Our results show

that, under spontaneous conditions, the high degree of neural

variability in a neural circuit could essentially be due to

fluctuation-driven excursions between the different attractors of

the circuit dynamics. This is possible if, in the parameter space, the

spontaneous state of the circuit resides around the edge of a

bifurcation above which multistable attractors appear. The

application of an external excitatory drive, either mediated by a

sensory stimulus or by attention, stabilizes one specific attractor

and suppresses in this way the transitions between the different

attractors. This results in a net decrease in neural variability as

measured as a by the Fano factor. More precisely, the matched

rate case shows that multistability is required for the Fano factor to

change. The Fano factor is reduced on the right part of the

bifurcation line, requiring then sufficient inhibition (wInhw1). For

the non-matched rate case, the Fano factor is well reduced around

the whole multistability region. In conclusion our results show

that, in the model parameter space, there exists a region where the

Fano factor is reduced, both in the non-matched and the matched

rate case. Because the spike count signal-to-noise ratio is increased,

this reduction suggests an improved encoding of the external

signal.

Beyond the variability over trials, we have also shown that the

CV of the neural ISI distributions varies similarly to the Fano

factor across all conditions, meaning that the variability reduction

is due to a concomitant increase of the spike trains regularity. It

would be interesting to verify this model prediction experimen-

tally. However, due to relatively short recorded time intervals, this

quantity may be difficult to measure and the CV2 [22], which

requires only the knowledge of two consecutive ISIs, could be

employed instead.

The above conclusions have been obtained for the present

heterogeneously connected network and rely on the existence of

multiple attractors. However, the present scenario does not

depend on the specific network structure, provided the network

exhibits multistability. In this case, there is a region of the

parameter space where there is strict multistability, meaning the

co-existence of multiple stable states. From dynamical systems

Figure 4. Comparison of the CV (black) and the Fano factor (red) in the (A) non-matched rate and the (B) matched rate conditions
for two different cohesion levels. CV and Fano factor (top) without and (middle) with external stimulation (I~200 Hz) and (bottom) their
difference, i.e. their stimulus driven reduction. The CV and Fano factor exhibit very similar values and behavior with respect to parameter changes.
For a low cohesion level (wz~1:7, left column), the reduction is lower, and even non-existent in the matched rate case, than for a larger cohesion
level (wz~2:3, right column) for which the multistability region exists.
doi:10.1371/journal.pcbi.1002395.g004

Network Mechanisms of Neural Variability Reduction
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theory, it is known that close to this region, the unstable attractors

can still transiently attract the dynamics, a behavior which will be

favored by fluctuations. Note that, because multistability is needed

here to reproduce the experimental observations, this excludes a

priori single neuron mechanisms.

In a recent study [12,13], the authors have proposed that the

ongoing spontaneous activity is chaotic, and that stimulation

suppresses this chaos. They use a phenomenological firing rate

model which allows a theoretical understanding of the network

behavior. The realism of the present model allows a quantitative

comparison with experimental results but prevents at the same

time such a theoretical understanding. Only could we predict the

stationary states of the network using a mean-field approach.

Beyond the naı̈ve analogy that stimulation suppresses ongoing

fluctuations in the two models, a number of differences between

the two models (in their case: rate model, no noise, temporal input,

phase transition) indicate that the two scenarios are different.

Further experimental and theoretical evidence supports the

present scenario. At the microscopic level and using optical

imaging, Arieli et al. [4] (see also [5]) first showed that spontaneous

activity is highly coordinated across large neural assemblies in the

primary visual cortex (V1) of an anesthetized cat. Furthermore, the

pattern of co-activation is feature-specific in the discharge of

individual neurons and is temporally locked to the activation of

other cells with similar orientation preferences whose spatial

organization is described by orientation maps. Finally, the

variability of such ongoing activity can explain much of the

variability in subsequent sensory-evoked responses, indicating a

potential link with perception. Blumenfeld et al. [23] accounted for

this type of cellular ongoing activity by assuming that this activity

resulted from noise-driven transitions between multistable attrac-

tors of the intracortical network. They suggested a rate model

endowed with a simple local connectivity rule, and showed that it

yields attractor states that are highly similar to the orientation

maps alternatively activated in the absence of stimulation. They

also considered the case where the activity is evoked by a visual

stimulus and showed how a structured afferent input can select the

orientation map that matches the orientation of the stimulus.

Their model therefore suggests that orientation maps are encoded

in the lateral connections, and that these connections can generate

an orientation map both when the activity is spontaneous and

when it is evoked by a visual stimulus.

In a recent work, where the same biophysical spiking neural

network was used, it was shown that, using the Fisher information,

the network neural activity best encoded a small external input, or

modulatory input (like it is believed to be the case for attention), in

the region of the parameter space where excitatory and inhibitory

input currents almost balance each other, and which correspond

to wInh&1 (Deco and Hugues, PLoS One, in press). This regime of

balanced input is supported by experimental evidence in vitro [24]

and in vivo [25,26]. Taken together with the present results, we

can conclude that, in the region of the parameter space around the

bifurcation and where input currents almost balance, our model

agrees with all the experimental findings, which suggests that these

observations may also correspond to a region of best stimulus

encoding.

At the global level of large-scale neural systems, a broad body of

experimental work, mainly using the BOLD fMRI hemodynamic

response, has suggested that brain activity during resting state is

not random but has a spatiotemporal structure (for a review see

[27]). From these findings, ongoing neural activity may therefore

be organized in a series of functional networks, so-called resting

state networks. Suggested by a modeling study, these networks

may also emerge from noise-induced transitions between multiple

oscillatory brain states [28]. In this sense, the model of Blumenfeld

et al. [23] at the microscopic cellular level, and the model of Deco

et al. [28] at the global neuroanatomical level, propose that

spontaneous ongoing activity is built up with multiple attractors,

each one related with different specific stimulations or tasks, and

that this activity fluctuates during spontaneous activity (or rest) due

to transitions between those attractor states, induced by noise and

unstructured input.

Materials and Methods

To study the variability changes due to stimulation or attention

allocation, we consider a biophysically realistic neural network

model, at the same time sufficiently simple to allow a theoretical

investigation of its dynamical behavior [16]. We have chosen such

a biophysical model to be able to reproduce quantitatively the

experimental findings. The model uses integrate-and-fire neurons

with excitatory (AMPA and NMDA) and inhibitory (GABA-A)

synaptic receptor types. It is formulated and analyzed in the

theoretical framework of attractor networks introduced in the

Figure 5. Fano factor reduction for a fixed cohesion level
(wz~2:3 here) as a function of inhibition level and stimulation
strength. In the stimulated condition, one selective excitatory
population is externally stimulated at a rate I (in kHz). (A) The non-
matched condition corresponds to the 80 neurons of the stimulated
population and (B) the matched-condition to the 320 neurons
belonging to the other non-stimulated populations, using the mean-
matched procedure of Churchland et al. (2010).
doi:10.1371/journal.pcbi.1002395.g005

Network Mechanisms of Neural Variability Reduction
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seminal work of Amit [14]. An attractor network is a neural

network whose dynamical state has the tendency to settle into a

stable pattern of firing, which eventually destabilizes under the

effect of noise. Its behavior can be formally described by

dynamical systems theory.

Neurons and Synapses
The spiking activity of neurons in the network is described by an

integrate-and-fire model. Integrate-and-fire (IF) neurons are point-

like elements, whose dynamical state is described by their

membrane potential V (t). An IF neuron can be described by a

basic circuit consisting of a cell membrane capacitance Cm in

parallel with a membrane resistance Rm, driven by input currents

Figure 6. Changes in the spike count mean, variance and Fano factor due to the stimulation of one specific population. The network
cohesion and inhibition levels are wz~1:9 and wInh~1:05, respectively. After a first period of 1000 ms without stimulation, a specific external
stimulation was applied during 1000 ms onto the neurons in the selective population 1. (A) Averaged results obtained with the 80 neurons of the
stimulated population and (B) with the 320 neurons of the other non-stimulated populations.
doi:10.1371/journal.pcbi.1002395.g006

Figure 7. Fano factor without and with attention in the case of
one stimulus. After 500 ms of stimulus presentation to a given
selective population (with rate I~200 Hz), attention is allocated (with
bias latt~40 Hz) (red curve). Comparison to the case without attention
(blue curve).
doi:10.1371/journal.pcbi.1002395.g007

Figure 8. Fano factor reduction as a function of the inhibition
level in the biased competition case for cohesion level wz~1:9.
Two selective populations receive a stimulus, and attention is allocated
to one of them. The Fano factor is averaged over the 80 neurons in each
stimulated population. Fano factor reduction (A) for the attended
stimulus corresponding population and (B) for the non-attended one.
doi:10.1371/journal.pcbi.1002395.g008
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coming from connected neurons. Hence, the subthreshold

dynamics of the membrane potential of each neuron in the

network is given by the following equation:

Cm
dV (t)

dt
~{gm(V (t){VL){

½gAMPA,ext(V (t){VE)
XNext

j~1

sAMPA,ext
j (t)z

zgAMPA,rec(V (t){VE)
XNE

j~1

wjs
AMPA,rec
j (t)z

z
gNMDA,rec(V (t){VE)

1zce{bV (t)

XNE

j~1

wjs
NMDA,rec
j (t)z

zgGABA(V (t){VI )
XNI

j~1

wjs
GABA
j (t)�

ð1Þ

where gm~1=Rm is the membrane leak conductance, VL is the

resting potential, and Isyn is the synaptic current. The membrane

time constant is defined by tm~Cm=gm. When the voltage across

the membrane reaches a given threshold Vthr, the neuron

generates a spike which is then transmitted to other neurons and

the membrane potential is instantaneously reset to Vreset and

maintained there for a refractory time tref during which the

neuron is unable to produce further spikes. The spikes arriving to a

given neural synapse produce an input to the neuron which induce

post-synaptic excitatory or inhibitory potentials (through a low-

pass filter formed by the membrane and synaptic time constants).

In Equation 1, gAMPA,ext, gAMPA,rec, gNMDA,rec, and gGABA are the

synaptic conductances, and VE , VI the excitatory and inhibitory

reversal potentials, respectively. The dimensionless parameters wj

of the connections are the synaptic weights. The NMDA currents

are voltage dependent and they are modulated by intracellular

magnesium concentration. The gating variables si
j(t) are the

fractions of open channels of neurons and they are given by:

dsAMPA,ext
j (t)

dt
~{

sAMPA,ext
j (t)

tAMPA

z
X

k

d(t{tk
j ), ð2Þ

dsAMPA,rec
j (t)

dt
~{

sAMPA,rec
j (t)

tAMPA

z
X

k

d(t{tk
j ), ð3Þ

dsNMDA,rec
j (t)

dt
~{

sNMDA,rec
j (t)

tNMDA,decay

zaxj(t)(1{sNMDA,rec
j (t)), ð4Þ

dxNMDA,rec
j (t)

dt
~{

xNMDA,rec
j (t)

tNMDA,rise

z
X

k

d(t{tk
j ), ð5Þ

dsGABA
j (t)

dt
~{

sGABA
j (t)

tGABA

z
X

k

d(t{tk
j ): ð6Þ

The sums over the index k represent all the spikes emitted by the

presynaptic neuron j (at times tk
j ). In Equations 2–6, tNMDA,rise and

tNMDA,decay are the rise and decays times for the NMDA synapses,

and tAMPA and tGABA the decay times for AMPA and GABA

synapses. The rise times of both AMPA and GABA synaptic

currents are neglected because they are short (,1 ms). The values

of the constant parameters and default values of the free

parameters used in the simulations are displayed in Table 1.

Neural Network
We use the same network to study both situations, namely the

effects of stimulation and attention on the neural variability over

trials. The network consists of N (N~1000 in our simulations)

interacting neurons, where NE~0:8N are excitatory (pyramidal)

cells and NI~0:2N are inhibitory cells (interneurons), consistent

with the neurophysiologically observed proportions [29]. We use

an attractor network where neurons are organized into a discrete

set of populations (see Figure 1A). There are three different

population types, namely: 1) the inhibitory population, 2) the

excitatory non-selective population and 3) the excitatory selective

population. The inhibitory population I is made of the inhibitory

neurons in the modeled brain area and mediates competition in

the attractor network by distributing a global inhibitory signal.

The non-selective population Ens is composed of all excitatory

neurons that are not receiving any specific external input and

which therefore provides a background level of excitation. The

remaining excitatory neurons are clustered in different populations

Ek, 5 in the simulations reported here. Each contains fNE neurons

(f ~0:1 in our simulations) which are sensitive to a specific

external stimulus. The network is fully connected, meaning that

each neuron in the network receives NE excitatory and NI

inhibitory synaptic contacts. The connection strengths between

and within the populations are determined by dimensionless

weights wj . We assume that the connections are already formed,

e.g. by earlier self-organization mechanisms, as if they were

established by Hebbian learning, with the coupling between two

neurons being strong if their activities are correlated and weak if

they are anticorrelated. The recurrent self-excitation within each

selective population Ek is given by the weight wz (wzw1), which

is called the cohesion level, and the weaker connection between

them by the weight w{ (w{v1). The synaptic efficacy w{

depends on wz by the relation w{~1{f (wz{1)=(1{f ). This

serves to ensure that the average excitatory synaptic efficacy will

Table 1. Neural and synaptic parameters.

Excitatory neurons Inhibitory neurons Synapses

NE 800 neurons NI 200 neurons VE 0 mV

Cm 0.5 nF Cm 0.2 nF VI 270 mV

gm 25 nS gm 20 nS tAMPA 2 ms

VL 270 mV VL 270 mV tNMDA,rise 2 ms

Vthr 250 mV Vthr 250 mV tNMDA,decay 100 ms

Vreset 255 mV Vreset 255 mV tGABA 10 ms

tref 1 ms tref 1 ms a 0.5 ms21

gAMPA,ext 2.08 nS gAMPA,ext 1.62 nS b 0.062 mV21

gAMPA,rec 0.104 nS gAMPA,rec 0.081 nS c 0.2801

gNMDA 0.327 nS gNMDA 0.258 nS

gGABA 1.25 nS gGABA 0.973 nS

This table gives the values used in the numerical simulations for the parameters
that enter in the definition of neuron and synaptic models (See Materials and
Methods).
doi:10.1371/journal.pcbi.1002395.t001
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remain constant as wz is varied across conditions. Neurons in the

inhibitory population are mutually connected with an intermedi-

ate weight w~1. These neurons are also connected with all

excitatory neurons with the same intermediate weight, which for

excitatory-to-inhibitory connections is w~1 and, for inhibitory-to-

excitatory connections, is denoted wInh and called the inhibition

level. Neurons in each excitatory population Ek are connected to

neurons in the population Ens with a feedforward and feedback

synaptic weights w~1 and w{, respectively. The remaining

connections are all set to the baseline value, i.e. to 1.

All neurons in the network always receive an external

background input from Next external neurons emitting uncorre-

lated Poisson spike trains at rate next,0. The resulting spike train is

still a Poisson spike train, with rate n0~Nextnext,0. More

specifically, and for all neurons inside a given population p, the

resulting spike train is assumed to have a time-varying rate n
p
ext(t),

governed by

tn
dn

p
ext

dt
~{(np

ext(t){n0)zsn

ffiffiffiffiffiffiffi
2tn

p
np(t) ð12Þ

where tn~30 ms, n0~2:4 kHz, sn~0:21 kHz is the standard

deviation of np
ext(t) and np(t) is a normalized Gaussian white noise.

Due to noise, negative values of np
ext(t) that could arise are rectified

to zero. These input rate fluctuations represent the noisy

fluctuations that are typically observed in vivo. Additionally,

neurons in a specific selective population Ek could receive other

inputs when an external stimulus is applied or when attention is

allocated to that population. These inputs are specified by adding

a corresponding rate to the rate of the background Poissonian

input spike train.

Stimulation Effect
Without stimulation, all neurons only receive the background

input. In the stimulation case, the first selective population is

stimulated, receiving an extra input whose rate is l1~I . Without

external stimulation, the spontaneous activity of the network

consists in a noise-driven wandering between different attractors

(See Results for more detailed explanations), each corresponding

to higher activation in one selective population and lower

activation in all the others. Stimulation onset stabilizes one

attractor, corresponding to the high activation of the stimulated

selective population. The spiking activity for one trial is simulated

for 500 ms without stimulation, allowing the network activity to

stabilize, and the stimulus is then presented during 100 ms. Results

during the stimulus period are averaged over 1000 trials initialized

with different random seeds.

Attentional Effect
We analyze the effect of attention on the neural variability and

study the encoding of an attended stimulus. For this, we first

address the recent experimental results when one stimulus is

presented in a neuron’s receptive field [7,9]. In a second part, as a

prediction, we analyze the case where two stimuli are presented in

a neuron’s receptive field, a case used to elicit ‘‘biased

competition’’ [20,21]. In the model, when attention is applied to

a given stimulus, a biasing input corresponding to a rate latt is

added to the input of the corresponding stimulus specific

population [30,31]. In the case of one stimulus, the effect of

attention is consequently assimilable to an increase of the stimulus

strength or contrast, and is essentially a particular case of the

stimulation case. In the case of two stimuli, each simulation started

with a period of 500 ms (for network activity stabilization). Then,

during a period of 1000 ms, an identical stimulus was presented to

selective populations 1 and 2, represented by the corresponding

extra rates l1~l2~200 Hz, respectively. Two cases were

compared: with and without attention. In the case with attention,

an extra attentional bias latt was added to the population 1,

corresponding to the attended spatial location (i.e.

l1~200zlatt Hz). In the case without attention, no bias was

applied. The spiking activity was averaged over 2000 trials

initialized with different random seeds.

Fano Factor
In the spiking simulations, we characterized neural variability

using the mean-normalized variance of the spike counts, i.e. the

Fano factor. It is defined as FF~s2=m, where s2 is the variance

and m is the mean of the spike counts of a neuron in a time window

W. In all cases, we used a time window of 100 ms. The Fano

factor measures the noise-to-signal ratio and therefore character-

izes the neural variability over trials. For example, for a Poisson

process, the variance equals the mean spike count (FF~1) for any

length of the time window. We calculated the Fano factor by

fitting a linear regression (constrained to pass through the origin)

to scatter plots of the spike-count variance versus mean for each of

the 80 neurons in the analyzed population. The variance and

mean of the spike counts were calculated for each individual

neuron by averaging over 1000 trials. In conditions for which the

rate of some populations was not significantly affected, which is the

case in practice for the non-stimulated neuronal populations, we

used the mean-matching procedure for the Fano factor described

in Churchland et al. [10] whose aim is to have the same

distribution of mean firing rates and therefore factor out the rate

for the Fano factor changes. In brief, the mean matching

procedure consists of selecting neurons such that the distribution

of the spike count for each condition (with or without stimulation)

is the same. We took the greatest common distribution of the

computed spike count for each condition. Individual points are

then randomly removed until the actual distribution matched the

common distribution. The mean-matched Fano factor is based on

the remaining points.
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