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Background

The understanding of biological net-

works is a fundamental issue in computa-

tional biology. When analyzing topological

properties of networks, one often tends to

substitute the term ‘‘network’’ for ‘‘graph’’,

or uses both terms interchangeably. From

a mathematical perspective, this is often

not fully correct, because many functional

relationships in biological networks are

more complicated than what can be

represented in graphs.

In general, graphs are combinatorial

models for representing relationships (edg-

es) between certain objects (nodes). In

biology, the nodes typically describe pro-

teins, metabolites, genes, or other biological

entities, whereas the edges represent func-

tional relationships or interactions between

the nodes such as ‘‘binds to’’, ‘‘catalyzes’’,

or ‘‘is converted to’’. A key property of

graphs is that every edge connects two

nodes. Many biological processes, however,

are characterized by more than two

participating partners and are thus not

bilateral. A metabolic reaction such as

A+BRC+D (involving four species), or a

protein complex consisting of more than

two proteins, are typical examples. Hence,

such multilateral relationships are not

compatible with graph edges. As illustrated

below, transformation to a graph represen-

tation is usually possible but may imply a

loss of information that can lead to wrong

interpretations afterward.

Hypergraphs offer a framework that

helps to overcome such conceptual limita-

tions. As the name indicates, hypergraphs

generalize graphs by allowing edges to

connect more than two nodes, which may

facilitate a more precise representation of

biological knowledge. Surprisingly, al-

though hypergraphs occur ubiquitously

when dealing with cellular networks, their

notion is known to a much lesser extent

than that of graphs, and sometimes they

are used without explicit mention.

This contribution does by no means

question the importance and wide applica-

bility of graph theory for modeling biolog-

ical processes. A multitude of studies proves

that meaningful biological properties can

be extracted from graph models (for a

review see [1]). Instead, this contribution

aims to increase the communities’ aware-

ness of hypergraphs as a modeling frame-

work for network analysis in cell biology.

We will give an introduction to the notion

of hypergraphs, thereby highlighting their

differences from graphs and discussing

examples of using hypergraph theory in

biological network analysis. For this Per-

spective, we propose using hypergraph

statistics of biological networks, where

graph analysis is predominantly used but

where a hypergraph interpretation may

produce novel results, e.g., in the context of

a protein complex hypergraph.

Like graphs, hypergraphs may be classi-

fied by distinguishing between undirected

and directed hypergraphs, and, according-

ly, we divide the introduction to hyper-

graphs given below into two major parts.

Undirected Hypergraphs

An undirected hypergraph H = (V,E) consists

of a set V of vertices or nodes and a set E of

hyperedges. Each hyperedge eME may

contain arbitrarily many vertices, the

order being irrelevant, and is thus defined

as a subset of V. For this reason,

undirected hypergraphs can also be inter-

preted as set systems with a ground set V and

a family E of subsets of V. If no hyperedge

is a subset of another hyperedge, H is also

called a Sperner hypergraph, or clutter.

Undirected graphs are special cases of

hypergraphs in which every hyperedge

contains two nodes (i.e., has a cardinality

of two). Protein–protein interaction (PPI)

networks provide a nice example illustrat-

ing the differences that may arise in

modeling biological facts with graphs and

hypergraphs. Various technologies for

measuring protein interactions have been

developed, but we concentrate here on

data obtained, e.g., by tandem affinity

purification (TAP, [2,3]) delivering protein

complexes (with possibly more than two

partners) instead of direct binary interac-

tions. A small-scale example mimicking

experimental data derived by TAP is

shown in Figure 1A (left). TAP data

naturally span a hypergraph: We have a

ground set of proteins and a set of

complexes, which themselves represent

subsets (hyperedges) of the ground set of

proteins. One method for drawing undi-

rected hypergraphs is shown in Figure 1A

(middle). Hypergraphs are often projected

onto graphs, losing some information but

making their drawing easier and their

analysis amenable to the huge corpus of

methods and algorithms from graph

theory. A typical graph representation of

our example is shown in Figure 1A (right)

(another way to convert hypergraphs to

graphs will be shown below). This repre-

sentation still captures the information on

pairs of proteins that occurred together in

a complex; however, in contrast to the

hypergraph, the complexes themselves

cannot be reconstructed from this figure.

This may lead to different results when

computing network properties such as the

k-core, a measure that is often used to

identify the core proteome [4,5]. In a

graph, the k-core is the maximal node-

induced sub-graph in which all nodes have

a degree (defined as the number of edges a
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node participates in) equal to or larger

than k. The maximum core of a graph

corresponds to the highest k where the

graph has a non-empty k-core. The

maximum k-core of the graph in

Figure 1A is a 3-core consisting of the

nodes {A,B,C,D}. A similar definition of a

k-core can be defined for (Sperner) hyper-

graphs, where k corresponds to the

number of hyperedges each node partic-

ipates in [5]. The maximum k-core of the

hypergraph in Figure 1A is a 2-core

consisting of {A,C,E}. Thus, as one would

intuitively expect, the maximum k-core of

the hypergraph ranks A, C, and E as most

important—in contrast to the graph mod-

el, whose maximum k-core would weight B

and D stronger than E.

Another application of undirected hy-

pergraphs is minimal hitting sets (MHSs), also

known as generalized vertex covers or

hypergraph transversals [6,7]. For exam-

ple, in a given hypergraph model of a PPI

network, an interesting problem related to

experimental design [5] is to determine

minimal (irreducible) subsets of bait pro-

teins that would cover or ‘‘hit’’ all

complexes in a minimal way; i.e., no

proper subset of an MHS would hit all

complexes. In Figure 1A, the correspond-

Figure 1. Examples of undirected (A,B) and directed (C,D) hypergraphs arising in the context of biological networks analysis.
Detailed explanations are given in the text.
doi:10.1371/journal.pcbi.1000385.g001
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ing MHSs would be {A,E},{A,C},{B,E},

{C,E},{D,E}. MHSs are also relevant for

computing intervention strategies [8,9].

An example: Assume that a network

(which is in our example a directed graph)

contains feedback loops, and a given

selection of them is to be disrupted with

appropriate interventions. This is equiva-

lent to computing MHSs in a hypergraph,

where V is the ground set of interactions

(here: edges) and E is the set of targeted

feedback loops, i.e., each hyperedge con-

tains the involved interactions of one

feedback loop. Figure 1B shows a simple

interaction graph (left) containing three

feedback loops, thereof two being negative

(Figure 1B, middle). There are five MHSs

for disrupting the negative feedback loops:

Two of them remove only one edge,

whereas the other three cut two edges.

Even though they require two interven-

tions, the MHSs {3,4} and {3,5} will be

preferred if the only positive feedback loop

in the network, constituted by edges

1,2,7,6, is to be kept functional. In a very

similar way, one may compute MHSs of a

‘‘target set’’ of elementary modes, revealing

intervention strategies in metabolic net-

works [8,10].

Hypergraphs are also closely related to

the concept of independence systems. An

independence system I = (V,U) is a collec-

tion U of subsets of a ground set V in which

for each set uMU all subsets of u are part of

the collection. Any Sperner hypergraph

H = (V,E) can be extended to an indepen-

dence system I = (V,U) in which V is still the

set of vertices and U contains all hyperedges

of E plus all subsets of these hyperedges.

The hyperedges of the original hypergraph

are then the maximal independent sets (also

called bases) of the independence system I.

For example, the family of sets of the

independence system induced by the pro-

tein complex hypergraph in Figure 1A

would contain the three protein complexes

(the maximal independent sets) plus all

subsets of each complex. Consider now the

following problem: Each protein is assigned

a weight representing, for instance, the

molecular weight of the protein. We could

ask for the complex of maximal weight.

Can we find such a complex without

examining all complexes, i.e., all maximal

independent sets? If not, how good are

approximations that we can find quickly?

These questions can be answered by the

theory of independence systems using

methods from discrete optimization and

combinatorics [11,12]. The most promi-

nent type of independence system is that of

a matroid [13]. Optimization problems on

matroids are of low complexity because the

simple greedy algorithm (taking in each step

the locally optimal choice) always finds a

globally maximal independent set. Coming

back to the optimization problem of finding

the heaviest protein complex in Figure 1A,

assume the (molecular) weights are as

follows: A = 1, B = 2, C = 3, D = 4, E = 5.

A greedy strategy (operating on the vertices)

would first select protein E because it has

the highest weight. This reduces the search

space to complex C2 and C3. For the next

protein we choose C because its molecular

weight is larger than that of A. The

algorithm finishes at that point as it has

found a maximal independent set (complex

C3) whose weight is 8, which is apparently

not the optimum (note that this is not due to

the larger size of complex C1; choosing

A = 8, B = 1, C = 1, D = 9, E = 8, the

greedy algorithm would deliver the four-

protein complex C1, although the true

optimum is then the two-protein complex

C2). The reason that the greedy algorithm

fails in this simple example is that the

independence system spanned by the

complex hypergraph is not a matroid.

Given how frequently greedy-type algo-

rithms on hypergraphs are applied as

heuristics in practice, it appears important

to study the deviation of the hypergraph

under consideration from being a matroid

[13]. A recent study on algorithms for

measuring phylogenetic diversity under-

lines this point [14].

Directed Hypergraphs

The definition of directed hypergraphs is

similar to undirected hypergraphs,

D = (V,A), but each hyperedge aMA—here

also called hyperarc—is assigned a direc-

tion, implying that one has to define where

it starts and where it ends. Directed

hypergraphs allow us to connect several start

nodes (the tail T ) with several end nodes (the

head H). A hyperarc is thus defined as

a = (T ,H) with T and H being subsets of the

vertices V. Again, directed graphs are

special cases of directed hypergraphs where

both T and H contain exactly one node

limiting their scope to 1:1 relationships. In

contrast, directed hypergraphs can repre-

sent arbitrary n:m relationships.

Typical examples are (bio)chemical

reactions, which are often bi-molecular,

such as the example A+BRC+D. The tail

T of this hyperarc consists of the reactants

A and B, whereas the head H contains the

product C and D. However, for an exact

description of stoichiometric reactions we

need to include the stoichiometric coeffi-

cients (which can be different from unity)

in the hypergraph model. For this pur-

pose, one adds into each hyperarc two

functions cT : TRN and cH: HRN,

assigning the stoichiometric coefficients

for the nodes in T and H, respectively.

Each hyperarc a then reads a = (T , cT , H,

cH). This completes the description of a

stoichiometric network, which is in prac-

tice often conveniently described by a

stoichiometric matrix (Figure 1C): The

columns correspond to the reactions, i.e.,

hyperarcs, and the rows to the nodes, i.e.,

metabolites with their stoichiometric coef-

ficients [15]. Reactants can be distin-

guished from the products by the negative

sign at their stoichiometric coefficients.

Directed hypergraphs can be drawn as

shown in the example in Figure 1C. For

simplifying drawing and analysis, directed

hypergraphs are often converted

(Figure 1C, right) either to directed

substrate graphs (similar to the graph in

Figure 1A) or to directed bipartite graphs.

In the latter, both reactions and metabo-

lites are represented as two different types

of nodes, and edges exist only from

metabolites to reactions, or vice versa. In

contrast to the simple graph projection

used in the substrate graph, the bipartite

graph still reflects the original information

from the hypergraph. This representation

can be used to determine a number of

relevant topological network properties

using graph-theoretical techniques [16].

However, even in bipartite graphs, graph-

theoretical methods may not be appropri-

ate when analyzing functional properties

that require an explicit consideration of

the AND connections between reactants

and products. For example, as one can

easily verify, removing reaction R1 from

the reaction network in Figure 1C implies

that a continuous production of E from A

alone would not be possible anymore.

However, a path from A to E still exists in

the bipartite graph (via nodes R2, D, and

R3), which might suggest that this was still

possible. Techniques of the popular con-

straint-based analysis of metabolic net-

works [15] directly operate on the stoi-

chiometric matrix and therefore take the

hypergraphical nature of metabolic net-

works explicitly into account. Using a

prominent example from the central

metabolism (production of sugars from

fatty acids), a recent contribution illus-

trates that non-functional pathways might

be detected in metabolic networks when

paths in the underlying graph representa-

tion are interpreted as valid routes [17]. A

widely used concept for pathways in

hypergraphical reaction networks is based

on elementary (flux) modes, which are mini-

mal functional sub-networks able to oper-

ate in steady state [18]. Elementary modes

are better suited for studying functional

aspects of metabolic networks than simple
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paths in the graph representation. How-

ever, it comes at the expense of higher

computational efforts. For example, the

calculation of the elementary mode with

the smallest number of reactions involved

is much harder (NP-hard [19]) than the

easy problem of computing shortest paths

in graphs. Furthermore, some problems

can be safely studied in the graph

representation. An example from

Figure 1C: The shortest ‘‘influence’’ path

along which a perturbation in the concen-

tration of metabolite A can spread over the

network and affect the concentration of

node E involves two steps (reactions R2

and R3) and can be deduced from both

graph representations. Even if reaction R1

is absent, this path would be valid if we

assume that the concentration of B is non-

zero at the beginning. What would not be

possible with R2 and R3 alone, as

discussed above, is a continuous production

of E when A is provided as a substrate.

Another application of directed hyper-

graphs in computational biology is the

representation of logical relationships in

signaling and regulatory networks. Interac-

tion graphs (signed directed graphs) are

commonly used topological models for

causal relationships and signal flows in

cellular networks. For example, in

Figure 1D, species A and B have a positive

and C a negative influence on the activa-

tion level of D. However, due to the 1:1

relationships, we cannot decide which

combinations of input signals of D will

eventually activate D itself. With additional

information, a refined hypergraph repre-

sentation might be constructed as in the

right part of Figure 1D: The hyperarc

connecting A and B with D expresses a

logical AND, whereas the (simple) red

hyperarc from C to D indicates an

alternative way to activate D, namely if

the inhibiting species C is not active.

Hence, this hypergraph expresses the

Boolean function ‘‘D gets activated if A

AND B are active OR if C is inactive’’. In

fact, any Boolean network can be repre-

sented by a directed hypergraph [9], which

can be advantageous when analyzing

biologically relevant network properties

[9,20,21]. Again, a correct analysis of

network function and dysfunction, e.g.,

which knock-out combinations guarantee

an inactivation of D in Figure 1D, requires

the explicit consideration of AND relation-

ships properly captured by hypergraphs.

Algorithmic Considerations

The concept of hypergraphs provides

such a rich modeling framework that

algorithms necessarily will be problem-

specific, and will differ in complexity from

similar algorithms for graphs. Clearly, since

graphs are special cases of hypergraphs,

algorithms for hypergraphs are at least as

hard as its specialized implementations in

the graph case. Generally, when discussing

algorithms in graphs and hypergraphs, one

has to distinguish between two types of

problems. The first type encompasses algo-

rithms determining a particular (e.g., optimal)

solution. One example, as noted above, are

shortest-path algorithms for graphs that are

of low complexity (and thus applicable in

large-scale networks) and which can also be

used to find the connected components or to

determine spanning trees in a hypergraph.

This is due to the fact that the graph

representation as in Figure 1C captures all

necessary information for these questions. If

hyperedges are weighted, however, the

shortest-path problems are hard ones in

general, unless assumptions about the struc-

ture of the edge weight function are made: If

each edge is weighted by its cardinality, the

shortest-path problem is NP-hard, but if the

weight function is additive, the problem can

be solved using a modified Dijkstra algo-

rithm [22]. On the other hand, problems

that are computationally easy for graphs can

be hard for hypergraphs: Finding a maximal

matching in a bipartite graph, i.e., deter-

mining a set of edges with maximal weight

so that each node is contained in exactly one

of the edges, is polynomial time–solvable.

Even checking whether a hypergraph is

bipartite, i.e., can be partitioned into two

sets of nodes so that no hyperedge is

contained in either of them, is NP-hard [23].

The second type of problem is enumer-

ation problems such as computing all paths

and cycles in a graph or all minimal hitting

sets in a hypergraph. These problems

typically require enormous computational

effort and are often limited to networks of

moderate size. For example, the hardness

of computing the minimal hitting sets

(transversal of a hypergraph) is an open

question in complexity theory [11]. The

theoretically fastest currently known algo-

rithm is quasi-polynomial [24], used

successfully, e.g., in [12], whereas variants

of Berge’s method [6] are often faster in

practice [10]. In general, it turns out that

the particular topology of cellular net-

works renders enumeration problems of-

ten feasible where one would expect

infeasibility in random networks with

comparable size (see, e.g., [10,25]).

Network Statistics in
Hypergraphs

With the increasing availability of large-

scale molecular interaction graphs such as

PPI or gene regulatory networks, more

and more researchers have begun asking

not only for single specific elements of a

graph but instead for its statistical proper-

ties or significant building blocks. Exam-

ples are the neural network of C. elegans,

which satisfies the small-world property,

implying shorter mean shortest paths and

higher clustering coefficients than one

would expect in random networks [26],

and the PPI network of yeast, which may

be modeled using a scale-free topology

and whose node connectivity is correlated

with essentiality of the corresponding

protein [27]. Key novelties in these

approaches are that properties of the

graphs are now interpreted as statistical

distributions, which can be correlated with

other variables and asked for significance

within an appropriate class of random

graphs [28,29]. In the following, we will

first shortly outline some existing exten-

sions of graph statistics to hypergraph

statistics and corresponding random mod-

els and afterward indicate applications in

computational biology. We will focus on

undirected hypergraphs, although exten-

sions to directed ones are possible.

The degree d(n) of a vertex nMV of an

undirected hypergraph H = (V,E) is the

number of hyperedges that contain n.

Similarly, the degree d9(e) of an hyperedge

eMH is the number of vertices of that

hyperedge. If G is a graph, then d9(e) = 2.

In the more general hypergraph setting,

however, we can consider distributions

both of vertex and hyperedge degrees. We

can ask for mean degrees or more general

properties of the distributions. In social

network analysis, this has already been

done: For instance, an actor–movie hy-

pergraph obeys power-law distributions in

both degrees whereas an author–publica-

tion hypergraph shows a power law only in

the number of co-authored papers, but not

in the author degree [30]—which is simply

due to the fact that the number of authors

on a paper is relatively limited.

The natural next step in defining hyper-

graph statistics is to correlate vertex and

hyperedge connectivity, a major ingredient

for determining, e.g., the small-world prop-

erty known from the graph case [26]. Here,

the commonly used graph clustering coeffi-

cient may be extended. For this, let N vð Þ
denote the neighborhood of a vertex, which

is defined as the set of hyperedges that

contain n. Then the (hypergraph) clustering

coefficient cc defined for a pair of vertices

(u,n) is given by cc u,vð Þ~ N uð Þ\N vð Þj j=
N uð Þ|N vð Þj j, which quantifies overlap

between neighborhoods. By analogy, it can

be defined for hyperedges as well, and, by

averaging over all vertices, a univariate
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clustering coefficient may be defined. In the

author–publication hypergraph, clustering

coefficients of both vertices and hyperedges

are higher than expected by chance [30].

Another proposal for clustering coefficients

in hypergraphs can be found in [31]. In

addition to such local measures, we may also

ask for global or semi-global properties. A

common question in the graph case is to

identify clusters, often denoted as commu-

nities, within the graph. Various methods

have been proposed in this context, with

normalized cut [32] and graph modularity

[33] being two of the most popular ones,

resulting in applications such as the search

for modular structures, ideally protein

complexes, in PPI networks [34]. The

former method has already been extended

to hypergraphs [35].

In order to test for significance of certain

structures, e.g., network motifs [36] or

scaling structures [26,27], good null models

are important. Such null models describe

random occurrences of structures. One

typically wants to keep some statistics of

the network fixed while at the same time

randomly sampling from its representation-

al class. This results in the notion of random

graphs with certain additional properties

such as Erdös-Rényi [37] or Barabási-

Albert [38]. Extensions of random models,

in particular to hypergraphs, would focus

on generative models, which increasingly

find applications at least in the graph case

[26,39]. In the context of hypergraphs, first

models have already been proposed [40].

What could be potential biological

applications of hypergraph statistics? Giv-

en the fact that in gene regulatory

networks statistical properties are decisive

[27], it stands to reason that if one wants

to combine two types of regulations or

interactions, e.g., gene and microRNA

regulation, the resulting hypergraph ought

to be analyzed from a hypergraph statistics

point of view. Another example is the

human–disease network [41], consisting of

disease genes and related diseases. Often,

analysis and visualization are done on the

projected versions, either onto diseases or

genes. However, node statistics or motif

detection [36] may be performed in the

hypergraph itself. The latter is already

implemented, e.g., in FANMOD [42], a

motif-finding tool ready to deal with n-

partite networks. Finally, we want to

mention a hypergraph analysis of a

Figure 2. Generating a hypergraph null model by rewiring. Choose two distinct hyperedges and two different vertices contained in either of
the two. Then swap them. Clearly this operation keeps both degree distributions fixed. After a certain number of iterations, the thus-generated
Markov chain produces independent samples of the underlying random hypergraph with given degree distributions. In the figure, this is illustrated
using the in-this-case simpler-to-visualize bipartite version. The gray double-arrows indicate edges to be swapped. Each of the three swaps, (A,H2)–
(C,H3), (B,H1)–(E,H3), and (B,H3)–(D,H1), does not change the vertex and edge degrees. Significance analysis of the CORUM protein complex
hypergraph was done in [44] using this idea.
doi:10.1371/journal.pcbi.1000385.g002
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mammalian protein complex hypergraph

acquired from the CORUM database

[43]. The hypergraph shows scale-free

behavior in both vertex degree and

hyperedge degree distribution [44]. As

illustrated schematically in Figure 2, the

authors then built a random hypergraph,

in which each node and each edge still had

the same degrees as in the original

hypergraph, but where any higher-order

node correlations such as the clustering

coefficients were destroyed. By using this

hypergraph null model, the authors were

able to show that certain large protein

complexes with low mean protein length

would not be expected by chance. Alto-

gether, hypergraph statistics can be easily

applied to, e.g., networks of interactions

between nodes of two types, and first

examples already show promising results.

Conclusions

To summarize, hypergraphs generalize

graphs by allowing for multilateral rela-

tionships between the nodes, which often

results in a more precise description of

biological processes. Hypergraphs thus

provide an important approach for repre-

senting biological networks, whose poten-

tial has not been fully exploited yet. We

therefore expect that applications of hy-

pergraph theory [6,22] in computational

biology will increase in the near future.
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