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Abstract

Myxococcus xanthus cells self-organize into periodic bands of traveling waves, termed ripples, during multicellular fruiting
body development and predation on other bacteria. To investigate the mechanistic basis of rippling behavior and its
physiological role during predation by this Gram-negative soil bacterium, we have used an approach that combines
mathematical modeling with experimental observations. Specifically, we developed an agent-based model (ABM) to
simulate rippling behavior that employs a new signaling mechanism to trigger cellular reversals. The ABM has demonstrated
that three ingredients are sufficient to generate rippling behavior: (i) side-to-side signaling between two cells that causes
one of the cells to reverse, (ii) a minimal refractory time period after each reversal during which cells cannot reverse again,
and (iii) physical interactions that cause the cells to locally align. To explain why rippling behavior appears as a consequence
of the presence of prey, we postulate that prey-associated macromolecules indirectly induce ripples by stimulating side-to-
side contact-mediated signaling. In parallel to the simulations, M. xanthus predatory rippling behavior was experimentally
observed and analyzed using time-lapse microscopy. A formalized relationship between the wavelength, reversal time, and
cell velocity has been predicted by the simulations and confirmed by the experimental data. Furthermore, the results
suggest that the physiological role of rippling behavior during M. xanthus predation is to increase the rate of spreading over
prey cells due to increased side-to-side contact-mediated signaling and to allow predatory cells to remain on the prey
longer as a result of more periodic cell motility.
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Introduction

Spatial self-organization of developing cells, which results the

formation of complex dynamic structures, remains one of the most

intriguing phenomena in modern biology [1–4]. Analogous

developmental behaviors are observed as bacterial cells form

biofilms, which are populations of surface-associated cells enclosed

in a self-produced matrix [5,6]. The dynamic self-organization in

biofilms formed by the soil bacterium Myxococcus xanthus is

dependent on the ability of the cells to move on solid surfaces

[7,8], while sensing, integrating and responding to a variety of

intercellular and environmental cues [9–12].

M. xanthus is the preeminent model system for bacterial social

development. At high density and under nutrient stress M. xanthus

cells execute a complex multicellular developmental program by

aggregating into multicellular mounds, termed fruiting bodies, and

differentiating into dormant, environmentally resistant myxo-

spores [11]. In addition, these bacteria exhibit complex behaviors

when they cooperatively prey on other microorganisms by

collectively spreading over the prey cells, producing antibiotics

and lytic compounds that kill and decompose their prey [13,14].

One of the most intriguing forms of collective dynamics exhibited

by M. xanthus is their ability to self-organize into ripples – travelling

bands of high-density wave crests [15–18]. Although the M. xanthus

counter-traveling waves appear to pass through each another, they

actually reflect off of one another and are termed ‘‘accordion

waves’’ [16,18–21]. These waves are distinct from the waves

originating from Turing instability diffusion-reaction patterns,

such as those in chemical systems or observed during development

of the other well-studied model social microorganism, the amoeba

Dictyostelium discoideum [22–24].

The initial studies of the mechanisms underlying M. xanthus

rippling motility focused on this behavior during starvation-

induced multicellular fruiting body development [16–20,25–27].

The application of mathematical modeling to developmental

rippling revealed that the wave properties are consistent with

contact-induced reversal signaling [18–21,28]. This signaling was

hypothesized to originate from ‘head-to-head’ collisions of cells

moving in opposite directions and to result in an exchange of C-

signal that accelerates the reversal clock [16,19,20]. C-signal is an

extracellular protein that controls aggregation and sporulation via

contact-dependent pole-to-pole transmission [12]. Developmental

aggregation and motility coordination are induced through the C-

signal-dependent stimulation of the frz chemotaxis-like system,

which includes an unconventional soluble cytoplasmic chemore-

ceptor homologue FrzCD [12,29,30].

An opportunity to reevaluate and replace the pole-to-pole

collision-mediated model was prompted by a new report of FrzCD
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protein clusters that appear to transiently align and stimulate

reversals in cells making side-to-side contact [8] and by the recent

discovery that more robust rippling occurs during predation

[13,15]. In this paper we have investigated predatory rippling

behavior with a combination of mathematical modeling and

experimentation. We have constructed a mathematical model that

faithfully reproduces the travelling wave behavior by adapting the

recently proposed reversal-inducing side-to-side contact-mediated

signaling model [8] and incorporating the properties of the

patterns resulting from these interactions.

Results

A new agent-based model reproduces rippling self-
organization

To model collective cell behavior we needed a modeling

formalism that would allow us to connect the motility of individual

cells, intercellular interactions, and the resulting population

patterns. To this end, we employed an agent-based model

(ABM) approach [19,31–33]. Individual cells are represented as

agents that move and interact according to the rules and equations

that correspond to experimental observations. Unlike continuous,

cell-density-based approaches, the ABM approach allows cell

variability and modular implementation of interactions to be easily

incorporated. The details and equations describing our ABM are

summarized in the Materials and Methods Section. Here we

qualitatively describe the main model ingredients that result in

predatory rippling behavior.

Each agent is simulated as a self-propelled rod on a 2-D surface.

The agents move continuously along their long axis and

periodically reverse by switching the polarity of their two ends

simultaneously. As in the previous models [19–21], we expected

the ripples to emerge as a result of intercellular signaling, which

leads to synchronized cellular reversals among the cell population.

The side-to-side contact-induced signaling mechanism used here is

based on the recent observations by Mauriello et al. [8], which

demonstrated that when cells make transient side-to-side contact,

their FrzCD clusters align causing one or both of the cells to

reverse. The reversals stimulated by this intercellular signaling

would be somewhat similar to the reversals induced by pole-to-

pole collisions that were hypothesized to occur due to C-signal

exchange during M. xanthus development [18–21]. Based on this

and other experimental observations, our model incorporates four

rules to guide the agents’ interactions (see below). These rules are

converted to mathematical equations that describe rippling

motility (see the Materials and Methods Section).

i. Two counter-moving agents that make side-to-side contact

with a minimal length overlap (Figure S1) have a probability

of engaging in a signaling event that results in the reversal of

at least one of the agents.

ii. Agents enter a refractory period after each reversal during

which another reversal will not occur.

iii. Agents align locally along their long axes as a result of their

physical interactions.

iv. Agents without side-to-side contact spontaneously reverse

with a mean period about three times greater than the mean

refractory period.

The first three rules are sufficient for the model to produce

rippling behavior (Figure 1, top row; Video S1). Starting from a

uniform aligned population of agents (0 hrs), the model results in

their self-organization into periodic traveling bands (ripples) within

about 3 hrs. As in previous models [18–21,25–27], the ripples

emerge from the synchronized reversals. However, this model,

which is based on a side-to-side contact-mediated signaling

mechanism, appears to be more robust than the previous models

that utilized pole-to-pole collision-mediated signaling (Figure S2).

Rule (iv) is not necessary for rippling, but it allows the model to

reflect the cell reversal behavior exhibited at low densities when

cell contacts are rare, and it does not significantly change the high-

density motility patterns studies here. The mean value of the

native reversal period is chosen to be about 8 min (Figure S3 A) to

achieve agreement with experimental observations by us here and

others [11].

Within the framework of the proposed model, each rule (i)–(iii)

is necessary to generate rippling behavior. Specifically, rule (i) is

necessary because eleminating intercellular reversal-generated

signaling abolishes rippling motility (data not shown) and

eliminating the assumptions that signaling occurs only between

counter-moving agents has the same effect (Figure S4 A and B). It

is noteworthy that rippling motility is robust to the minimal

overlap between agents that is required for them to engage in side-

to-side signaling (Figure S5). Hereafter, an arbitrary value of 50%

as a minimal overlap threshold is assumed in all simulations.

Moreover, Figure S4 C vs D show that rippling motility occurs

regardless of whether each signaling event is bidirectional (when

cell #1 signals to cell #2, cell #2 also signals to cell #1) or

unidirectional (cell #1 signaling to cell #2 and cell #2 signaling to

cell #1 are independent events). In our simulations we use

unidirectional signaling assumptions for the reasons explained

below. The refractory period (rule ii) is also required for ripples, as

reducing it to a very short duration leads to the dissapearance of

the waves (Figure S4 E and F). In our simulations, the refractory

period is a stochastic quantity with a mean value of 2.7 min and

standard deviation of 0.7 min (Figure S3 B). Side-to-side signaling

and rippling motility can only occur in a locally aligned cell

population, and thus, physical interaction aligning cells, rule (iii), is

necesary to maintain the cells’ long axes approximately parallel.

Since in our simulations the rules (i)–(iii) induce rippling

motility, we addressed the question of which rule is modulated

to ensure that rippling motility is observed only when prey cells or

Author Summary

Myxococcus xanthus cells collectively move on solid
surfaces and reorganize their colonies in response to
environmental cues. Under some conditions, cells exhibit
an intriguing form of collective motility by self-organizing
into bands of travelling alternating-density waves termed
ripples. These waves are distinct from the waves originat-
ing from Turing instability in diffusion-reaction systems, as
these counter-traveling waves do not annihilate but
appear to pass through each other. Here we developed
a new mathematical model of rippling behavior based on
a recently observed contact signaling mechanism – cells
that make side-to-side contacts can signal one another to
reverse. We hypothesize that this signaling is enhanced by
the presence of prey-associated macromolecules and
compare modeling predictions with experimentally ob-
served waves generated on E. coli prey cells. The model
predicts a modified relationship between the wavelength
and individual predatory cell motility parameters and
provides a physiological role for rippling during predation.
We show that ripples allow predatory cells to increase the
rate of their spreading to quickly envelope the prey, and
subsequently to decrease their random drift to remain in
the prey region for longer. These and other predictions are
confirmed by the experimental observations.

The Mechanism of M. xanthus Ripples
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the macromolecules associated with their lysis are present. The

initiation and maintance of ripples seems to depend on the

probability of reversal-inducing signaling events (Figure S6), which

must exceed a threshhold value of ,5–10%. If the probability is

below 5%, then the ripples will not form and the agents will

remain uniformly distributed on the 2-D surface. When the

signaling probability exceeds the threshold value, the uniform

distribution becomes unstable and the agents self-organize into

ripples. Therefore, we hypothesize that the presence of prey-

associated macromolecules indirectly stimulates rippling by

increasing the probability that side-to-side contact generates

successive signaling events (reversals). Although the biochemical

mechanism of this induction is unknown, various macromolecular

substrates, such as peptidoglycan, bovine serum albumin, and

salmon testes chromosomal DNA, have been shown to induce

rippling motility [13,15]. Thus, we predict that the presence of

these substrates should increase the probability of reversal-

inducing signaling. Although our experimental arrangement does

not allow direct testing of this prediction, we can quantitatively

compare the emergent properities of the rippling patterns in the

model and in the experiments.

It should be noted that the experiments demonstrating side-to-

side signaling were preformed in the absence of prey cells or prey-

associated macromolecules [8]. However, the results reported by

Mauriello et al. [8] are consistent with a low probability of side-to-

side signaling and the assumption that signaling is unidirectional.

This is because in their observations only one of the cells engaged

in side-to-side contact signaling reverses its gliding direction [8]

(see also Figure S7). If the probability of signaling is low, it is

unlikely that two signaling events will occur simultaneously.

Furthermore, once one of the cell reverses, both cells will then be

moving in the same direction and as a result, they will no longer be

capable of signaling one another.

Quantifying individual and collective cell behavior in
predatory ripples with fluorescence microscopy

To test the modeling predictions experimentally, we observed

cell motility on a solid nutrient agar surface in the presence of prey

cells. The ripples were observed with fluorescence and differential

interference contrast (DIC) time-lapse microscopy, allowing us to

track cell density changes and the motility of a small percentage

(0.5%) of GFP expressing cells in a wild-type population (see

Materials and Methods section and Video S2). These images

allowed us to calculate the global properties of the ripples:

wavelength (distance from one wave crest to the next) and wave-

crest width, and at the same time to measure the behavioral

properties of individual cells: coordinates, velocity, reversal period,

and the time/position of cellular reversals.

These data provided crucial input into the model and allowed

us to test our modeling predictions. It is clear that the

experimental ripple patterns appear very similar to those

produced in the simulation (Figure 1). To compare the timing

of wave initiation between the mathematical model and the

experimental results, the time point when M. xanthus cells fully

cover the prey in the field of view was chosen as the starting time

(0 hrs in Figure 1; Video S3). Snapshot images at 0, 1, 3 and

5 hrs were selected to show the process of ripple formation in

both systems. The experimental process of wave initiation

appears to follow the same dynamics as the simulations. Initially,

the cells homogeneously cover the field of view and the cells align

as they cover the prey. During the first 3 hrs the reversals of

individual cells become synchronous and result in the formation

of ripples. By 5 hrs the ripples are pronounced and are easily

discernible.

These results indicate that the ABM is capable of qualitatively

reproducing the dynamics of rippling motility observed under our

experimental conditions. Interestingly, waves generated with the

ABM appear somewhat more pronounced than experimentally

observed ripples, which have a smaller cell density gradient from

crest to trough. This observation suggests that not all the cells in

the biofilm participate in rippling behavior.

Wavelength quantification is consistent with the
proposed rippling mechanism

To compare the rippling patterns produced by the ABM to

those of the experiments, we quantitatively characterized the

ripples and related their patterns to the behavior of individual

cells. Previous models of rippling motility [20,21] proposed a

simple equation, which relates wavelength (l), individual agent

speed (v), and agent reversal period (t):

Figure 1. Comparison of ripple initiation in the ABM simulations (top panels) and experiments (bottom panels). The timing of the
snapshot is indicated for each column. The initial time (0 hrs) corresponds to the initiation of the simulation with a uniform cell distribution or the
time M. xanthus cells fully cover the prey in the field of view. The fields of view of both the ABM simulation images and experimental images have the
same dimensions; the scale bar is 100 mm.
doi:10.1371/journal.pcbi.1002715.g001

The Mechanism of M. xanthus Ripples

PLOS Computational Biology | www.ploscompbiol.org 3 September 2012 | Volume 8 | Issue 9 | e1002715



l~2vt ð1Þ

This equation indicates that cells in two colliding crests (relative

speed 2n) reverse their directions every time the crests are

superimposed. This prediction was confirmed by both the ABM

and experimental results of developing cells [19]. However, our

analysis of the measurements by Berleman et al. [13], showed that

wavelengths of their predatory ripples were ,50% larger than

those predicted by Eq. (1). Using their experimental values of

v = 3 mm/min and t = 8 minutes, the calculated l should be

48 mm, however their observed l was ,70 mm.

To determine if the wavelength relationship, Eq. (1), works for

our new ABM of rippling motility, two sets of simulations were

conducted. First, the agent speed was fixed at 6 mm/min, while the

spontaneous reversal period was varied between 5 min and

30 min (corresponding to the variation between 3 and 12 min of

an actual average reversal period, which is smaller due to early

reversals triggered by side-to-side contact signaling; Figure 2A,

solid line). Second, the spontaneous reversal period was fixed at a

value corresponding to an average reversal period of approx-

imately 6.6 min and the cell speed was varied between 2 mm/min

and 12 mm/min (Figure 2B, solid line). These fixed values

correspond to the experimental cell motility parameters. As shown

in Figure 2A and 2B, the wavelength (l) scales linearly with agent

speed (v) and average reversal period (t). However, when no-

intercept linear regression was used, regression coefficients of

15.2 mm/min for Figure 2A and 16.1 min for Figure 2B were

obtained. Both values are slightly larger than the predicted

coefficients of 2v (12 mm/min) and 2t (13.2 min), respectively.

When we tracked the reversal points of individual agents, we

observed that the agent reversals were initiated as soon as the

leading edge of each crest came into contact (Test S1; Figure S6).

This indicates that as the agents at the front of each crest reverse,

they signal to the other cells in their crests, leading to a ‘‘chain-

reaction’’ of signaling and reversals. Given the wave crest width D,

the cells in each crest only move an average distance of l22D
before reversing again, which results in the average reversal period

t= (l22D)/2v. Thus, we modified our wavelength equation to be:

l~2(vtzD) ð2Þ

To test the modified expression in our simulations, we automat-

ically computed the average wave-crest width D from the

simulation results (see Text S1) and used it to compute the

wavelength with Eq. (2). The results demonstrate good agreement

between the simulated and predicted wavelengths (Figure 2 A and

B, solid vs. dashed line).

To test the Eq. (2) prediction experimentally for predatory

rippling motility, we tracked 37 GFP-labeled individual cells

within ripples for about 2 hr (or until the cells left the field of view).

Continuous 1-D wavelet transform of the microscopy images (see

Text S1) was used to compute the wavelength and wave-crest

width by fitting a Gaussian function to the wave crest calculations.

The distributions of average speed and reversal period are shown

in Figures 2 C and D; and the ABM-predicted wavelengths are in

agreement with the experimentally observed wavelength (denoted

by the stars in Figures 2A and B). The prediction of Eq. (2) is also

in good agreement with the data from Berleman et al. [13]. Using

their experimentally derived values of v = 3 mm/min, t = 8 min,

D,10–15 mm, the wavelength, l, is calculated at ,70–80 mm,

which matches their published values. Rippling motility simulated

with these parameters is shown in Video S4. To further test

modeling predictions, we attempted to alter rippling wavelengths

with changes in agar density and initial prey-cell concentration.

We have selected two plates displaying reduced wavelength for

detailed analysis and cell tracking. The results show that

predictions of Eq. (2) also hold for these data: a reduced

wavelength resulted from a reduction in the cell speed in both

movies (,3 mm/min) and a reduction of the reversal frequency

(,4.5 min) in one of the movies. Table S2 summarizes our

experimental tests of Eq. (2).

According to our ABM assumptions and predictions, most of

the rippling cells should travel with the wave crest and reverse,

essentially as a group, when the leading edges of the two opposing

wave crests collide. To test this prediction, we observed reversals of

individual cells in the context of wave-crest movement by plotting

cell trajectories on the space-time florescence intensity of ripples

(Figure 2E). The space-time image illustrates the timing and

location of the wave crests (see the dark gray ridges in Figure 2E).

By examining trajectories of GFP-labeled cells (colored lines), we

observe that the tracked cells travel with the high-density crests

and reverse when and where two crests collide. Statistical analysis

of the position and timing of cell reversals (dots) show that 75.0%

(62.6%) of all tracked reversals occur during wave crests collisions,

matching ABM prediction (Figure 2F). Interestingly, some cells

move through a counter-propagating wave crest without reversing

and subsequently reverse with the next crest. This ‘‘wave-

hopping’’ pattern explains the small peak at ,12 min (twice the

average reversal time) in Figure 2D and the more pronounced

second peak in the distribution of the average distance travelled

per reversal (Figure S8 E).

Potential benefits of predatory rippling
A. Rippling facilitates cell expansion into prey

areas. The benefits of rippling motility to M. xanthus cells

during predation are unknown. However, the experimental results

from Berleman et al. [13] indicate that rippling behavior correlates

with an increase of the M. xanthus colony expansion rate over prey.

To test the effect of rippling motility on the expansion rate, we

conducted a simulation in which agents, aligned along their X-

axis, were placed into a central area from which they could expand

in either direction (Figure 3A). To the right was a ‘‘prey region’’ in

which the agents signaled during side-to-side contact with a

probability large enough to form ripples. To the left, was an area

containing no simulated prey, so the agents signaled one another

during side-to-side contacts with a probability less than the

threshold to induce rippling motility. As a result, ripples only

formed in the ‘‘prey region’’. For computational efficiency, the

simulated colony expansion rate was evaluated based on the

method of Wu et al. [32,33], who concluded that cell flux is

linearly related to the steady-state expansion rate. Therefore, we

chose to compare cell flux in both directions to assess the effect of

rippling motility on the expansion rate. The simulation results

(Figure 3B) reveal a linear increase in the number of cells with

time; the slope of this curve is a flux that predicts the cell-

expansion rate. The result of the least-square linear fit of these

data show a 2.0-fold increase in the slope in the rippling region.

Therefore, ripple-inducing interactions increase the expansion rate

by a factor of ,2.0.

We tested this prediction experimentally by observing M. xanthus

colony expansion on CTT nutrient agar with and without prey

(Figure 3C and 3D, Video S5). The results indicate a 1.6-fold

increase in the expansion rate over prey (see text S1 for analysis

details). The most likely explanation for the difference between the

predicted and experimental values for the colony expansion rate is

that not all the M. xanthus cells in contact with the prey participate

The Mechanism of M. xanthus Ripples
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Figure 2. The relationship between the wavelength and individual cell motility. The ABM simulations show that the wavelength linearly
scales with (A) a varying average reversal period and (B) a varying cell velocity. The velocity predicted by Eq. (2) is shown by a dashed line and is in
good agreement with the wavelength calculated from ABM simulations (solid line – mean values; error bars – standard deviations). The
experimentally measured wavelength (stars) also agrees with the ABM predictions based on the average values computed from the measured
distributions of speed (C) and reversal period (D). The distributions are obtained from tracking fluorescently-labeled cells in microscopic images. (E)
Superposing the trajectories of six cells on a space-time plot (colored lines) of 1-D averaged intensity images of ripples experimentally confirms that
most cell reversals (colored dots) occur when two wave crests collide. (F) Same as E but using the ABM data. The reversals of the agents usually occur
during wave crest collisions (92%61.2%), as all of the cells participate in rippling. For comparison, we would expect about 17% (62.3%) of the
reversals to occur in wave crests in a hypothetical control population that does not sense side-to-side contact-mediated signaling.
doi:10.1371/journal.pcbi.1002715.g002

The Mechanism of M. xanthus Ripples
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in rippling behavior. This is similar to the reason suggested for the

observation that the ABM-simulated ripples are more pronounced

compared to the experimental ripples (Figure 1 top vs. bottom).

The rippling-dependent increase in the expansion rate is

understandable in terms of the basic model ingredients. As the

predatory cells expand over the prey from one side, there is a

gradient of M. xanthus cell density (at least near the leading edge).

As a result, any cell is less likely to encounter a reversal-inducing

side-to-side contact as it travels toward the prey and is more likely

to encounter it as it moves away from the prey, which would cause

the cell to reverse and travel toward the prey again. This increases

the bias in the cell motility and as a result the cells spread over the

prey-containing region faster. This behavior has clear physiolog-

ical advantages in predation, as the cells are able to relatively

quickly spread over prey before their potential competitors.

B. Rippling motility retains cells in the prey area

longer. Are there physiological benefits to rippling motility

once M. xanthus cells completely and uniformly cover their prey?

The ABM simulation data suggest that another potential benefit to

rippling behavior is that the M. xanthus predator cells exhibiting

rippling motility will remain in the prey regions longer. This is

most likely due to the behavioral decrease in the randomness of

cell motility resulting from the increase in the cell alignment and

the periodicity of cell reversals. To examine this prediction, we

computed a mean square displacement (MSD) of individual

rippling and non-rippling agents (angled brackets denote averag-

ing):

MSD~S xi{SxiTð Þ2T ð3Þ

To ensure a controlled comparison between rippling and non-

rippling agents, we used identical values for the average speeds,

reversal periods, and all parameters regarding rippling motility

noise. As expected, the MSD increased linearly with time due to

random diffusion-like drift with no bias (Figure 4). The slope, or

effective diffusion coefficient, is smaller for agents that are rippling

(Figure 4A, dotted-dash line) than those that are not rippling

(Figure 4A, dashed line). The effective diffusion coefficient for non-

rippling agents is about 2.0-fold greater than for the rippling

agents. When controlling for the spontaneous rather than the

average reversal period, the drift is increased to about 2.5 fold that

of the rippling agents (Figure 4A, dotted line).

To test this prediction experimentally and to minimize any

differences in behavior, we tracked rippling and non-rippling

GFP-labeled cells within the same colony in the regions that were

placed on top of prey cells or not, respectively. Eq. (3) was used to

compute MSD for each representative cell. The observed results,

depicted in Figure 4B, are quantitatively similar to those predicted

by the ABM (Figure 4B). The non-rippling cells had a larger drift

(2.2 fold) than the rippling cells.

A decreased MSD is anticipated for cells exhibiting rippling

motility, because their synchronized cell movement and the

resulting collective motility should be less noisy than individual cell

motility. The rippling M. xanthus cells spend most of their time

traveling back and forth within wave crests. They occasionally

appear to skip a reversal, which allows them to join the next crest.

Such synchronization also provides a physiological advantage, as a

decrease in random drift makes it less likely that cells will move

away from the prey region accidentally.

Discussion

Mechanistic basis of M. xanthus rippling behavior
Myxococcus xanthus cells self-organize into periodic bands of

traveling waves, termed ripples, during multicellular fruiting body

development and predation on other bacteria. Here we have used

an approach that combines mathematical modeling with exper-

Figure 3. Ripples cause faster expansion of cells into the prey
region. (A) Initial configuration of the ABM simulation with M. xanthus
agents placed in the center area and thereafter expanded in both
directions. On the right, a grey region represents the prey area where
the probability of agents signaling to one another is increased (from
p0 = 0.03 to p0 = 0.10) and therefore ripples are formed. (B) Using cell
flux to measure the expansion [32,33], we observed higher cell flux on
prey (high signaling probability area) corresponding to a higher
expansion rate on prey as demonstrated by the increased slope of
regression line (grey). (C) Using ImageJ software to track the edge of a
M. xanthus colony, the rate of the edge movement was computed. The
solid line represents the edge of M. xanthus colony in this image and
the dash line indicates its location 30 min later. (D) The experimentally
observed expansion is plotted over time to show that the expansion
rate over prey is about 1.6-fold larger than off the prey, as
demonstrated by the increased slope of regression line (grey).
doi:10.1371/journal.pcbi.1002715.g003

Figure 4. Comparison of mean square displacement (MSD) of
M. xanthus cells on and off prey in both (A) ABM simulations
and (B) experimental fluorescence microscope images. (A) MSD
of simulated agents on prey (dotted-dash line) is linear with a slope of
32.2 mm2/min; for agents off prey (low signaling probability, p0 = 0.03)
with the same average reversal period the slope is 63.2 mm2/min; and
for the cells off prey with the same reversal period and velocity as cells
off prey in experiments (dotted line) the slope is 79.7 mm2/min. (B) For
the experiments, ,100 cells were tracked both on and off prey and Eq.
(3) was used to calculate the MSD by averaging over all cells. The
experimental MSDs of cells on prey increase linearly with time (dashed
line) and can be fitted with a straight line with a slope of 38.5 mm2/min.
Off prey (dotted line) is fitted with a straight line with a slope of
85.5 mm2/min. The gray solid lines in both panels are no-intercept linear
regression fits of the MSDs.
doi:10.1371/journal.pcbi.1002715.g004
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imental observations to investigate the mechanistic basis of

rippling behavior and its physiological role during predation.

The resulting new mathematical model, which is more robust than

previous models, is based on the recent observation of Mauriello et

al. [8], that when counter-moving cells come into side-to-side

contact, clusters of chemotaxis-like FrzCD receptors within the

cells transiently align and thereafter one of the cells reverses. Our

model shows that this side-to-side contact-mediated signaling is

sufficient to induce rippling self-organization in a locally aligned

cell population, assuming that there is a minimal refractory period

during which the cells can not reverse again regardless of their

signaling state. The existence of the refractory period has also been

assumed in our previous model [19,20] and this assumption is

plausible as reversals are anticipated to require a significant

reorganization of the cell-motility machinery [7,34]. The existence

of a refractory period also naturally follows from the dynamic

properties of a negative-feedback oscillator (Frzilator), which was

previously hypothesized to regulate cell reversals [35]. Altogether

our modeling results suggest that the self-organization of cells into

ripples during predation can be explained by the increased

efficiency or higher probability of side-to-side signaling induced by

the presence of prey macromolecules. This prediction is not tested

directly in our experiments, but the emergent properties of

simulated waves quantitatively match those in our predation

experimental approach.

Our model builds on the detailed characterization of M. xanthus

predatory rippling behavior by Berleman et al. [15], which showed

that rippling motility occurs during predation on the variety of

microorganisms and is induced by the presence of macromolecular

substances. However, our model differs from the concept

promoted by Berleman et al. [15] that ripples originate solely as

an interaction of individual cells with macromolecules without any

self-organizing intercellular interactions. In contrast, we propose

that ripples result from the self-organization of cells into traveling

wave patterns, which result from the intercellular signaling that is

stimulated or facilitated by the presence of macromolecules.

Indeed, in our experimental approach the macromolecules are

likely to be distributed uniformly and their concentration is

expected to vary very little during the typical wave period

(,10 min). Moreover, even if macromolecules induce the

periodicity of M. xanthus cell motility as suggested by Berleman

et al. [15], this would not be sufficient to induce ripples because

their formation requires temporal and spatial synchronization of

cellular behavior that is unattainable without cell-to-cell signaling.

Based on the previous modeling of M. xanthus developmental

rippling behavior, one is prompted to ask: does the same

mechanism control predatory and developmental rippling motil-

ity? Certainly this new model is similar to the previous

mathematical models of developmental rippling, as they each

consider that self-organization occurs when counter-moving cells

interact to induce reversals [19,20]. As expected, the new model is

in good general agreement with the experimental patterns that

were previously observed for developmental rippling motility

[16,18]. However, our tests reveal that this new side-to-side

contact-mediated signaling model is much more robust, in that it

can withstand realistic levels of variability in cell speed and reversal

times (Figure S5 left panels). Specifically, when the level of

randomness in cell motility consistent with the single-cell tracking

experiments (fluctuations of velocity and reversal period over 30%

of the mean value) is used in the pole-to-pole collision-mediated

signaling model, the cells do not form ripples (Figure S5, bottom

right panel). It is noteworthy that pole-to-pole signaling can result

in more robust waves, if the cells are able to accumulate signals

from multiple collisions and if signaling during the refractory

period leads to a reduced reversal rate as the Frzilator model

predicts [19]. However, for the new side-to-side contact-mediated

signaling model, realistic rippling can be observed assuming only

that single successful signaling events result in cellular reversals.

Furthermore, the experiments of Berleman et al. [13,15]

provided evidence indicating that developmental rippling occurs

as a side effect of cell lysis during aggregation, which suggests that

rippling motility is likely to be a response to the released

macromolecules. Thus, we propose that our new side-to-side

contact-mediated signaling model of rippling describes both

predatory and developmental rippling. The new model therefore

explains ripples without requiring the pole-to-pole exchange of the

starvation-induced C-signal. This may be biologically justified for

a number of reasons. First, to date no C-signaling receptor has

been identified. Second, localization of CsgA to the cell poles has

not been demonstrated directly. Third, the robustness of pole-to-

pole signaling-mediated mechanism is questionable as the

probability of this type of collision is low. However, as C-signaling

mutants fail to display rippling motility [16], it would be

interesting to investigate in future studies how C-signaling affects

the FrzCD cluster alignment and whether C-signaling plays a role

in predatory rippling.

Quantitative and qualitative agreement between the
new model and experimental observations

The main hypothesis of this new computational model is that

rippling behavior is initiated by side-to-side contact-mediated

signaling in the presence of prey cells. This hypothesis cannot be

directly tested at this time, since we do not have a complete

understanding of the specific biochemical mechanisms involved.

However, we can rigorously test the model by comparing the

model predictions with experimental data collected by us and

others.

An important prediction of the model is that M. xanthus cells will

reverse more frequently when prey is present. This agrees with our

experimental observations (Table S3) and that of Berleman et al.

[13]. Moreover, the resulting self-organization of cells into ripples

provides various ways to quantitatively and qualitatively compare

in silico-generated rippling motility with experimental observations.

A second prediction is that if the presence of prey stimulates this

side-to-side contact-mediated signaling, then the rippling would

only be observed in the regions where signaling is sufficiently

probable, i.e. only in the regions covering prey. This is in good

agreement with our observations (Video S6) and those of

Berleman et al. [13,15]. Indeed, our simulations show that the

signaling probability can serve as a bifurcation parameter that

induces a transition between the homogeneous cell distribution

and the formation of ripples (Figure S6).

A third prediction is based on the timescale of rippling self-

organization, which can be defined as the time it takes to generate

ripples that consist of well-focused wave patterns, starting from an

initially homogeneous cell population. Our model predicts that

time to be of the order of 3 hrs, which is remarkably consistent

with our experimental observations (Figure 1). The qualitative

comparison of the time-lapse dynamics (Videos S1 vs. S2, S3 and

S6) is also in good agreement. Interestingly, the time-scale of

rippling origination in the experiments of Berleman et al. [13] is

significantly longer (,12 hrs). Although it is hard to pinpoint the

source of this discrepancy, our model indicates that the cell density

and the amount of noise in cell orientation can significantly affect

the wave synchronization time.

A fourth prediction of the model is based on measuring the

rippling wavelengths and correlating them to the parameters of

individual cell motility. Our new model predicts a slightly modified
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relationship (Eq. (2) between wavelength, wave-crest width,

individual cell speed, and reversal time as compared to the

previously established [19,20]. This new relationship is confirmed

by our simulations and is in excellent agreement with the

experimental measurements of wavelength (Figure 2 A and B,

Table S2). The wavelength prediction is also compatible with

previously reported measurements [13] and with the observations

of Sliusarenko et al. [15], which show that cells moving in opposite

directions tend to inter-penetrate one cell length before a reversal

is triggered. Figure S7 shows the sequence of events that occur

during two-crest collisions. This cartoon model indicates that once

the cells at the front of each crest reverse, they signal to the cells

following them, which results in a chain-reaction of signaling and

reversal events. This cartoon also illustrates the importance of the

refractory period, because once the cells at the front of the crest

reverse, it is essential for them to keep signaling to other cells to

reverse without reversing themselves.

A fifth prediction of the new model is based on tracking the cell

reversals and locations of wave-crest collisions in time and space.

Just as the model predicts (Figure 2F), the experimental results

(Figure 2E) indicate that most reversals occur when and where two

wave crests collide.

The physiological role of rippling in predation
Our previous model of developmental rippling motility

suggested [28] that periodic travelling waves can ensure a more

regular distribution of fruiting-body aggregates at the colony edge,

as seen in the submerged culture system of Welch et al. [18].

However, the physiological implications of this observation are

unclear as the developmental aggregate distribution can be well

organized even without rippling [36]. Furthermore, if rippling

motility is predominantly a response to predation, what is its role

in these situations? Berleman et al. [37] proposed two hypotheses.

The first, termed the ‘‘grinder model’’ speculates that the

movement of the waves of M. xanthus cells during rippling motility

causes a physical disruption of the prey colony. The second,

termed the ‘‘population control model’’ suggests that waves

maximize the prey-predator contact area and push excess predator

cells to the edges of the rippling area. Neither of these hypotheses

is likely to be correct, based on the biophysics of this environment

in which the very-low Reynolds number hydrodynamics will not

allow temporary periodic perturbations to affect mixing or

transport [38]. Nevertheless, our mathematical model suggests

several alternatives for physiological benefits of rippling to

predatory cells. These predictions are consistent with the

experimental observations reported here and previously.

First, the model is in agreement with the observations of

Berleman et al. [13] that during the expansion over prey, the

presence of side-to-side contact-mediated signaling significantly

facilitates the rate of M. xanthus cell spreading (Figure 3). As a result

these cells cover their prey faster. This has obvious physiological

benefits in the competitive soil environment. The observation is

also consistent with our own experiments. Notably, this result does

not require ripples per se, but only reversal-inducing signaling.

However, our model indicates that side-to-side contact-mediated

signaling is key for rippling self-organization and the other model

ingredients can easily be justified by what is known about the

biophysics of M. xanthus motility [7]. Furthermore, the increase in

spreading also takes advantage of the cell-density gradient of M.

xanthus cells that is generated by spreading at the leading edge. It is

important to note that the rippling behavior does not require a

density gradient of prey cells, as the alternative chemotaxis-based

explanation would predict.

Second, the model predicts that cells that ripple in the absence

of a cell-density gradient (i.e. when they are behind the leading

edge of the swarm or once the prey is fully covered), would engage

in less noisy and more periodic motion and as a result will have less

of a random drift (Figure 4A). This effect would help the predatory

cells to remain in the prey area for a longer time and to reduce

random movement away from the prey. This prediction was

confirmed by the cell-tracking assays (Figure 4B). Notably, this

effect requires ripple formation, as the collective interaction of cells

in the ripples leads to their synchronization. This effect is

analogous to the well-known mathematical phenomena in which

a collection of coupled noisy oscillators is less noisy than each

oscillator on its own [39].

Third, it is likely that the formation of the ripples increases the

cell alignment due to an increase in steric interactions in the

denser crests. This prediction agrees with our observations and

those of Berleman et al. [13]. However, it is worth noting that the

causal relationship between rippling and alignment is not obvious,

as ripples also require cell alignment. Therefore, it is likely that

there is a positive self-reinforcing feedback loop between the

formation of ripples and cell alignment: as cells align, ripples

become more pronounced and their crests become more dense

leading to further cell alignment. Although the physiological

benefit of better alignment is not obvious, it may further enhance

the rate of spreading, which contributes to the effects discussed

above.

Concluding remarks
Uncovering the mechanistic basis of spatial and temporal

multicellular self-organization is a daunting task and a full

understanding has not been achieved for even the best-studied

model systems. Here, agent-based modeling, time-lapse fluores-

cence microscopy, and image quantification have been used

synergistically to provide new insights into the mechanisms of M.

xanthus self-organization into ripples. Our modeling demonstrates

that a simple set of ingredients based on experimental observations

is sufficient to produce rippling patterns. The subsequent

experiments have tested a number of predictions based on the

model and have allowed us to refine the model to achieve

quantitative agreement with the experimental data. This type of

combined approach is essential to further our understanding of

self-organization in more complex systems such as development of

multicellular organisms.

Materials and Methods

Agent-based modeling methods
ABM are widely used to computationally simulate emerging

patterns formed by multiple agents. The ABM of M. xanthus

rippling presented here is kept simple yet sufficiently flexible to

accurately describe the experimentally observed behaviors of M.

xanthus cells. The model is an extension of the earlier ABM [19] of

M. xanthus self-organization that now incorporates a side-to-side

contact-mediated signaling mechanism.

In this ABM, each agent represents a cell – a self-propelled rod

on a 2-D surface with length of L, width of w, with a center

position of (x(t),y(t)), and orientation 0#h(t)#2p. Specifically, the

agent length and width are constant throughout all simulations,

whereas the center position and direction of movement are

changed at each time step as the cells move and align. For each

simulation, the time is updated by constant increments dt. The

simulations are conducted on a fixed 2-D area in which all

simulated moving agents are bounded. For most simulations

periodic boundary conditions are imposed.

The Mechanism of M. xanthus Ripples
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Cell movement. The agents’ center positions are updated at

each time step with both directed and random displacement

x(tzdt)~x(t)zv:dt:cos(h)z
ffiffiffiffiffiffiffiffi
Ddt
p

:U({1,1)

y(tzdt)~y(t)zv:dt:sin(h)z
ffiffiffiffiffiffiffiffi
Ddt
p

:U({1,1)
ð4Þ

Here v is the average cell speed, whereas D is the effective diffusion

coefficient corresponding to speed fluctuations. These parameters

are estimated from experimental data as discussed in Section 1.2.

Here and below U(a,b) denotes a random number generated by a

uniform distribution between a and b.

Cell reversals. To track the time between cell reversals, we

introduced an internal timer phase variable, Q(t), which has a

range [0,2p). At each time step, the phase advances and when the

phase increases past p and 2p, the agents change their orientation

h by 180 degrees. In the absence of signaling, the reversal period is

T and so the average phase speed is:

v~
p

T
ð5Þ

As a result, without signaling, the phase at each time step is

updated as follows:

Q(tzdt)~Q(t)zv:dtz
ffiffiffiffiffiffiffiffiffiffi
DQdt

p
U({1,1) ð6Þ

where DQ is the effective diffusion coefficient of the phase,

characterizing the fluctuation in phase velocity or equivalent

fluctuations in reversal time. The value of term DQ is obtained by

matching the reversal period distributions of the simulation and

experimental observations (cf. Section 1.3). After Q(t) is computed

at each time step, the following procedures are applied to

periodically bind Q(t) within [0,2p) and ensure that the random

fluctuations in phase near p and 2p do not lead to additional

reversals. The random fluctuations near p and 2p are addressed

first:

Q(tzdt)~
0, if Q(tzdt)v0

p, if Q(tzdt)vp and Q(t)wp

�
ð7Þ

Then the periodic boundary condition is applied:

Q(tzdt)~Q(tzdt){2p, if Q(tzdt)§2p ð8Þ

When the phase increase exceeds p or 2p, the cells reverse

direction by switching the polarities of the two ends:

h(tzdt)~(h(t)zp)mod(2p)

if (Q(t)v2p and Q(tzdt)w0) or (Q(t)vp and Q(tzdt)wp)
ð9Þ

Side-to-side contact-mediated signaling mechanism and

induced reversals. We propose that in addition to the signal-

independent cell reversals, signal-induced early cell reversals are

the key to ripple pattern formation. Recent experimental results

show that during the side-to-side contact of two M. xanthus cells,

their FrzCD clusters align and as a result one of the cells

generally reverses [8]. Based on these experimental observations,

we propose that side-to-side signaling is able to induce cell

reversals. We developed an algorithm that incorporates the side-

to-side contact-mediated signal mechanism into our ABM,

including the spatial relationships between neighboring agents

that allows for a side-to-side contact and the response if signaling

occurs. For each selected agent, we first obtain a list of

neighboring agents whose centers are inside a local square

region centering around the selected agent center. Then, we

apply the following procedures pairwise between the selected

agent and one of its neighbors to determine if these two agents

satisfy the conditions for side-to-side contact-mediated signaling

and the response if the signaling occurs.The side-to-side contact-

mediated signaling only occurs between two agents that are in

contact, such that their long axes are aligned and they are

traveling in opposite directions (see Figure S1) Therefore, we

impose the following conditions to detect agents that make side-

to-side contact:

(1) To detect two agents with orientations h1 and h2 that have

nearly parallel long axes, but travel in opposite directions, we

identify cells for which:

DDh1{h2D{pDvDh0 ð10Þ

For the simulations preformed, we chose threshold values of

Dh0 to be 15 deg = 0.083p.

(2) To determine if two nearly parallel agents are in contact and

have significant overlap along their long axes, we include two

additional cell-proximity requirements. For instance, if (x1,y1)

denotes the center of the selected agent and (x2, y2) denotes

one of its neighbors, then we define a vector d
!

from the

center o f the se l ec ted agent to the ne ighbor

d
!

~½x2{x1,y2{y1�. For two cells to make contact, we set

limits on the projection of the vector d
!

on the axis along the

cell length and in the perpendicular direction. To define the

average direction of two cells, we use unit vector

c!i~½cos(hi),sin(hi)� to represent the orientation of the i-th

representative agents. As seen from Eq. (10), vectors c1
! and c2

!
would point in nearly opposite directions, therefore the

average orientation of two cells along their axis is determined

by a vector

~cc~ c!1{ c!2 ð11Þ

The vector d
!

can then be projected into the average cell

orientation defining the separation of cell centers along their

average direction d|| and onto a perpendicular direction

(distance dH) as follows (Figure S1):

dE~D d
!: c!

DD c!DD
D ð12Þ

d\~DD d
!

{dE
c!

DD c!DD
DD ð13Þ

where I…I is the vector norm and |…| is an absolute value.

For two parallel cells to make side-to-side contact their dH

must not exceed their cell widths:

d\ƒw ð14Þ

At the same time, we propose that for efficient signaling at

least 50% of the cells’ long axes must overlap resulting in
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dEƒ
L

2
ð15Þ

Conditions (10), (14) and (15) are calculated at every time step to

determine all cell pairs that are in side-to-side contact and

therefore capable of signaling. However, we assume that not every

side-to-side contact will result in a signaling event, and therefore

introduce a parameter, p0, which is the probability of signaling

given the side-to-side contact. We assume the signaling is

asymmetric and that the events of cell #1 signaling to cell #2

and vice versa are statistically independent. We also assume that

p0,,1. These assumptions are motivated by the observations of

Mauriello, et al. [8], that generally only one of the two cells

reverses as a result of side-to-side contact. Therefore, for each cell

in a side-by-side contact pair we generate a random number

U(0,1) and only consider signaling to occur if U(0,1),p0.

Every successful signaling event results in a reversal unless the

cell is in a refractory period, i.e. has recently reversed. As each

reversal event is associated with a change of cell polarity and

requires reorganization of the cellular motors, it is natural to

assume that there is a minimal reversal period during which a cell

is unable to reverse again. This is termed the refractory period and

is calculated using a phase-variable clock. After each reversal there

is a sector Q0 in the phase clock corresponding to an average

refractory time T0, and Q0 = vT0. During this time, an agent does

not respond to the side-to-side signal, but it can always signal to

other agents. In contrast, the agent is not refractory, if:

Q0vQ(t)vp or Q0zpvQ(t)v2p ð16Þ

then the agent is responsive to signals and will reverse. After the

reversal, the phase variable is reset as follows:

Q(tzdt)~
0, Q(t)wp

p, Q(t)vp

�
ð17Þ

As the signal can induce agent reversal, the orientation of the

agent is reset as follows:

h(tzdt)~(h(t)zp)mod(2p) ð18Þ

Cell alignment. Local cell alignment is essential for rippling.

In this model, we chose to model cells as inflexible rods that align

according to the equations of Sliusarenko et al [19]. More

sophisticated alignment algorithms are not feasible here, because

the behavior of up to 300,000 cells must be simulated. The

alignment is modeled as

dhi

dt
~

sin(2(hi(t){h0
i (t)))

th
zrh(t) ð19Þ

where th is the angle correlation time and rh(t) is the random noise.

h0
i is the average nematic orientation of the cell’s neighbors

computed as follows. First, we define a neighboring region around

each agent. To ensure fast computational speed, we use a square

region with dimensions centered in the center of the selected

agent. At each time step, for each agent i, we identify the list of ni

neighbors with centers inside the square region. Second, we

compute h0
i the average nematic orientation of neighbors as

follows:

2h0
i ~arctan(

Pni

j~1

sin(2hj)

Pni

j~1

cos(2hj)

) ð20Þ

Third, we discretize Eq. (19) using an implicit finite difference

scheme to be solved iteratively

hi(tzdt)~hi(t){
sin(2(

hi(t)zhi(tzdt)

2
{h0

i (t)))dt

th
z

ffiffiffiffiffiffiffiffiffiffi
Dhdt

p
U({1,1) ð21Þ

If no reversal occurs, the computed hi(t+dt) is the orientation of

agent i at the next time step. Otherwise, we use equation (9) and

(18) to further update the orientation.

Modeling parameter estimation. The parameters for the

ABM simulations are summarized in Table S1. Whenever

possible the parameters used were estimated directly or indirectly

from the experimental data obtained in our conditions. For

example, the analysis of individual cell movement described

above provides both average cell characteristics (such as average

velocity and reversal period) and their population distributions.

The agent velocity v used in this ABM simulation is the average

velocity calculated in the above analysis. The diffusion coefficient

D, which characterizes the random fluctuation in agent move-

ment, is chosen such that the variance of the instant velocity

distribution of the ABM simulation matches the results of the

experimental data analysis. Note that the experimentally

observed random fluctuations along the x direction and y

direction are almost identical. As a result, only one value D is

used to represent the noise level in cell movement. In our ABM

simulations of rippling, varying the refractory period changes the

average reversal period. Thus, the refractory period was chosen

to fit the average reversal period in the ABM to that in the

experimental observations of rippling cells. The average reversal

period of non-rippling cells observed experimentally was chosen

as the natural reversal period T in our ABM and the phase speed

v was calculated using equation (5). The diffusion coefficients in

the reversal period Dw were chosen by matching the distribution

of reversal periods of the ABM simulations to the experimentally

observed distribution. The phase variable Q0 in the ABM

simulations was chosen so that Q0=v would equal the selected

refractory period. There are also parameters that cannot be

directly estimated experimentally, but can be defined based on

the simulation results. For example, the random noise level Dh is

assigned such that the initially aligned population of cells remains

aligned.

Experimental methods
Cell growth and development. For all experiments M.

xanthus strains DK1622 (wild-type strain) and Mx477 (DK1622

PpilA:GFP) were grown overnight in CTT broth (1% Difco

Casitone, 10 mM Tris-HCl pH 8.0, 8 mM MgSO4 and 1 mM

KHPO4 pH 7.6) at 32uC with shaking. When M. xanthus cells

reached mid-log phase (46108 cells/ml, 100 Klett units), they were

centrifuged at 6,0006 g and resuspended to Klett 250 in TPM

buffer (CTT without Casitone). The two strains were mixed to

achieve a 5:1000 cell ratio of Mx477 to DK1622, respectively. To

control the population of prey for the experiment, we used the

thymine auxotrophic E. coli strain AB2497 (AB1157 thyA12 deoB6).

ð21Þ
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Prey growth was described in more detail by Fonville et al. [40].

Briefly, E. coli cells were grown at 37uC in M9 medium with

50 mg/ml thymine, 0.1% glucose and 0.5% casamino acids. Prior

to experiments the cells were diluted to an OD600 of 0.1 in M9

medium+glucose (no thymine) and allowed to grow for 1 hr. For

fluorescence imaging the prey cells were treated with 1 ug/mL of

DAPI for 20 min.

Microscopic imaging. For microscopy M. xanthus and prey

cells were placed on K CTT (CTT broth with 0.5% Casitone)

1.5% agar in a 10 cm petri dish. A 7-uL drop of each culture was

placed on K CTT agar, so that the edges of the colonies would be

less than 1 cm apart, but did not touch. Cells were allowed to

acclimate for at least 2 hrs prior to imaging. The agar dish with

cells was inverted onto a microscope slide for imaging. Cells were

imaged with an Olympus 81X inverted fluorescence microscope

with a Hamamatsu HD camera. Moist Kimwipes were used to

maintain humidity and reduce evaporation and cells were

maintained at 28–30uC using a custom-built Precision Weather

Station.

To obtain information on individual live cells, we obtained

time-lapse images of fluorescently-labeled M. xanthus in a mixed

population of cells (99.5% wild type DK1622 and 0.5% Mx477

Ppil-GFP). Images of a mixed population of cells on nutrient agar

were collected every 1 min for up to 4 hrs. ImageJ software [41]

and custom Matlab code was used to track the x, y coordinates of

individual cells in a given frame number n: x(n) and y(n). The

motility parameters of cells were calculated from these data (see

Figure 2 C and D, Figure S8 D–G). The details of image analysis

and quantification procedures are described in Text S1.

Supporting Information

Figure S1 Side-to-side contact signaling in the ABM
simulations. The side-to-side contact in the ABM simulations is

defined by three parameters: 1) the perpendicular (to cell

orientation) distance between the center of the two agents (dH);

2) the parallel distance between the center of the two agents (dI);

and 3) the angle formed by the two agents (Dh in this figure). L

represents the length of the cells and v represents velocity.

(PDF)

Figure S2 The new side-to-side contact-mediated sig-
naling mechanism is compared to the previous pole-to-
pole collision-mediated signaling mechanism. Although

both mechanisms can produce ripples at a low noise level, the

side-to-side contact-mediated signaling mechanism is significant-

ly more robust. To produce ripples in the ABM, the head-to-

head collision-mediated signaling mechanism must have 100%

signal probability, whereas the side-to-side contact-mediated

signaling mechanism only needs 10% signal probability. When

the noise level is increased to match the value obtained in the

experiments (standard deviation is about 25% of the mean), only

the side-to-side contact-mediated signaling mechanism can

produce ripples (bottom panels); the head-to-head collision

signal does not produce visible ripples even with 100% signal

probability.

(PDF)

Figure S3 The distribution of reversal parameters in an
agent population. As a result of fluctuations in phase-clock

speed, the agents in our simulation show stochastically variable

refractory period (Panel A) and a native reversal period (Panel B).

The mean and standard deviations are as indicated. Simulations

for 30 cells were done as indicated in the Materials and Methods

section but without signaling (signaling probability = 0) to

correspond to isolated cells that cannot signal to one another.

(PDF)

Figure S4 Variation of the ABM ingredients can affect
wave formation. (A) Waves are destroyed if cells signal to one-

another irrespective of their gliding direction, i.e. cells going in the

same and in the opposite direction signal with the same

probability. (B) Waves are destroyed if only cells moving in the

same direction signal to one-another. (C) Waves form when only

oppositely moving cells signal to one-another – the same

assumption as in the rest of the simulations. (D) Same as Panel

C, but the signaling event is symmetric: when two cells signal to

one-another they both reverse unless they are in a refractory

period. As a result, waves are formed and appear very similar to

those with asymmetric signaling used in the rest of the simulations.

(E,F) Reduction of the refractory period impairs the wave patterns.

(E) Waves disappear if the reversal period is reduced 10-fold from

the value used in all the main text simulations (mean value of

about 25 s). (F) Wave patterns become obscure if the reversal

period is reduced 3-fold from the value used in all the main text

simulations (mean value of about 1 min). All the panels are of the

same scale: the simulation domain is 500 mm6100 mm, which is

slightly reduced from the main text simulations for computational

efficiency, the scale bar is 50 mm.

(PDF)

Figure S5 Ripples are resistant to variations of the
minimal overlap dE threshold required for signaling, but
become less focused with an increase of this threshold.
(See Eq.(15) and Methods section for definitions). Signaling only

appears when dE is below a given threshold of (A) 0.8L, (B) 0.7L,

(C) 0.6L, (D) 0.5L, as in the rest of the simulations: (E) 0.4L, (F)

0.3L, and (G) 0.2L. The cell length is L = 7 mm. All the panels are

of the same scale:, simulation domain is 500 mm6100 mm, which

is slightly reduced from the main text simulations for computa-

tional efficiency; the scale bar is 50 mm.

(PDF)

Figure S6 Signal probability is a good bifurcation
parameter to control self-organization into ripples. (A–

D) Wavelet transforms are a sensitive measure to detect ripples. (A)

The wavelet coefficient from a wavelet transform of an

experimental image that contains ripples. (B) The wavelet

coefficient from a wavelet transform of an experimental image

without ripples. (C) The wavelet coefficient from a wavelet

transform of an image with ripples from the ABM simulation. (D)

The wavelet coefficient from a wavelet transform of an image

without ripples from the ABM simulation. (E) The order

parameter (see Text S1) is computed from the wavelet coefficients

as an indication of the presence of ripples. The order parameter is

close to zero when there are no ripples and greater than 0.4 when

ripples are present. The error bar is computed from 10

independent simulations. This figure shows that the signal

probability serves as a bifurcation switch of the M. xanthus rippling

pattern.

(PDF)

Figure S7 Individual cells can form ripples as they
reverse their direction during crest edge collisions
produced from the ABM simulation data. The directions

of the arrows indicate the direction of cell movement. Pairs of cells

engaged in side-to-side signaling are circled. Cells travelling to the

right are red and cells travelling to the left are blue. (A) Two

opposing waves approach each other and the cells begin to make

side-to-side contacts. (B) The initial stage of the collision of the two
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wave crests. Three pairs of cells are engaged in signaling (circled).

As a result of the signaling, some cells reverse and others continue

without changing their direction. (C) Two more signaling events

occur between reversed cells and their previous followers in the

same crests. (D) The two waves have completed their collision and

reversed their direction. Note that in some examples both

signaling cells reverse their directions due to interactions with

other cells (not shown).

(PDF)

Figure S8 Results of experimental data analysis. (A) The

background image is acquired from a DIC microscopic image that

shows a rippling pattern. Individual cell trajectories of 11 cells are

shown in blue. The same set of images is the source of the

background image and the cell trajectories. The cells appear to

move predominately in one direction, which is the same as the

wave direction. The red arrow shows the direction of wave

movement, which is computed from the principle component

analysis (PCA). (B) All the cell coordinates are centered by

subtracting the average position of each cell. Then, the trajectories

of all cells are placed together and the PCA is applied. The dash

line is the regression line. (C) A schematic diagram showing two

situations in which cells change directions in several consecutive

frames. In one case, the cell changes direction eventually (one of

the points is an actual reversal) and in the other, the cell continues

in the same direction. (D) A trajectory of a typical cell traveling

with the rippling wave crest. The red dots denote where cellular

reversals occur. (E) The distribution of distances that cells travel

between reversals. (F) A trajectory of a typical cell that is on prey,

but does not travel with the wave crest (non-rippling cell). (G) A

trajectory of a typical cell that is not on prey.

(PDF)

Table S1 Parameters used in the simulations.
(PDF)

Table S2 Experimental data for individual cell motility
parameters and the resulting wavelengths is consistent
with the Eq. (2).
(PDF)

Table S3 Motility parameters for cells tracked on and
off prey.
(PDF)

Text S1 Quantification and images analysis of micros-
copy and of ABM simulation data.
(PDF)

Video S1 ABM simulation shows the time-lapse dynam-
ics of the formation of ripples starting from initially
homogeneous distribution. The scale bar is 100 mm. The

movie is composed of ,900 simulation snap-shots taken every

20 seconds over the period of 5 hours. The resulting movie is

compiled at 20 fps.

(MP4)

Video S2 Experimental time-lapse movie of M. xanthus
ripples from superimposed DIC (gray-scale back-
ground) and fluorescence microscopy (false-colored in
green) images. About 0.5% of the cells are fluorescently labeled

to allow easy tracking. The movie is composed of ,140 frames

taken every minute over the period of ,2.5 h. The resulting movie

compiled at 10 fps.

(AVI)

Video S3 Experimental time-lapse DIC channel movie
showing the dynamics of ripple initiation following the
complete coverage of the prey. The movie starts from the

time when M. xanthus fully cover the prey in the field of view. The

movie is composed of ,150 frames taken every two minutes over

the period of ,5 h. The resulting movie is compiled at 5 fps.

(AVI)

Video S4 Same as Video S1 but with parameters
corresponding to Berleman et al. (2008). The movie is

composed of ,850 simulation snap-shots taken every 20 s over the

period of ,4.5 h. The resulting movie is compiled at 20 fps.

(MP4)

Video S5 Side-by-side comparison of M. xanthus colony
expansion on and off prey. The black lines label the extending

colony boundary whereas stationary grey lines represent the

boundary at the initiation of the movie. Each movie is composed

of 31 frames taken every 4 min over the period of ,2 hours. The

resulting movie is compiled at 5 fps.

(AVI)

Video S6 Experimental line indicating that rippling
only occurs in direct contact with prey under our
conditions. The red line approximately marks the edge of the

region where prey was initially placed. The scale bar is 50 mm.

The movie is composed of 21 frames taken every two minutes over

the period of ,40 min. The resulting movie is compiled at 2 fps.

(AVI)
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