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Abstract

Metabolomics is a relatively new ‘‘omics’’ platform, which analyzes a discrete set of metabolites detected in bio-fluids or
tissue samples of organisms. It has been used in a diverse array of studies to detect biomarkers and to determine activity
rates for pathways based on changes due to disease or drugs. Recent improvements in analytical methodology and large
sample throughput allow for creation of large datasets of metabolites that reflect changes in metabolic dynamics due to
disease or a perturbation in the metabolic network. However, current methods of comprehensive analyses of large
metabolic datasets (metabolomics) are limited, unlike other ‘‘omics’’ approaches where complex techniques for analyzing
coexpression/coregulation of multiple variables are applied. This paper discusses the shortcomings of current metabolomics
data analysis techniques, and proposes a new multivariate technique (ADEMA) based on mutual information to identify
expected metabolite level changes with respect to a specific condition. We show that ADEMA better predicts De Novo
Lipogenesis pathway metabolite level changes in samples with Cystic Fibrosis (CF) than prediction based on the significance
of individual metabolite level changes. We also applied ADEMA’s classification scheme on three different cohorts of CF and
wildtype mice. ADEMA was able to predict whether an unknown mouse has a CF or a wildtype genotype with 1.0, 0.84, and
0.9 accuracy for each respective dataset. ADEMA results had up to 31% higher accuracy as compared to other classification
algorithms. In conclusion, ADEMA advances the state-of-the-art in metabolomics analysis, by providing accurate and
interpretable classification results.
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Introduction

Metabolomics has emerged as a new ‘‘omics’’ platform in the

last two decades with significant improvements in precision and

sample throughput in the fields of analytical chemistry and mass

spectrometry. Emergence of metabolomics has resulted in the

creation of large datasets consisting of diverse classes of

metabolites from multiple metabolic pathways. Metabolomics

has been used to detect biomarkers of disease or drug-related

changes between the control and experiment groups in a vast

array of topics, such as Cancer [1–4], Diabetes [5], Cystic Fibrosis

[6,7], Toxicology [8–12], and Plant Research [13–17].

Univariate and multivariate statistical approaches have been used

to analyze metabolites to determine meaningful biomarkers of

disease presence/severity or treatment effectiveness. Univariate

techniques include correlation/partial correlation analysis [15–19],

ANOVA and significance testing for stand-alone metabolites [6].

These techniques consider one variable (metabolite) at a time.

Multivariate techniques include Principle Component Analysis

(PCA) [20,21], Independent Component Analysis (ICA) [22], and

Partial Least Squares–Discriminant Analysis (PLS-DA)

[8,11,21,23]. All of the multivariate analysis techniques noted

above assume that the underlying dependencies among metabolites

are linear, which is not necessarily the case. There are non-linear

multivariate techniques in the literature like Non-Linear PCA [24].

However, we are not aware of their applications to metabolomics

analysis, with the exception of Scholz et. al. [25], which tries to

analyze time-course data with missing values.

It is important for domain scientists to see how each metabolite

level changes with respect to a given condition (e.g., disease,

treatment etc.), in order to hypothesize about the metabolic

alterations in the variable group. Since multivariate techniques

truncate variables (e.g., based on variable importance in projection

scores in PLS-DA) to find a small number of components that

explain the variance best, they are not a good fit for this use.

Instead, researchers use univariate techniques to locate significant

changes per metabolite between the variable and the control.

Then, they map these changes onto a metabolic network in order

to detect pathways with increased/decreased flux based on the

significances of increases/decreases, and the number of metabo-

lites that are significantly changed in a detected pathway [6]. This

method causes a number of problems. First, the number of wild-

type (control) and condition cohorts is usually small, and due to the

high degrees of freedom, the test statistic may miss some changes

as they do not show up as significant. Second, analyzing individual

metabolites and aggregating the results may fail to explain the

phenomenon at hand: it has been shown that different combina-

tions of perturbed metabolites have different effects on the
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organism [26]. Third, when changes in two metabolites with

respect to each other are analyzed, the significance of the change

in the ratio of their concentrations is checked, which is an ad-hoc

solution [27,28].

Although current methods to analyze metabolite level changes

are limited to univariate analysis, finding genes that are co-

regulated with respect to a condition is a well-studied problem in

the gene expression analysis context. Gene Set Enrichment

Analysis (GSEA) is the first work that aims to find whether a

predefined set of genes are enriched in a group of experiments

with a condition [29]. GSEA has also been applied to metabolite

data [30]. However, shortcomings of the method have been noted

[31]. In another work, combinations of expression levels of genes

are shown to be informative about a condition through mutual

information (MI) [32], which is a statistical technique that can

capture non-linear associations between random variables. In gene

expression analysis, MI has been frequently used to find

dependencies among gene expression profiles [33–36]. There are

only a few mutual information-based techniques in the context of

metabolomics analysis, targeting different problems such as reverse

engineering of metabolic networks [37] or measuring correlations

within the network [38].

In light of the limitations of the current approaches and

motivated by the combinatorial approach used for gene expression

analysis [32], we propose a novel multivariate method, called

ADEMA (Algorithm for Determining Expected Metabolic Alter-

ations). Given the control, ADEMA locates the ‘‘expected’’

metabolite changes that are indicative of the condition in the

variable group. This task can help researchers (a) understand

‘‘under-the-hood’’ reasons for the symptoms that are being

observed and (b) hypothesize on the cause-and-effect relationships

between anomalies. Figure 1 provides an overview of the proposed

methodology. The first step consists of forming a population with

multiple individuals in variable and control groups and measuring

the concentrations of those metabolites of interest. In the second

step, each observation is assigned to discrete bins with some

probability. The third step is to obtain the metabolic (sub)network

for the measured metabolites. The fourth step locates the related

subsets of metabolites using the metabolic network. The fifth and

the final step uses the probabilities found in step 2, determines

control-specific and variable-specific metabolite levels (bins), and

compares them to find the changes in the variable group with

respect to the control group. In the example of Figure 1, there are

2 mice in the control group and 2 mice in the variable group. Four

metabolites of interest are measured for each individual and are

related using the metabolic network. It has been determined that

,A, B, C. and ,A, B, D. are the related subsets. Each

observation is assigned a probability of being either up or down (two

discrete bins). Finally, the algorithm determines that mice in the

variable group have higher levels of A, B, C, and decreased levels

of D as compared to mice in the control group.

More specifically ADEMA has the following steps: (i) discretize

(bin) metabolite observations using B-Spline curves, (ii) identify the

related subsets of metabolites out of the observed metabolites by

generating the Elementary Flux Modes (EFM) [39] of the

metabolic network, (iii) locate combinations of metabolite pool

levels (i.e., bins) that are ‘‘informative’’ with respect to a condition,

and (iv) calculate the expected metabolite levels for the variable

and the control groups, based on the marginal mutual information

provided; and, compare them. By employing the identified

expected levels, ADEMA can then be used as a classifier.

To evaluate ADEMA, a Cystic Fibrosis (CF) dataset (See

Dataset S1) that consists of multiple 3-week-old wild-type (control)

and CF (variable) mice is used. Although individual metabolite

changes are not significant in 3-week-old mice, the expected levels

found by ADEMA conform to the independently performed flux

and gene expression analysis done on 3-week-old CF and WT

mice. Moreover, we show that ADEMA can classify CF versus

WT in three different datasets (See Dataset S1, Dataset S2, and

Dataset S3). ADEMA can predict whether an unknown mouse has

CF or not, with 1.0, 0.84, and 0.9 accuracy for each respective

dataset. Results are better up to 31% as compared to other well-

known classification algorithms.

Methods

In this section, we describe how each subcomponent of

ADEMA works. Please see Table 1 for the list of variables/terms

and their explanations.

Ethics Statement
All animal care and use was approved by the Institutional

Animal Care and Use Committee of Case Western Reserve

University.

Binning Observations
Mutual information works with discrete values, whereas

metabolite measurements are continuous real numbers. Therefore,

to work with mutual information, one needs to discretize (bin) real

values into discrete bins. In this subsection we discuss the existing

methods employed in the literature and the reasoning behind

picking a B-spline based strategy.

There are two types of methods in the literature to estimate

probability densities out of continuous data: Parametric and Non-

parametric methods [40]. The former one assumes that observa-

tions come from a known family of distributions. As we do not

have any knowledge on the distributions of the observations we

follow the latter approach (non-parametric).

There are two non-parametric approaches in the current

literature. The first one is kernel density estimation (KDE), which,

given a window length l, estimates a density for each observation x,

by counting the number of points in the window, weighted by their

distances using a pre-selected kernel [39]. The result depends on

the window length and the kernel used; also KDE has a high

Author Summary

Metabolomics is an experimental approach that analyzes
differences in metabolite levels detected in experimental
samples. It has been used in the literature to understand
the changes in metabolism with respect to diseases or
drugs. Unlike transcriptomics or proteomics, which analyze
gene and protein expression levels respectively, the
techniques that consider co-regulation of multiple metab-
olites are quite limited. In this paper, we propose a novel
technique, called ADEMA, which computes the expected
level changes for each metabolite with respect to a given
condition. ADEMA considers multiple metabolites at the
same time and is mutual information (MI)-based. We show
that ADEMA predicts metabolite level changes for young
mice with Cystic Fibrosis (CF) better than significance
testing that considers one metabolite at a time. Using
three different datasets that contain CF and wild-type (WT)
mice, we show that ADEMA can classify an individual as
being CF or WT based on the metabolic profiles (with 1.0,
0.84, and 0.9 accuracy, respectively). Compared to other
well-known classification algorithms, ADEMA’s accuracy is
higher by up to 31%.

Determining Expected Metabolite Level Changes
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computational requirement. Thus, we did not pick KDE. The

second approach is the histogram-based approach where obser-

vations are simply distributed into discrete bins. As metabolite

measurements come with an error term, observations that are

close to the borders can easily be misclassified when pre-

determined thresholds are used [41,42]. To address this issue, B-

spline functions [43] have been used [44,45]. Instead of placing an

observation only in a single bin, each observation can be assigned

to multiple bins, weighted by the B-spline function. In this case,

bins are converted into overlapping polynomial functions. Figure 2

shows basis B-spline functions for 6 bins. In this figure each curve

represents a bin. Each observation is assigned to the bin

represented by the B-spline function (curve), with the correspond-

ing probability for that observation. The sum of the probabilities

for each bin is 1 for that observation. That is, for a specific x value

in Figure 2, y values found using the B-spline curves would sum up

to 1. In comparison, the histogram-based approach would divide

the range [0, 1] in Figure 2, into 6 pieces (e.g., 0–0.16–0.33–0.5–

0.66–0.83–1) and assign observations to only one of the bins (e.g.,

with probability 1 to the assigned bin).

In this paper, we make use of B-spline-based binning. The use of

B-spline functions in our problem formulation requires two

parameters, M and k. M denotes the number of bins. k, k M [1,

M], denotes the number of bins that an observation can be

assigned to. Given M and k, the so-called ‘‘knot’’ vector t of length

M+k+1 is defined as follows:

ti~

0, ivk

i{kz1, kƒiƒM

M{kz2, Mvi

8><
>: ð1Þ

This is called a uniform non-periodic knot vector [43–45]. After

obtaining the knot vector, B-spline functions are defined recur-

sively based on the knot vector as follows:

Bi,1(z)~
1, tiƒzvtiz1

0, otherwise

�
ð2Þ

Bi,k(z)~Bi,k{1(z)
z{ti

tizk{1{ti

� �
zBiz1,k(z)

tizk{z

tizk{tiz1

� �
ð3Þ

Assume that we have a population P, and we have n observed

metabolites, {m1, m2, .., mn}, for each individual s in P. Let s[mj] be

the value of jth metabolite for individual s, where j M [1, n]. Note

that the domain of z in equations 2 and 3 is different from the

domain (range of observations) for metabolite mj. Hence, we use

the linear transformation defined in equation 4. mj
min and mj

max are

the minimum and maximum values observed in the population for

mj respectively.zs½mj � corresponds to the transformed value.

zs½mj �~(M{kz1)
s½mj �{mmin

j

mmax
j {mmin

j

ð4Þ

The probability of s½mj � being assigned to bin i is denoted as

p(s½mj �i), and is computed as in equation 5.

p(s½mj �i)~Bi,k(zs½mj �) ð5Þ

Note that
PM

i~1 Bi,k zs½mj �

� �
~1 That is, probabilities assigned to

each bin for an observation sum up to 1. Then, for an individual s,

the joint probability for any subset of metabolites to be in the given

bins is found by multiplying probabilities of each metabolite in the

subset to be in the corresponding bins. Once all metabolite

measurements are associated with the corresponding bins, next

step in the algorithm is to find related metabolites to be considered

together.

Selecting Subsets of Metabolites
ADEMA is a multivariate method that considers multiple

metabolites at a time to capture interdependencies between

molecules. There are two extremes. One can (i) calculate expected

levels per metabolite, but then would miss the dependencies

between metabolites themselves (e.g. consider all subsets of size 1),

or (ii) look for expected states of all observed metabolites together

(e.g. have only one subset that contains all metabolites), but, this

time, would unnecessarily consider metabolites that are not related

at the same time. Moreover, for n metabolites and M bins, there

are Mn possible combinations of metabolites and their corre-

sponding levels (bins) as each metabolite can be in M different

levels. As the method suffers from the curse of dimensionality, the

subsets of metabolites to be considered together must be chosen

carefully. Next we discuss three strategies to select related subsets

of metabolites.

Metabolic networks provide a good understanding of the

dependencies between metabolites by defining producer-consumer

relationships. Elementary Mode Analysis [46] is a technique that

identifies minimal sets of reactions that are active at the steady

state of an organism and a metabolic network of interest. Each set

is called an elementary flux mode (EFM), and any flux distribution

on the metabolic network at steady state can be represented as a

combination of the elementary modes. By definition, elementary

modes define the subset of reactions that form the basis of the flux

going through the metabolic network of interest. Thus, as a

measure of dependency between metabolites, our first strategy for

selecting related metabolite subsets is to use elementary modes,

and consider all metabolites associated with the reactions in an

elementary mode as a subset. In our context, association for a

metabolite with a reaction means being a substrate or a product of

that reaction. Note that elementary modes might still contain

Figure 1. An overview for ADEMA. The first step is to construct a population such that it contains multiple individuals (in this case M1 and M2
who are in control group versus M3 and M4 who are in variable group. Concentrations of metabolites of interest are determined for all individuals (in
this case concentrations of metabolites A, B, C and D). Then for the second step, each observation is assigned a probability to be in a discrete bin (we
only consider two bins, namely, up or down). Third step is to construct the metabolic network to determine the associations between measured
metabolites. In this figure circles represents metabolites and arrows represent the reactions that relate metabolites. This is followed by the fourth step
that determines the subsets of metabolites, which are related in the metabolic network. We have found two sets, ,A, B, C. and ,A, B, D., are the
only subsets that are related. Using the probabilities found in step 2 and related subsets found in step 4, ADEMA determines control- and variable-
specific metabolite levels (bins) and compares the changes in variable group with respect to mice in control group. In this example, ADEMA
concludes that A, B and C are increased, and D is decreased in the variable group as compared to control mice.
doi:10.1371/journal.pcbi.1002859.g001
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metabolites in the order of O(n). Should this be the case, we break

down EFMs into pieces using a predefined threshold that limits the

maximum number of metabolites that can exist in a subset.

The second strategy for related metabolite subset selection aims

to group metabolites that are close to each other in the metabolic

network. For each metabolite, we construct a subset that contains

all metabolites within one-hop distance to that metabolite (i.e.,

those that can be reached by a single reaction). The origin

metabolite itself is also added to the set. Note that in the case of

hub metabolites, the number of metabolites within a subset can

still be large; thus, we apply the threshold strategy used for EFMs

for this strategy as well. In contrast with the first approach, which

locates the related metabolites using elementary fluxes that

traverse the network, this approach disregards fluxes at the steady

state, and focuses purely on topological closeness in order to

determine the subsets.

The third strategy is to randomly pick distinct metabolites to

form related subsets of metabolites. This strategy is used as a

baseline strategy, assumes no prior metabolic network knowledge,

and disregards all flux or topology based relationships among

metabolites. The number of metabolites is again limited by a

threshold. One advantage of the third strategy is that it can be

used when there is no or limited knowledge about the metabolic

network or when the network is very complex or large.

In the experimental evaluation, we compare performances of

the three strategies in terms of the classification performance of

ADEMA and report our findings on threshold selection and its

effect on the algorithm efficiency. After the related subsets of

metabolites are determined and the observations are discretized,

the algorithm measures how informative the determined subsets

are about the class variable (CF vs. WT) using mutual information.

Determining Expected Metabolite Levels per Class
Mutual Information (MI) is an information theoretic technique

to determine linear or non-linear statistical dependencies of

variables. In our case, we would like to determine how much CF

or WT genotype is reflected by discretized measurements (See

Binning Observations Subsection) of subsets of metabolites (See Selecting

Related Metabolites Subsection).

MI is based on Shannon Entropy, which measures the

uncertainty associated with a random variable. Given a discrete

random variable X, the entropy of X is denoted as H(X). It is

defined as in equation 6 where p(x) denotes the probability of

observing x M X.

H(X )~{
X

x[X
p(x) � lg(p(x)) ð6Þ

Conditional entropy for X given Y, accounts for the uncertainty of

X when Y is known, and is derived as in equation 7.

H(X )~
X

y[Y

X
x[X

p(x,y) � lg
p(x)

p(x,y)

� �
ð7Þ

Table 1. List of variables/terms and their explanations.

Variables and Terms Definitions

M number of bins used for discretization of observations

k number of bins an observation can be assigned to at the same time.

n number of observed metabolites

t knot vector that is used to define the shapes of B-spline curves

Bi,k(z) the probability associated with the ith B-spline curve for the given z value and for a specific k

P population of individuals

s an individual in the population

mj jth observed metabolite

s[mj] the observed value for jth metabolite for individual s

zs½mj � transformed value for s[mj] given the max and min values for mj

p s½mj �i
� �

probability of assigning s[mj] to bin i.

H(X) entropy of the random variable X.

I(X;Y) mutual information of random variables X and Y.

Sub a subset of the observed metabolites

OSub random variable that represents all combinations of the binned metabolite observations for Sub

C random variable that represents the class variable (e.g. WT and CF)

ps(o) probability of observing the bin combination o for individual s

p(o) probability of observing the bin combination o in population P

Io marginal mutual information obtained from the bin combination o

o[mj] the bin associated with the jth metabolite in the bin combination array o

OC
Sub

random variable that contains all bin combinations for metabolites in Sub that are class C -specific.

E½OC
Sub
� expected bins for metabolites in Sub for class C

E½OC
Sub
�½mj � expected bin for metabolite j for class C found using the subset of metabolites Subj

E½mC
j � expected bin for metabolite j for class C found after aggregating results for different subsets

doi:10.1371/journal.pcbi.1002859.t001
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Mutual Information I(X;Y) can be defined as the reduction in the

uncertainty of a random variable when the other random variable

is known (See equation 8). I(X;Y), a real value in the range [0,1], is

zero when observing one random variable does not give us any

more information about the other.

I(X ; Y )~H(X ){H(X DY )~H(Y ){H(Y DX ) ð8Þ

In our context, for the subset Sub of observed metabolites, we are

interested in the reduction of the uncertainty of the class variable

C, given the binned versions of observations for Sub, namely OSub.

Equation 8 is equivalent to equation 9 below (the variables are

renamed accordingly).

I(C; OSub)~
X

o[OSub

X
c[C

p(c) � p(oDc) � lg
p(oDc)

p(o)

� �
ð9Þ

There are M|Sub| possible combinations in OSub. Note that the bin

combination o in OSub can be represented as an array of length

|Sub| where each o[mj] M [1, |Sub|] represents the bin for metabolite

mj M Sub. ps(o) is the probability of observing the bin combination o

for individual s, and found in accordance with equation 5. Equation

10 shows the formula to find ps(o). p(o) is the probability of observing

o in population P and is found as shown in equation 11.

ps(o)~Pmj[Sub p s½mj �o½mj �
� �

ð10Þ

p(o)~

P
s[P ps(o)

DPD
ð11Þ

Without loss of generality, we assume that C is a binary random

variable, which can be either the control group or a variable group.

Note that we take the liberty of using a binary random variable C for

the sake of clarity, and our method can be generalized to beyond C

being binary. As we compare wild-type mice with mice with Cystic

Fibrosis disorder in the Results section, we name the control group

as WT and a variable group as CF. Each combination o contributes

to I(C; OSub) marginally, which is equal to the summation of

information provided for WT and CF (see the outer summation in

equation 9). We call this marginal information for o, and denote it as Io,

formally defined next.

Io~p(WT) � p(ojWT) � lg
p(ojWT)

p(o)

� �
z

p(CF) � p(ojCF ) � lg
p(ojCF )

p(o)

� � ð12Þ

Note that I(C; OSub)~
X

o[OSub

Io. In the CRANE algorithm of

Chowdhury et al [32], each combination o is called a ‘‘substate’’.

CRANE searches for and uses the ‘‘informative substates’’ to train a

neural network to classify samples in the gene expression analysis. Here,

we have elected to classify the substates themselves based on the

marginal information they provide for each class label. ADEMA uses all

‘‘substates,’’ instead of searching for the informative ones. Our approach

(i) uses B-splines and (ii) attaches weights to each bin combination even

when a combination has a low probability to occur. This enables

ADEMA to use these substates for classification purposes instead of

training a third party classifier. We exploit the following theorems.
Theorem 1.

p(WT) � p(ojWT) � lg
p(ojWT)

p(o)

� �
§0

iff p(CF ) � p(ojCF ) � lg
p(ojCF )

p(o)

� �
ƒ0

and p(CF ) � p(ojCF ) � lg
p(ojCF )

p(o)

� �
§0

iff p(WT) � p(ojWT) � lg
p(ojWT)

p(o)

� �
ƒ0

Proof for Theorem 1. Please see Text S1.

Following Theorem 1, when one of the terms is positive (i.e.,

more frequently observed in that class), the other is forced to be

less than that (i.e., it is less frequent in that class). As stated before,

our goal is to locate the expected metabolite levels for WT and CF.

We are seeking (i) the expected metabolic state occurs in CF, but

not in WT and (ii) the expected metabolic state that is to occur in

WT but not in CF. In order to do so, we classify each o[OSub into

one of the two following random variables: OCF
Sub and OWT

Sub as

indicators of CF and WT, respectively, based on Io. We make use

of the following classification function:

ClassifyCombination(o)~

o[OWT
Sub , p(WT) � p(ojWT) � lg

p(ojWT)

p(o)

� �
§0

o[OCF
Sub, p(CF ) � p(ojCF ) � lg

p(ojCF )

p(o)

� �
§0

8>>><
>>>:

Note that I(C; OWT
Sub )zI(C; OCF

Sub)~I(C; OSub). Then, we calcu-

late the expected level (bin) for each metabolite in Sub. We find one

expectation for CF and one for WT using sets OCF
Sub and OWT

Sub

respectively. Intuitively, the associated probability for each

combination o[OC
Sub is defined to be

Io

I(C; OC
Sub)

that reflects the

marginal information provided by o among all other combinations

that are informative about the class variable C. Note that,
Io

I(C; OC
Sub)

[½0,1�. Equation 13 defines the calculation of expecta-

tion. Simply, each index of o is multiplied by the associated

Figure 2. An example for B-spline basis functions. B-spline basis
functions for 6 bins are shown. Each curve represents a bin. For each
observation (x-axis), the corresponding y value on each curve yields the
probability of that observation to be in that bin. Summation of the y
values corresponding to an x value for all bins sum up to 1.
doi:10.1371/journal.pcbi.1002859.g002
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probability, and the resulting sum is rounded to the nearest integer

value.

E½OC
Sub�~

X
o[OC

Sub

Io

I(C; OC
Sub)
� o ð13Þ

Figure 3 illustrates the essence of ADEMA with a simple example.

In this illustration, there is just one subset of metabolites

considered (e.g. a single EFM). There are three metabolites in

the subset Sub1. We assume there are two bins (e.g. either up or

down). Hence, there are 8 possible combinations of ups and downs

for these 3 metabolites. In this hypothetical example, we determine

that combinations o2, o3, o4, and o7 are WT-specific, and

combinations o1, o5, o6, and o8 are CF-specific (using Classify-

Combination function). Then per group (CF vs. WT), each

combination is weighed by the marginal information it provides

and summed up to find the aggregation (using equation 13). Final

metabolite levels found per group are considered as the

representative expected levels for CF and WT for this combination

of metabolites. Please also see Figure S3 for a toy example that

shows the calculations.

As explained earlier, ADEMA may obtain more than one subset

of metabolites using EFMs. After obtaining E½OCF
Subi
� and

E½OWT
Subi
�for each Subi, ADEMA performs the following task of

unifying results found per EFM. First, for each observed

metabolite mj, it finds all Subi such that mj M Subi. We name this

set of subsets of metabolites as Smj
. Then, ADEMA finds the

expected level (bin) for each mj for each class as shown in equation

14 (denoted asE½mC
j �). Real values are rounded to the nearest

integers. The idea is to weigh the bin found by each EFM with the

amount of MI it provides.

E½mC
j �~

P
Subi[Smj

I(C; OSubi
) � E½OC

Subi
�½mj �

� �
P

Subi[Smj
I(C; OSubi

)
ð14Þ

Figure 4 displays an example of this case. In Figure 4, there are 8

metabolites in the analyzed set and 6 subsets of metabolites are

obtained using EFMs. After each subset is evaluated as depicted in

Figure 4, their results are combined using equation 14 to obtain a

CF-specific and a WT-specific level for each metabolite. As shown

in the figure each metabolite subset contains a different

combination of metabolites. For each metabolite, all subsets,

which include that metabolite are determined. Then, each subset

votes for the final prediction of the level of the metabolite.

Predictions are weighed by the ratio of MI provided by the subset

divided by MI provided by all subsets. Thus, the more informative

the subset is, the more decisive its prediction is.

Finally, ADEMA finds the change in CF with respect to WT as

the distance between E½mCF
j � and E½mWT

j �. The sign of

E½mCF
j �{E½mWT

j � shows the direction of the change (increase,

decrease or no change), and the magnitude shows the significance

of the change.

To summarize, ADEMA first classifies each bin combination o

as an indicator of either the variable or the control based on Io.

For each class, it determines the expected bin combination as a

weighted sum of the classified combinations. They are weighted by

the percentage of information they provide among all other

combinations that are indicative of that class. This is done for each

subset of metabolites considered. Finally, all expected levels found

for each metabolite are combined as a weighted sum of the

considered subsets; they are weighted by the percentage of mutual

Figure 3. Illustration of determining WT and CF specific metabolite level combinations. Three metabolites are being analyzed to
determine their expected levels for WT and CF. In this example, there is just one subset of metabolites considered, and there are two bins (e.g., either
up or down). There are 23 possible combinations of ups and downs. Using the function ClassifyCombination, it is determined that combinations o2,
o3, o4, and o7 are WT-specific (on the left) and combinations o1, o5, o6, and o8 are CF-specific (on the right). When sets of combinations are weighed
separately by their marginal information, expected levels for these metabolites for CF and WT are found.
doi:10.1371/journal.pcbi.1002859.g003
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information each subset of metabolites provides among all the

considered subsets. ADEMA finds an expected level per class for

each metabolite. Next we describe an optional step of the

algorithm. We show that the expected levels of metabolites can

also be used to train ADEMA classifier to label unknown

individuals.

Classification Scheme for ADEMA
In this section, we show how ADEMA can be used as a

classifier. The algorithm starts by generating the expected states

for CF and WT as defined in equation 13 for the training data.

The profile of individual x to be classified is binned using the same

M and k values as the training sample.

After the binning is done, for each bin combination o, px(o) is

found as shown in equation 10. Finally, x is classified using the

following function, where S is the set of all subsets of metabolites

considered:

ClassifyIndividual(x)~

WT ,
P

Subi[S

P
oWT [OWT

Subi

Io

I (C;OWT
Sub

)
� px(oWT )w

P
Subi[S

P
oCF [OCF

Subi

Io

I(C;OCF
Sub

)
� px(oCF )

CF , otherwise

8<
:

Essentially, the function computes the probability for x to be in the

combinations that are indicative of WT and CF, weighted by the

marginal information per combination, in a manner very similar

to calculating the expected states as in equation 13. If it is more

likely to be in ‘‘WT-indicative’’ states, then x is classified to be WT,

and, otherwise, it is classified as CF.

Datasets
We have used three in vivo datasets as analyzed in Bederman

et. al. [47] and provided in the supplement. The first two datasets

contain essential and non-essential fatty acid concentrations in the

blood for two different aged mice cohorts: 3 weeks (Dataset S1)

and 6 weeks (Dataset S2). We have obtained 13 metabolites for

each of these datasets, namely, (i) essential fatty acids: Linoleic Acid

(C18:2v6 (LA)), Arachidonic Acid (C20:4v6 (AA)), Linolenic Acid

(C18:3v6 (ALA)), Eicosatetraenoic Acid (C20:4v3 (ETA)), Eicosapen-

taenoic Acid (C20:5v3 (EPA)) and Docosahexaenoic Acid (C22:6v3

(DHA)), and (ii) non-essential fatty acids: Decanoic Acid (C10:0),

Dodecanoic Acid (C12:0), Tetradecanoic acid (C14:0), Palmitic Acid

(C16:0), Palmitoleic Acid (C16:1), Stearic Acid(C18:0) and Oleic Acid

(C18:1). There are 7 CF and 9 WT mice in Dataset S1 and 8 CF

and 11 WT mice in Dataset S2. The third and final dataset

contains the concentrations of 28 metabolites in the livers of

another cohort of adult mice (Dataset S3). Those metabolites are

Alanine, Glycine, Valine, Leucine, Isoleucine, Proline, Urea, Serine,

Threonine, Aspartate, Methionine, Glutamine, Oxo-proline, L-Phenylalanine,

Tyrosine, Lactate, Glycerol, Succinate, Fumarate, b-alanine, Malate, PEP,

alphaGP, Glucose, Citrate, Pantothenic acid, Uridine, and Inosine. There

are 12 WT and 10 CF mice in this dataset.

Experimental Design
In this section we explain how we have applied ADEMA to the

datasets described above. We implemented ADEMA in C#
language and .NET Framework 4.0. All tests were performed on a

Dell PowerEdge R710 Server with two IntelH XeonH quad

processors and 48 GB main memory, running the Windows Server

2008 operating system.

Binning observations. As described in the Methods section,

the first step of the algorithm is to bin metabolite observations.

Three datasets described above were input to the algorithm. For

each observation, we obtained a probability per bin, i.e., the

probability of that observation being in the specified bin. To

choose the best set of parameters, we evaluated all combinations of

M, k and the maximum number of metabolites in a subset (maxSub) such

than 1#maxSub#7,2#k#3 and 3#M#6. We selected the follow-

ing ,M,k,maxSub. combinations per dataset as they provide the

best accuracy: ,6,3,8. for 3-week-old dataset, ,3,3,7. for 6-

week-old data set and ,6,2,6. for the liver profile. Picking the

best performing parameters with respect to the classification

performance is also employed in the literature [32].

Selecting related metabolites. The next step in the

algorithm is to select the related sets of metabolites. We employed

all three strategies described in the Methods section.

Figure 4. Illustration of combining expectations found by each EFM. In this illustration, there are 8 metabolites that are analyzed. We have 6
different subsets of metabolites found using EFMs. For each one of them, expected levels for WT (right) and CF (left) are found as explained in
Figure 3. Individual expected levels are weighted using equation 14 to obtain a WT-specific and a CF-specific level for each metabolite.
doi:10.1371/journal.pcbi.1002859.g004

Determining Expected Metabolite Level Changes

PLOS Computational Biology | www.ploscompbiol.org 8 January 2013 | Volume 9 | Issue 1 | e1002859



To obtain the EFMs we used the YANA software package [48].

The networks were input using the visual interface of YANA. For

the fatty acid data (Dataset S1 and Dataset S2), the metabolic

network shown in Figure S1 was input as specified in Selway et. al.

[49]. This network starts with Decanoic Acid, and produces Oleic

Acid and Palmitoleic Acid. There are two other disconnected

parts. The first path goes from Linolenic Acid to Docosahexaenoic

Acid and the second path goes from Linoleic Acid to Arachidonic

Acid. For the liver profile, we assembled the network by

connecting the related metabolites in the dataset with reactions

defined in the metabolic atlas by Selway [49]. The screenshot for

Dataset S3 is shown in Figure S2. YANA produced 4 EFMs for the

fatty acid datasets and 77 EFMs for the liver profile. The EFMs

were broken into subsets when they had more than the number

metabolites allowed per group (in this case, we fix this number to

8). There were 20 EFMs broken into two pieces for the liver

profile, so we used 123 subsets of metabolites.

For the neighborhood approach, we obtained 1-neighborhood

of each metabolite and constructed the metabolite subsets. For the

fatty acid data, we obtained 11 subsets (all contain less than 8

metabolites) and, for the liver profile, we obtained 22 subsets of

metabolites. Two of the subsets contained more than 8 metabo-

lites; thus they were broken into two pieces to obtain 24 subsets in

the end. Finally, to test the random strategy, we generated 4

random subsets for the fatty acid data and 123 subsets of

metabolites for the liver profile each of which have less than 8

metabolites.

Table 2 shows the classification performances per metabolite

selection strategy. EFMs achieve the highest accuracy in all cases.

Therefore EFM based metabolite selection strategy is selected as

our default metabolite selection strategy.

Results

This section applies ADEMA to experimental metabolomics

data on CF and wildtype mice, evaluates the results, and validates

the approach. Cystic Fibrosis is an autosomal disorder caused by

mutations in cystic fibrosis trans-membrane conductance regulator

(CFTR), with the symptoms of respiratory and pancreatic

dysfunction and low body-mass index. The most common

mutation, F508del, results in deletion of a phenylalanine at

508th amino acid position of the protein [50,51].

Determining Expected Metabolite Levels for 3-week-old
CF Mice

In this section, we predict expected changes in the levels of

metabolites for the 3-week-old CF and WT mice cohorts (See

Dataset S1). We are using blood metabolite levels as surrogate

markers for liver metabolism [52]. We obtain CF and WT specific

metabolite level combinations and calculate the expectation per

subset of metabolites. Finally, we aggregate the results for each

subset found using EFMs. Please see Figure 1 for an overview of

the method, and Figure S3 for an example.

Next, we test the validity of results generated by ADEMA

against the findings of an independent wet-lab study. Details of the

study are described in the next paragraph.

Results of Independent Wet-lab Study on 3-week-old CF Mice [47]:

Using the incorporation of 2H from deuterated water administered

to mice, (2H2O), it has been determined that CF mice had

significantly lower de novo lipogenesis (DNL, conversion of carbohy-

drates to Palmitic Acid, and elongation to Stearic Acid). DNL was 75%

lower in CF mice as compared to WT. This implies that the flux

through the DNL pathway (Decanoic Acid - Stearic Acid) was

drastically reduced. Figure 5 shows this change on the depiction of

DNL pathway. It is not entirely clear why DNL rates were

markedly decreased in CF mice; however, Bederman et al. found

significantly decreased food intake in 3 week old mice (CF mice

consume 50% less food) suggesting that carbohydrate/insulin

activation of DNL pathway can be delayed in 3-week-old CF mice

[47]. Consequently, CF mice have significantly decreased adipose

tissue stores and delayed growth overall as adults. Also, gene

expression analysis shows that the ELOVL6 (elongation of

Tetradecanoic to Palmitic Acid and subsequently to Stearic fatty

acid) gene expression was down by 3-fold in CF mice. Similarly,

the gene SCD1 which expresses the enzyme that converts

(desaturates) Palmitic Acid to Palmitoleic Acid and Stearic to

Oleic Acid is down by 22-fold in CF mice. These changes are

marked in Figure 5. Although gene expression levels do not have a

one-to-one correspondence with reaction activities due to many

factors such as post-transcriptional regulation, they have been used

in the literature [53] as cues for reaction activity. Here, by

considering the gene expression levels together with the reduction

in DNL activity, it is safe to assume that the reactions are

downregulated in the CF mice compared to WT mice.

We show where the DNL pathway fits in the big picture in

Figure 6. This figure shows general cellular metabolism with a

focus on the lipogenic pathway. Bold arrows show carbon flux

from Glucose into mitochondrion during the fed state. Since TCA

cycle flux is slow in the fed state, excess carbon exits via citrate

through citrate transporter back into the cytosol, where it is

catalyzed by Citrate Lyase yielding Oxaloacetate (OAA) and

lipogenic Acetyl-CoA, which is subsequently converted into

Malonyl-CoA. Palmitic acid is then synthesized by adding units

of Malonyl-CoA. Palmitate enters the DNL pathway, where it is

elongated and/or desaturated to yield other components of the

network that we describe in this manuscript. This overall DNL

pathway is particularly relevant to CF due to the facts described

above. Thus, examining carbon flux through this lipogenic

network allows us to answer clinically relevant questions in CF

research.

Figure 7 shows the results when only individual metabolites are

tested for significant changes using the Student’s t-test. That is, one

by one, each metabolite is tested to see whether the change is

significant or not. The result shows that there is no significant

change (marked with grey) in the DNL pathway (Decanoic Acid to

Stearic Acid) other than an increase for Dodecanoic Acid (marked

with dark grey). These conclusions do not comply with the data or

with the gene-expression-level-based expectation noted above.

One would expect a drastic change on the metabolite values as the

evidence suggests that there is a substantial alteration on the

pathway flow. The only point, which is in line with the

independent study, is that there are decreases of Palmitoleic Acid

and Oleic Acid levels which agree with drastically low SCD1

levels.

Table 2. Comparison of metabolite selection strategies.

3-week data 6-week data Liver profile

EFM 1 .78 0.81

1-Neighborhood 0.93 0.63 0.72

Random 0.68 0.68 0.81

Classification accuracies of each metabolite selection strategy per dataset are
shown. For the random selection case, the number of subsets to consider is
matched to the highest number of datasets among the competitors. Results
show that the EFM strategy weakly dominates the competitors.
doi:10.1371/journal.pcbi.1002859.t002
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Figure 8 shows expected metabolite level changes for CF mice

with respect to WT mice found by ADEMA. We set M = 6, k = 3

maxSubset = 8, which provide the best classification performance as

shown in Classification Performance Section below. Unlike the results in

Figure 7, we find that Palmitic Acid and Stearic are expected to

decrease in a 3 week-old CF mouse, which supports the

independent results. ADEMA’s prediction shows that Dodecanoic

Acid and Tetradecanoic Acid are increased. The increases in

Dodecanoic Acid and Tetradecanoic Acid can be explained by a

downstream effect of Stearic Acid and Palmitic Acid that lead to

accumulation of these two metabolites as they are no longer

consumed (Note that Palmitic Acid and Stearic Acid have bigger

pool sizes than the precursors). Finally, ADEMA predicts that all

metabolites in essential fatty acid elongation pathways Linolenic

Acid to Docosahexaenoic Acid and Linoleic Acid to Arachidonic

Acid are decreased. When metabolites are analyzed one by one,

one would argue that there are no significant changes, which

would lead to a different conclusion than the independent study.

ADEMA provides a more consistent scenario, where the main

products of the pathway are all decreased and lead to the

accumulation of the precursors.

Classification Performance
To present the classification performance of ADEMA (See

Methods), we make use of the blood profiles at 3 and 6 weeks (3

and 6 weeks data mentioned above) and the liver profile. To test

the ADEMA approach, leave-one-out cross validation (LOOCV)

is used. That is, we remove a mouse from the dataset (test data),

train the classifier using the rest of the dataset (training data) and

blindly classify the removed mouse. We repeat this for each mouse

in that dataset. Note that LOOCV is desirable for small data size,

is almost unbiased and is frequently used in microarray studies,

despite the high computation model building cost [54]. We report

accuracy, precision and recall results along with the F-measure. F-

measure is the harmonic mean of precision and recall.

Results for the classification tests are shown in Figure 9.

ADEMA was able to predict if an unknown individual is CF or

WT with an accuracy of 1 in Dataset S1, 0.84 in Dataset S2 and

0.9 in Dataset S3. Applying Fisher’s exact test (two-tailed) to the

results we find that our classifiers have p-values of 3*1024,

6.3*1023 and 1.323*1025 for Dataset S3, Dataset S2 and Dataset

S1 respectively. Hence, the accuracy of the method is statistically

significant in all datasets. Note that to perform classification of the

3-weeks data, ADEMA uses the CF- and WT- specific metabolite

levels, which are also used to obtain Figure 8.

Next, we compare the accuracy of our classifier with other non-

linear classifiers from the literature: PLS-DA, Random Forest,

SVM, AdaBoost, and Neural Network. For PLS-DA, MetaboA-

nalyst’s implementation is used [30]. For the rest of the methods,

WEKA implementations [55] (SMO, RandomForest, Ada-

BoostM1, MultiLayerPerceptron respectively) are used with

default parameters. Results for classification using normalized

and raw data are shown in Figure 10. The normalization

technique presented by Brodsky et al. [56] is used. This is a

normalization technique tailored for metabolomics analysis, with

the goal of minimizing errors committed on the peak picking and

alignment procedures done on LC-MS based metabolomics data.

This method first performs quantile normalization on each intra-

replicate group, then performs a quality control to adjust its

parameters to minimize inter-replicate discrepancies. Application

of these methods to the datasets is straightforward. The dataset

itself (real values), or the normalized version, was input to the

method, and the classification accuracy is returned.

From Figure 10, for all normalized sets and raw 3-week data, all

classifiers return statistically significant results at 0.05 level.

However, for the 6-week data only ADEMA and Neural Network,

and for the liver profile only, ADEMA and SVM return

statistically significant accuracies. Results show that ADEMA

performs equivalent or more accurately in all cases (up to 31%),

and it performs better than all other methods for at least one

dataset. Results also show that normalizing the data results in

better accuracy for all approaches, with improvements up to 42%.

Although in some cases performances of ADEMA and the other

methods are identical, the advantage comes from the interpret-

ability of ADEMA’s result. That is, all the other algorithms make a

prediction using some internal techniques, but provide no

feedback or biological explanation to the user about how they

did it or what made them to predict what they predicted. For

instance, PLS-DA uses the most significant variables (in our case

metabolites) that explain the variance, and disregards the rest of

the variables, which makes it impossible to evaluate all metabolites

at hand. SVM is known for its lack of interpretability as it

transforms the variable into a high dimensional space to perform

classification. Neural networks use a layered network structure

where each node assigns weights to the interconnections; and, the

output is a binary classification decision. The Random-Forest

method builds multiple classification trees, and performs a

majority voting among them. Although individual trees are

interpretable (e.g., that, say, A is low and B is high implies CF),

the majority voting obscures the interpretability of the final result.

Figure 5. Results of gene expression analysis and flux measurements on DNL pathway. Circles represent the corresponding metabolites,
and arrows represent reactions. ELOVL6 and SCD1 are the genes that express enzymes, which catalyze the corresponding reactions. This independent
wet-lab study shows that (i) flux through Decanoic Acid to Stearic is decreased, and (ii) the shown genes that catalyze corresponding reactions are
down-regulated in 3-week-old CF mice.
doi:10.1371/journal.pcbi.1002859.g005
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Figure 6. DNL pathway in the big picture. Circles represent the metabolites, and arrows represent reactions. Big rectangles represent
compartments that reaction take place in (e.g., blood, cytosol, mitochondrion). DNL pathway holds an important place in the carbon flow of the liver
cell. The glucose entering the cell can be utilized in the TCA cycle or can be converted to Triglycerides (TG) for storage. DNL pathway is particularly
relevant to CF since it has been showed that mice with CF exhibit low lipogenesis and deposition of newly synthesize fatty acids into adipose tissue
[47].
doi:10.1371/journal.pcbi.1002859.g006

Figure 7. Results of significance testing for individual metabolites on DNL Pathway. Dark grey-colored metabolite represents significant
increase for a metabolite in CF, compared to WT (3-week-old mice). Grey represents ‘‘no significant change’’, dark grey represents ‘‘significant
increase’’, and light grey represents ‘‘significant decrease’’. Significance tests are done using student’s t test per each metabolite independently. The
results show that the path Decanoic Acid to Stearic shows no significant change other than an increase in Dodecanoic Acid even though (1) the flux is
shown to be decreased on this path, and (2) ELOVL6 expression level is lower.
doi:10.1371/journal.pcbi.1002859.g007
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Finally, AdaBoost tries to improve the performance of the

underlying classifier by reassigning weights to the misclassified

examples in the previous iterations. AdaBoost is an optimization

algorithm that relies on another classification algorithm, and the

interpretability of the result depends on the underlying algorithm;

in the end, the output is a binary decision. In comparison,

ADEMA outputs expected levels, and outputs a snapshot of the

metabolic changes that have led to the classification conclusion.

This way, ADEMA lets researchers to hypothesize on the

metabolic activity that distinguishes variable from the control.

Once again, classification scheme for ADEMA uses the same WT-

or CF-specific combinations that have been found to predict the

expected levels as shown in Figure 8. That is, during classification,

it uses these combinations to calculate whether it is more likely for

the unknown individual to be in the CF-specific states to WT-

specific states. Therefore, Figure 8 provides an interpretation of

the classification decisions ADEMA has made. Moreover, from the

results of all classification tests, we conclude that ADEMA

provides biologically meaningful signatures to predict the expected

levels that can also be employed for classifications of samples.

Figure 8. Expected level changes found using ADEMA for metabolites on DNL Pathway. Coloring scheme is the same as in Figure 7.
Resulting expected metabolite changes are computed using ADEMA, for the CF mice w.r.t. WT mice (3-week-old mice). We see that Palmitic Acid and
Stearic are decreased, as suggested by the flux measurement and ELOVL6 levels. The increases in Dodecanoic Acid and Tetradecanoic Acid can be
explained by a downstream effect of Stearic and Palmitic Acid that lead to the accumulation of these two metabolites as they are no longer
consumed.
doi:10.1371/journal.pcbi.1002859.g008

Figure 9. Classification performance for ADEMA on 3 in vivo
datasets. Accuracy, Precision, Recall and F-measure results are shown
for datasets S1, S2, and S3. The accuracy of the classifier is significant for
all datasets (two-tailed Fisher’s exact test).
doi:10.1371/journal.pcbi.1002859.g009

Figure 10. Comparison of ADEMA with other classifiers. Figure
shows the comparison of ADEMA’s accuracy with other well-known
non-linear classifiers. For PLS-DA, MetaboAnalyst’s implementation is
used, and for the rest of the techniques, WEKA implementations with
default parameters are used. We report classification results for raw data
and data that is normalized using the method described by Dubitzky et
al [54]. Results show that ADEMA performs up to 31% better than the
other methods, and performs better than all other methods in at least
one dataset.
doi:10.1371/journal.pcbi.1002859.g010
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An In-Silico Experiment to Validate Expected Levels
To further validate the expected levels found by ADEMA, we

generated an in silico dataset using the kinetic model of simplified

Glycolysis (Dataset S4). We used the Wolf2000_Glycolytic_Oscil-

lations model [57] from BioModels Database [58]. Using the

online simulation interface of the PathCaseSB system [59,60], we

ran 10 independent simulations using different initial concentra-

tions for Glucose, which is the only incoming source of flux in the

network (boundary metabolite). We ran 5 simulations with initial

Glucose concentrations smaller than 6 units, and considered them

as the control group. Then, we ran 5 simulations with initial

Glucose concentration larger than 10 units and considered this

group the variable group. Per each simulation, we obtained 75

values per metabolite for 75 time points and averaged them into a

single representative amount. In this dataset, we obtained

concentrations for 9 metabolites, which are reported in the model.

These metabolites are: Glucose, Fructose 1,6 Bisphosphate, Glyceralde-

hyde 3-Phosphate+DHAP (abstracted as a single metabolite in the model), 3

Phosphoglycerate, Pyruvate, Acetaldehyde, and External Acetaldehyde.

Observations are discretized using B-splines as described before.

We picked ,6,2,8. as the ,M,k,maxSubset. combination based

on the classification performance. YANA returned a single EFM

(with all 9 metabolites), which is then broken into two subsets.

As the initial input to the metabolic network was increased (i.e.,

increased Glucose concentrations) in the variable group, the

expectation is to observe an increase in the metabolic activity

along the network and increased metabolite concentrations.

However, student’s t-test cannot detect any significant changes

between two groups for ATP and Fructose 1,6 Bisphosphate levels.

On the other hand, ADEMA predicted an increase for all

metabolites in the variable group with respect to the control group.

Results are shown in Figure 11. This also supports the reliability of

the expected levels found by ADEMA.

Time Performance
For the picked parameters described at the beginning of this

section, ADEMA took 17 seconds for Dataset S1, 0.05 seconds for

Dataset S2, and 66 seconds for Dataset S3 to classify an unknown

individual on average. ADEMA requires more time as each of M,

k, the number of subsets, and the subset size increase. Parameter k

increases the time requirement because of the recursive compu-

tations shown in equation 3. As discussed in Methods, we limit the

maximum size of the subsets of metabolites; so, we show the effect

of the rest of the variables noted above in Figure 12.

Figure 11. Predicted Metabolite Levels for the In Silico Dataset. This figure depicts the simplified Glycolysis pathway as described by the
BioModels model Wolf2000_Glycolytic_Oscillations. Figure shares the legend of Figure 7. As the variable group has increased Glucose levels, and,
therefore, increased input to the model, the expectation is to observe an increase in the overall metabolite levels. As expected ADEMA predicts that
every single metabolite is increased in the variable group, with respect to the control group.
doi:10.1371/journal.pcbi.1002859.g011

Figure 12. Time Performance of ADEMA on Dataset S1. Time
requirements for changing M and k values show exponential increase
for 3-week-old data.
doi:10.1371/journal.pcbi.1002859.g012
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In Figure 12, we show the average time required to calculate the

expected levels per metabolite and to classify a mouse, for given M

and k values using Dataset S1. Figure 12 clearly shows that, as

parameters M and k increase, the computation time increases

exponentially. Although this may raise a question on the

applicability of ADEMA in a more general setting with networks

of larger sizes and increased number of EFMs, next we show that

ADEMA’s parameters can be relaxed to trade accuracy for time.

Table 3 shows accuracy results for all ,M,k,maxSubset. combi-

nations tested on Dataset S3. Table 4 lists the time taken for each

respective test. As indicated before, the best accuracy result (0.9)

was obtained using the combination ,6,2,6.. This particular test

took ,66 seconds as shown in Table 4. On the other hand, the

combination ,4,2,5. resulted in 0.77 accuracy which is also

significant at the 0.05 level, and took only ,2 seconds. Thus, the

execution time of the algorithm can be limited by relaxing the

parameters, while still providing statistically significant classifica-

tion performance. The accuracy/time performance tables for

Dataset S1 are shown in Table S1 and S2, respectively, and for

Dataset S2 they are shown in Table S3 and S4, respectively.

Similarly, when the metabolic network is large and the EFM

calculation takes a long time, the algorithm can be switched to

using the random metabolite selection strategy. The modular

structure of the algorithm enables the user to pick parameters, or

to switch between the subcomponents of the algorithm to achieve

accuracy within the time limits set by the user for larger problems.

To further validate that ADEMA can be applied on large-scale

networks we have tested the algorithm on two in silico datasets

generated for models Bungay2003_ Thrombin_ Generation [61]

and Ung2008_EGFR_Endocytosis [62]. Former model has 74

species (metabolites) and latter model has 194 species. We have

generated the data following the same procedure to generate data

for Wolf2000_Glycolytic_Oscillations model as described in the

previous subsection. For the first model we have run 5 simulations

with low initial concentrations for ‘‘Ps_f’’ (,1500), which

represent the WT group and 5 simulations with high concentra-

tions for ‘‘Ps_f’’ (.2800) which represent the CF group. Same is

done for ‘‘Src’’ in the second model (low concentrations ,6 and

high concentrations .20). Again, per simulation, we obtained 75

values per metabolite for 75 time points and averaged them into a

single representative amount. For both datasets we tested

ADEMA’s classification scheme using LOOCV. ADEMA was

able to achieve perfect accuracy for both datasets, and took only

0.96 and 0.86 seconds on average, respectively. Results show that

ADEMA can be applied on large networks without sacrificing

accuracy or reliability.

Discussion

ADEMA is a new framework that identifies expected level

changes for metabolites with respect to a condition. For each

related set of metabolites, it calculates the mutual information

between each combination of discretized levels of the metabolites

in that set, and the class variable. We have shown how each

combination can be classified as being informative in terms of the

variable group or the control group, and have used this

information to calculate the expected levels per class variable.

ADEMA also presents a scheme to use expected levels to classify

Table 3. Accuracy of ADEMA Classification Scheme on Dataset S3 w.r.t. Varying Parameters.

M = 3 M = 4 M = 5 M = 6

k = 2 k = 3 k = 2 k = 3 k = 2 k = 3 k = 2 k = 3

Max Subset Size 2 0.5 0.5 0.63 0.59 0.5 0.63 0.59 0.68

3 0.59 0.54 0.72 0.63 0.72 0.72 0.68 0.72

4 0.59 0.59 0.72 0.72 0.68 0.77 0.72 0.77

5 0.68 0.59 0.77 0.72 0.72 0.77 0.86 0.77

6 0.59 0.54 0.72 0.77 0.81 0.72 0.90 0.72

7 0.5 0.54 0.72 0.72 0.81 0.77 0.86 0.77

Figure shows how accuracy of ADEMA classifier changes with respect to changing parameters ,M, k, maximum subset size.. The best result is obtained for the
combination ,6,2,6..
doi:10.1371/journal.pcbi.1002859.t003

Table 4. Execution time of ADEMA Classification Scheme on Dataset S3 w.r.t. Varying Parameters.

M = 3 M = 4 M = 5 M = 6

k = 2 k = 3 k = 2 k = 3 k = 2 k = 3 k = 2 k = 3

Max Subset Size 2 0.24 0.25 0.19 0.2 0.37 0.25 0.47 0.45

3 0.27 0.19 0.33 0.34 0.66 0.52 0.7 0.94

4 0.24 0.35 0.53 0.68 1.16 1.70 2.36 4

5 0.39 0.47 1.23 2.01 3.45 7.68 8.72 25.16

6 0.96 1.19 4.52 12.2 20.5 80.8 65.8 334

7 1.64 2.77 11.5 37.7 61.3 276.5 217.8 1178

Figure shows how much time (in seconds) it takes for the ADEMA classifier to train and classify an unknown individual on average for different parameter combinations
,M, k, maximum subset size..
doi:10.1371/journal.pcbi.1002859.t004
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individuals with unknown class labels. We have shown that the

expected metabolite level changes calculated by ADEMA conform

to flux measurement results and the gene expression analysis done

on 3-week-old CF mice. We have also shown that ADEMA’s

classification performs more accurately than five other well-known

classification techniques by up to 31%. Unlike all other classification

techniques, ADEMA’s classification results are also interpretable.

That is, ADEMA provides an explanation of the classification result

by outputting the expected level changes, along with the prediction.

We think that this feature is very important for metabolomics

researchers who attempt to capture a snapshot of the metabolism,

and understand the differences between the two groups.

ADEMA attempts to minimize the loss of biological information

contained in a metabolic profile. Preservation of information is

particularly important when a disease causes subtle changes in

metabolite levels, i.e., changes that are insignificant at a single

metabolite level, but significant when taken together with other

metabolite levels.

In terms of Cystic Fibrosis, our hope is for ADEMA to contribute

to the biomarker potential of dyslipidemia in Cystic Fibrosis. Fatty

acid profiles are currently used as outcome measures in clinical trials

for CF patients; the use of ADEMA would maximize the amount of

information obtained from fatty acid profiles, improving the

outcome measure sensitivity. Metabolite profiles are useful in the

treatment of other diseases as well. For instance, comprehensive

serum fatty acid profiles are used to diagnose and monitor

individuals with inborn errors of mitochondrial fatty acid oxidation

and peroxisomal disorders [63]. ADEMA’s increased sensitivity to

subtle changes in metabolite levels may be beneficial to the analysis

of metabolite profiles in many diseases. Furthermore, the advent of a

new class of CFTR potentiator drugs (i.e., VX-770, discussed in

Ramsey et al. 2011 [64]) obviates the need for additional outcome

measures in drug trials. Fatty acid levels were not reported as an

outcome measure in Ramsey et al. 2011, perhaps because of

unresolved inconsistencies in the direction of change in individual

fatty acids [65]. Further research is needed to determine if analysis

of fatty acid profiles by ADEMA will provide a more clinically useful

outcome measure.

We foresee that there is room for improvement in ADEMA on

selecting the relevant subsets of metabolites. Rather than relying on

the existing knowledge of relations between metabolites, one can

search for signatures [32] that define the dataset to reach higher

levels of mutual information. This may benefit the calculation of

expected levels of metabolites and classification. Another limitation

with ADEMA is its exponential nature (See Results). However, as

described in the algorithm can be tweaked to trade accuracy for

execution time. Searching for small, but informative, states may also

reduce the time complexity of ADEMA.

ADEMA fills an important gap in the metabolomics literature

because it provides an analysis of non-linear dependencies among

multiple metabolites, and derives an expectation of changes with

respect to a condition. This is a question that all ‘‘omics’’ platforms

seek an answer for, and the need for techniques that embrace

transcriptomics, proteomics and metabolomics data is substantial.

ADEMA has no metabolite-specific dependencies other than the

use of EFMs, and it can easily be incorporated to other high-

throughput techniques.
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Dataset S1 Metabolite measurements for 3-week-old
mice. This data is referred as 3 week data in the text and contains

blood measurements for metabolites of DNL pathway.

(DOC)

Dataset S2 Metabolite measurements for 6-week-old
mice. This data is referred as 6 week data in the text and contains

blood measurements for metabolites of DNL pathway.

(DOC)

Dataset S3 Liver profile for adult mice. This data is

referred as liver profile in the text and contains blood

measurements for metabolites of DNL pathway.

(DOC)

Dataset S4 In Silico Dataset generated using Wolf2000_-
Glycolytic_Oscillations Model. We have generated the

following data by running 10 distinct simulations on Wolf2000_-

Glycolytic_Oscillations using different initial concentrations for

Glucose. For each metabolite in each experiment we have

obtained 75 values (there were 75 time points) and averaged

them to obtain a representative value. We assumed variable group

had higher (.10) initial Glucose concentrations and control group

had low (,6) Glucose concentrations.

(DOCX)

Figure S1 YANA screenshot of the network created to
obtain EFMs for Dataset S1 and Dataset S2. In this figure

blue circles represent internal metabolites and pink circles

represent external metabolites. External metabolites are not

considered in the analysis, but they are input to specify the

entrance and exit points to the network. Rectangles represent

reactions that relate metabolites. These reactions are ‘‘abstract’’

reactions that might contain one or more reactions. This

network represents the DNL pathway and was used to obtain

the EFMs.

(DOC)

Figure S2 YANA screenshot of the network created to
obtain EFMs for Dataset S3. Colors and shapes representing

entities are same as in Figure S1. This network is formed by linking

related metabolites together according to Selway et al. [51] and

was used to obtain EFMs.

(DOC)

Figure S3 Example that shows basic calculations done
for ADEMA. Given one individual per class and two measured

metabolites, ADEMA generates 4 possible metabolite combina-

tions and based on the probabilities obtained using B-spline curves

(in this case estimates) expected levels per group are found.

ADEMA first classifies bin combinations as WT- and CF-specific

to conclude that qq are the expected levels for CF and QQ are

the expected levels for WT.

(DOC)

Table S1 Accuracy results for different M,k and max
subset size parameters for Dataset S1.

(DOC)

Table S2 Accuracy results for different M,k and max
subset size parameters for Dataset S2. Best result is
marked as bold.

(DOC)

Table S3 Time results (secs) for different M,k and max
subset size parameters for Dataset S2.

(DOC)

Table S4 Time results (secs) for different M,k and max
subset size parameters for Dataset S2.
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Text S1 Proof for Theorem 1.
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38. Numata J, Ebenhöh O, Knapp EW (2008) Measuring correlations in the
metabolic network with mutual information. Genome Inform 20: 112–22.

39. Moon YI, Rajagopalan B, Lall U (1995) Estimation of mutual information using

kernel density estimators. Phys Rev E 52: 2318–2321.

40. Silwerman BW (1986) Density estimation for statistics and data analysis.
London: Chapman and Hall.

41. Cakmak A, Qi X, Cicek AE, Bederman I, Henderson L, et al. (2012) A New

Metabolomics Analysis Technique: Steady State Metabolic Network Dynamics
Analysis. J Bioinform Comput Biol. doi: 10.1142/S0219720012400033

42. Cicek AE, Ozsoyoglu G (2012). Observation Conflict Resolution in Steady State

Metabolic Network Dynamics Analysis. J Bioinform Comput Biol. doi: 10.1142/
S0219720012400045

43. DeBoor C (1978) A practical guide to splines. New York: Springer.

44. Daub CO, Steuer R, Selbig J, Kloska S (2004) Estimating mutual information

using B-spline functions – an improved similarity measure for analysing gene
expression data. BMC Bioinformatics. doi: 10.1186/1471-2105-5-118

45. Venelli A (2010) Efficient entropy estimation for mutual information analysis

using B-splines. Lect Notes Comput Sc 6033: 17–30.

46. Schuster S, Hilgetag C (1994) On elementary flux modes in biochemical reaction
systems at steady state. J Biol Syst 2: 165–182.

47. Bederman I, Perez A, Henderson L, Freedman JA, Poleman J, et al. (2012)

Altered de novo lipogenesis contributes to low adipose stores in cystic fibrosis
mice. Am J Physiol Gastrointest Liver Physiol. doi: 10.1152/ajpgi.00451

48. Schwarz R, Musch P, von Kamp A, Engels B, Schirmer H, et al. (2005) YANA –

a software tool for analyzing flux modes, gene-expression and enzyme activities.
BMC Bioinformatics. doi:10.1186/1471-2105-6-135

49. Selway JG (2004) Metabolism at A Glance. Wiley-Blackwell.

50. Rommens JM, Iannuzzi MC, Kerem B, Drumm ML, Melmer G, et al. (1989)
Identification of cystic fibrosis gene: Chromosome walking and jumping. Science

245: 1059–1065.

51. Snouwaert JN, Brigman KK, Latour AM, Malouf NN, Boucher RC, et al.
(1992) An animal model for cystic fibrosis made by gene targeting. Science 257:

1083–1088.

52. Guyton A, Hall J (1991) Medical Physiology. Philadelphia: Elsevier Saunders.

pp. 771–774.

53. Shlomi T, Cabili MN, Herrgard MJ, Palsson BO, Ruppin E (2008) Network-

based prediction of human tissue-specific metabolism. Nat Biotechnol 26: 1003–

1010.

54. Dubitzky W, Granzow M, Berrar DP (2007) Fundamentals of data mining in

genomics and proteomics. New York: Springer.

55. Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, et al. (2009) The
WEKA data mining software: An update. ACM SIGKDD Explorations

Newsletter 11: 10–18.

56. Brodsky L, Moussaieff A, Shahaf N, Aharoni A, Rogachev I (2010) Evaluation of
peak picking in LC-MS metabolomics data. Anal Chem 82: 9177–9187.

57. Wolf J, Passarge J, Somsen OJ, Snoep JL, Heinrich R, et al. (2000) Transduction

of intracellular and intercellular dynamics in yeast glycolytic oscillations.
Biophys J 78: 1145–1153.

Determining Expected Metabolite Level Changes

PLOS Computational Biology | www.ploscompbiol.org 16 January 2013 | Volume 9 | Issue 1 | e1002859



58. Li C, Donizelli M, Rodriguez N, Dharuri H, Endler L, et al. (2010)

BioModels Database: An enhanced, curated and annotated resource for
published quantitative kinetic models. BMC Syst Biol. doi:10.1186/1752-

0509-4-92

59. Cakmak A, Qi X, Coskun SA, Das M, Cheng E, et al. (2011) PathCase-SB
architecture and database design. BMC Syst Biol. doi:10.1186/1752-0509-5-

188
60. Coskun SA, Qi X, Cakmak A, Cheng E, Cicek AE, et al. (2012) PathCase-SB:

integrating data sources and providing tools for systems biology research. BMC

Systems Biology. doi:10.1186/1752-0509-6-67
61. Bungay SD, Gentry PA, Gentry RD (2003) A mathematical model of lipid-

mediated thrombin generation. Math Med Biol 20: 105–29.

62. Ung CY, Li H, Ma XH, Jia J, Li BW, et al. (2008) Simulation of the regulation

of EGFR endocytosis and EGFR-ERK signaling by endophilin-mediated RhoA-
EGFR crosstalk. FEBS Lett 582: 2283–90.

63. Lagerstedt SA, Hinrichs DR, Batt SM, Magera MJ, Rinaldo P, et al. (2001)

Quantitative determination of plasma c8–c26 total fatty acids for the biochemical
diagnosis of nutritional and metabolic disorders. Mol Genet Metab 73: 38–45.

64. Ramsey BW, Davies J, McElvaney G, Tullis E, Bell SC, et al. (2011) A CFTR
potentiator in patients with cystic fibrosis and the G551D mutation. N Engl J Med

365: 1663–1672.

65. Coste TC, Armand M, Lebacq J, Lebecque P, Wallemacq P, et al. (2007) An
overview of monitoring and supplementation of omega 3 fatty acids in cystic

fibrosis. Clin Biochem 40: 511–20.

Determining Expected Metabolite Level Changes

PLOS Computational Biology | www.ploscompbiol.org 17 January 2013 | Volume 9 | Issue 1 | e1002859


