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Abstract

The intestinal microbiota is a microbial ecosystem of crucial importance to human health. Understanding how the
microbiota confers resistance against enteric pathogens and how antibiotics disrupt that resistance is key to the prevention
and cure of intestinal infections. We present a novel method to infer microbial community ecology directly from time-
resolved metagenomics. This method extends generalized Lotka–Volterra dynamics to account for external perturbations.
Data from recent experiments on antibiotic-mediated Clostridium difficile infection is analyzed to quantify microbial
interactions, commensal-pathogen interactions, and the effect of the antibiotic on the community. Stability analysis reveals
that the microbiota is intrinsically stable, explaining how antibiotic perturbations and C. difficile inoculation can produce
catastrophic shifts that persist even after removal of the perturbations. Importantly, the analysis suggests a subnetwork of
bacterial groups implicated in protection against C. difficile. Due to its generality, our method can be applied to any high-
resolution ecological time-series data to infer community structure and response to external stimuli.
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Introduction

The intestinal microbiota has been receiving much attention

lately. Recent studies, propelled by metagenomics and next-

generation DNA sequencing technologies, establish novel connec-

tions between the intestinal microbial species composition and

diseases [1–3]. An imbalance in bacterial composition has been

linked to chronic diseases such as obesity [4], Crohn’s disease [5]

and type 2 diabetes [6]. Even drug-induced transient changes in

the microbial community can increase the risk of developing

diseases such as acute intestinal infections [7], or pulmonary viral

infections [8] in mammalian hosts.

Although its importance has long been acknowledged [9–12]

studies of the microbiota had been limited by the fact that most

microbes are uncultivable in the lab. The recent developments in

metagenomic high-throughput sequencing allow this by enabling

the investigation of species composition directly without the need

for culturing [13]. This has opened a new window into the

microbial ecosystem residing in the intestinal tract. Our present

view is that the intestinal microbiota is a relatively resilient

ecosystem [14], with a composition that is quite stable over time

[15,16]. External perturbations, such as dramatic changes in diet

[17] or antibiotic administration [18], can shift the composition.

For example, broad-spectrum antibiotics can remove highly

abundant species and allow less abundant, antibiotic-tolerant

bacteria to dominate [7]. Antibiotic-induced losses of biodiversity

increase the risk of bacterial infections [19,20] and the effects can

persist for several days after antibiotic treatment [18,19,21].

Perturbation-induced composition shifts are often observed in

multispecies microbial ecosystems and may affect macroscopic

overall functionality [22]. The loss of protective species can be

resolved by reintroducing normally resident (or commensal)

microbes. Faecal transplantation, i.e. the reestablishment of a

patient’s intestinal microbiota by introducing the microbiota of a

healthy donor, is highly effective against Clostridium difficile induced

colitis [23,24]. Similarly, the reintroduction of anaerobic flora with

high levels of Barnesiella sp. can clear intestines from highly

abundant vancomycin-resistant Enteroccocus in mice [25].

In order to understand how commensal consortia confer

resistance against pathogens it is crucial to identify the network

of interactions between the species [26]. Interactions can be

mediated by a direct secretion of substances such as bacteriocins

[27], or ecological competition between the microbes [28], or even

indirect interactions through immune system modulation [29].

Most quantitative studies of the intestinal microbiota so far focused

on comparing the composition of different samples using

quantitative indices and correspondence analyses [14] and cross-

sectional statistical tests [1,30]. Likewise, associations between

microbial species are often obtained using correlation-based

algorithms [26,31–36], which results in undirected interaction
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networks. Singular value decomposition [28] or mixture model

engines [37] allow for individuating stereotypical modes of

response to external perturbations (i.e. grouping species positively

or negatively affected by the stimulus) but they provide no

information on the interactions themselves (Figure 1A).

We recently introduced an ecological model of microbiota

dynamics that considers both species interaction networks and

extrinsic perturbations such as antibiotics [28]. The model can

explain how relatively simple ecological interactions such as

competition for nutrients can lead to complex phenomena as, for

example, multi-stability or antibiotic-mediated catastrophic shifts.

Importantly, we concluded that quantitative knowledge of the

microbial interactions could enable the prediction of microbiota

dynamics. Predictive models can be of great therapeutic value by

guiding antibiotic selection to reduce the risk of antibiotic-induced

enteric disease [20]. However, no study to date has generated

predictive models of ecological interactions and antibiotic pertur-

bations.

Inspired by work on interaction inference in cheese-associated

microbial communities [38] we extend the generalized Lotka–

Volterra equations [39,40] to infer microbiota ecology and predict

its temporal dynamics under time-dependent external perturba-

tions. A related approach based on linear ordinary differential

equations has already been applied to gene-interaction networks

[41–44]. Specifically, our method enables the quantification of (1)

growth rates of microbial species, (2) species–species interactions,

and (3) susceptibilities of microbial groups to time-variable

external perturbations such as antibiotics. Moreover, we can use

these parameters to numerically predict dynamics of the micro-

biota and to characterize its stability (Figure 1B). Using this

method, we analyze data from a recent mouse study [19], which

shows that the antibiotic clindamycin increases susceptibility to

Clostridium difficile colonization. Our results suggest the existence of

resilience and multistability in the intestinal microbiota and lead to

a hypothesis on a subnetwork of microbial groups involved in the

native resistance against pathogen colonization. This study

demonstrates that data-derived models of microbiota dynamics

can have significant analytic and predictive power. As such,

inference and prediction algorithms could be used in combination

with metagenomics to assist in the rational design of therapies such

as antibiotic or probiotic therapies [12].

Results

Inference of ecological microbiota dynamics from time-
series data

Extracting model parameters using a time-discrete Lotka–

Volterra system has already been presented in the context

microbial communities [38,45,46]. We extend this approach by

introducing time-variable perturbations and applying Tikhonov

regularization to solve the discretized Lotka–Volterra equations.

Furthermore, we use the obtained parameters to predict dynamics

and assess the system’s stability.

In this spirit, we adopt the general deterministic approach of

modeling time-dependent ecological dynamics using generalized

Lotka–Volterra equations [39] with the addition of external

perturbations. Formally, this model consists of autonomous, non-

linear, coupled first-order ordinary differential equations,

d

dt
xi(t)~mixi(t)zxi(t)

XL

j~1

Mijxj(t)zxi(t)
XP

l~1

eilul(t): ð1Þ

Here xi(t) is the concentration of a focal species i, i~1, . . . ,L, at

time t, mi is its specific growth rate, Mij is the effect of the

interaction of species j on species i and eil is the susceptibility to the

time-dependent perturbation ul(t) (for instance, an antibiotic or

diet).

Ecological time-series data, such as longitudinal metagenomic

sequencing data [15,47], provide the composition of a community

at discrete time points. Temporally resolved metadata, such as the

timing of antibiotic administration [20] or of changes in diet

regimes [17], may also be available and provide information about

processes that perturb the microbiota. In order to translate the

time-discrete data to a time-continuous dynamical system we

divide (1) by xi and discretize (see Materials and Methods),

D ln xi(tk)

Dtk

~miz
XL

j~1

Mijxj(tk)z
XP

l~1

eilul(tk): ð2Þ

The model parameters are determined by a linear system of

equations, which is then solved using Tikhonov regularization [48]

in order to ensure uniqueness and stability of the solution,

minimize k( M m E )Y{Fk2
2zlMkMk2

2zlmkmk2
2zlEkEk2

2: ð3Þ

The values for the regularization parameters lM , lm, lE can for example

be found in k-fold cross-validation (we use k~3) as the minimizer of the

mean-squared stepwise prediction error to set the optimal trade-off

between data fit and robustness towards the introduction of unseen

or missing data [49].

The inference method was first tested on in silico data by

generating trajectories for a Lotka–Volterra model as defined in

(1). We created multiple trajectories of ecological systems

characterized by different population sizes, random growth rates,

interaction values and susceptibility parameters while ensuring

system stability [50,51]. The simulations were also subjected to

random perturbations of variable duration and white noise was

added to simulate measurement uncertainty (Figure S1). The test

confirms that the minimum of the stepwise prediction error can be

used as a suitable proxy for the minimization of the parameter

Author Summary

Recent advances in DNA sequencing and metagenomics
are opening a window into the human microbiome
revealing novel associations between certain microbial
consortia and disease. However, most of these studies are
cross-sectional and lack a mechanistic understanding of
this ecosystem’s structure and its response to external
perturbations, therefore not allowing accurate temporal
predictions. In this article, we develop a method to analyze
temporal community data accounting also for time-
dependent external perturbations. In particular, this
method combines the classical Lotka–Volterra model of
population dynamics with regression techniques to obtain
mechanistically descriptive coefficients which can be
further used to construct predictive models of ecosystem
dynamics. Using then data from a mouse experiment
under antibiotic perturbations, we are able to predict and
recover the microbiota temporal dynamics and study the
concept of alternative stable states and antibiotic-induced
transitions. As a result, our method reveals a group of
commensal microbes that potentially protect against
infection by the pathogen Clostridium difficile and propos-
es a possible mechanism how the antibiotic makes the
host more susceptible to infection.

Ecological Modeling from Time-Series Inference
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inference errors (Figure S2). Given the inferred parameters we can

now predict the temporal dynamics by solving (1). We applied this

approach to in silico data. The results are presented in Figure S3.

Microbial interactions, antibiotic perturbations and
susceptibility to Clostridium difficile inferred from mouse
model experimental data

In a recent study, Buffie et al. described experiments on the

effect of the antibiotic clindamycin on the intestinal colonization

with the spore-forming pathogen C. difficile [19]. The experiments

were performed in a mouse model and high-throughput DNA

sequencing was used to measure the relative abundance of

bacterial species in cecum and ileum. The experiment consisted

of three distinct populations of mice. The first population received

spores of C. difficile, and was used to determine the susceptibility of

the native microbiota to invasion by the pathogen. The second

population received a single dose of clindamycin to assess the effect

of the antibiotic alone. Finally, the third population received a

single dose of clindamycin and, on the following day, was

inoculated with C. difficile spores. The untreated mice challenged

with C. difficile (population #1) did not develop infection and

maintained a stable microbiota throughout the entire experiment.

The single dose of antibiotic (population #2) resulted in a

dramatic reduction in the microbiota biodiversity, with more than

90% of the initial species dropping below detection. The effects of

this perturbation were long lasting, and biodiversity did not return

to pre-treatment levels even 28 days after the clindamycin dose.

Finally, mice that received C. difficile following the treatment with

clindamycin (population #3) were colonized by the pathogen, with

40% of those mice dying due to C. difficile induced colitis.

The experiment was performed in three replicates: for each

population three mouse colonies were uniformly treated, but

separately housed. Each time point represents a mouse from each

colony which was sacrificed to determine the intestinal microbiota

composition. Mice from the same colony are biological replicates

which justifies the interpretation of these compositions as one time

line representing one co-housed mouse population [19].

We used the cecal content data to infer microbial interactions,

growth rates and susceptibilities to clindamycin (see Materials and

Methods). Our mechanistically-based model presupposes absolute

abundances. Therefore, we converted the normalized DNA

sequence abundances obtained by metagenomics by multiplying

with the number of universal 16S rRNA per gram of cecal content

Figure 1. Conceptual figure highlighting the difference between our approach and the currently available methods for microbiota
analysis. Used input data are the temporal records of microbial total abundances (colored bars on left) and the temporal signal of external
perturbations (e.g. presence/absence or concentration). (A) Example and list of current computational approaches used to analyze community data
for microbiota studies. (B) Our approach uses ecological modeling to infer a network of microbial interactions, susceptibilities to external
perturbations and growth rates. The inferred parameters are used in an ecological community model which can then be used to predict ecosystem
dynamics and to identify steady states.
doi:10.1371/journal.pcbi.1003388.g001

Ecological Modeling from Time-Series Inference
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(measured using qPCR) multiplied by the sample density,

1:1 g=cm3 [52] (the actual density value has little importance

for the inference of the interactions given the model scaling

invariance, see Materials and Methods). For consistency with the

previous study [19] we integrated only the ten most abundant

genera including the pathogen C. difficile, together accounting for

the vast majority (approx. 90%) of the total sequences obtained

from 16S rRNA high-throughput DNA sequencing (Figure S4).

The remaining lower abundance microbes were grouped into a

category called ‘‘Other’’ (see Materials and Methods). This choice

resulted in less than 30% of undetected entries in the data matrix.

The choice of a higher number of independently treated genera,

e.g. 15, could result in more than 50% of missing values in the data

matrix (Figure S5).

Consistent with the underlying biological assumptions, the

specific growth rates obtained from our inference method

(Figure 2A) are all positive, and concordant with values measured

in vitro using representative species of human colonic microbiota

(0.55–1.78 per day [53] compared to 0.2–0.9 from Figure 2A).

The diagonal elements of the obtained interaction matrix

(Figure 2B) are negative. This is again consistent with the

underlying biology, since it means that each of these species

would eventually reach carrying capacity even in the absence of

other species.

Coprobacillus is found to be the genus with strongest interactions

by value in the ecological network. Specifically, it appears to

primarily inhibit all the other microbes, including C. difficile, with

the exception of Akkermansia and Blautia which also show inhibitory

effect on C. difficile. The strongest inhibitory effect is on Enterococcus

which together with the group of unclassified Mollicutes is inferred

to positively interact with the pathogen C. difficile. This positive

association is consistent with previous reports [54,55]. Intriguingly,

our method also suggests Barnesiella to mildly inhibit Enterococcus,

which agrees with previous findings in mice and humans [25].

Susceptibilities to clindamycin (Figure 2C) propose that the

antibiotic inhibits all of the genera, except for Enterococcus and

the group of undefined Enterobacteriaceae. C. difficile itself is

mildly repressed by the antibiotic.

Stability of the intestinal microbiota
Next, we investigated the implications of the inferred model

parameters for microbiota dynamics. First, we tested the model’s

performance in predicting microbiota trajectories. To do so, we

inferred the growth, interaction and susceptibility parameters on

2=3 of the available data, leaving 1=3 of the trajectories to test the

model prediction. Subsequently, we solved eq. (1) numerically

using the inferred parameters, initial compositions and the

metadata of antibiotic and/or C. difficile inoculation (see Materials

and Methods for further details). In Figure 3, we compare the

observed dynamics of the second replicates with the dynamics

inferred from the first and third replicate. Figure S6 shows the full

comparison for all the three replicates. The simulated trajectories

show a good agreement with the experimental data for all the

three populations with respect to order of magnitude and

qualitative behavior. There are, however, discrepancies especially

in Figure 3B. Here, the experimental data shows a community

take-over of Akkermansia and Blautia three days after clindamycin

treatment. Our method predicts the same behavior but with

several days delay (see Discussion for possible explications and

model limitations). The rank correlation between data and

prediction is of 62% along time (Figure 3D).

We then investigated the long-term stability of the system. We

calculated the steady-state composition of the microbiota, xss, as a

solution of eq. (1) for vanishing the time-derivatives in the absence

of any perturbation. Consequently, there are 2L steady states

where L is the number of microbial groups in the system. Of these,

Figure 2. Growth and interaction rates and susceptibilities to clindamycin application from cecal mouse data. All growth rates are
found to be positive (A). Interaction parameters in row i and column j represent the effect of genus j on i where red stands for activation and blue for
repression (B). Blue bars in the susceptibility panel refer to an inhibiting effect of clindamycin, while red ones refer to activation (C). The optimal
regularization parameters obtained in a 3-fold cross-validation are lM~2:25, lm~9, lE~0:25.
doi:10.1371/journal.pcbi.1003388.g002

Ecological Modeling from Time-Series Inference
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one state corresponds to the trivial case of total extinction (xss~0),

one state corresponds to the case of total coexistence

(xss~{M{1m, for M invertible), and 2L{2 states correspond

to the permutations of existence or extinction for every other

species [56]. A priori, we have no knowledge about which one of

these 2L states the system will attain. This depends on the initial

composition, presence and duration of the external perturbations.

Therefore, we determine the steady state by simulating long-term

dynamics to obtain information on species extinction and

coexistence. Once this information is obtained, we can analytically

evaluate the steady state of the system and its qualitative behavior

by determining the spectrum of the corresponding Jacobian matrix

evaluated in that state (see Materials and Methods). The principle

of linearized stability states that if the real part of the largest

eigenvalue of the Jacobian is negative then the composition xss

represents a stable microbiota (an asymptotically stable state).

Otherwise, it is unstable [57]. For instance, the total extinction

state, xss~0, is unstable if any of the growth rates is positive,

which is true for our data (Figure 2A). However, the dynamics of

high-dimensional Lotka–Volterra systems allow for a large variety

of different qualitative behaviors such as limit cycles, chaos or

attractors [39].

We applied this analysis to our system and identified one unique

steady state for each independent replicate (Figure 4A). The

replicate corresponding to untreated mice challenged with C.

difficile (population #1) is characterized by high abundance of

clindamycin-sensitive bacteria such as Barnesiella, undefined

Lachnospiraceae and unclassified Lachnospiraceae. The steady

state corresponding to clindamycin application (population #2) is

characterized by a take-over by Blautia, unclassified Enterobacte-

riaceae and unclassified Mollicutes. Finally, for the case corre-

sponding to C. difficile after clindamycin (population #3), the

steady state predicts severe C. difficile colonization in addition to

the genera emerging in population #2. Interestingly, these steady

states agree in order of magnitude, community profiles and

composition with the last experimentally measured data point of

Figure 3A–C. However, in the observed trajectories the compo-

sition still changes between the last two observed data points. This

could be due to the fact that the microbiota is not yet stabilized (i.e.

still in transient dynamics) or due to the effect of fluctuations [15].

Although this cannot be discerned from a simple observation of

the data, assuming that our model captures the actual microbiota

ecology our analysis suggests that the microbiota of the perturbed

microbial communities did not recover their original composition

within 28 days from treatment cessation. Rather, the microbiota

stays in distinct, perturbation-history dependent equilibria. The

intact microbiota is, by antibiotic administration, driven towards a

composition which is more susceptible to C. difficile colonization.

Figure 3. Comparison between observation and predicted microbial composition in the cecum. (A) refers to replicate 2 of population #1
(C. difficile inoculation at day 0), (B) to clindamycin administration at day 1 (replicate 2 of population #2) and (C) to clindamycin and C. difficile
administration at day 1 and 2 respectively (replicate 2 of population #3). The composition bar is linearly scaled. Note, the total abundance of the
intestinal microbiota does not decrease with antibiotic treatment. This may indicate the specific function of the bacteria that are present after the
perturbation. (D) Rank correlation of measured with predicted data points. Colors indicate elapsed time. 75% confidence ellipses are drawn for the
first (blue) and last (red) predicted time points.
doi:10.1371/journal.pcbi.1003388.g003

Ecological Modeling from Time-Series Inference
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By subsequent introduction of the pathogen, the community is

dragged into an alternative stable composition including the

otherwise repelled C. difficile; this may be an example of ‘‘niche

opportunity’’ [58,59]. Interestingly, when considering the land-

scape of all possible steady states of the inferred Lotka–Volterra

model, unstable steady states, i.e. those referring to critical

compositions which drive communities with similar compositions

to a collapse or catastrophic shift [60], are significantly more often

observed than stable ones. Given the inferred parameters, we find

that of the 2L steady states which the system is able to attain from a

composition of L initially present genera, about 98% are found to

be unstable (Figure 4B). Nonetheless, our model predicts the

existence of multiple stable compositions in each of the three

experimental arms. Our results, therefore, may indicate the

existence of alternative stable compositions of the intestinal

microbiota; switches between these states are induced by

perturbation with clindamycin or C. difficile inoculation. This

concept is reminiscent of ecological stability and resilience

discussed by Connell and Sousa [61].

Subnetwork conferring protection against C. difficile
The inspection of the model inferred from mouse experiments

[19] could suggest a possible ecological mechanism for C. difficile

colonization (Figure 5A). In the intact microbiota, our method

proposes that Coprobacillus interacts positively with the genera of

Akkermansia and Blautia. Additionally, Coprobacillus inhibits Entero-

coccus, which, when increasing in abundance, enhances C. difficile

establishment. Without clindamycin, the three genera Coprobacillus,

Akkermansia and Blautia, maintain intestinal stability and confer

resistance against C. difficile colonization (Figure 5B). However,

when clindamycin is administered, Coprobacillus, Akkermansia and

Blautia, are inhibited while Enterococcus is promoted. As the three

protective groups decrease in abundance, our results suggest that

Enterococcus increases in abundance and may facilitate colonization

by C. difficile. We discuss the validity of this mechanism in the

Discussion section.

Discussion

We presented a general method for the inference and prediction

of multispecies ecological community dynamics under perturba-

tions. Although this method was primarily developed having in

mind the intestinal microbiota, the same method may be potentially

applied to time-resolved data from any ecological systems, such as

bioreactors [62], marine [63] or soil ecosystems [64].

Our method quantifies growth rates, community interactions

and susceptibilities to external perturbations in a single inference.

The modeling approach is based on the generalized Lotka–

Volterra model (eq. (1)), a system of non-linear ordinary

differential equations, whose governing parameters can be stably

determined by a regularized regression on the discretized version

of the model (eq. (2)). Microbiota metagenomics data often have a

high number of microbial species which is much larger than the

number of available time points. This presents a challenge to

inference. We solved this problem in two steps. The first step was

to group the bacterial sequences at the genus level of phylogenic

classification and consider only the ten most abundant microbial

genera including the pathogen C. difficile and merge all remainders

to ‘‘Others’’. The second step was to apply Tikhonov regulariza-

tion, a procedure that provides a unique and stable solution and,

in combination with cross-validation, reduces the risk of overfitting

noisy data. Our inference method was tested using in silico data

Figure 4. Steady state microbial composition for the cases described in Figure 3A–C. (A) predicted composition of the second replicates of
the three different populations. These states are asymptotically stable as depicted in (B) where the corresponding largest eigenvalues of the Jacobian
matrix evaluated at each steady state is compared (red dot) against the histogram of largest eigenvalues of all attainable and biologically meaningful
steady states.
doi:10.1371/journal.pcbi.1003388.g004

Ecological Modeling from Time-Series Inference
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(Figure S1) and evaluated by its ability to recover left-out data

using a cross-validation approach (Figures S2, S3).

The application of inference methods to temporal metagenomic

data shows great promise. Still, the development of accurate,

predictive models, for example for clinical application, will require

further developments and the next few years are sure to see major

improvements in this area. For example, the method used here to

group microbial sequences may be expanded by adding functional

information in addition to taxonomic information. Future methods

will benefit from deeper sequencing of the metagenome [65] to

inform new ways to define functional microbial groups. Such

analyses can shed new light, for example, on the mechanisms by

which the abundance of certain species seem to correlate with

susceptibility to colonization by closely related pathogenic bacteria

[66]. Regarding antibiotic effects, even though we are not yet able

to measure the effective concentrations of the antibiotic in the

intestine in a high-throughput manner, more accurate information

on the pharmacokinetics in vivo will greatly enhance the

applicability of this method to clinical settings. Likewise, exper-

imental advancements with animal models will also be crucial.

The experiments analyzed here consisted of a single dose of

clindamycin of 200mg by intraperitoneal injection [19]. Compar-

ing antibiotic perturbed mice with intact mice in this case is similar

to comparing a thriving forest with one that has burnt to the ground.

The same antibiotic administered in gradual dosages, or the use of

other antibiotics, will surely produce distinct effects and would allow

for analyzing the communities with distinct compositions. Also,

engineered artificial microbiota with defined numbers of bacteria in

germ-free mice could be a valuable tool to test the resilience of

communities with increasing complexity. Longitudinal data col-

lected from such experimental models can give valuable new insight

into the mechanisms of protection against C. difficile.

Other differences between data and simulation results may stem

from approximating the infinitesimal by time-discrete dynamics

and the fact that the Lotka–Volterra model incorporates only

pairwise, second-order interactions (eq. (1)). This could be relaxed

in the future by extending the model to third or higher-order

interactions once more data becomes available. Furthermore, due

to the requirements of the Lotka–Volterra framework our method

cannot be applied directly to read count data without additional

information on the total number of bacteria per volume unit. If

this information is not available it needs to be estimated which can

be a source of deviations between measured and predicted results.

Nevertheless and even though we cannot claim that the inferred

interactions are revealing real causative relationships among

microbes, we believe that our results go beyond the explanatory

power of widely-used correlations and other methods used. A

major advantage of this method is its foundation on a mechanistic

framework. This allows for the determination of directional

interactions as well as the simulation of microbial dynamics with

considerable agreement with the actual data.

Based on our inference results, we also hypothesized on a

mechanism of C. difficile colonization. However, making a

substantiated statement on this mechanism would require further

analysis across different host systems and under various antibiotic

perturbations. Moreover, due to the limited phylogenetic resolu-

tion of the 16S rRNA sequencing, our approach would assign the

effects of possibly few, interaction-mediating strains to the whole

genus. Nevertheless, the analysis presented here suggests possible

experiments focusing on the role of Enterococcus, Coprobacillus,

Blautia and Akkermansia in mediating C. difficile colonization. This

could be investigated, for example, in mice with engineered

microbial consortia. Specifically, the microbiota of these mice

could be manipulated to lack the genus of Enterococcus or to contain

Figure 5. Colonization mechanism. (A) Mechanism of C. difficile colonization in mice. (B) Schematics of step-by-step dynamics leading to C.
difficile establishment following clindamycin treatment.
doi:10.1371/journal.pcbi.1003388.g005

Ecological Modeling from Time-Series Inference
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after antibiotic treatment representative strains of genera such as

Coprobacillus, Blautia and Akkermansia which are predicted to have

protective effect. Non-colonization and clearance of C. difficile in

this system after clindamycin application would then support our

hypothesized infection mechanism.

There is an urgent need to understand how the commensal

intestinal microbial community resists invasion by pathogenic

species. Mathematical modeling and inference can help shed new

light on this problem by disentangling the contribution of each

factor at play. The combination of increasingly accurate and

affordable sequencing methods with solidly grounded mathemat-

ical theory can help advance our understanding of the relationship

between the human host and its microbial inhabitants.

Materials and Methods

Model
A general approach for a deterministic model of time-

dependent ecological dynamics is given by the following system

of autonomous coupled first-order ordinary differential equations,

in which each time course represents the time-variation in

abundance, xi, of an ecological unit i~1, . . . ,L in a certain

environment,

d

dt
xi(t)~aiz

XL

j~1

bijxj(t)z
XL

j,k~1

cijkxj(t)xk(t)z � � � ð4Þ

with unknown parameters, ai,bij ,cijk, . . . for j,k, . . . ~1, . . . ,L. A

requirement of ecological models for closed systems is that a unit

that once goes extinct cannot return. Thus, for unit i which is

extinct at time t�§0, we require x’i(t)~0 and xi(t)~0 at any

time t§t� independent of any variation of the remaining xj(t),

j=i. In the framework of (4), this necessitates ai~0, bij~0 for i=j

and cijk~0 for j=k such that, if we restrict to only pairwise

interactions, we obtain for each unit i~1, . . . ,L,

d

dt
xi(t)~mixi(t)zxi(t)

XL

j~1

Mijxj(t), ð5Þ

where bii:mi and cijj:Mij for i,j~1, . . . ,L. This system of

equations is also known as the Lotka–Volterra model [39]. The mi

denotes the unlimited growth rate of unit i in absence of any

competition. The interaction term Mij characterizes the effect of

unit j on i. In particular, Mijw0 stands for activation and Mijv0

for repression. (No interaction is accordingly indicated by Mij~0).

In this form, the model, which is governed by the absolute

abundances of units and their physical, order-dependent interac-

tions, also captures non-linear dynamics such as Monod-type/

Michaelis–Menten kinetics in a first-order approximation. In

addition to growth and interactions we introduce the effect of the

application of P external time-dependent stimuli, ul , on each

ecological unit such that the full model writes,

d

dt
xi(t)~mixi(t)zxi(t)

XL

j~1

Mijxj(t)zxi(t)
XP

l~1

eilul(t) ð6Þ

where ul represents an external, time-variable stimulus of a

perturbation l~1, . . . ,P whose relative susceptibility for each unit

i is represented by eil .

In the framework of metagenomic data, one faces large

magnitudes of total numbers of bacteria. A common approach

to identify scale-dependencies of the system and to circumvent

numerical problems associated with this is to use non-

dimensional variables which allow to treat the model relative

to changes on typical system scales [67]. For this purpose, we

introduce the following representation of the dynamical

variables,

xi~x�i �xx, t~t��tt, ul~u�l �uu, ð7Þ

where the dimensionless forms are denoted with asterisks and

the barred variables denote the typical scales of the variables.

For the measurements of the intestinal microbiota used in our

analysis, we find typical scales for abundance and time of

�xx~1011 rRNAcopies=cm3 and �tt~1 d. Equation (1) then reads

in dimensionless form as,

d

dt�
x�i (t�)~mi

�ttx�i (t�)z�tt�xxx�i (t�)
XL

j~1

Mijx
�
j (t�)

z�tt�uux�i (t�)
XP

l~1

eilu
�
l (t�):

ð8Þ

We choose the scale for the perturbation signal such that

it is scaled to 1, i.e. �uu=½�uu�:1. Thus, we obtain the

rescaled growth rates, interaction parameters and suscepti-

bilities as, m�i : ~mi
�tt, M�

ij : ~�tt�xxMij and e�il : ~�tt�uueil and

recover the original equation (1) by dropping the asterisks.

Given this choice, the (rescaled) parameters of growth and

susceptibility are found to be scale-invariant of changes in

the typical abundance �xx, in contrast to the interaction

parameter Mij .

Parameter inference and prediction
Input variable is one longitudinal data-set in time points

t1, . . . ,tNz1 with abundances of L taxonomic units (in the

following analysis, genera), xi(tk), and P time-dependent pertur-

bations represented by their signal ul(tk). The parameters of

interest are the growth, interaction and susceptibility parameters,

mi, Mij and eil .

Discretization and linear problem. In order to use the

time-discrete data in the infinitesimal framework of the Lotka–

Volterra system, we rewrite eq. (1) for i~1, . . . ,L,

d

dt
ln xi(t)ð Þ~miz

XL

j~1

Mijxj(t)z
XP

l~1

eilul(t) ð9Þ

using d
dt

ln xi(t)ð Þ~ x’i (t)
xi (t)

for xi=0. For given values xi(tk) at Nz1

discrete time points t1, . . . ,tNz1, the time derivative in (9) can be

approximated by the forward difference quotient,

d

dt
ln xi(t)ð Þ

����
t~tk

%
ln xi(tkz1)ð Þ{ln xi(tk)ð Þ

tkz1{tk

~:
D ln xi(tk)

Dtk

ð10Þ

for k~1, . . . ,N and using D ln xi(tk)~ln
xi(tkz1)

xi(tk)

� �
. Note,

there is no limitation to equally-spaced time steps. Accordingly,

the discretization of the full equation (1) is then given by,
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D ln xi(tk)

Dtk

~miz
XL

j~1

Mijxj(tk)z
XP

l~1

eilul(tk) ð11Þ

for successive time points k~1, . . . ,N. Note, the data points

assigned to the last time, xi(tNz1) and ul(tNz1), have to be

removed from each trajectory. We regroup (2) in linear equation

system employing the whole time-series information. For this

purpose, we adopt a matrix notation for the unknown model

parameters, the interaction matrix M :~ Mij

� �
i,j
[RL|L, the

susceptibility matrix E :~(eil)i,l[RL|P and the growth rate vector

m :~(mi)i[RL. Moreover, we tabulate the time-series information

on the species’ abundances and perturbations in Y[RLz1zP|N

and the corresponding difference quotients in

F~
D ln xi (tk )

Dtk

� �
i,k
[RL|N , which yields for (2),

F~ M m Eð ÞY , ð12Þ

where

Y :~

x1(t1) � � � x1(tN )

..

. ..
.

xL(t1) � � � xL(tN )

1 � � � 1

u1(t1) � � � u1(tN )

..

. ..
.

uP(t1) � � � uP(tN )

0
BBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCA

: ð13Þ

Note, equation set (12) is invariant to simultaneous flips of the

columns of F[RL|N on the left and of the data matrix

Y[RLz1zP|N on the right hand side, i.e. the column order can

be changed as long as it is done on both sides. This allows us to

infer global parameters of interaction, growth and susceptibility,

M, m and E on multiple data sets by concatenating several time-

series trajectories. In practice, equation (12) is analogously valid

when the data matrices F and Y are filled with S independent

trajectories each consisting of N (s)z1 data points, xi(t
(s)
k ), at time

points t
(s)
1 , . . . ,t

(s)

N(s) ,t
(s)

N(s)z1
for s~1, . . . ,S and N~

PS
s~1 N (s).

Parameter estimation and model validation. Equations

of type (12) are commonly solved by regularized linear regression

with a suitable regularizer. This approach in combination with a

suitable model evaluation reduces the risk of overfitting by finding

the optimal trade-off between model complexity and predictability

on unseen data [68]. For our problem, we use a Tikhonov

regularization (also known as ‘2-regularization or ridge regression)

with its standard formulation as minimization problem (3) with

positive penalty terms lM ,lm,lE

� �
~ : l. This biases the solution

towards smallness of the parameters M,m and E relative to the

square of the ‘2-norm aij

� �
i,j

			 			2

2
~
P

i,j aij

�� ��2. The l-dependent

solution is then given by,

M m Eð Þl~

argmin
M,m,E

k M m Eð ÞY{Fk2

2
zlMkMk2

2
zlmkmk2

2
zlEkEk2

2


 �ð14Þ

~FY T YY TzDl

� �{1 ð15Þ

with the diagonal matrix Dl :~diag(l(i))i[RLz1zP|Lz1zP with

entries l(i) :~lM for 1ƒiƒL, l(Lz1) :~lm and l(i) :~lE for

Lz2ƒiƒLzPz1. Since YY T is positive-semidefinite,

lw(0,0,0) is sufficient to guarantee that YY TzDl

� �
is invertible

and thus (15) has a unique solution.

To this point, l can be chosen to select the set of M, m and E
which predicts best on unseen data. A standard approach to

address this is to apply k-fold cross-validation in which the data is

randomly partitioned into k equally sized subsets: k{1 of these

are used to infer the parameters M m Eð Þtrain
l using (15) for

several combinations of l. The remaining, unseen subset is

used to estimate the corresponding prediction errors,

EF test{ M m Eð Þtrain
l Y testE2

2. This is repeated for all k possible

partitions into k{1 possible training sets and one test set. To

reduce random fluctuations, several rounds using different

random partitionings are performed. Based on the results of

this procedure, we choose l� as the penalty parameter with the

minimal averaged prediction error on unseen data. The final

model is determined by applying l� to the complete data set. It

is representative of the system’s parameters and has been

selected for best predictive performance on unseen data. In

simulations on artificial data, we find that this procedure with

k~3 and ten runs of cross-validation recovers successfully the

model parameters (which are known in the case of in silico data),

see Figure S2.

Prediction of trajectories and stability of steady states/

long-term behavior. The long-term behavior of trajectories in

Lotka–Volterra systems is determined by the model’s steady states

(also referred to as equilibrium or fixed points). The Lotka–

Volterra equations are non-linear and therefore allow for the

existence of multiple steady states. Any trajectory in a certain

environment of an asymptotically stable steady state solution tends

to approach this state in time. Principally, this also applies to

solutions under perturbations and allows the system to stay in or

recover its original configuration. This behavior can be compared

to some extent with the notion of resilience, i.e. the ability of a

system to keep or recover its original state after perturbations, in

the context of ecological systems.

The global l� enables us to predict the dynamics of unseen

systems given only the initial composition and the time-dependent

signal of perturbations and/or introduced taxonomic units. For

this purpose, we use the obtained parameters M m Eð Þl�
determined on the full data set except for the to be predicted

trajectory (or all trajectories of a certain group). Given the

obtained parameters, we subsequently solve eq. (2) numerically

using the initial values of the to be predicted trajectories.

In particular, the steady states of system (1), xss[RL, are

determined by fi(x)~0 for i~1, . . . ,L with

fi(x) :~xi miz
PL

j~1 Mijxj

� �
. Their qualitative behavior is char-

acterized by the spectrum of the corresponding Jacobian matrix

evaluated in that state,

Lfi

Lxj

(x)

� �
i,j

�����
x~xss

~
mizMiix

ss
i z

PL
j~1 Mijx

ss
j for i~j,

Mijx
ss
i for i=j:

(
ð16Þ

The principle of linearized stability states that, if the real part of all

eigenvalues of the Jacobian is negative, then xss is asymptotically

stable. Otherwise, it is unstable [57].
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Application to in vivo metagenomics data
The operational taxonomic units counts per sample and relative

phylogenetic profile as presented in [19] were used as input data

for our analysis. As described in the Results section, we considered

the ten most abundant genera (including the pathogen C. difficile)

and a group ‘‘Other’’ containing the remaining lower abundance

genera. The particular grouping was used to reduce sparsity in the

data matrix and to avoid spurious, presumably noise-driven

contributions. The choice of using the genus level for phylogenetic

resolution was dictated by the fact that 1) it is consistent with the

original published paper [19] and 2) it represents the most specific

phylogenetic level for which we have classification data. In our

grouping, we denote a microbial genus ‘‘undefined’’ (abbreviated

with ‘‘und.’’) when the phylogenetic classification was non-

ambiguous up to a certain phylogenetic level.

In contrast to Buffie et al. [19] in which the data of the three

replicates are presented by their average, we use the individual

nine time courses from the cecum (three from each colony) and

concatenate their compositions spanning 86 time points into the

data matrices Y and F . In case of non-detection of an otherwise

present genus, we assign a uniformly distributed random value

between zero and the detection limit of the corresponding sample.

Whenever a genus is completely absent from all considered

samples in a particular inference, its corresponding row in the data

matrix Y of above is set to zero. The perturbation signal for

clindamycin is modeled by a unit pulse of length 1 day centered on

the time of antibiotic administration.

Subsequently, the inference was performed as described above

with k~3, i.e. in every round of cross-validation, six of the nine

time courses were used as training and the remaining three as test

set. Ten rounds of cross-validation yielded the minimizing

regularization parameter l�~(lM ,lm,lE)�~(2:25,9,0:25). The

result for M m Eð Þl� using all the data of nine time courses is

presented in Figure 2.

In the next step, we predicted the behavior of known trajectories

only using their initial compositions and clindamycin applica-

tion and/or C. difficile inoculation and compared it to the

measured values. We used l�~(2:25,9,0:25) from above to infer

M, m and E on six out of the nine trajectories, two from each

population. These parameters were used to solve eq. (2)

numerically for the remaining three trajectories only providing

initial compositions and perturbation profiles and/or C. difficile

inoculation. Figure 3 shows the predicted trajectories of the

second replicate of each of the three populations using

parameters inferred on the remaining six.

Moreover, the same parameters were used to assess the stability

of the three steady states by linear stability analysis (see above). In

Figure 4, we compared these to the final composition of the

corresponding measured time courses.
Computational resources used. Inference and prediction

algorithms were implemented in MATLAB R2012b (Mathworks

Inc., Natick, MA). Numerical integration of the ordinary

differential equation systems were performed using the native

function ODE15s. Simulations were run in the cluster facility at

cBio@MSKCC.

Supporting Information

Dataset S1 Microsoft Excel file reporting data (processed taxa

densities as well as antibiotic profiles), optimal regularization

parameters and inferred model parameters.

(XLSX)

Figure S1 Typical in silico trajectory of studied species with

superimposed white noise and under application of three random

perturbations as used in the in silico validation of our method.

(EPS)

Figure S2 Comparison of stepwise prediction error vs. error on

inferred parameters for variation of the regularization parameters.

It can be seen that the minimum in stepwise prediction error and

error in parameters approximately coincide.

(EPS)

Figure S3 Generated in silico input data for inference (blue

symbols) and superimposed trajectories obtained by inference and

re-run of the ordinary differential equation system (black lines).

(EPS)

Figure S4 Histogram of time-averaged abundances of the ten

most abundant genera (including C. difficile) and ‘‘Other’’. The

grouping covers 90% of all detected individual genera.

(EPS)

Figure S5 Coverage of the remainder group ‘‘Other’’ (blue)

considering x distinct most abundant genera compared to the

fraction of entries below detection limit in the data matrix (red).

(EPS)

Figure S6 Comparison of measured data and predicted time

courses. The column number of each time line determines its

replicate number (1 to 3) and the row number points to which

population it belongs (#1 to #3). In particular, of the nine

trajectories, A, D and G correspond to the population inoculated

only with C. difficile spores, B, E and H to the ones only treated

with clindamycin and C, F and I to the cases in which the mice

were treated with clindamycin and subsequently inoculated with

C. difficile spores.

(EPS)
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