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Abstract

Collective navigation and swarming have been studied in animal groups, such as fish schools, bird flocks, bacteria, and slime
molds. Computer modeling has shown that collective behavior of simple agents can result from simple interactions
between the agents, which include short range repulsion, intermediate range alignment, and long range attraction. Here we
study collective navigation of bacteria-inspired smart agents in complex terrains, with adaptive interactions that depend on
performance. More specifically, each agent adjusts its interactions with the other agents according to its local environment
– by decreasing the peers’ influence while navigating in a beneficial direction, and increasing it otherwise. We show that
inclusion of such performance dependent adaptable interactions significantly improves the collective swarming
performance, leading to highly efficient navigation, especially in complex terrains. Notably, to afford such adaptable
interactions, each modeled agent requires only simple computational capabilities with short-term memory, which can easily
be implemented in simple swarming robots.
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Introduction

Many organisms exhibit complex group behavior [1–10],

including collective navigation observed in the flight of birds

[11], trail organization in ants [12], and swarming of locust [13],

fish [14] and bacteria [15], among others. The aggregation results

in highly complex collective behavior, with new functionality and

computational ability. Simple interaction models, which describe

how each agent acts according to the result of a ‘computation’ it

performs on the locations of the other agents, have been used to

demonstrate and study the fundamental building blocks of

complex group behavior [16–24].

In computational models, swarming behavior can arise from

simple rules, and in particular demonstrate qualitive (and

sometimes quantitative) features of collective behavior observed

in nature: Vicsek et al. [16] introduced the ‘self-propelling

particles’ (SPP) model, in which the motion of each individual is

determined by the mean orientation of its local neighborhood with

some noise induced perturbation. The SPP model can exhibit

random or coherent motion of group clusters depending on the

particle density and on the noise of each individual; high density

and low noise results in a coherent group motion. Later derivatives

of the SPP model included individual preferential movement

directions, collision avoidance, and attraction [17–23]. Couzin et

al. [17,18] studied a model in which the direction of motion of

each individual is determined by a set of rules: repulsion (from

neighbors who are too close), attraction (to prevent fragmentation),

alignment (of velocity directions and speed), and reaction to the

environment. A swarm using these interaction rules can come to a

collective ‘decision’ about its direction of movement without

leadership and a small fraction of individuals ‘in agreement’ are

needed for such a cohesive decision to be made. Recently, Torney

et al. [25] presented a model in which the individual agents adapt

their interactions according to local conditions. A special feature of

this model is that it leads to the emergence of collective navigation

although each agent does not possess individual navigation

capabilities.

Even bacteria show remarkably sophisticated collective behav-

iors. Some bacteria strains can form large colonies with intricate

complex architectures, which allows them to expand efficiently by

taking advantage of the available resources [26–29]. They

construct intricate multicellular structures utilized for protection

and cooperation of cells [30–33]. In addition, bacteria display

complicated movement dynamics, in which cells organize into

vortices, form traffic lanes, or move collectively in a common

direction [34–36]. Bacteria swarming behavior in colonies was

explained by considering attractive and repulsive forces between

colony parts [10,28,37,38], communication capabilites [39–43],

physical interactions between cells, and forces from the environ-

ment [44].

Bacteria navigate using chemotaxis, i.e., moving according to

gradients in the chemical concentration [45–49]. Bacteria are too
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small to detect the chemical gradients across their body receptors,

and thus detect the concentration as they swim, and delay their

tumble if the concentration increases. As a result, they make longer

excursions towards areas of higher concentration. Each bacterium

may only acquire local and partial cues from the environment, but

as a group bacteria can navigate through challenging environ-

ments. In such cases, the optimal local direction may be

completely independent of the global environment. In addition,

microorganisms are especially sensitive to noise, due to stochastic

variations in their internal mechanisms, sensory system, and the

external environment. Information pooling was shown to improve

decision making in animal groups [1,50–52], such as the accuracy

of navigating birds. In addition, it has been shown that schooling

can improve the collective ability of groups of chemotactic

organisms, such as bacteria, to climb gradients [53].

Interaction between individuals such as repulsion, alignment,

and attraction, may exist in bacteria due to the associations

between single cells by mechanical and chemical means.

Mechanical interactions can result in collision or adhesion of

cells. Chemical interactions, by secretion and detection of various

diffusible chemicals, can result in repulsion or attraction. In high

densities, interactions between elongated cells cause alignment of

cell bodies and velocities.

Here, motivated by bacteria swarming, we study the collective

behavior of agents with self-navigation capabilities (particularly, a

tractable variant of chemotaxis) and performance dependent

adaptable interactions. Specifically, when the change of chemical

concentration is positive, an agent is more likely to continue in its

previous direction, thus, decreasing the influence of the other

agents, and vice versa. This implies that the interaction network

among agents is plastic – similar in spirit to the approach in

machine learning and neuroscience [54–56] and the recent work

by Torney et al. [25].

The current approach enables quanitative comparison between

the efficiency of collective navigation in the case of static and

adaptable interactions. We found that the adaptable interactions

become more important for more complex terrains. We also found

that collective navigation of agents with adaptable interactions is

more robust to the initial conditions, to the internal noise in the

system, and to the values of the interactions.

Methods

Modeling the terrain
We studied the navigation efficiency of swarms in a complex

two-dimensional terrain with obstacles. The structure of the

terrain was given by a static concentration map (Figure 1A) of the

form:

map(~rr)~ cos (b1~rr
1zw1): cos (b2~rr

2zw2)zc1
:K0(~rr{~xxj j=c2), ð1Þ

where ~rr~(~rr1,~rr2), b1,w1,b2,w2 are constants defining the periodic

variations of the terrain, and c1,c2 are constants relating to the

underlying chemical diffusion gradient. K0 is the modified Bessel

function of the second kind (which is the solution to the differential

equations related to diffusion in two dimensions) and ~xx is the

location of the target. The ‘topography’ was one of mountains and

valleys, representing locally changing chemical concentration that is

‘overlaid’ on a global concentration valley. In particular, the

modeled terrain had local minima and bottlenecks. The mountains

represent low chemical concentration whereas the valleys represent

high concentration. The target was the lowest point on the map –

which was the maximum concentration point (Figure 1B,C). The

concentration map was chosen as a simplified model of a problem

with local variations and local minima (see Text S1, Figure S1),

motivated by real navigational problems in bacteria swarms. Agents

that are only capable of local measurements are thus faced with an

extremely challenging navigation task.

Movement of individual agents
Three main factors influence the movement of the agents. The

first is internal noise of each agent, the second is its environment,

and the third is interaction with other agents.

On each time step, the location ~rri(t) and the direction of the

velocity~vvi(t) of agent i were updated according to the following rules:

~rri(tzDt)~~rri(t)zDt:~vvi(tzDt) ð2Þ

~vvi(tzDt)~ cos (hi(tzDt)zQi(tzDt)), sin (hi(tzDt)zQi(tzDt))ð Þð3Þ

where Qi(t) represents internal noise taken from a Gaussian distribution

with variance sw0, Qi(t)*N (0,s2), and hi(tzDt) is an agent’s new

angle (see below).

The movement of an individual agent devised here was inspired

by chemotaxis in swimming bacteria. A bacterium follows

chemical gradients by decreasing its tumbling frequency in high

gradients, whereas the tumbling angle is random (Figure 2A). In

the model we implemented this mechanism by maintaining an

equal tumbling frequency whereas the tumbling angle depended

on the chemical gradient (Figure 2B). We note that both

approaches produce the same effect statistically. An agent moves

forward and after a time step t, it changes direction by an angle,

y(Dci(t)), which is randomly chosen from a Gaussian distribution,

y(Dc)*N (0,sgrad (Dc)2). The distribution variance was given by

sgrad (Dc)~

p:(1{Dc)

0

p

0vDcv1

1vDc

Dcƒ0

8><
>: ð4Þ

Author Summary

Many groups of organisms, from colonies of bacteria and
social insects through schools of fish and flocks of birds to
herds of mammals exhibit advanced collective navigation.
Identifying the minimal features of biologically-inspired
interacting agents that can lead to emergence of
‘‘intelligent’’ like collective navigation and decision making
is fundamental to our understanding of collective behav-
ior, and is of great interest in artificial intelligence and
robotics. Previous models of collective behavior of agents,
which relied on static interactions of repulsion, orientation
(alignment), and attraction, have shown the emergence of
collective swarming. Here we show the advantage of
performance adaptable interactions for navigation of
groups in complex terrains. Each agent senses the local
environment and is then allowed to adjust its interactions
with the other agents according to its local environment –
by decreasing the peers’ influence while navigating in a
beneficial direction and vice versa. We found that inclusion
of such adaptable interactions dramatically improves the
collective swarming performance leading to highly effi-
cient navigation especially in very complex terrains.

Bacteria-Inspired Smart Swarms
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where Dci(t)~ci(t){ci(t{t) is the chemical gradient and

sgrad (Dc)§0. We note that when the speed is constant, the agent

will move forward by t:~vvj j; since in the model ~vvj j~1, the forward

motion length equals t:1. The variance sgrad (Dc) decreases with

an increase in the chemical gradient, biasing the direction of

motion up chemical gradients.

During a forward motion, an agent’s new angle hi(tzDt) was

the angle of its previous velocity direction, ~vvi(t), and during a

tumble, the new angle was given by

hi(tzDt)~y(Dci(t))zhi(t) ð5Þ

Interactions between the agents
Two-agents interaction. An individual agent i will repel

from another agent j when it is in the range RR; it will align its

velocity with the direction of the other agent when it is in the range

RO, and it will go towards it if it is in the range RA (Figure 3).

Many-agents interaction. We denote ~uui(t) to be the

direction resulting from the group interactions of agent i, if

there is more than one agent in any of the interaction ranges. If

there are any agents within distance RR, it will try to avoid

collision, and will thus set its velocity to be:

~uui(t)~{
X
j=i

D~rrij(t)

D~rrij(t)
�� ��, ð6Þ

where Drij(t)~~rrj(t){~rri(t), and the sum is over all j=i such that

D~rrij(t)
�� ��ƒRR. If there are no agents in the range of repulsion,

agent i will align with agents within distance RO and move

towards agents within distance RA according to:

~uui(t)~
X
j=i

~vvj(t)z
X
j=i

D~rrij(t)

D~rrij(t)
�� �� ð7Þ

where for the left term, the sum is over all j=i such that

RRv D~rrij(t)
�� ��ƒRRzRO, for the right term, the sum is over all

Figure 1. Illustration of the terrain representing the chemical concentration map. A. Overview of the terrain given by
cos (b1~rr

1zw1): cos (b2~rr
2zw2)zc1

:K0(~rr{~xxj j=c2). B. Illustration of a single agent and the global direction (in black) to the target compared to the
local gradient (in purple) of the concentration map. C. Illustration of the terrain height along a straight trajectory from the swarm’s starting position to
the target.
doi:10.1371/journal.pcbi.1002177.g001

Figure 2. Illustration of the motion of an individual bacterium
and an individual agent. A. A bacterium’s motion in chemical
gradients is a biased random walk towards areas of higher chemical
concentration. A bacterium makes longer excursions when it moves in
areas of higher chemical gradients after which it performs a random
switch of direction, known as a tumble. B. The motion of an individual
agent is composed of equal sized excursions after which the agent
tumbles. The tumble is a change in direction taken from a Gaussian
distribution whose variance is a function of the chemical concentration.
When the chemical gradient is small, the variance is large, and vice
versa.
doi:10.1371/journal.pcbi.1002177.g002

Figure 3. Illustration of agent-agent interactions in the swarm
model. Agents repel from close agents, align with intermediate agents,
and move towards far agents.
doi:10.1371/journal.pcbi.1002177.g003

Bacteria-Inspired Smart Swarms
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j=i such that RRzROv D~rrij(t)
�� ��ƒRRzROzRA, and

~vvj(t)
�� ��~1.

Combination of chemotactic motion with group
interactions

During a forward motion, an agent’s new angle hi(tzDt), was

selected by:

hi(tzDt)~
arctan (d2

i (t)=d1
i (t)) d2

i (t)§0

p{ arctan ({d2
i (t)=d1

i (t)) d2
i (t)v0

 !(
ð8Þ

where the direction ~ddi(t)~ d1
i (t),d2

i (t)
� �

was a combination of an

agent’s previous velocity direction and the group interactions and

was defined as

~ddi(t)~
~uui(t)

~uui(t)j jzw:~vvi(t) ð9Þ

where w§0. During a tumble, the new angle was selected as in

equation (5).

Adaptable interaction model
In the model presented above, the weight w, which determines

the balance between group interactions and individual direction,

was fixed (see equation (9)). We now consider the case of an

adaptable w that is adjusted according to local conditions.

Specifically, we decreased the weight of agent i, wi(t), when the

agent moved in the direction of decreasing gradient and vice versa.

Among many possible ways to control the weight that would

accomplish this goal we used a simple update scheme where

wi(t)~
1 Dci(t)&0

0 else

�
ð10Þ

The new direction was then given by: ~ddi(t)~
~uui(t)

~uui(t)j jz
wi(t):~vvi(t). Note that for wi(t)~0, the new direction depends only

on group interactions. In contrast, wi(t)~1 corresponds to equal

balance between group interactions and individual direction.

Group movement characteristics
The path length, which is equal to the navigation time

multiplied by ~vvj j~1, was computed as the median path length,

and corresponds to the time it took half of the agents in the group

to reach the target. The group alignment was given by

alignment:S S~vvi(t)Tij jTt ð11Þ

The group alignment is the average alignment between individuals

over the trajectory. Notice that the group alignment is in the range

½0,1�. The group’s cohesion was assessed by the number of clusters at

the end of the simulation where clusters were separated according to

the region of interactions between agents bounded by RRzROzRA.

Selection of the model parameters
In nature, an organism’s motion mechanism or interaction

range should fit the common characteristics of its environment.

The challenge in choosing the model parameters is to select them

to fit the terrain, since for each terrain there is a different set of

parameters that is most efficient. We fixed the terrain and chose

the model parameters, including the time step in which an agent

moves forward before it tumbles, t~0:5, and the group

interaction radii, RR,
RO

RR
,
RA

RR

� �
~ 1,3,0:3ð Þ. The terrain char-

acteristic sizes include the terrain characteristic length, which

corresponds to the typical distance between two adjacent peaks or

valleys, and the characteristic slope of the mountains or valleys. We

found t to have a strong effect on the behavior of individual agents.

When the length of an agent’s forward motion was small compared

to the terrain’s characteristic gradient, the agents were unable to

detect changes in the concentration, causing their motion to become

more random. When the forward motion ‘runs’ were large

compared to the terrain’s characteristic length, then agents could

not follow the smooth terrain’s gradient since their motion was

made of large independent leaps in an irregular terrain. Moreover,

small radii of repulsion compared to the terrain’s characteristic

gradient, resulted in groups aggregating together and thus

measuring more similar concentrations, which caused the groups

to get stuck in local minima. In general, increasing the characteristic

gradient of the terrain (corresponding to a ‘heightening’ of the

mountains and a ‘deepening’ of the valleys) makes the task harder

since agents are more likely to settle in local minima.

Results

We simulated different groups of N moving agents navigating

on a complex terrain, given by equation (1), with 10ƒNƒ200.

The initial conditions were set such that the agents’ locations,

~rri(0)f gN
i~1, were uniformly distributed around the starting position

inside a circle with radius
ffiffiffiffiffiffiffiffiffiffiffiffiffi
RR:N
p

, which meant that the group

was not fragmented and all the agents were interacting with other

agents. The agents’ velocities were ~vvi(t)j j~1, and their directions

were uniformly distributed over all directions, ~vvi(0)f gN
i~1.

Comparison of typical realizations of the models
Figure 4 shows the typical results for the movement patterns of a

group of N~50 independent agents on a complex terrain. An

example of a similar group of interacting agents, with static

interactions is shown in Figure 5. Examples of the paths of a single

agent under the independent model, the static interactions model,

and the adaptable interactions model are shown in Figure 6. These

snapshots are reproduced from full simulation runs (see full movies

in Supplementary Information Video S1-3). The height along the

navigation path of the group center for interacting agents and

agents with adaptable interactions are shown in Figure 7. The

groups demonstrated extremely diverse movement patterns:

groups split and collide, they bump into the mountains, single

agents break away from the main group, groups move away from

the target, or circle around in one place (See Video S4–6).

Navigation of independent agents and interacting
agents

A single agent performing an independent search on the

concentration map would move in a biased random walk fashion

towards the target with a profuse amount of local ‘errors’ with

respect to the global target. A group of agents navigating

independently would converge as a group towards the target,

with each agent performing its own biased Brownian motion. We

quantify the error fraction by:

l�{l

l�
ð12Þ

Bacteria-Inspired Smart Swarms
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where l� is the median path length (the time it took half of the

elements in the group to reach the target multiplied by

~vvi(t)j j~1) and l is the distance between the starting position

and the target, and found that the error fraction was

approximately 0:8. We chose to measure the median path

length and not the average, to prevent the bias of rare instances

of extremely long path lengths.

In complex terrains, interacting agents were less sensitive to

local noise due to the group’s influence, and the group as a whole

was cohesive and aligned; this is in agreement to what has been

suggested by Grunbaum [53]. The average error fraction

(equation (12)) in this case was approximately 0.65, considerably

less than the independent agents. Although the interacting agents

were more robust to local noise than the independent agents, they

still had a large error fraction.

The effect of the balance between the group’s influence
and individual direction on interacting agents

The value of the weight w, which balances the effect of the

individual direction of motion (based on local information) and the

group’s influence (equation (9)), had an immense effect on the

group’s behavior and organization (Figure 8). Large weights imply

that the agents were mostly influenced by their own direction of

motion and that the interactions between them were weak, which

means that the group would behave more like independent agents.

Small w imply that agents were strongly influenced by their

neighbors, which results in excessive conformity. This could also

mean that agents would be led off the track by small errors and

perturbations that would be amplified by the positive feedback in

the group. There is an intermediate range of weight values that

lead to optimal median path lengths, shown in Figure 8.

Figure 4. Frames from the simulation show independent agents moving towards the target. A. Simulation step 100. B. Simulation step

2000. N~50, RR,
RO

RR
,
RA

RR

� �
~ 1,3,0:3ð Þ,s~0,t~0:5.

doi:10.1371/journal.pcbi.1002177.g004

Figure 5. Frames from a simulation of interacting agents moving collectively towards the target. A. Simulation step 200 from starting
position. B. Zoom in on the group in the left frame. Simulation parameters are as in Figure 4, w~0:5.
doi:10.1371/journal.pcbi.1002177.g005

Bacteria-Inspired Smart Swarms
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The effect of adaptable interactions
The adaptable interaction rules (equation (10)) kept the group

cohesive and aligned as in the case of static interactions, but, we

found that such groups were not sensitive to local noise, and also

less sensitive to global noise. The error fraction (equation (12)) in

this case was approximately 0.5 – considerably less than both the

independent and the fixed interaction agents. The adaptable

interactions affect the error in the global group movement by

modulating the positive feedback in the group’s self-influence with

feedback from the environment.

The median length of the path of agents with adaptable

interactions was smaller than that of the fixed interacting agents –

even for optimal weight values (shown in Figure 8) – which was

smaller than that of the independent agents (Figure 9). Interest-

ingly, the variance of the distribution of the path length of the

interacting agents was higher than in the other mechanisms. We

suggest that this is due to the positive feedback, which may

sometimes lead groups off track in the presence of a global noise

source. As illustrated in Figure 9, the variance of the distribution of

agents with adaptable interactions was smaller than the variance of

interacting agents, giving the adaptable mechanism yet another

advantage – having the group find the target quickly with

certainty.

We compared the group’s movement characteristics as a

function of group size for the three interaction mechanisms.

Figure 10A shows that agents with adaptable interactions found

the source faster than the groups using the other mechanisms. The

navigation time increased as a function of the group size for

independent agents, due to convergence to the true average

navigation time, since there is a larger probability for rare

occurrences with an increase in the number of agents. However,

the path length decreased as a function of group size for

interacting agents and agents with adaptable interactions, due to

collection of information from more agents. Alignment decreased

with group size and, as expected, independent agents had very low

alignment (Figure 10B). For agents with adaptable interactions, we

Figure 6. Examples of individual paths of agents using the different interaction mechanisms. A. The path of a single independent agent
shows a biased random walk towards the target. B. The path of a single interacting agent shows directed movement towards the target with global
errors. C. The path of a single agent with adaptable interactions shows directed movement towards the target with smaller global errors. Simulation
parameters are as in Figure 5.
doi:10.1371/journal.pcbi.1002177.g006

Figure 7. Height along the path of the group center. A. For interacting agents. B. For agents with adaptable interactions. Simulation
parameters are as in Figure 5.
doi:10.1371/journal.pcbi.1002177.g007

Bacteria-Inspired Smart Swarms
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found that the alignment and the average weight (which equals the

proportion of agents with wi(t)~1), are lower than that of fixed

interactions agents (Figure 10C). This may seem contradictory

since lower weights are expected to increase the coordination in

the group, which leads to higher alignment. We note however that

for each agent i in our case, wi(t)~0 or wi(t)~1, whereas for the

fixed interaction agents, wi(t)~0:5 for all agents at all times. This

amounts to a non-linear effect of the weights on the alignment.

The average number of clusters was the highest for independent

agents, having no interactions. The number of clusters of agents

with adaptable interactions was slightly higher than that of the

interacting agents due to the nonconformity (Figure 10D).

The effect of noise on group behavior
Our model has three sources of stochasticity: The first one is

external, imposed by the surface variations (equation (1)). The

second is the Gaussian noise related to the measured concentra-

tion gradient, applied by switching direction (equation (4)). The

third is the internal noise related to the selection of the direction

(equation (3)).

To assess the effect of individual agent stochasticity on the group

collective navigation, we deflected each agent’s movement

direction by Gaussian noise with a constant variance, s. We

found that the path length of the group increased with s, while the

manner by which it increased was dependent on the interaction

mechanism (Figure 11A). Independent agents were most vulner-

able to this noise and for high values they failed to complete the

task. Agents with fixed interactions and agents with adaptable

interactions were affected similarly by the noise, although

interacting agents were affected more strongly. We found that

alignment decreased as a function of s (Figure 11B). The

alignment of independent agents also decreased since the noise

disrupted the independent biased random walk to the target. In

addition, we found that the average weight of agents with

adaptable interactions decreased as a function of s (Figure 11C).

Similar to the effect of adaptable interactions on the average

weight and alignment, we found that lower average weights

implied low alignment. Unlike the performance of agents with

adaptable interactions, here the noise causing this led to longer

navigation paths.

Next, we let each agent pick a forward run time, t, taken from a

uniform distribution in the range ½3:Dt,10:Dt� of values that fit the

terrain. We then asked how this diversity affected the path lengths

of the groups under the three interaction mechanisms. The

distributions of the median path lengths reflect that adaptable

interactions resulted in considerably shorter paths than that of

independent and interacting agents, for which the path lengths

were longer than the simulation length (Figure 12).

The effect of the radii of interactions
The interactions between the agents – repulsion, alignment, or

attraction – depend on the distance between them as defined by

the radii of interactions, RR, RO, and RA, respectively; these radii

of interactions determine the collective behavior, in particular,

alignment and task performance [18]. We found performance

dependent adaptable interactions to be more robust to the values

of the radii of interactions than the other mechanisms (Figure S2,

Figure S3). See more details in the Text S1.

Discussion

We introduced a collective behavior model of a group of

interacting agents, in which each group member senses the

environment and adaptively weighs its own evidence and the

behavior of its neighbors to navigate in a complex environment.

We expanded a model that originated from the self propelling

particles model and has been used to describe swarming in many

complex systems [17–23,25,53,57]. We investigated the navigation

capabilities of the swarm in a complex terrain and showed that

independent agents create fragmented groups while each agent

performs an independent biased random walk towards the target.

Interacting agents were far better in finding the target than

independent agents, and also demonstrated emergent collective

swarming, but were affected strongly by global noise due to

positive feedback. Previously, Torney et al. [25] showed that

adaptable interactions can lead to the emergence of collective

navigation in swarms composed of agents that do not posses

Figure 8. The path length of interacting agents is optimal in an
intermediate range of weights. The median path length is shown as
a function of the constant fixed weight of interacting agents. The
average median path length of independent agents and agents with
adaptable interactions is shown for comparison. Simulation parameters
are as in Figure 5, 100 rounds. Error bars represent standard error.
doi:10.1371/journal.pcbi.1002177.g008

Figure 9. Distribution of navigation path lengths for the
different interaction mechanisms. The mean median path length
of agents with adaptable interactions is lower than that of both
interacting and independent agents. The mean path length of
independent agents is significantly larger. The variance of the path
lengths of interacting agents is larger than that of the other
mechanisms due to positive feedback. Simulation parameters are as
in Figure 5, 500 rounds.
doi:10.1371/journal.pcbi.1002177.g009
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navigation capabilities as individuals. Here, we studied collective

navigation of agents which do possess navigation capabilities as

individuals while focusing on the advantage of performance

dependent interactions.

When we added a learning mechanism to the network of agent-

agent interactions, these swarms had a higher probability of

finding the source, and significantly faster. Moreover, perfor-

mance-dependent adaptive interactions improved the efficiency of

the collective navigation beyond that of agents with static

interactions, even for an optimal set of static interaction

parameters. The adaptable interactions enabled agents to adjust

the weight they gave to their neighbors according to local

conditions. We used a hard limit weighting, in which agents either

followed their neighbors or balanced equally between them and

their individual direction, and this was enough to significantly

improve the navigation efficiency of swarms in a complex terrain.

We note that we did not add memory beyond the measurement of

the change in concentration, which already exists in the navigation

of an independent agent, or additional computational capabilities

to the agents. Using the immediate environment as a teacher the

weights of each agent in the network changes dynamically. This

gave a form of noise reduction, where the influence of erroneous

agents on the system was reduced, and the power of sub-groups

changed and resulted in a dynamically shifting leading cluster of

agents that comprises of only the most successful performers.

We found that the adaptable interactions model is more robust

to internal noise and to diversity in the agents’ control mechanism

parameters. In particular, the model was robust to the radii of

interactions. The system of agents with adaptable interactions

changed dynamically according to each agent’s success and as a

result, the system as a whole transforms into a robust yet ‘‘plastic’’

network.

Models of swarm intelligence and their analysis have the

potential to export ideas and algorithms from nature into novel

computational tools, including distributed algorithms for optimi-

zation and other complex problems in addition to mechanisms for

Figure 10. Comparison of the interaction mechanisms as a function of group size. A. Agents with adaptable interactions find the target
faster than interacting agents. Both are much faster than independent agents. The median path length increases as a function of group size for
independent agents due to an increase in the sample size. It decreases for interacting agents and for agents with adaptable interactions due to the
collection of information from more agents. B. Alignment decreases as a function of group size. Independent agents are not aligned while agents
with adaptable interactions are less aligned than interacting agents. C. For agents with adaptable interactions, group average weight is not strongly
dependent on group size. The average weight of agents with adaptable interactions is lower than the constant predetermined weight of interacting
agents. Nonlinearity cause lower average weights, which correspond to higher conformism and implies higher group alignment, to couple with lower
alignment. D. The average number of clusters increases with the group size. Independent agents are highly clustered while agents with adaptable
interactions are more clustered than interacting agents. Simulation parameters are as in Figure 8, apart from N . Error bars represent standard error.
doi:10.1371/journal.pcbi.1002177.g010
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robotic systems [58-61]. The model we studied here can be viewed

as a distributed network of sensors, with the capability of having

local effects on each other. The problem at hand is a function

optimization task, where the function samples contain local and

global errors. Each sensor can only sample the function at one

position and the next sampling position is in the local proximity of

the previous one. We investigated how the local effects or

interactions between the sensors affect the function optimization

time of the network under different conditions. We found that

adaptable interactions benefit the system as a whole in a complex

navigation task making it faster to find the target under more

diverse conditions than before.

In the current study, our swarms constituted of identical

individuals with equal measurement capabilities. Natural exten-

sion would be investigating the effect of variability, for example in

the interaction ranges and noise distributions of agents, on the

swarm’s collective navigation performance. It is known that many

biological mechanisms benefit from variability in the system in the

presence of noise [62-64]. We expect agent variability to be

advantageous for navigation in the case of both spatial and

temporal noise. The combination of sensor diversity and adaptable

interactions can constitute a solution to navigation in the presence

of spatial and temporal noise such as in the case of a time-

changing terrain.

Bacteria have developed various communication capabilities

such as direct and indirect cell-cell physical and chemical

interactions, chemical signaling, such as quorum sensing, and

chemotaxis signaling [30,32,36,40,43,65–67]. Thus, the commu-

nication mechanisms necessary to sustain adaptable interactions

already exist in bacteria; in fact, the interaction capabilities found

in some strains of social bacteria are far more sophisticated and

have yet to be understood [68]. Adaptable interactions, similar to

what we have suggested, may be found in other groups of simple

organisms such as fish. Moreover, we suggest that performance

dependent adaptable interactions exist in more complex networks,

such as social networks.

Figure 11. The effect of internal noise on group behavior. A. Diversity in the agents’ movements resulting from internal noise causes an
increase of median path lengths among all the mechanisms. The effect on the independent agents is the most devastating and groups did not
complete the task by the end of the simulation. The effect on the interacting agents is larger than the effect on agents with adaptable interactions. B.
Group alignment decreases with s. For independent agents, alignment decreases due to the individual loss of biased motion towards the target
because of the noise. C. The average weight of agents with adaptable interactions, which is lower than the constant predefined weight of the
interacting agents, reduces further with s, implying groups become more conformist. D. Clustering is weakly affected by s. Independent agents are
more clustered due to loss of biased motion. Interacting agents become slightly more clustered with s. Agents with adaptable interactions are
generally slightly more clustered than interacting agents but their clustering is not affected by s. Simulation parameters are as in Figure 8, apart from
s. Error bars represent standard error.
doi:10.1371/journal.pcbi.1002177.g011

Bacteria-Inspired Smart Swarms

PLoS Computational Biology | www.ploscompbiol.org 9 September 2011 | Volume 7 | Issue 9 | e1002177



Supporting Information

Figure S1 Local minima, maxima, and saddle points in
the terrain. The black circle with the letter S marks the starting

position of the swarm. Local maxima are marked with a black

triangle, local minima are marked with a black x, and saddle

points are marked with a blue circle. A linear approximation of the

separatrix, connecting the maxima and saddle points along the

gradient of the terrain, is illustrated with a dotted line. A. Contour

of the terrain. Recall that mountains (in red) correspond with low

concentration and that valleys (in blue) correspond with high

concentration. B. colored image of the terrain.

(TIF)

Figure S2 The effect of the radii of interaction on
interacting agents. The radii of interaction control all

characteristics of the group’s behavior, pattern and performance.

A. Median path length as a function of the radius of alignment and

attraction. Strong attraction and weak alignment cause groups to

attract to their centers of mass and stay in place, harming their task

performance. Strong alignment and weak attraction cause

excessively high conformity in the group which again, harms

performance. Intermediate values around a fixed quotient of
RO

RA
reach optimal performance. B. Alignment decreases for values

lower than the fixed quotient of
RO

RA
. C. A weak attraction term

results in high clustering by the end of the simulation almost

independent of the alignment term. D. The 90th percentile path

length is affected in the same manner but to a higher degree by the

radii of interaction as the median path length. Simulation

parameters are as in Figure 8, apart from RO,RA.

(TIF)

Figure S3 The effect of the radii of interaction on agents
with adaptable interactions. The group movement charac-

teristics of agents with adaptable interactions remain similar for a

larger range of radii of interactions than that of interacting agents.

Performance drops for values in which performance of interacting

agents also drops. A. Median path length as a function of the

radius of alignment and attraction. Strong attraction and weak

alignment cause groups to attract to their centers of mass harming

their task performance, similarly to interacting agents. As opposed

to interacting agents, strong alignment and weak attraction do not

harm performance. B. Alignment decreases for values lower than

the fixed quotient of
RO

RA
, similarly to interacting agents. C. A weak

attraction term results in high clustering almost independent of the

alignment term, similarly to interacting agents. D. The 90th

percentile path length is affected in the same manner but to a

slightly higher degree by the radii of interaction as the median

path length. Simulation parameters are as in Figure S2.

(TIF)

Text S1 Supporting information. The chemical concentra-

tion map and the effect of the radii of interactions.

(DOC)

Video S1 Movie of the simulation show independent
agents moving towards the target. Simulation parameters

are as in Figure 4.

(MP4)

Video S2 Movie of the simulation show interacting
agents moving collectively towards the target. Simulation

parameters are as in Figure 4, w~0:5.

(MP4)

Video S3 Movie of the simulation show agents with
adaptable interactions moving collectively towards the
target. Simulation parameters are as in Figure 4.

(MP4)

Video S4 Movie of the simulation shows interacting
agents split and collide at the target. Simulation parameters

are as in Figure 4.

(MP4)

Video S5 Movie of the simulation shows agents with
adaptable interactions fracture. Simulation parameters are

as in Figure 4 except RR,
RO

RR
,
RA

RR

� �
~ 1,2,0ð Þ.

(MP4)

Video S6 Movie of the simulation shows agents with
adaptable interactions split and collide. Simulation

parameters are as in Figure 4 except RR,
RO

RR
,
RA

RR

� �
~ 1,2,0:1ð Þ.

(MP4)
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