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Abstract

We study the elongation stage of mRNA translation in eukaryotes and find that, in contrast to the assumptions of previous
models, both the supply and the demand for tRNA resources are important for determining elongation rates. We find that
increasing the initiation rate of translation can lead to the depletion of some species of aa-tRNA, which in turn can lead to
slow codons and queueing. Particularly striking ‘‘competition’’ effects are observed in simulations of multiple species of
mRNA which are reliant on the same pool of tRNA resources. These simulations are based on a recent model of elongation
which we use to study the translation of mRNA sequences from the Saccharomyces cerevisiae genome. This model includes
the dynamics of the use and recharging of amino acid tRNA complexes, and we show via Monte Carlo simulation that this
has a dramatic effect on the protein production behaviour of the system.
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Introduction

The translation of mRNAs by ribosomes is one of the steps in

protein synthesis, and as such underpins all cellular processes.

Control pathways at the transcriptional level are a long studied

phenomenon, but it is becoming clear that control of protein

production could also be exercised at the level of translation [1–4].

Proteins are assembled from their constituent amino acids by

molecular machines called ribosomes, which move along the open

reading frame (ORF) of an mRNA. Translation of the mRNA

proceeds in three separate stages: initiation, where ribosomes form

at the 5’ end of the mRNA, and scan along until they encounter a

‘‘start codon’’ (almost always AUG); elongation, where amino acids

are provided to the ribosome via chaperoning transfer RNA (tRNA)

molecules, and are added to the growing polypeptide; and finally

termination, when a ribosome detaches from the mRNA at a stop

codon, and the polypeptide chain is released ready for folding or

further processing by the cellular machinery. At each stage there is

opportunity for control of protein production. In this paper we

consider control during elongation, employing a model which takes

into account the varying rates of translation of different codons.

Ribosomes translate the ORF in a stepwise manner. Each

codon (three nucleotides) codes for a specific amino acid. The

ribosome waits at each codon until the correct amino acid tRNA

(aa-tRNA) complex binds with its A site [5]; the amino acid is then

transferred to the growing peptide chain, and the ribosome

advances to the next codon. Bare tRNAs are released back into the

cytoplasm, where they are reused after being ‘‘recharged’’ with a

new amino acid. In Saccharomyces cerevisiae there are 41 tRNA

species, each carrying a specific one of the 20 common amino

acids - i.e., in general there is more than one tRNA species

carrying the same amino acid. It is thought that the rate at which

the ribosome translates a specific codon type depends on the

abundance of the relevant aa-tRNA molecule [3,6]. Some tRNAs

are very abundant, whilst others are relatively rare; in fact there

are amino acids for which there exists both an abundant tRNA

and a rare tRNA. This poses the question as to what benefit there

could be for the cell to sometimes use a codon which codes for a

rare tRNA (which we shall call a slow codon), when a more quickly

translated alternative exists. That is, what benefit is there in

introducing ribosome bottlenecks or pauses to translation? The

answer to this question is likely to be multifaceted, for example it

may reduce the error rate and risk of premature termination. Here

we consider whether bottlenecks might also be used to enact

control on protein production; this could have major impact on

our understanding of the role of translation both in wide type and

synthetic biology applications.

In this paper we show that it is the interplay between the

demand for and the supply of tRNA resources which determines

the existence of bottlenecks to translation, and ultimately how this

controls protein production. For example if the demand for a

particular tRNA is very high, then the elongation of the

corresponding codons can become the rate limiting step of

translation, even if the abundance of that tRNA is high. That is to

say, the availability of a species of charged aa-tRNA depends not

only on the tRNA abundance, as assumed in previous works, but

also on the demand for that species. We examine how translation

of different mRNAs is coupled through a common pool of

resources. We note that the present work is in contrast to previous

studies which have considered the effect of a finite pool of

ribosomes [7], which leads to very different effects on the

translation dynamics.
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In general several ribosomes can elongate the same mRNA at

once; this can lead to the formation of queues of ribosomes, as they

cannot overtake each other. Thus the occupancy by ribosomes of

different parts of an mRNA gives information about the translation

of that gene [8]. Elongation is often treated using traffic models, and

here we apply a model where excluding ‘‘particles’’ take discrete

steps along a one dimensional lattice; this has been detailed

extensively in the non-equilibrium statistical mechanics literature

[9–11]. This model, known as the totally asymmetric exclusion

process (TASEP), has been recently extended by Brackley et al. [12]

to take into account the fact the abundance of different aa-tRNA

molecules can actually vary with time. Previous work [13–15] has

assumed that all tRNAs are always bound to an amino acid. That is,

they assume that aa-tRNA abundances, and therefore different

codon types’ translation rates, are constant. We show by relaxing

this assumption, that it is not only the abundance of tRNAs which

determines translation rates, but one must also consider the

dynamics of both the supply of and the demand for tRNAs.

Importantly, the balance between supply and demand is likely to

change due to environmental influences.

In the next section we describe the model and the method by

which we perform simulations. We then investigate how the rate of

translation initiation affects protein production, studying several

mRNA sequences from the Saccharomyces cerevisiae genome, and

comparing with results from a model where aa-tRNA levels are

fixed. We first consider each mRNA sequence separately, perform-

ing simulations with multiple copies of the same mRNA. Finally we

consider different mRNA species using the same tRNA resource

pool. We study how competition for different resources can change

protein production rates depending on the number of each species of

mRNA. We present results from simulations with two mRNA

species, and larger scale simulations which contain a representative

mixture of up to 70 mRNA species all in contact with the same pool

of tRNAs. In the large scale simulations we consider changes to the

abundance of some mRNA types on a scale which will occur during

the normal life cycle of the cell, and show that this can result in a

significant change in the production rate of some proteins.

Methods

The TASEP is a stochastic model whereby particles, here

representing ribosomes, hop along a 1D lattice of sites, here

representing the codons of an mRNA. The system is represented

schematically in Fig. 1. Although only one codon is ‘‘read’’ at a

time, the ribosomes actually cover several codons. They enter the

ORF with a rate a provided there is not another ribosome

blocking the entry. In reality the initiation rate depends on the

local nucleotide sequence (particularly in the 5’ leader region,

where secondary structures may form [16]) and so is mRNA

specific. Here for simplicity we assume all mRNAs have the same

initiation rate, and we will vary this as a control parameter in

simulations. The ribosomes then hop from codon to codon in a

rightward direction, as depicted in the figure, with a rate

dependent on the type of codon. We label the codon positions

from left to right i~1, . . . L, and label their species m~1, . . . 41.

The labels for the codon species are assigned via an alphabetical

list of the corresponding tRNAs; a key is available in the

supporting information (Text S2) associated with this article.

Once they reach the end of the lattice, the ribosomes leave with a

rate b. It is thought that termination is not a limiting step in

translation [17], so in the remainder of this paper we assume that

b is larger than all of the other rates.

As in [12] we include the fact that when a ribosome hops from

one codon to the next an aa-tRNA is used, leaving a bare tRNA. It

then takes a finite time for this to be recharged with a new amino

acid. Every time a ribosome hops from a codon of type m, we

reduce the number of m{type aa-tRNAs by one. We assume that

the hopping rate for each codon type is linearly dependent on the

number of aa-tRNAs

km(t)~rTm(t), ð1Þ

where Tm(t) is the number of aa-tRNA molecules of type m

available at time t. We expect that km would actually saturate for

large Tm, but the linear approximation is justified, since on

energetic grounds the cell in unlikely to overproduce tRNAs. We

assume that the total number of tRNAs (charged and uncharged)

of each species �TTm is constant, and estimate values from their gene

copy numbers (see parameters section). We denote the total

number of tRNAs of all types

�TT~
X41

m~1

�TTm: ð2Þ

Figure 1. Schematic representation of the model including use
and recharging of tRNAs. Red particles represent ribosomes, and the
lattice represents the mRNA. Ribosomes move from site to site with
rates dependent on the size of a pool of aa-tRNAs. Every time a
ribosome moves out of a site of type m, a m{type aa-tRNA is removed
from the pool, and a m{type tRNA is added to the corresponding pool
of bare tRNAs. Bare m{type tRNAs are recharged with a rate Rm.
doi:10.1371/journal.pcbi.1002203.g001

Author Summary

In this paper we show that the rate at which proteins are
produced can be controlled at the elongation stage of
mRNA translation. Regulation of translation initiation has
been a focus of much study, but the subsequent effect of
changes in the initiation rate on the overall translation
rate, and the role of slow and fast codon usage in mRNA
sequences is still not fully understood. We consider a
model of elongation in which the dynamics of tRNA use
and recharging are considered for real mRNA sequences.
We find that the balance between the demand for, and
supply of tRNAs is crucial in determining translation rates.
Particularly interesting ‘‘competition’’ effects are observed
when the simultaneous translation of multiple mRNA is
considered. We show indeed that, via the choice of slow or
fast codons, it is in principle possible to control how
variation of the supply and demand for tRNA resources
changes the rate of protein production from different
mRNAs.

Dynamics of Supply and Demand in mRNA Translation
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The recharging of bare tRNAs with new amino acids is an

enzymatic process, facilitated by a family of synthetases. For

simplicity we assume that the availability of amino acid molecules

is not limiting, and model the recharging rate using a Michaelis-

Menten equation [18,19]

Rm(t)~
Vm(�TTm{Tm(t))

Km,mz�TTm{Tm(t)
, ð3Þ

where Vm is the maximum recharging rate of the mth tRNA type,

and Km,m is the number of bare m{type tRNAs for which the rate

is half maximum. The exact form of the equation for recharging

does not qualitatively affect the results.

Provided the rates Vm are small enough (which is the case for

realistic parameters - see [12,20]) interesting effects are seen when

the rate at which aa-tRNAs are used approaches the rate at which

they are recharged. For some very simple designer mRNA

sequences it is possible to solve the model analytically using a

mean field approach [20], but in order to treat realistic mRNA

sequences we must resort to Monte Carlo simulations as discussed

below.

We quote here some steady state results for a uniform mRNA

with only one type of codon, which will be useful in our later

analysis. For small initiation rates a there are only a small number

of ribosomes on the mRNA at any one time, and the current J and

mean density r of ribosomes in this ‘‘low density’’ or LD phase are

as follows [12,21,22]

JLD&
a 1{a=kð Þ

1z(w{1)a=k
, ð4Þ

rLD&
a=k

1z(w{1)a=k
, ð5Þ

where we use k without an index to indicate that there is only one

type of codon, and w is the width of the ribosomes in units of

codons. In the steady state the current J is the average rate at

which ribosomes will pass any point on the mRNA, and is

therefore equivalent to the protein production rate. By the density

r we mean the proportion of the mRNA which is covered by the

‘‘reader’’ part of the ribosomes; an alternative measure is the

coverage density s which refers to the proportion of the mRNA

covered by any part of the ribosome. As a is increased both the

current and density of ribosomes increase, as does therefore, the

rate at which tRNAs are used. When the rate of tRNA use reaches

the rate at which they are recharged the behaviour changes: the

current no longer increases, and r?1=2. We denote this the

‘‘limited resources’’ or LR regime, and the initiation rate at which

it is reached can be approximated

aLR&
V

L’
r�TT

r(Kmz�TT){(w{1)�TT2
V

L’

, ð6Þ

where L’ denotes the total number of codons in the system, and

again we use symbols without the subscript for this case where

there is only one type of codon. In this LR regime the charging

level (defined as T=�TT ) decreases, and the translation rate is

reduced. We note that Refs. [12,20] detail a model which includes

elongation rates which vary with the availability of charged tRNA,

but assumes ribosomes which obscure only the codon they are

elongating, and Refs. [21–23] consider a model with fixed

elongation rates, but extended ribosomes. Here we combine these

models; full details are given in the supporting information (Text

S1).

Introducing multiple codon types means that, in general, as a is

increased only some specific tRNA use rates will approach their

recharging rates. We call a regime where the charging level of

m{type tRNAs becomes depleted a m{LR regime. Multiple

codon types can also lead to the formation of queues of ribosomes.

This happens if the translation rate for a codon somewhere in the

bulk of the mRNA is both lower than that of the preceding codons,

and is sufficiently smaller than the initiation rate [20,23,24]. There

are two possible routes to queueing of ribosomes behind certain

codons: either (a) there is a tRNA with such a low total abundance

(low �TTm) that this causes queueing before aa-tRNAs become

limited, or (b) the abundance of charged aa-tRNAs becomes

depleted in a m{LR regime (low Tm), and ribosomes queue

behind the corresponding codons. Case (a) is analogous to the

queueing phase (QP) transition in the original TASEP model

without recharging, which has been studied extensively in the

literature [11,23–27]. Hence we will refer to this as QP. Case (b) is

qualitatively different in that there is a smooth onset of the m{LR
regime as the initiation rate is increased, which results in queueing.

We refer to this as ‘‘m{LR induced queueing’’ in order to

distinguish it from the QP. We discuss these different types of

behaviour in more detail in the results section.

Monte Carlo Simulations
Simulations proceed via a similar scheme used in many previous

studies of the TASEP (for example see [9]), where codon sites are

chosen at random. We use continuous time Monte Carlo methods

as this is very efficient [28]. If a m{type codon is being read by a

ribosome, the ribosome advances with rate km provided the next

codon is vacant and there is a m{type aa-tRNA available. In each

simulation we treat N copies of a particular mRNA attached to the

same pool of tRNAs. To model initiation we also include a 0th

codon for each mRNA, which always contains a ribosome ready to

enter the lattice with rate a. To include recharging, we not only

pick from the N(Lz1) codon sites, but also from the �TT tRNAs.

Unbound m{type tRNAs are recharged with rate

Vm=(Kmz�TTm{Tm) per tRNA. In order to eliminate any transient

effects due to the initial conditions, we disregard the first 7:5|108

Monte Carlo steps (MCS) and run for a further 5|108 MCS; i.e.,

all results shown are for the steady state.

Parameters
Throughout this paper we use parameters which match those

found experimentally for the widely studied yeast Saccharomyces

cerevisiae. A typical yeast cell contains a total of 3:5|106 codons

(based on mRNA abundances from [29]) and 3|106 tRNAs [30].

In order to be able to efficiently perform simulations we study

smaller systems, typically containing 5|104 codons. We therefore

scale all the other parameters accordingly, i.e., since it is the ratio

between the total number of tRNAs and total number of codons

which is important, we match this to a real cell. We typically use
�TT~4:3|104. Accurate measurements for the numbers of each

individual tRNA species in a real cell are not available for all 41

species; in [31] it is shown that the gene copy number for each

tRNA species correlates well with the tRNA abundances where

these have been measured. We therefore determine the propor-

tions of each type of tRNA using the gene copy numbers from the

S. cerevisiae genome (as given in [31]), i.e., �TTm=�TT~GCNm=X
m’

GCNm’
� �

, where GCNm is the gene copy number for the

tRNAs of type m. We fix the constant r~10|41=�TT in Eq. (1),

Dynamics of Supply and Demand in mRNA Translation
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such that the mean hopping rate is SkmT~10 s{1, matching that

observed experimentally [5].

For the recharging we need values for the constant Km,m, and

the maximum charging rate Vm, for each synthetase. The

maximum charging rate is given by

Vm~Emkcat,m, ð7Þ

where kcat,m, known as the turnover number, is the rate at which

one enzyme molecule can recharge one tRNA, and Em is the

number of enzyme molecules present. Measured values for Km,m

and kcat,m can be found in the literature for some synthetases [32–

36], but not for all; for this reason, and also because many of the

known values are of the same order of magnitude, we take an

average of the values from the references above and assume that

all enzymes have the same properties. Thus we use a turnover

rate of kcat,m~kcat~6:29 s{1, and a value Km,m~Km~1:28|

1018 molecules m{3. The values used in the calculation can be

found in the supporting information (Text S2). Km has units of

concentration, but since our system has no spatial extent we must

convert this into a number of molecules by multiplying via the

effective volume - this is the volume a cell would have if it were

reduced in size by the same proportion by which we have

reduced the number of codons in our system, compared to a real

cell. We take 2:9|10{17 m3 as the actual volume of a typical

yeast cell. The number of molecules of each type of enzyme in a

typical cell has been measured by Haar [37], and from this data

we can calculate the number of enzymes per tRNA molecule;

to be consistent with our assumption that all synthetases have

the same properties, we use the mean value of 0:208 enzymes

tRNA{1.

We use ribosomes of width w~9 [38]; for convenience it is

assumed that it is the rightmost covered codon for which the

ribosome is awaiting a tRNA (and this choice does not affect the

results [21]).

Results

Single Species of mRNA
In this section we consider separately several different mRNAs,

and examine the steady state ribosome current and density at

different values of the initiation rate a. In each simulation we

include N mRNAs, with N chosen such that there are

approximately 5|104 codons in total in the system; the other

parameters are scaled as detailed in the methods section. In all

cases we find that for small a the system is in an LD phase, but as a
increases above some critical value, queues form behind some

codons. In order to understand which codon types are causing

these queues we introduce the following quantities: the intrinsic

relative speed of the codons

sm~
�TTm

�TT
, where �TT~

X41

m~1

�TTm, ð8Þ

which represents the supply of each tRNA type; and representing

the demand for tRNAs, the relative abundance of the codons

fm~
nm

n
, where n~

X41

m~1

nm, ð9Þ

and nm is the number of m{type codons on each mRNA.

In the following subsections we examine each mRNA in turn.

We label the mRNAs A–D, and list them in table 1; we consider

two ribosomal and two other mRNAs. The particular open

reading frames which we present have been chosen somewhat

arbitrarily, but they are of typical length and codon make up. In

each case we match the supply of tRNAs to that of a real cell; Fig. 2

shows the supply sm of each tRNA type. The full codon sequence

and further information about each mRNA is given in the

supporting information (Text S2).

mRNA A. Fig. 3(a) shows the supply sm of the tRNA for the

codon at each position on the mRNA; this also gives a measure of

the intrinsic speed associated with a codon, i.e., it is proportional

to the translation rate in the absence of steric interactions and

when resources are not limited. The figure can therefore be

interpreted as the intrinsic codon speed profile for this mRNA.

Fig. 3(b) shows the frequency of usage fm for each codon type,

assuming that the whole population of N mRNAs are of type A.

We note that there are no particularly slow (small sm) codons, and

there is a high abundance of codons of type 1. Figs. 4(a) and (b)

show how the current and density vary with a; we see that initially

J and r (and also s) increase with a, before reaching a plateau - a

profile strikingly similar to that of a simple mono-codon mRNA

[20]. In Figs. 4(c) and (d) we plot the density profile, i.e., the time

average occupation of each site i, for two different values of a
respectively. We again consider two different measures of density:

the reader density ri, i.e., for the rightmost site covered by a

ribosome only, and the total coverage density si. As one might

expect, the coverage density is approximately w times the reader

density; however we shall see below that different features can

sometimes be seen in each kind of profile. From these figures we

see that for small a the system is in the LD phase, but for an

initiation rate above some critical value ac we have behaviour

which approximates a queue to the left of codon i*80. We

highlight the different scales on the vertical axis of the two plots.

Queueing is consistent with the experimental observation [8] that

on average the density of ribosomes decreases along the mRNA.

The queue might seem surprising given the information in

Fig. 3(a) alone, as there are no especially slow codons near i*80.

In Figs. 4 (e) and (f) we plot the steady state relative charging level

of each tRNA type, which we define as

Cm~
Tm

�TTm
, ð10Þ

where here Tm is the steady state average number of charged

tRNAs and, as before, �TTm is total number of m{type tRNAs

(charged and uncharged). The plots shown are for the same two

values of a as in 3 (c) and (d). We note that the charging level of

tRNAs of type m~1 has decreased significantly at large a, i.e., due

to the finite recharging rate and high demand for that tRNA type,

m~1 codons have become slow codons. Examining the mRNA

sequence shows several clusters of type 1 codons around site 80,

which are responsible for the queue (marked as red dots in Figs. 4(c)

and (d)). This is consistent with previous work [39] which shows

that the effect of slow codons is greatly enhanced when they

appear in clusters.

In summary, the aa-tRNA species for which there is most

demand (largest fm) becomes depleted for large a, leading to

queueing behind clusters of this type of codon. In Fig. 5 we show

similar results for a model where all tRNAs are assumed to be

charged at all times (i.e., the Vm?? limit) and the �TTm are based

on gene copy numbers (i.e., tRNA supply) only, as has been

assumed in previous work. We note that the behaviour is very

different; as there are no particularly slow codons, the system does

Dynamics of Supply and Demand in mRNA Translation
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not display queueing; instead it reaches a maximal current (MC)

due only to the steric repulsion between the ribosomes. We also

find that even if the �TTm are rescaled so as to take into account the

demand as well as supply of tRNAs, the results are still different

from those of the more complete model presented here (results not

shown).

mRNA B. Fig. 6 shows plots of sm for each site on a type B

mRNA, and the abundance fm of the different codon types now

assuming that all of the N mRNAs are of type B. In contrast to

mRNA A, here there are many low sm codons distributed

throughout the mRNA. Fig. 7 shows results analogous to those

for mRNA A. We see from Fig. 7(f) that here it is the charging level

of tRNAs of type m~23 which becomes most depleted at large a,

and observe queueing behind codons of this type. In the density

profile at large a (Fig. 7(d)) we note that not only are queues clearly

visible, but also that there is some periodic structure in the profile

for both of the density measures. The peaks in the reader density

and the features in the coverage density are caused by the

extended volume of the ribosomes, and have a width equal to that

of the ribosomes - w~9 codons (this length is indicated by a red

bar in the figures). This was not observed for mRNA A because

the slow codons appeared in clusters and were separated by

distances less than w - the effect was smeared out. In mRNA B the

slow codons (m~23, shown as red dots) are separated by much

larger distances, and queues are found behind each. Another

interesting feature of the density profile in Fig. 7(d) is the shape of

the profile immediately to the left of the slowest codons: queues

towards the right side of the mRNA usually show a concave decay

(e.g. left of codon 432), whilst some queues towards the left side

show a convex decay (e.g. left of codon 221). Previous work on

sequences which only contain two different codon species [40]

suggest that these features depend somewhat on the width of the

regions between the slowest codons, as well as the elongation rates

of these codons, but this is far from fully understood and is beyond

the scope of the current work.

The situation for mRNA B further differs from that of mRNA A

because codons of type m~23 (the slow codons) do not have a high

fm value. To explain this behaviour we introduce the quantity

Vm~
fm

sm
, ð11Þ

which is the ratio between the demand for and supply of tRNAs,

and is a measure of a type of codon’s propensity to cause queueing.

Fig. 8(b) shows this for mRNA B, and we note that Vm~23 has the

largest value. From comparison with Fig. 7(f) we find that Vm is

also an indicator of how the charging level of tRNAs of type m will

be affected. Fig. 8(a) shows Vm for mRNA A, correctly identifying

codons of type m~1 as those which become rate limiting.

Estimation of ac. It is clear that the queueing behaviour

arises because one of the aa-tRNA species has become depleted,

i.e., we have entered a m{type limited resources (m{LR) regime.

This is characterised by a reduction in km (as shown in Figs. 4(e)

and (f) and 7(e) and (f)) at some critical initiation rate ac
m where the

rate at which m{type tRNAs are being used (which we denote ym)

reaches the rate at which they can be recharged (denoted wm). The

critical initiation rate for queueing is therefore

ac~ min
m
fac

mg: ð12Þ

Consider the LD regime where we assume that the current

depends on the average supply of each tRNA type (in this regime

tRNAs can be assumed to be fully charged), i.e.,

JLD&
a(1{a=rS�TTmT)

1z(w{1)a=rS�TTmT
: ð13Þ

The angled brackets denote the average over m. The rate at which

m{type aa-tRNAs are used is therefore

ym~nmN
a 1{a=rSsmT�TT
� �

1z(w{1)a=rSsmT�TT
, ð14Þ

where as before sm~�TTm=�TT (Eq. (8)), nm is the number of m{type

codons on each mRNA, and N is the total number of mRNAs.

Notice that by definition SsmT~(number of tRNA types){1~

41{1. From Eq. (3) the maximum recharging rate for m{type
tRNAs is

Figure 2. Supply sm for each type of tRNA used in the simulations. These are based on the gene copy number for each tRNA in the
Saccharomyces cerevisiae genome. The key for the label m of each codon is available in the supporting information (Text S2).
doi:10.1371/journal.pcbi.1002203.g002

Table 1. mRNA sequences used in simulations.

Label Protein Name Length Protein Description

A YDR382W 110 Ribosomal protein.

B YLR378C 480 Protein involved in protein secretion.

C YJL136C 87 Ribosomal protein.

D YMR307W 560 Protein involved in cell wall
biosynthesis.

The mRNA lengths are given in numbers of codons. The codon sequence and
further information is given in the supporting information (Text S2).
doi:10.1371/journal.pcbi.1002203.t001

Dynamics of Supply and Demand in mRNA Translation
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wm~
Vmsm

�TT

sm
�TTzKm

: ð15Þ

Equating ym and wm gives the critical initiation rate for tRNAs of

type m

ac
m&

rSsmT�TT

2
1{A{

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1{Að Þ2{4B

q� �
, ð16Þ

where

A~(w{1)B,

B~
smVm

rSsmTnmN(sm
�TTzKm)

:

The ac
m with the smallest value gives a reasonable estimate for ac,

shown as dotted vertical lines in Figs. 4(a) and (b), and 7(a) and (b).

From Eq. (16), by assuming B%1 (which is true for realistic

parameters) and expanding to first order, we also find

ac
m&Vm

�TT= VmnN(sm
�TTzKm)

	 

, i.e.,

ac
m!

1

Vm
, ð17Þ

which is consistent with the observation stated in the previous

subsection that the codon species associated with the largest value

of Vm (as defined in Eq. (11)) causes queueing.

In both of the examples above we see m{LR induced queueing.

In the first case (mRNA A) an otherwise averagely abundant aa-

tRNA becomes depleted due to the high usage frequency fm of that

codon type. In the second case it is an intrinsically slow codon

which leads to queueing. These two different types of behaviour

show that even in a simulation with only one type of mRNA, the

dynamics are highly sensitive to the precise usage of codons.

mRNAs C and D. We have investigated two further examples

of mRNAs treated individually with tRNA supply matched to that

of a real yeast cell as before. The results are very similar to those of

mRNAs A and B, so we include these as supporting information

(Text S3). One slight difference is that the point of the onset of the

m{LR induced queueing is less well defined than in the previous

cases. It has already been documented that slow codons appearing

in close proximity to the initiation site can lead to a smoothed

onset of queueing [15], but here there is an additional effect in that

there are several codon species which become depleted. That is to

say more than one codon species acts as a bottleneck, and the

m{LR regime is entered at slightly different values of a for each.

What is the Nature of the Queueing?
In this subsection we use a very simple ‘‘designer mRNA’’ to

help explain the nature of the queueing regime. We consider a

system with only two types of codon and tRNA, with an mRNA

sequence of length L~500 where all codons are of type m~1,

except the central codon which is of type m~2; i.e., f1~499=500,

and f2~1=500 (where fm is defined in Eq.(9)) This is shown

schematically in Fig. 9(a). We consider the different regimes as the

initiation rate a is increased whilst, as before, assuming that the

termination rate is not limiting (b&a,k).

In the original TASEP (the Vm?? limit), where hopping rates

have fixed values �kkm~r�TTm, there are two possibilities as a is

increased: if �kk2w
�kk1 there is a smooth transition from an LD to a

maximal current (MC) phase; if in contrast �kk2v
�kk1 there is a sharp

transition from LD to a queueing phase (QP), where ribosomes

queue behind the m~2 site [11,23–27]. The system is in a QP for

initiation rates larger than

aQP~
�kk1

�kk2

�kk1z�kk2

: ð18Þ

Figure 3. mRNA A Supply and Demand. Bar graphs showing (a) the supply sm of the codon at each site and (b) the occurrence frequency fm of
each codon type on mRNA A.
doi:10.1371/journal.pcbi.1002203.g003
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In the finite recharging model we have observed a third

possibility. One or more of the tRNA types can start being used up

at a rate comparable to the recharging rate, i.e., its charging level

is reduced and it becomes a limited resource: there is m{LR
induced queueing. As detailed above, we can calculate an

approximation for the initiation rate ac at which the system will

move into this regime. Queues of ribosomes build up behind

m{type codons; crucially, since the onset of m{LR is smooth, the

onset of queueing will also be smooth. There is therefore a clear

difference between m{LR induced queueing and a QP transition.

It has been shown in [20] that for realistic recharging parameters,

the LR regime is always reached before the MC phase.

For our toy mRNA sequence, whether we observe m{LR or

QP depends on which transition is reached first. In this case Eq.

(18) gives aQP~s2(1{s2)r �TT . Fig. 9(b) shows min aQP,ac
m~1,

n
ac

m~2g as a function of s2 (where s1zs2~1 since we have only two

codon types). We obtain three regions, as labelled in the figure:

In this narrow region – shown in the blow-up on the right of the

figure – ac
m~2~minfaQP,ac

m~1,ac
m~2g; hence the system will reach

a m~2{LR induced queueing regime when a is above the shown

critical value. Therefore there is a queue behind the m~2 codon.

As a is increased through the critical value the smooth

LR?m~2{LR induced queueing transition occurs.

In this region aQP~minfaQP,ac
m~1,ac

m~2g, and hence the

system reaches a QP for initiation rates above the critical value

shown. Ribosomes will queue behind the m~2 codon (due to the

low value of �TT2) without any tRNAs becoming limited. As a is

increased through the critical value there is a sharp LD?QP
transition. At higher values of a there may be a further LR regime

within the QP, but the point at which this regime is entered cannot

be estimated in the framework discussed here; instead we refer the

reader to Ref. [20].

In this third region ac
m~1~minfaQP,ac

m~1,ac
m~2g, and therefore

it is the m~1 codons which become depleted first, and the system

enters a m~1{LR regime for initiation rates above the shown

critical value. There is a LR?m~1{LR transition as a is

increased. Notice that there is no queueing since the slow codons

make up the bulk of the mRNA, including at the beginning of the

sequence [15].

For a real mRNA sequence, since there are many tRNA types,

the m{LR regime will most likely lead to queueing. Although in

theory it is possible to reach a real QP transition before any tRNAs

Figure 4. Simulation results for mRNA A. Plots (a) and (b) show how the current (protein production rate) and the mean density of ribosomes on
the mRNA depend on the initiation rate a, respectively. In (b) the points show the reader density r and the crosses the coverage density s. Plots (c)
and (d) show ribosome density as a function of position i for small (a~0:02 s{1) and large (a~0:6 s{1) initiation rate respectively. Black lines show
the reader density ri and blue lines the coverage density si . Red dots show the positions of codons of type m~1, and the red bar indicates the width
of the ribosomes. Bar graphs (e) and (f) show the steady state charging rate Cm of each tRNA type. (e) shows a~0:02 s{1 and (f) a~0:6 s{1, the same
values as in (c) and (d).
doi:10.1371/journal.pcbi.1002203.g004
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become limited, this has not been observed for any realistic

mRNA sequence analysed.

Mixtures of Multiple mRNA Species
In this subsection we consider simulations which contain

multiple types of mRNA attached to the same pool of tRNA

resources. As before we choose the tRNA abundances such as to

match the supply of a real cell. The demand on those resources

depends on the proportion of each type of codon in each type of

mRNA, and the proportions of each type of mRNA. We first

present two example systems, each containing multiple copies of

one short mRNA and multiple copies of one long mRNA. Finally

we present simulation results from a system containing 70 different

mRNA species.

Figure 5. Simulation results for mRNA A using the original TASEP model. The tRNA charging rate is assumed to be infinite, and hence then
numbers of aa-tRNAs are constant and based on gene copy numbers. In (b) the points show the reader density r and the crosses the coverage
density s. Plots (c) and (d) show ribosome density as a function of position i for small (a~0:3 s{1) and large (a~9 s{1) initiation rate respectively.
Black lines show the reader density ri and blue lines the coverage density si . Red dots show codons of type m~1 as in Fig. 4.
doi:10.1371/journal.pcbi.1002203.g005

Figure 6. mRNA B Supply and Demand. Bar graph showing (a) the supply sm of the codon at each site and (b) the occurrence frequency fm of
each codon type on mRNA B.
doi:10.1371/journal.pcbi.1002203.g006
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Figure 7. Simulation results for mRNA B. Subplots are as described in the caption for Fig. 4. Plots (c) and (d) show density for small
(a~2:5|10{3 s{1) and large (a~7:5|10{2 s{1) initiation rate respectively. Red dots show the positions of codons of type m~23, and the red bar
indicates the width of the ribosomes. (e) and (f) show Cm for a the same as in (c) and (d).
doi:10.1371/journal.pcbi.1002203.g007

Figure 8. The demand supply ratio. Bar graphs showing the ratio Vm~fm=sm for each codon type for mRNAs A and B.
doi:10.1371/journal.pcbi.1002203.g008

Dynamics of Supply and Demand in mRNA Translation

PLoS Computational Biology | www.ploscompbiol.org 9 October 2011 | Volume 7 | Issue 10 | e1002203



Mixtures of mRNA A and mRNA B. Here we show the

effect of varying the initiation rate on the ribosome current,

density, and tRNA charging level, for several different mixtures of

mRNAs of types A and B (with lengths LA~110 and LB~480
respectively). We use the same initiation rate for each mRNA. We

examine systems with (i) an equal amount of each mRNA by codon

(i.e., there are the same number of codons in all of the mRNAs of

type A as there are in all of the mRNAs of type B), (ii) with the

number of codons in type A mRNAs having the ratio 20% to 80%

of those in type B mRNAs, and (iii) the ratio 80% to 20% type A to

type B by number of codons. In each case we include

approximately 5:5|104 codons in total (scaling the parameters

accordingly as in earlier sections). This means that in each case we

have

N 50:50?NA~250 and NB~57,

N 20:80?NA~100 and NB~92,

N 80:20?NA~400 and NB~23,

where NA and NB are the numbers of mRNAs of type A and B in

the system respectively. Comparing these with the numbers of

mRNA copies found in a real cell (see supporting information Text

S2), the 80:20 proportion is the most realistic.

Figs. 10(a)–(e) and 10(f)–(j) show simulation results for the 50:50

and 80:20 mRNA mixtures respectively. In each case we plot the

current J (which corresponds to the protein production rate per

mRNA) and the reader density r as functions of a, and the charging

levels of each tRNA Cm (defined in Eq. (10)) for the largest value of

a investigated. We also show the reader and coverage density as a

function of position for large a (during m{LR induced queueing)

for each mRNA. In each case we indicate the ac where the first

tRNA species becomes depleted, and indicate the positions of

these codons (m~23) with a blue dot. The critical initiation rate

can be estimated as before, but now the m{type tRNA use rate is

given by

ym~
X

n~A,B

nnmNn

a 1{a=rSsmT�TT
� �

1z(w{1)a=rSsmT�TT
,

where we sum over mRNA species, and nnm is the number of

m{type codons on type n mRNAs. This equation assumes that the

LD current is the same through both types of mRNA, i.e., it

assumes the average sm of the codons on each mRNA is

approximately equal to SsmT~
1

41

X41

m~1
sm~

1

41
.

We note that only the long mRNA B contains the ‘‘blue’’

codons; in each case the current on mRNA B reaches a maximum

at ac due to ‘‘blue’’-LR induced queueing (ac is indicated by a blue

vertical line in the figures). Since mRNA A does not contain these

queueing codons, the current there (denoted JA) continues to rise;

the sharp change in JA at a larger a indicates a queueing transition

rather than a maximal current transition [15]. We do indeed see

that a second tRNA species (m~1) also becomes depleted

(indicated in green). In the case of the 50:50 ratio of A to B the

transition to queueing in mRNA A is at an initiation rate several

times ac, whereas in the 80:20 case, the transition is at just slightly

greater than ac. The 20:80 mixture shows results qualitatively the

same as the 50:50 mixture, so for conciseness we present those

results in the supporting information (Text S4). In Fig. 11 we show

the charging level of the marked tRNA types as a function of a; in

each case we see the relatively sharp reduction of the charging

level of the blue tRNAs at ac. For the 50:50 and 20:80 cases there

is a much more gradual decrease in the charging level of the green

tRNA, whereas in the 80:20 case (where there is an abundance of

mRNA A which contains the green labelled codon) the decreases is

much sharper. We cannot use the above method to estimate where

the second queueing transition will occur, since as soon as

queueing starts on one mRNA species, the current can no longer

be estimated using Eq. (13).

Mixtures of mRNA C and D. We now look at simulations

with different mixtures of mRNAs C and D; again one is short

(LC~87), and the other is much longer (LD~560), but here we

find some quite different results to those discussed above. We

consider three different simulations with the following proportions

by number of codons of each mRNA type

N 50:50?NC~316 and ND~49,

N 20:80?NC~126 and ND~79,

N 80:20?NC~506 and ND~20,

where here the 20:80 mixture is the closest to a real cell when

considering the mRNA copy number (see supporting information

Text S2).

Figure 9. Different reasons for queueing in a ‘‘designer mRNA’’. (a) Sketch of a designer mRNA with only two types of codon. All codons are
the same except for the central one. (b) The solid curve shows the critical initiation rate beyond which queueing will be observed, as a function of s2 .
Which kind of queueing will be observed depends on s2 , and the three regimes discussed in the text are separated with dotted lines. The inset shows
a zoom around small s2.
doi:10.1371/journal.pcbi.1002203.g009
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In Figs. 12(a)–(e) we present results for the case where there is an

equal number of codons in all mRNAs of type C and in all

mRNAs of type D; the aa-tRNA type which becomes depleted first

(m~11, labelled blue) is only present on the long mRNA. As in the

previous section, even once queueing begins to occur on that

mRNA, the current of ribosomes along the short mRNAs

continues to increase. A strikingly different outcome here is that

the current through the long mRNA then begins to decrease

again. This happens because initially a queue forms behind the

blue codons near the beginning of mRNA D; since there are no

blue codons on mRNA C, the current there continues to increase

with a. As JC increases, a second type of tRNA (m~30 labelled

green) becomes depleted. The large cluster of green codons near

the end of mRNA D begins to cause a more serious queue than the

two blue codons near the start - the current along mRNA D

decreases. This decrease leads to a lower rate of blue tRNA use,

and the charging level therefore increases. This can be seen in

Fig. 13(b).

Consider now decreasing the numbers of mRNA C compared

to D, i.e., consider the 20:80 C to D mixture (Figs. 12(f)–(j)). There

are now more blue codons, but the same number of blue tRNAs.

The blue codons become queueing at first, and as before JC

continues to increase. Although the green codons are again the

second species to become depleted, this time the codons are not

slower than the blue codons. The demand for green codons is not

sufficient to make the queue behind the large green cluster on

mRNA D more severe than the queue behind the blue codons. At

the second transition a slight increase in the density on mRNAs of

type D is seen - Fig. 12(g); this is because although the green

codons are not the slowest codons, there is a slightly increased

density behind them (e.g., at several points between i~100 and

i~300 in Fig. 12(j)).

Figure 10. Results for simulations containing mixtures of mRNAs A and B. Plots (a)–(e) show results for a mixture in the ratio 50:50 (by
codon numbers). (a) and (b) show J and r as a function of a for mRNAs of type A (black points) and type B (red crosses) (the same initiation rates are
used for each species). The blue line shows ac, where blue labelled codons cause queueing. Plot (c) shows the charging levels of tRNAs for a~1:2 s{1 .
(d) and (e) show the site dependent reader (pale lines) and coverage (dark lines) density for each mRNA type, again for a~1:2 s{1 . The codons
corresponding to the first aa-tRNA to become depleted are highlighted with blue dots (m~23), and those for the second in green (m~1). Plots (f)–(j)
show similar results for a mixture in the ratio 80:20; results for a 20:80 mixture are presented in the supporting information (Text S4).
doi:10.1371/journal.pcbi.1002203.g010

Figure 11. The charging levels Cm of the first two aa-tRNAs to become depleted. Plot (a) shows results for the 20:80 mixture of mRNAs A
and B, plot (b) the 50:50 mixture, and (c) the 80:20 mixture. From left to right the abundance of mRNA A increases. Blue and green lines correspond to
the codons labelled blue and green in Fig. 10, and dashed lines show aQP .
doi:10.1371/journal.pcbi.1002203.g011
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If we increase the number of type C mRNAs (the 80:20 C to D

mixture), we have a different outcome again. The situation is very

similar to that of the 50:50 mixture, but now the demand for green

tRNAs (m~30) is so large, that these become depleted almost

immediately after the blue tRNAs as a is increased. These results are

presented in the supporting information Text S4. The reduction of

the current through mRNA D is so severe that the charging level of

blue tRNAs returns almost to full. This can be seen in Fig. 13(c).

We have shown that changing the relative numbers of mRNAs

can be very important in determining the dynamics of the system.

We match the tRNA supply to that of the real cell, and even

though the considered demand is not realistic, we show that

different patterns of codon usage can lead to very different

behaviour in terms of protein production rate. Therefore we have

demonstrated that protein production can be controlled at the

translation elongation level by means of the interplay between

demand and supply of tRNAs. This is likely to be highly important

since levels of different mRNAs are likely to be vary for many

reasons, e.g., as a response to environmental stress, or throughout

the different phases of the cell cycle.
Larger scale simulations. We now present results from

some larger scale simulations which contain many mRNA species.

Due to computational limitations a detailed analysis of such

systems is not possible, however we are able to show that the

balance between supply and demand is still important even in

much larger systems.

We take as an example the fact that during different phases of

the cell cycle around 15% of genes display significant changes in

expression [41]. We choose a selection of 10 mRNAs which are

known to change from a high to a low abundance (or vice versa)

between the G1 phase and the G2 phase of the cell cycle; we refer

to these as group I mRNAs and list them in table 2. We then

Figure 12. Results for simulations containing mixtures of mRNAs C and D. Plots (a)–(e) show results for a mixture in the ratio 50:50 (by
codon numbers). (a) and (b) show J and r as a function of a for mRNAs of type C (black points) and type D (red crosses). The blue line shows ac ,
where blue labelled codons first become depleted. Plot (c) shows the charging levels of tRNAs for a~1:2 s{1. (d) and (e) show the site dependent
reader (pale lines) and coverage (dark lines) density for each mRNA type. The codons corresponding to the first aa-tRNA to become depleted are
highlighted with blue dots (m~11), and those for the second in green (m~30). Plots (f)–(j) show similar results for a mixture in the ratio 20:80; results
for a 80:20 mixture are presented in the supporting information (Text S4).
doi:10.1371/journal.pcbi.1002203.g012

Figure 13. The charging levels Cm of the first two aa-tRNAs to become depleted. Plot (a) shows results for the 20:50 mixture of mRNAs C
and D, plot (b) the 50:50 mixture, and (c) the 80:20 mixture. From left to right the abundance of mRNA C increases. In each case the tRNA type
labelled blue becomes depleted first. The inset in (c) is a zoom at small a showing this more clearly. Dashed lines show aQP .
doi:10.1371/journal.pcbi.1002203.g013
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include these in a simulation alongside 60 other mRNA species

(the levels of which are thought to remain constant), such that the

group I mRNAs make up 15% of the total. The 60 other mRNAs

are chosen arbitrarily, with 20 highly abundant, 20 medium-highly

abundant and 20 medium abundance mRNAs (abundance data

from [29]); we refer to these as group II mRNAs. As before we

consider a reduced system, this time containing a total of around

4|105 codons; the number of each of the group II mRNAs are

chosen such that they have the same relative abundance as in a

real cell. We perform two simulations, one where the group I

mRNAs have either high or low abundance as they would in G1,

and the other with abundances as in G2 (see table 2). The number

of each group II mRNA is kept the same in each case. Full details

of the mRNAs are given in supporting information Text S2. As in

previous sections we choose tRNA abundances such that the

proportions of each species match those of a real cell (based on

tRNA gene copy numbers [31]). The total number of tRNAs is

chosen so that the ratio of this to the total number of codons is the

same as is found in a real cell. For this calculation we assume the

total number of codons is the average of the two simulations, and

use the same numbers of tRNAs for each. The abundance of each

group II mRNAs is chosen so that the proportion of each matches

that found in a typical cell [29]. Since the typical abundance of the

group I mRNAs found during each cell cycle phase is not well

known, we match the abundances to the most and least abundant

group II mRNAs. Due to computational limitations we cannot run

simulations for a range of initiation rates, so we make a crude

estimate of a~0:2 s{1 (based on a translation rate of *10
codons s{1 [5] and an inter ribosome reader separation of *
50 codons [17]), and assume this is the same for all mRNAs.

In Fig. 14 we show results from the two simulations; we show

bar graphs of tRNA charging levels and the currents and average

ribosome density for each mRNA species. Note that the current is

equivalent to the protein production rate per mRNA. We observe

that there is a significant change in the charging level of some

tRNA species. This leads to large changes in the current of some

mRNA species, whilst others a largely unaffected. The protein

production rate per mRNA changes by more than 50% in some

cases. Similar patterns of change are also seen in the ribosome

density. We note that in general those mRNA which contain

copies of the codons for which the tRNAs become most depleted

show the largest change in density. Interestingly the total ribosome

usage for the G1 simulation is 4:0|104, which is more than

double the value of 1:7|104 in the G2 simulation; these values

equate to 0:03 and 0:02 ribosomes per codon, respectively.

In these simulations we do not include a completely realistic

demand for tRNAs, but in taking a representative subset of mRNAs

we show that the balance between demand and supply plays an

essential role in translational regulation of gene expression. These

results do show that relatively small changes in demand (of the scale

a real cell will experience during its normal life cycle) can have a

large effect on the production of some proteins.

Discussion

In this paper we have shown that it is the interplay between

demand and supply which determines the existence of bottlenecks

in translation elongation, and that this could be used by the cell to

control protein production. We apply a recent model of the

elongation step of mRNA translation, which includes the dynamics

of the use and recharging of aa-tRNAs, to realistic mRNA

sequences from the Saccharomyces cerevisiae genome. We show that

that including the use and recharging of aa-tRNAs in the model

has a significant effect on the dynamics. We obtain a regime where

a particular tRNA type becomes depleted leading to the relevant

codons becoming ‘‘slow’’, and causing queueing. Whilst previous

authors [15,27] have assumed that it is the type of codon

associated with the tRNA with the lowest abundance which is most

important for queueing, we have shown that which one of the

codon types is (or becomes) the slowest depends both on the supply

of (sm), and the demand for (fm) the relevant tRNA species (defined

in Eqs. (8) and (9)). We have also found that merely taking both

supply and demand of tRNAs into account in a TASEP model

does not give the same results as fully describing the dynamics of

the recharging process as we have done here.

In the simulations we choose the supply of tRNAs based on the

numbers of each tRNA type found in a real cell, i.e., we have

matched the supply of tRNAs to that of a real cell. At low initiation

rate, when none of the tRNA charging levels are significantly

reduced, the slowness of each codon type depends only on the

tRNA supply. At high initiation rate, for some tRNA types the

charging levels become reduced: which ones depends on the

demand for each type of tRNA.

In the case of simulations where only one type of mRNA is

included we have shown that the behaviour can be predicted by

considering the quantity Vm, defined as the ratio between the

tRNA demand and the supply (Eq. (11)). The value of Vm can be

used to predict which codons will be the first to become queue

causing as the initiation rate is increased. This might lead one to

ask whether a full dynamic treatment of recharging is really

necessary. We investigated this hypothesis using a model with fixed

hopping rates (the original TASEP), choosing km!V{1
m (data not

shown). Although we saw queueing behind the same type of codon

as in the results presented here, this was obviously due to a QP

transition rather than m{LR induced queueing. Also the onset of

the regime was at a different initiation rate - e.g. for mRNA B in

the model with fixed hopping rates this was on the order

a&0:02 s{1, compared to ac&0:04 s{1 in the results presented

here. Whilst this is only a minor difference in the case of single

mRNAs, none of the interesting ‘‘competition’’ effects observed in

the case of simulations with multiple mRNA types would be

observed in a model with fixed hopping rates.

Since in each simulation we treat a small subset of mRNAs, the

demand for tRNAs is not the same as in a real cell. We conclude

that in situations where the demand is important, it is difficult to

Table 2. Group I mRNA sequences used in large scale
simulation.

Label Protein Name Length Level in G1 Level in G2

1 Cln3 581 High Low

2 Cdh1 567 High Low

3 Cdc20 611 Low High

4 Clb1 472 Low High

5 Clb6 381 High Low

6 Sic1 285 High Low

7 Cln1 547 High Low

8 Cln2 546 High Low

9 Clb2 492 Low High

10 Clb5 436 High Low

A selection of 10 mRNA which are known to change their expression level
between the G1 and G2 phases of the cell cycle. Lengths are given in numbers
of codons.
doi:10.1371/journal.pcbi.1002203.t002
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predict the effect on protein production from a specific mRNA

without considering the entire mRNA set, which is a computa-

tionally ambitious task. Nevertheless, we have shown that the

interplay between demand and supply is what determines which

codons become rate limiting for translation. Other authors [13]

have attempted to treat real mRNA sequences using an iterative

mean field approach. If this could be combined with our model of

finite recharging, it could offer significant improvement to brute

force simulation of the entire genome.

One might consider comparing values of Vm with known

measures of slow codon usage such as the codon adaptation index

(CAI) [42]. The CAI is a property of an mRNA sequence and is a

measure of the translation efficiency, or more precisely the

synonymous codon usage bias of the sequence. It is calculated

based on a quantity known as the relative synonymous codon

usage (RSCU). The RSCU for codon species m which encodes for

amino acid species i is defined gm=(n{1
i

X
j
gj), where gm is the

total number of codons of species m within a set of highly expressed

genes [42], ni is the number of species which encode for amino

acid i, and the sum is over all of these species. The maximum

RSCU value for a given amino acid is denoted RSCUmax. The

CAI for a given mRNA is given by the geometric mean of

RSCU=RSCUmax for each codon in the sequence. Our quantity

Vm is a similar measure to the RSCU in that it also measures the

translation efficiency of a codon, but with respect to how likely that

codon is to cause queueing. We can therefore compute a new

index for an mRNA by taking the geometric mean of the Vm for

each codon in an mRNA, i.e. ( P
L

i~1Vi)
1=L where the product is

over all L codons in the sequence. We term this the queueing

likelihood index (QLI). A comparison between this and the CAI is

given in the supporting information Text S5. We find that there is

a strong correlation between these quantities (a Pearson correla-

tion coefficient of 20.808), so the QLI can also be used as an

alternative measure of translation efficiency. The strong correla-

tion is expected since both quantities use codon usage data; the

QLI differs from the CAI in that is explicitly includes tRNA

availability data as well as codon usage. An additional advantage

of the QLI is that it gives a prediction of how translation will be

effected by changes in supply or demand.

In a real cell the demand for tRNAs changes throughout the cell

cycle, both due to different patterns of transcription, and via

mechanisms such as storage, release and degradation of mRNAs in

P-bodies [43]. Although small changes in the levels of, for

example, a single mRNA are unlikely to have a major impact on

the total tRNA demand, we would expect that significant changes

in demand would result from, for example the 15% of mRNAs

which change their expression level between the G1 and G2

phases of the cell cycle [41]. We have presented simulation results

that, although still only treating a small subset of mRNAs, show

that a change in mRNA abundances of this magnitude can

significantly alter the production rate of some proteins.

We can also apply our analytic treatment to estimate the

initiation rate at which the first tRNA species will become

depleted. By assuming that all mRNAs have the same initiation

rate, and using measured data for the mRNA abundances in a

typical cell [29] along with tRNA gene copy number data [31], we

can calculate am
c for each tRNA species using Eq. (17). We find that

some tRNAs will never become depleted (i.e., another codon type

will become rate limiting first), whilst those most likely to become

bottlenecks include Leu5 with ac
m&0:4 s{1 and Gln2 with ac

m&
0:7 s{1. A crude estimate of a typical initiation rate of a&0:2 s{1

(based on a translation rate of *10 codons s{1 and an inter

ribosome reader separation of *50 codons [17]) allows one to

speculate that a two-fold increase in the initiation rate may be

enough to cause queueing. Such an increase in the initiation rate

could be achieved through for example a nutrient up-shift leading

to ribosome biogenesis up-regulation.

We have shown in this paper that changes in the supply and

demand can drastically alter the behaviour of the protein

production mechanism, and different patterns of slow codon

usage can act as a means for control. It is known that control of

protein production rates is also exercised heavily at the initiation

Figure 14. Simulations of large numbers of mRNAs. Results from two simulations containing 70 different species of mRNA (numbered 1 to 70
with full details being given in supplementary information S2). In both simulations the abundance of each of group II mRNAs (blue) are kept the
same, but the abundance of group I mRNAs (red) are varied so as to match their abundance during the G1 and G2 phases of the cell cycle
respectively. Plot (a) shows the charging levels for each tRNA, (b) the current for each mRNA and (c) the corresponding ribosome densities, each for
G2 phase. Plots (d)–(f) show similar for G1 phase.
doi:10.1371/journal.pcbi.1002203.g014
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stage of translation, via, for example, structure in the 5’
untranslated region which varies across different mRNAs [2], or

more globally through regulation of initiation factors such as eIF2

[44]. It is also thought that variation of initiation rates across

different mRNAs is used to effect ‘‘translation on demand’’ [1].

We show here how changes in the initiation rate could be used in

conjunction with changes in supply and demand of tRNAs, for

example to move from queueing to non-queueing behaviour.

Other feedback mechanisms which could be executed by the cell

to prevent charged tRNA depletion include production of extra

aminoacylation enzymes. Another consideration is that in a real

cell the availability of ribosomes could be an important factor: a

typical cell contains of the order 105 ribosomes [37], which is

about 0.05 per ORF codon; in our simulations for queues the

mRNA coverage can reach around 0.08 ribosomes per ORF

codon in the case of simulations with one or two mRNA species, or

0.03 ribosomes per ORF codon in the larger scale simulations. If

significant numbers of mRNAs in a cell were to have queues, the

amount of free ribosomes in the cytoplasm could become depleted

likely leading to a reduction in initiation rate - this itself could act

as a feedback to reduce queueing. Finite numbers of ribosomes

have previously been considered in a TASEP model [7], but not in

the biological context of finite tRNA recharging.

In our simulations we ignore the effect of wobble base pairing.

It is known that some tRNAs can still recognise a codon when

only the first two of the three nucleotides match correctly; the

cost of this mismatch is that the hopping rate for such codons

reduces by approximately one third [45]. Some authors [46]

compensate for this effect in models by rescaling the number of

tRNAs for the ‘‘wobble’’ tRNAs; as the current work has shown,

the number of tRNAs is crucial to the dynamics, so we do not

follow this strategy here. A more realistic approach would be to

have a codon type dependent intrinsic hopping rate r. Other

improvements which could be made to the current model include

considering multiple internal states for ribosomes [47], or using a

more realistic model for aminoacylation which considers the

differences between each enzyme, and takes into account the

availability of each amino acid. A reformulation of Eq. (3) to

more realistically describe an enzymatic reaction with multiple

substrates (such as in [48,49]) could the allow amino acid

starvation conditions to be studied in this framework. We also do

not consider here effects such as so called ‘‘no-go decay’’, where

mRNAs upon which there are stalled ribosomes are selectively

degraded [50]. This could be considered a feed back effect to

release resources. A phenomena related to no-go decay is

ribosome drop off, the probability of which increases due to

stalling at slow codons [51]; this could also be incorporated into

future models, although since it occurs at a low rate and in yeast

is more likely to be due to secondary structure than slow codons

[51], it is unlikely to qualitatively change the behaviour.

In summary, when this recent model is applied to realistic

mRNA sequences we find queueing behind slow sites or clusters of

slow sites. The present model differs from previous ones in that the

particular species of codon which becomes slow depends on the

demand placed on aa-tRNAs and not just the overall tRNA

abundances. We find that the behaviour depends on the dynamics

of the system, and the same results cannot be produced with

constant hopping rates; i.e., including the full charging process in

the model is crucial. We have shown that in larger systems,

changes in the demand for tRNAs which occur during the cell’s

normal life cycle are sufficient to cause significant changes in

protein production.

Supporting Information

Text S1 We present the derivation of our TASEP based model

of translation which includes both extended particles and finite

tRNAs in a uniform mRNA.

(PDF)

Text S2 Includes the key for the labelling of codon/tRNA

species, the values for enzyme kinetic constants used, and the

sequences and description of each mRNA sequence given in
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larger scale simulations.
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