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Abstract

‘‘Use it and improve it, or lose it’’ is one of the axioms of motor therapy after stroke. There is, however, little understanding
of the interactions between arm function and use in humans post-stroke. Here, we explored putative non-linear interactions
between upper extremity function and use by developing a first-order dynamical model of stroke recovery with longitudinal
data from participants receiving constraint induced movement therapy (CIMT) in the EXCITE clinical trial. Using a Bayesian
regression framework, we systematically compared this model with competitive models that included, or not, interactions
between function and use. Model comparisons showed that the model with the predicted interactions between arm
function and use was the best fitting model. Furthermore, by comparing the model parameters before and after CIMT
intervention in participants receiving the intervention one year after randomization, we found that therapy increased the
parameter that controls the effect of arm function on arm use. Increase in this parameter, which can be thought of as the
confidence to use the arm for a given level of function, lead to increase in spontaneous use after therapy compared to
before therapy.
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Introduction

Stroke often leaves patients with predominantly unilateral

motor impairments. Although the affected upper extremity is

often not completely paralyzed, the recovery of upper extremity

function is often achieved solely by compensatory use, i.e., choice

of the less-affected arm [1]. Improving use of the more affected

arm is important however, because difficulty in using this arm in

daily tasks has been associated with reduced quality of life [2].

There is now definitive evidence that intensive task-specific

practice is effective for improving upper extremity function and

use after stroke [3,4,5,6]. Such training reverses, at least partially,

the loss of cortical representation due to lesion through

recruitment of adjacent brain areas in animals [7,8] and in

humans [9]. This reorganization lasts several years [10], and has

been linked to improved performance [11] and increased use of

the affected limb [12]. On the contrary, lack of training has been

associated with further loss of cortical representation [7,13].

Thus, the axiom ‘‘Use it and improve it, or lose it’’ [14], seems

appropriately applicable to the training period, when the

individual is ‘‘forced’’ to use the affected upper extremity. But,

what happens outside of therapy, when the individual is free to

use, or not use, the affected limb? In some individuals, function

and use further improve in the years following therapy [15,16,17]

(see Figure 1A). For other individuals, function and use decrease in

the years following therapy (see Figure 1B). We previously

hypothesized that the repeated decisions to use the affected limb

in daily activities may be a form of motor practice that can lead to

further improvements [15]. Similarly, repeated, failed, attempts to

use the affected limb have been hypothesized to underlie

worsening of the impairment in a process termed ‘‘learned non-

use’’ [18].

In our previous neuro-computational model of stroke recovery,

we attempted to shed light on the interactions between function

and use in general and learned non-use in particular [19]. Our

model contained two independent motor cortices, each controlling

the contralateral arm, with one being affected by stroke. Before

each movement, one motor cortex was selected by an adaptive

decision-making system, tentatively located in cortico-striatal

networks. Arm performance improved via neural reorganization

in the motor cortex, which learned both to minimize directional

errors (via supervised learning) and to maximize neuronal activity

for desired movement directions (via Hebbian learning). Further-

more, the decision to use one limb or the other was made by

comparing the ‘‘action value’’ of each limb in the adaptive

decision-making system. The values for each arm were updated

based on reward prediction errors (via reinforcement learning). If

performance-based rewards were greater than expected, the arm

was chosen more often for this particular movement. Thus, the

model predicted that function of the affected arm depends on prior

use and that, in turn, arm use depends on non-linear competition

between prior functions of the affected and the non-affected arm.

The model also predicted that if spontaneous recovery, or motor

training, or both, brings performance above a certain threshold,
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the repeated spontaneous arm use provides a form of motor

learning that further bootstraps performance and spontaneous use.

Below this threshold, spontaneous arm use after training decreases

(thus the model exhibits ‘‘learned non-use’’), and compensatory

movements with the less affected hand are reinforced. We

previously provided clinical evidence for such a threshold at the

group level [20].

Here, our principal aim was to test the hypothesis that, in

individuals in the chronic phase post-stroke, function of the

affected arm depends on prior use of that arm and arm use, in

turn, depends non-linearly on function, as predicted from our

previous model. For this purpose we developed a new data-driven

quantitative first-order dynamical model of stroke recovery that links

arm function and use with a small number of parameters, which

can be directly adjusted from actual data. We obtained data on

upper extremity function and use for a two-year period starting

from 3 months or more after stroke from the database of the Phase

III randomized controlled clinical EXtremity Constraint Induced

Therapy Evaluation (EXCITE) trial [3], which aimed at

demonstrating the efficacy of a rehabilitative intervention for

upper extremity. Arm function was derived from the time score of

the Wolf Motor Function Test (WMFT) [21,22] and arm use data

was derived from the Motor Activity Log Amount of Use (MAL

AOU) [23,24]. Because of the sparsity of the data, we used

Bayesian regression to fit the model. In addition, Bayesian

regression allowed us to systematically compare our model with

alternative models to test our hypothesis. We validated the model

by computing the prediction errors of the model with a leave-one-

out method.

Our secondary aim was to investigate whether motor therapy

can change the hypothesized relationship between arm function

and use by examining the model parameters before and after

therapy. Besides improving both function and use, therapy may

increase the confidence to use the arm [25,26]. We thus predicted,

that, the relationship that links arm function to arm use can be

modified by therapy, and that controlling for the level of function,

arm use can increases after therapy compared to before therapy.

Methods

Data for model parameter fit and model selection
In EXCITE, two groups of participants 3 months or more post-

stroke were randomly assigned to either an immediate or a delayed

Constraint Induced Movement Therapy (CIMT) group [3,27,28].

After 3 months, changes in function can be attributed more to

learning and adaptation rather than to significant physiological

modifiers that dominate the initial recovery period. The

immediate group received two weeks of therapy from time Pre1

(t = 0) to Post1; the delayed group received two weeks of therapy

after a one-year delay, from Pre2 (t = 1 year) to Post2.

The measure of function that we used to develop our model was

the negative of the logarithm of the WMFT time score,

normalized between 0 and 1. The WMFT time score [21,22]

has been used as either a primary or a secondary outcome in more

than 70 published studies including the EXCITE trial. The test

determines the time required for patients with stroke to perform 15

everyday tasks with each upper extremity. Tasks are sequenced so

that the first six tasks involve simple limb movements, primarily of

the proximal musculature; the next nine tasks require manipula-

tion and distal control. The time score is computed by adding the

times of the tasks that the subject can perform within 120 seconds.

For each task that the subject cannot perform, 120 sec are added.

The WMFT time score has good reliability, validity, and no

learning effect [22]. Note that because the more simple tasks can

Figure 1. Longitudinal arm and hand use data (as measured by the MAL AOU test, normalized) for 48 participants of the immediate
group in EXCITE illustrating how use can increase (A), decrease (B), or not change (C) in the 24 months following therapy.
Classification in the three categories was based on the significance of the slope parameter of a linear model fit of use as a function of time, with a
lenient criterion to test the hypothesis that the slope is not different from zero (p,0.25). Use increase category, N = 14; Use decrease category, N = 12;
No change in use category, N = 22.
doi:10.1371/journal.pcbi.1002343.g001

Author Summary

Although, there is now definitive evidence that intensive
task-specific practice is effective for improving upper
extremity function and use after stroke, it is unclear how
individual patients recover from stroke, and how they
respond to therapy. Here, we propose a novel computa-
tional model of stroke recovery to study the time-varying
dynamics of recovery of individuals at least 3 months post-
stroke with mild to moderate impairments. Our model
gives support to one of the axiom of neuro-rehabilitation
‘‘use it or lose it’’. Furthermore, analysis of the model
parameters showed that increase in confidence to use the
affected arm during therapy may affect the dynamics of
recovery. Our long-term goal is to develop and validate a
method based on such dynamical models, to allow
clinicians and patients to make informed decisions about
treatment and potentially determine the critical dose of
motor therapy for an individual patient.

Arm Function and Use in Humans Post-stroke
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normally be performed quickly, the distribution of the WMFT

time score has a long-tail. The natural logarithm of the WMFT

time score is therefore taken to transform the distribution into a

normal distribution [3]. To readily incorporate the time score of

the WMFT (after logarithm transformation) into our model, we

negated the logarithm transformed WMFT score such that a good

(low) WMFT time score corresponds to good (high) arm function.

We then normalized the range by dividing by the difference

between the highest score and the lowest score in the data set, and

subtracting the lowest score in the data set from each point. Thus,

a normalized score of 1 corresponds to excellent function and 0 to

very poor function.

The measure of arm use that we incorporated to develop our

models was the average MAL AOU score, normalized between 0

and 1. In the MAL AOU [24,29], the participants (or their

caregivers) rate how much the paretic arm is used spontaneously to

accomplish 30 activities of daily living outside of the laboratory.

Each item on the MAL AOU is ranked from 0 (no use) to 5

(normal) via increments of 0.5. Validity and reliability of the MAL

AOU has been established [24]. The MAL AOU has been used

extensively in studies with a few repeated measurements, including

in the EXCITE trial.

Participants were tested with the WMFT and the MAL AOU at

Pre1 (t = 0 week), Post1 (t = 2 weeks), Pre2 (t = 1 year), and Post 2

(t = 1 year+2 weeks). All participants were also tested at 4 months,

8 months, 16 months, 20 months, and 24 months. In the

immediate group, because we only studied the participants’

behavior after therapy, we excluded data at Pre1. Furthermore

because little change in function or use is likely to happen within a

2-week-period one year after CIMT for the immediate group [16],

we averaged the data at between Pre2 and Post2 for this group.

Thus, for each subject of the immediate group, a total of 7 data

points were available, each spaced by 4 months (at Post1, 4, 8, 12,

16, 20, and 24 months), as shown in Figure 1. In the delayed

group, we compared the participants’ behavior after therapy to the

behavior before therapy. Because little change in function or use is

likely to happen in two weeks between Pre1 and Post1 for this

group [3], we averaged the function and use data at these two data

points. Thus, for each subject of the delayed group, 4 data points

were available before therapy (at 0, 4, 8 months, and Pre2) and 4

data points available after therapy (at Post2, and 16, 20, and 24

months).

Because of the very limited number of time points in our study,

we only analyzed the data of participants with full data sets, that is,

each participant had a full complement of WMFT and MAL

AOU data. In the immediate group, 48 participants had a full data

set. In the delayed group, 45 participants had a full dataset.

Quantitative models of arm function and use interaction
We investigated the simplest possible model that best accounted

for four essential characteristics of our previous neuro-computa-

tional model [19]: 1) Time varying changes in arm function and

use reflecting the dynamic of stroke recovery. 2) Effect of use on

function, with high use leading to higher future function, and low

use leading to lower future function. 3) Effect of function on

decision to use the arm, with higher function leading to higher

future use, and lower function leading to lower future use. 4)

Decision to use the affected arm or the non-affected arm based on

competition between prior function of the affected and function of

the non-affected arm.

We specifically hypothesized that a first order non-linear

dynamical system, with two equations, can account for the

interactions between arm function and spontaneous use in

individuals post-stroke. The first (state-space) equation updates

the function of the affected arm; the second equation updates the

use of that arm.

Characteristics (1) and (2) above can be encapsulated by the

evolution of arm function at time step t in terms of arm function

and use at the previous time step as:

Faffected (t)~waFaffected (t{1)zwbUaffected (t{1)zwc

where arm function at t, Faffected (t), is updated based on arm

function and use at the previous time step t21, Faffected (t{1) and

Uaffected (t{1), wa is a decay rate, wb a ‘use effect’ rate, and wc a

constant input. Given the very few data points at our disposal

(7 points in the immediate group), it is unlikely however that such

a complex model with 3 free parameters would provide both good

fit and good generalization (See sub-section ‘‘Model fit’’ below).

Although we consider the 3-parameter model above and a simpler

2-parameter model with wc = 0 for model comparison (see below),

we take as our reference model the simplest model, the 1-

parameter model given by:

Faffected (t)~(1{w1)Faffected (t{1)zw1Uaffected (t{1), ð1Þ

where w1 is a free parameter. Equation (1) represents a condensed

version of ‘‘Use it and improve it, or lose it’’, in the condition that

0#w1#1: if Uaffected (t) is zero or small, Faffected (t) decreases. If

Uaffected (t) is large, then Faffected (t) increases. The parameter w1

can be considered as a ‘use effect’ rate; the larger this rate, the

greater the effect of spontaneous arm use on function. The term

(12w1) is a decay rate of arm function: with zero use, arm function

would decay exponentially with time constant D/w1, where D is

the time step of 4 months.

Characteristics (1), (3) and (4) above can be encapsulated by the

update of arm use at time step t, Uaffected (t), in terms of arm

function in the previous time step, Faffected (t{1) as:

Uaffected (t)~
1

1zexp(-(w2 Faffected (t-1)-w3))
, ð2Þ

where w2 and w3 are free parameters. Equation (2) is a sigmoidal

equation that arises from common decision-making models in the

reinforcement-learning framework [30], in which the probability

to take an action is computed by comparisons of the values of each

actions, with the action with the highest ‘‘value’’ being the most

probable. Here, we assumed that the ‘‘action value’’ of each limb

is proportional to the function of each limb at the previous time

step. The slope parameter w2 thus controls the sensitivity of arm

function on arm use and can tentatively be considered as a

‘‘confidence parameter’’: for equal function, greater or smaller w2

leads to more or less use, respectively. The parameter w3

encapsulates the function of the non-affected arm Funaffected (t)

together with any non-modeled bias for preferred use of one arm

versus the other, such as arm dominance or side of stroke. We did

not include Funaffected (t) in the model because the average changes

in function of the unaffected arm following therapy are relatively

small compared to the average changes observed in the affected

arm. Among participants of the immediate group the average log

time WMFT scores is 8.6269.78 (SD) for the affected arm, and

1.9960.82 for the unaffected arm. The median percentage change

in the score for the unaffected arm from just after therapy (Post1,

t = 2 weeks) to 24 months, normalized by the score of the affected

arm just after therapy, is 23.6% and the interquartile range 7.1%.

By comparison, the median percentage change of the score for the

affected arm from just after therapy to 24 months, normalized by

Arm Function and Use in Humans Post-stroke
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the score just after therapy (Post1, t = 2 weeks) is 223.2% and the

interquartile range 55.5%. We thus considered the function of the

non-affected arm constant over the two years following therapy;

only the function of the affected arm Faffected (t) enters Equation (2)

(henceforth, we drop the subscript ‘‘affected’’).

Note that because of the simple 1-parameter model of function,

arm function converges to the same value as use in the steady state

(although after transformations to the original WMFT and AOU

score, the values would be of course different). This is simply due

to our choice of a single parameter function model, and there is no

reason why this should happen in actual individuals post-stroke.

Nevertheless, our model may still be adequate given 1) that the

variables may not converge to their asymptotic values within two

years because of long-time constants, and 2) the trade-off between

fit and complexity that favors simpler models.

Model fit, immediate and delayed groups
We estimated w1, w2, and w3 from function and use data of the

EXCITE trial participants in both the immediate and the delayed

group. We also aimed at testing our hypothesis of interactions

between arm function and use as encapsulated in Equation (1) and

(2), against a number of alternative hypotheses, as we now

describe.

Because we have only 7 data points (immediate group) and 4

data points (delayed group for each before and after-therapy) for

each arm function and use, we must ensure that the model does

not overfit the data, that is, the model should describe the

underlying relationship, not the random error or noise. Overfitting

generally occurs when a model is excessively complex, such as

having too many parameters relative to the number of data points.

For instance, in frequentist (maximum likelihood) linear regres-

sion, a minimum of 10 or 15 points per predictor is usually

considered necessary.

In contrast, Bayesian regression is the method of choice in our

case, as it does not overfit the data for very small data sets (see [31]

and below for rationale). The Bayesian regression framework has

the additional advantage of allowing principled model comparison

based on the training data alone, that is, without the need for

cross-validation, which ‘‘wastes’’ training data. In light of these

qualities, we used Bayesian regression to determine the parameters

of all the candidate models based on (normalized) WMFT and

MAL AOU data in the immediate group following therapy for

each individual participant (N = 48).

Here we illustrate Bayesian regression for our reference model

of Equation (1) and (2). Similar methods are used for the

alternative models. We first reformulated Equation (1) and (2) to

form equations linear in model parameters:

F tð Þ{F t{1ð Þ~ U t{1ð Þ{F t{1ð Þð Þw1 ð3Þ

log
U tð Þ

1{U tð Þ

� �
~w2F t{1ð Þ{w3: ð4Þ

We then transformed in a linear regression form:

y1 tð Þ~Q1 tð Þw1 ð5Þ

y2 tð Þ~Q2 tð Þw2zQ3 tð Þw3, ð6Þ

where (5) and (6) correspond to (3) and (4) respectively. y1 tð Þ and

y2 tð Þ are the dependent (target) variables, representing the left-

hand side of (3) and (4) respectively, and Q1, Q2, and Q3 are basis

functions (Q1~U t{1ð Þ{F t{1ð Þ, Q2 = F t{1ð Þ, and Q3~{1).

Note that we can decouple y1 and y2 for the purpose of model

parameter estimation; hence, we use (6) as an example in the

following discussion.

Using a vector form, Equation (6) gives the regression model

given model parameters:

y~Ww, ð7Þ

where y~ y2 1ð Þ y2 2ð Þ . . . y2 Lð Þ½ �T, where L is the number of

measurements, w~½w2 w3�T, and W is the design matrix

W~

Q2 1ð Þ Q3 1ð Þ
..
. ..

.

Q2 Lð Þ Q3 Lð Þ

2
664

3
775:

We need two consecutive measurements to estimate our regression

model: Therefore L = 721 = 6 for the immediate group, and

L = 421 for the delayed group. Hence W is L6M matrix, where M

is the number of model parameters (i.e., M = 2 for arm use model

(2)).

Measurements from the EXCITE clinical data contain noise,

and we assume that this noise is Gaussian added to the linear

regression model y. The data distribution z is thus assumed to be

drawn independently from Gaussian distribution with mean

y~Ww and variance b{1:

z*N zjWw,b{1
� �

~
b

2p

� �L
2
exp({

b

2
z{Wwð ÞT(z{Ww)), ð8Þ

where b is a data accuracy hyper-parameter (inverse of variance).

In Bayesian regression, we treat model parameters as a probability

distribution. We assume that the prior distribution of model

parameters is also independent identically distributed Gaussian.

p wjm0,a{1
� �

~
a

2p

� 	M
2

exp({
a

2
w{m0ð ÞT(w{m0)), ð9Þ

where m0 is the mean of model parameter, and a the model

accuracy hyper-parameter.

The goal of Bayesian regression is to maximize the Bayesian

model evidence, which is the probability of data distribution, given

the model parameters: p zja,b,m0ð Þ. Using the sum rule and

product rule of probability from (8) and (9), and taking the

logarithm, we obtain the log of the model evidence (see [31] page

167 for derivation for 0 centered priors, and Supplementary

material: Text S1):

log p zja,b,m0ð Þ~ M

2
log az

L

2
log b{

a

2
m{m0k k2

{
b

2
z{Wmk k2

{
1

2
logjAj{ L

2
log 2pð Þ

ð10Þ

where A~aIM|MzbWTW, and ð11Þ

m~A{1 am0zbWTz
� �

, ð12Þ

Arm Function and Use in Humans Post-stroke
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where |A| is the determinant of A, and :k k is the Euclidean norm.

As shown from Equation (S24) to (S26) in Supplementary Material

Text S1, m is actually the mean of the posterior distribution of the

model parameters, and A is the accuracy (inverse of covariance) of

the distribution. Note how m reduces to the frequentist regression

solution for a~0.

Equation (10) illustrates how Bayesian regression implements

a trade-off between data fitting and model complexity. With

larger M (more model parameters), Wm can better approximate

the data distribution z, and the error between z and Wm,

z{Wmk k2
decreases. On the other hand, because the size M of

vector m also scales up with larger number of parameters, the

regularization term m{m0k k2
may increase. Similar trade-offs

are found in (11) and (12) in the form of weighted average

between prior knowledge and data. Note that, since the design

matrix W utilizes all data points, we do not need to spare testing

data points for evaluating model fit, unlike cross-validation (e.g.,

leave-one-out).

We maximized the model evidence in terms of the two hyper-

parameters a, which controls model parameter distribution (9),

and b, which controls data distribution (8). Note that m (11) and A
(12) are also functions of a and b. We used an iterative method

[31], where we fixed m and A in the first step and optimized a and

b, and update them with the new a and b in the second step. We

provide here a summary of the algorithm to compute the model

evidence (see Supplementary material: Text S1 for details).

1. Set m0, and initial a and b

2. Compute a and b using Equation (S21) and (S23) in Text S1

2:1 a/
c

m{m0k k2

2:2 b/
L{c

z{Wmk k2

where c~
PM
i~1

li

azli

and li is i-th eigenvalue of bWTW

3. Update m and A using (11) and (12)

3:1 A/aIM|MzbWTW

3:2 m/A{1 am0zbWTz
� �

4. Repeat 2 and 3 until convergence

5. Set a�/a and b�/b, and compute model evidence (10), and

posterior model parameter distribution, Equation (S24) in Text

S1

Model comparison, immediate group
Our hypothesis of ‘‘Use it and improve it, or lose it’’ is

encapsulated in our reference model of arm function, which

assumes that current arm F(t) function depends on a weighted

sum of previous arm function F(t21) and previous arm use

U(t21). We compared this model with alternative hypotheses in

which F(t) does not depend on use, but only on previous arm

function F(t21) (i.e. use has no effect on function), or

conversely, in which F(t) depends solely on previous use

U(t21), not on previous function. As noted above, our

hypothesis is not specific to the exact model given in Equation

(1), but other models containing a linear combination of F(t21)

and U(t21) also fall under ‘‘Use it and improve it or lose it’’.

Thus, we also considered more complex linear stable models

with 2 and 3 parameters. Table 1 shows the 7 possible models

of function that we considered, with the bold model our

‘‘reference model’’.

Our reference model of arm use assumes that current use of the

affected arm U(t) depends via a sigmoidal function on previous

function of the affected arm F(t21) and a constant representing

the function of the non-affected arm. We compared this model

with alternative models in which U(t) depends linearly on previous

arm function F(t21). In simulations of our previous neuro-

computational model, the values for each arm were updated based

on reward prediction errors at a much higher rate than the update

of performance. Since our time step in the current model is 4

months, it is thus possible that the decisions to use the arm are

updated much faster than performance. We therefore also

compared the model of Equation (2) to models in which the

current arm use U(t) depends on current arm function F(t), either

via a sigmoid or linearly. Table 2 shows the 4 possible models of

use that we considered, with the bold model our ‘‘reference

model’’.

Initial means of the parameter distributions were taken as the

values found with maximum likelihood regression of all entries of

the immediate group, except the weighted average model (bold in

Table 1) with initial mean value of w1 at 1. We reflected our

emphasis on data and lack of prior knowledge by setting the ratio

of the initial values of the prior accuracy a0 and the data accuracy

b0 to a0=b0 = 1023 and choosing almost flat priors with

a0 = 10211, for both the function and use models. Note that these

initial parameter values were taken equal for all subjects. We

verified in simulations that when a0,10211, the results of model

comparison are qualitatively the same as that presented. We set

b0 = 1028 for model fitting. We also performed a sensitivity

analysis (i.e. a systematic variation) on the initial data accuracy b0

(See Supplementary Figure S1).

The Bayesian model evidence for each model was used to

compare models by computing the Bayes factor (BF), which is the

ratio of model evidence probability of competitive models to the

reference model [32]. Thus, given the model evidence probability

pr zja,b,m0ð Þ for our reference model and the model evidence

probability for a competitive model pc zja,b,m0ð Þ, the Bayes factor

is given by BF = pr zja,b,m0ð Þ/pc zja,b,m0ð Þ. The Bayes factor has a

role similar to the p-value in frequentist statistics and is used to

accept or reject the hypothesis [33]. If BF,1, there is negative

evidence for the hypothesis, and the hypothesis should be rejected.

If 1#BF,3, the evidence is ‘‘barely worth mentioning’’. If

3#BF,10, there is then substantial evidence for the hypothesis,

and BF = 3 is a threshold for accepting the hypothesis similar to

p = 0.05 in classical statistics. Then for BF.10, 30, and 100 there

is strong, very strong, and decisive evidence for the hypothesis,

respectively.

To compare the models over groups of subjects, a ‘‘group Bayes

factor’’ can be computed by multiplying the individual Bayes

factors [34]. However, such group Bayes factor is misleading in the

presence of the strong outliers, which are present in our analysis

due to poor convergence of the models for a number of individuals

(as a result of our very limited data set). Therefore, we evaluated

the number of comparisons for which BF.3 for either of the

compared models to compute the ‘‘positive evidence ratio’’, which

serves as a measure of which model is optimal at the group level

[34]. Positive evidence ratios read as x:y, where x is the number of

Arm Function and Use in Humans Post-stroke
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subject for which the Bayes factor of the reference model is greater

than 3, and y the number of subjects for which the Bayes factor of

the alternative model is greater than 3. For N2(x+y) subjects, no

conclusion can be drawn.

Model fit before and after therapy, delayed group
For this analysis, we hypothesized that motor training in the

EXCITE trial, besides improving function and use, also had a

‘‘meta-learning’’ effect (e.g., [35,36]). According to this hypothesis,

CIMT has an effect not only on arm function and use, but also on

the relationships between function and use. In our model, such

meta-learning would translate to different values of the parameters

w1, w2, and w3 before and after therapy. In particular, we

hypothesized that training increases the confidence to use the arm

for a specific level of function, in which the model translates in an

increase in the parameter w2. Using data from the delayed group

in the EXCITE trial (N = 45), we used Bayesian regression for our

reference model of Equation (1) and (2), and we compared the

means of the parameters for each subject before and after therapy.

The initial values of the hyper-parameters were the same as of the

immediate group analysis.

Results

Model selection and fit analyses
We first computed the Bayes factors to test the two hypotheses

encapsulated in Equations (1) and (2). Then we computed the

positive evidence ratio for each model from the individual Bayes

factors. Table 3 shows that our reference arm function model

weighting previous arm function and previous use with a single

parameter is strongly preferred over all other models with 2 or 3

parameters. This is presumably because of the sparsity of data in

our database. Our reference arm function model is preferred over

the model that depends only on previous arm function for 27

subjects out of 48 subjects, For 1 subject this alternative model is

preferred, and for 20 subjects, no conclusion can be drawn.

Similarly, our reference arm function model is preferred over the

model that depends only on previous arm use for 25 subjects. For

5 subjects this alternative model is preferred, and for 18 subjects,

no conclusion can be drawn.

Table 4 shows that our reference use model with sigmoidal

model of arm is strongly preferred over the two linear models.

However, our reference model is not preferred over an alternative

model in which arm use depends on current function; there is

indeed a small advantage to the model that computes use based on

current function. Figure 2 shows examples of fits with our model

for both arm function and use, using the mean parameters for

three subjects in the immediate group. In Figure 2A, both function

and use continue to increase after therapy (mean model

parameters w1 = 0.76, w2 = 2.98 and w3 = 0.42). In Figure 2B,

arm use initially largely decreases post-therapy despite relatively

high function. This subject thus exhibits ‘‘learned non-use’’ (Mean

model parameters w1 = 0.14, w2 = 3.36 and w3 = 3.03). In

Figure 2C, conversely, arm use increases after therapy, while

function is relatively high. Because arm function slightly decreases

in the months following therapy, so does arm use, which reaches

immediately post-therapy levels after 2 years (mean model

parameters w1 = 0.19, w2 = 3.48 and w3 = 1.89). These figures

illustrates the dynamic, nonlinear nature of arm function and use

post-therapy, and how our model adequately captures these

dynamical interactions and provide a reasonably good fit to the

data, although the use model appears to better fit the data than the

function model, and with better fit soon after therapy.

To systematically evaluate the goodness of fit, we trained the

model on 6 of the 7 data points available in the immediate group

and compared the prediction of the model to the actual data point

for testing (thus performing a leave-one-out model fit). Note that

we kept the first and the 7th point, since we used them as an initial

and final value of our model. Table 5A shows the average absolute

errors of prediction among subjects of the immediate group. The

average absolute errors of all 2nd to 6th leave-one-out prediction

errors were 0.16 for arm function and 0.091 for arm use in the

range between 0 and 1. The models thus reasonably fit the data,

especially in the first year after therapy, although the prediction

errors of the use model are lower than those of the function model

overall (p,0.0001, t-test). As a comparison, the average absolute

errors of randomized models were 0.22 for arm function and 0.26

for arm use (Table 5B). Here, the randomized model generates

predictions points from randomly selected subject at the

corresponding time step. A repeated measure ANOVA confirmed

that mean prediction errors of the proposed arm function model

are smaller overall than those of the randomized arm function

model (p = 0.01), although the prediction errors in the proposed

model increase with time (model6time interactions: p,0.0001.

One way repeated ANOVAs, effect of time, proposed function

model: p,0.0001, randomized function model p.0.1). Similarly,

the prediction errors of the proposed arm use model are smaller

overall than those of the randomized arm use model overall

(p,0.001, no model6time interactions; p.0.5).

Model parameter analysis
Histograms of the mean parameters w1, w2, and w3 for the

models of Equation (1) and (2) are shown in Figure 3. Because of

Table 2. Model comparison candidates for predicting arm
use U(t).

Regressors Models

F(t) w2F(t)+w3

F(t21) w2F(t21)+w3

F(t) 1/(1+exp[2(w2 F(t)2w3)])

F(t21) 1/(1+exp[2(w2 F(t21)2w3)])

doi:10.1371/journal.pcbi.1002343.t002

Table 1. Model comparison candidates for predicting arm function F(t).

Regressors 1 parameter model 2 parameters model 3parameters model

F(t21) waF(t21) waF(t21)+wc –

U(t21) wbU(t21) wbU(t21)+wc –

F(t21) and U(t21) (12w1)F(t21)+w1U(t21) waF(t21)+wbU(t21) wa F(t21)+wbU(t21)+wc

doi:10.1371/journal.pcbi.1002343.t001
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the very few and noisy data points, Bayesian regression did not

exhibit adequate convergence of the model parameter distribu-

tions for all subjects; that is, the parameter distributions were

relatively flat for some subjects. In a first approximation, we

defined good convergence as follows: the standard deviation of the

final parameter distributions after convergence should be less than

one standard deviation of the distributions of the parameters

means. This criterion resulted in the following cut-off standard

deviations: 0.316 for w1; 6.38 for w2 , and 3.67 for w3. As shown in

Figure 3, all negative mean parameters w1 were removed after

applying this criterion. Thus, for all 27 subjects with good

convergence of the Bayesian regression for the function model, the

mean parameter w1 was positive and in the range [0, 1], with

median 0.64. This indicates a positive effect of arm use on the

previous time step upon arm function at the next time step.

Similarly, mean parameters w2 and w3 with large absolute

values were removed by the cut-off procedure. The median of the

mean of w2 for the 32 subjects with good convergence was 2.20.

The median of the mean of w3 for the 33 subjects with good

convergence was 1.40. Positive parameters w2 indicate that arm

function has a positive effect on arm use, as hypothesized. Positive

parameter w3 indicates competition between function of the

affected limb and (constant) function of the non-affected limb, as

predicted by models of decision-making based on comparisons of

‘‘values’’. Note that we verified with surrogate data derived from

the model that our Bayesian regression method can indeed retrieve

the parameters of the original model (see Supplementary material:

Text S2 and Figure S2).

Effects of therapy on model parameters
We then examined whether CIMT had an effect on the model

parameters in the delayed group by comparing before and after

therapy models. Before-therapy model parameters were trained

with arm function and use in the year before therapy. After-

therapy model parameters were trained with arm function and use

in the year after the therapy period. The standard deviation cut-off

values were the same as above, and only parameters with good

convergence before and after therapy were analyzed.

Among the three model parameter means, only the means of w2

was significantly different between before and after and therapy

(Figure 4B, mean of w2 before therapy 2.9560.32; after-therapy

4.5860.49; p = 0.041; N = 22; 2-tailed pair t-test). There was no

difference in w1 (Figure 4A, before-therapy 0.75960.044; after-

therapy 0.82560.036; p = 0.55; N = 27; 2-tailed pair t-test) and in

w3 (Figure 4C, before-therapy 2.2160.16; after-therapy

2.1060.20; with p = 0.54, N = 28, 2-tailed pair t-test).

Model simulations
Our previous neuro-computational model of stroke recovery

[19] exhibited non-linear and bi-stable behavior of stroke

recovery: the model predicted that if natural recovery, motor

training or both, brings performance above a certain threshold,

training can be stopped, as the repeated spontaneous arm use

provides a form of motor learning that further bootstraps

performance and spontaneous use.

Here, we simulated our model made of Equation (1) and (2) to

study whether the simplified model of the present study also

contained such threshold and bi-stable behavior, and to study the

effect of the increase of the ‘‘confidence’’ parameter w2 from

before to after therapy, with the simplifying assumptions that

therapy does not increase function and use. For this purposes

we performed a parameter sensitivity analysis using the continu-

ation and bifurcation toolbox Matcont (http://sourceforge.net/

projects/matcont/).

The sensitivity analysis of Figure 5B shows that for w3#3 and

low values of w2, asymptotic function and use are low. However,

by increasing w2, therapy can ‘‘move’’ the participants from one

low attractor to a high attractor region, exhibiting convergence to

different arm function values, as shown in simulation results of

Figure 5 A and B. Thus, if therapy increases the confidence to use

the arm, the greater spontaneous arm use will lead to greater

function, in a virtuous cycle (Figure 5A, w2 = 4 or w2 = 5). In

contrast, for a low value of the parameter w2, the simulated patient

is in a vicious cycle and use decreases (as in Figure 5A for w2 = 3).

Because of competition between function or each arm in

computing use, high values of w3 lead to greater non-use

compared to smaller values of w3 (See left side of Figure 5B).

This is illustrated by comparing arm use for the two subjects in

Figure 2B and 2C. The main difference in parameters between the

subjects of Figure 2B and 2C is the value of w3. Because w3 is

relatively large in 2B, arm use decreases to low level; in contrast

use stays relatively high in 2C. However, for w3.3, a sufficient

increase in the parameter w2 will bring the system in a truly bi-

stable mode. Depending on the initial condition (i.e. values of F(t)

and U(t) just after therapy), function and use can either remain

near low values or near high values delimited by the low Limit

Point (LP) and high LP in the Figure 5B. Thus, the model exhibits

a ‘‘threshold’’ in function, as we proposed in our previous work

[19,20].

Table 3. Positive Evidence Ratio for function model (48 subjects, immediate group).

Regressors 1 parameter model 2 parameters model 3parameters model

F(t21) 27:1 46:1 –

U(t21) 25:5 45:2 –

F(t21) and U(t21) w1U(t21)+(12w1)F(t21) 47:1 47:1

The models correspond to the models of Table 1.
doi:10.1371/journal.pcbi.1002343.t003

Table 4. Positive Evidence Ratio for use model (48 subjects,
immediate group).

Regressors Models

F(t) (linear) 38:2

F(t21) (linear) 38:2

F(t) (sigmoidal) 14:19

F(t21) (sigmoidal) 1/(1+exp[2(w2 F(t21)2w3)])

The models correspond to the models of Table 2.
doi:10.1371/journal.pcbi.1002343.t004
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Discussion

Stroke recovery is, by definition, a time-varying process.

Although our dynamical ‘‘state-space’’ model naturally accounts

for the time-varying nature of stroke recovery, this paper

represents, to our knowledge, the first effort to use approach to

quantitatively model recovery of individuals post-stroke. The

stroke recovery model proposed here depicts a time-evolving

process with interactions between arm function and use. The

model, which is composed of two sub-models, one that updates

arm function (Equation (1)) and the other that updates arm use

(Equation (2)), has only three free parameters, which were

estimated with repeated measurements of upper extremity

function and use obtained in a phase III randomized controlled

clinical trial, the EXCITE trial.

For a majority of the participants in the immediate group of the

EXCITE trial that we studied, arm function depends both on

prior function and prior use. Presumably because of the very

limited amount of data that penalizes models with more

parameters, the preferred arm function model performs a

weighted average of previous arm function and use with a single

parameter. This model is preferred for 27 subjects out of 48 over a

competitive model in which arm function is not dependent on

previous use, and is preferred for 25 subjects out of 48 over a

model in which function is solely based on use. The alternative

models are preferred for 1 and 5 subjects respectively; for the

remainder of the subjects, no conclusion can be drawn.

Furthermore, parameter analysis showed a positive effect of arm

use at the previous time step upon arm function at the current time

step, thus truly capturing the phenomenon of ‘‘Use it and improve

it, or lose it’’ for a majority of the participants we studied.

Although this phenomenon may be taken for granted by stroke

rehabilitation specialists, this is, to our knowledge, the first

systematic demonstration of the effect of the upper extremity use

on changes in function and vice-versa in stroke recovery in

individual subjects (in our previous study [20] we only study this

effect of function immediately following therapy upon future use at

the group level).

We further showed that for the large majority of the participants

we studied, models of spontaneous arm use based on a sigmoidal

dependency of arm function are preferred over linear models. This

result indicates that the non-linear dependency of use on function

has a strong effect on the fit of the use data. Furthermore,

parameter analysis showed that arm function has a positive effect

on arm use with competition between function of the affected limb

and (constant) function of the non-affected limb, as predicted by

models of decision-making based on comparisons of ‘‘values’’ e.g.

[37]. Time has a lesser effect: Our reference model of Equation (2)

Table 5. Prediction errors at different time points (leave-one-out points) after therapy.

A: Prediction error of proposed model

Leave-one-out point 2 (4 months) 3 (8 months) 4 (12 months) 5 (16 months) 6 (20 months) Ave.

Average absolute error (Arm function) 0.097 0.12 0.18 0.18 0.19 0.16

Average absolute error (Arm use) 0.055 0.080 0.088 0.12 0.12 0.091

B: Prediction error of randomized model

Leave-one-out point 2 (4 months) 3 (8 months) 4 (12 months) 5 (16 months) 6 (20 months) Ave.

Average absolute error (Arm function) 0.23 0.22 0.21 0.22 0.21 0.22

Average absolute error (Arm use) 0.25 0.22 0.26 0.27 0.31 0.26

doi:10.1371/journal.pcbi.1002343.t005

Figure 2. Examples of model fit for upper extremity function and use over 24 months post therapy for three subjects in the
immediate group using the model of Equation (1) and (2) in the main text (and corresponding equations in bold fonts in Table 1
and 2). The blue lines show the actual data. The red lines are generated by the model with the mean model parameters, trained with 7 data points.
(A) Both arm function and use improve (mean model parameters w1 = 0.76, w2 = 2.98 and w3 = 0.42) (B) Arm function is more or less constant, while
arm use shows ‘‘non-use’’ (mean model parameters w1 = 0.14, w2 = 3.36 and w3 = 3.03). (C) Arm function slightly decreases, while arm use rises after 4
month and keeps the level (mean model parameters w1 = 0.19, w2 = 3.48 and w3 = 1.88). See how the model fit is in general good for use over the 24
months and for function in the first year but then is getting worse for function in the second year (see Table 3 and 4 for a systematic evaluation of
model fit).
doi:10.1371/journal.pcbi.1002343.g002
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in which use depends on previous function F(t21)) is only

preferred for 14 subjects over a model in which use depends on

current function F(t)). Contrarily this alternative model is preferred

for 19 subjects over the reference model (no conclusion can be

drawn for the remainder 15 subjects). This inconclusive effect of

time on arm use suggests that update of the arm choice

(presumably via the learning of ‘‘values’’) is fast compared to the

update of arm function.

Our previous neuro-computational model of stroke recovery

[19] exhibited bi-stable behavior of stroke recovery. Here, our

simpler data-driven model also exhibits a bi-stable behavior,

although for relatively large values of the parameters w2 and w3 of

the use model (see Figure 5B). However, even for lower value of

the parameters (around the mean of the estimated parameters)

therapy can, by increasing the parameter w2, ‘‘move’’ the

participants from one low attractor to a high attractor region

shown in simulation results of Figure 5A. This simulation of the

model made of Equation (1) and (2) illustrates the effect of the

increase of the ‘‘confidence’’ parameter w2 from before to after

therapy, with the simplifying assumptions that therapy does not

increase function and use. Simulations show that if therapy

increases confidence to use the arm, the greater spontaneous arm

use will lead to greater performance, in a virtuous cycle (Figure 5,

w2 = 4 or w2 = 5). In contrast, for a low value of the parameter, the

patient is in a vicious cycle and use decreases (as in Figure 5 for

w2 = 3). Unfortunately, because of the limited data set, the

sustainability of this increase in confidence in participants of the

EXCITE trial is unclear. Since the median w2 post-therapy in the

immediate group (2.20) is inferior to the median w2 post-therapy

in the delayed group (3.90) such increase may be relatively short-

lasting post-therapy.

In sum, our results suggest that learned non-use results, at least

in part, from three non-mutually exclusive factors: 1) a decrease in

function of the affected arm; 2) a relative increase in function of

the non-affected arm (if for instance stroke affects the right arm

and the right-hand dominant subject is learning how to use her left

arm); 3) reduced ‘‘confidence levels’’ in using the arm for a given

function (as a result of spilling a hot coffee on someone else for

instance). Since our study is only a model of changes in behavior,

we can only speculate on the causes of non-use at the neural level.

Reduced use may lead to contraction of motor cortical maps

leading to decreased performance and further reduced use [19];

contrarily forced use (i.e. practice) may lead to map expansion and

increase performance [7]. If such improvements in function

together with confidence levels are sufficient, then use of the

affected arm in daily activities may increase sufficiently such that

function will improve spontaneously, effectively reversing non-use,

as shown by our simulations in Figure 5. The median of w1 across

Figure 3. Histograms of the means of parameters w1, w2, and w3 of the model estimated with data of the immediate group in the
EXCITE trial. Blue and Red: subjects with all estimated mean parameters. Blue: subjects with mean parameters after application of convergence
criteria (see Results). The numbers N’s indicate the numbers of subjects with good convergence for each parameter. Note that for w1 , the means of all
parameters with good convergence are in the range [0; 1] supporting the ‘‘Use it and improve it, or lose it’’ model. Similarly, for w2, the means of most
parameters with good convergence are positive, supporting an actual influence of function on use (Refer to Equation (1) and (2) in Methods for the
role of these parameters in the model).
doi:10.1371/journal.pcbi.1002343.g003
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subjects with good convergence was 0.64; given a time step of 4

months, this is equivalent to a median time constant of forgetting

of 1/0.64*4 months = 6.25 months. This appears reasonable in

light of the long-lasting cortical reorganization after training, e.g.

[10].

Our model assumes the existence of independent measures of

arm function and use across individuals at specific times. So does

the MAL AOU reflect arm use that does not depend on arm

function? We found a moderate but significant correlation

(r = 0.58, p,0.0001) between the normalized MAL AOU vs.

WMFT at t = 0 for all 93 patients (48 in immediate and 43 in

delayed group). However, there is no correlation between arm

function and use for those 54 patients with medium to low function

(normalized WMFT,0.5, r = 0.10, p = 0.45). For this sub-group,

normalized MAL AOU ranges between 0 and 0.64. This indicates

that, within this sub-group, some patients have relatively high use

with low function, and vice-versa, and that function and use are

independent variables across subjects. Model comparisons for this

sub-group of subjects with medium to low function still largely

favor our hypothesized models over competitive models (See

Supplementary material: Text S3).

The results of the present study need to be replicated with to-be-

developed databases that contain dozens of repeated measure-

ments of upper extremity function and use before, during, and

after therapy. In particular, our model provides only ‘‘substantial’’

(in a Bayesian model comparison terminology) evidence for the

‘‘use and improve it or lose it’’ hypothesis for a majority but not for

all the EXCITE participants we studied. Because of the sparcity of

the data, the models did not fit the data in a satisfactory manner

for large subgroups of subjects, and no conclusion can be drawn

for these subjects. Furthermore, the predictions from our model,

quite accurate in the first year, became worse with time across

subjects (See Table 5). A possible interpretation of this result is that

the influence of function on use and vice versa is stronger soon

after therapy, but that this influence is reduced due to the myriad

of other un-modeled factors that influence use after stroke (the

patient could for instance go back to work, start to exercise, hire a

caregiver, etc., all of which could affect the rate of recovery). Thus,

our model is currently best viewed as a prototype against which

one can develop further time dependent models of stroke recovery.

Future models, based on a richer longitudinal data set of arm

function and use, including measurements just after the stroke, and

that include neural measurement variables such as lesion size,

location, excitability of the corticospinal tract etc., might better

characterize the time course of stroke recovery. Our assumptions

of two independent cortices, equal roles of each arm, and pure uni-

manual actions are also clear oversimplifications. Also, while

motor (re-) learning after stroke can be understood at least in part

as practice-dependent reduction of kinematic and dynamic

performance errors [38], no such error data were available in

our data set, and we therefore did not include a corresponding

error-based (supervised) learning term in this simplified model

(unlike in our previous model [19]). Instead, the present model

only includes a trivial form of unsupervised learning in the update

of arm function, and a degenerated form of reinforcement

learning, with ‘‘values’’ simply equal to functions. Finally, our

model cannot predict the time course of spontaneous recovery in

the acute phase post-stroke. Here again, more longitudinal data

points, including early after stroke, are needed for viable

extensions of the model.

Nonetheless, our model, although preliminary and despite its

important limitations, is a first step in the direction of the

Figure 4. Effects of therapy on mean model parameters for participants of the delayed group in the EXCITE trial. A. Effect on w1 . B.
Effect on w2 . C. Effect on w3 . Only the mean parameter w2 of equation 2 varies from before (Be) to after (Af) therapy. This parameter controls the
effect of function on use for the affected arm. The horizontal line in B indicates p,0.05.
doi:10.1371/journal.pcbi.1002343.g004
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development of an accurate recovery model that can predict the

time course of recovery post-stroke. Our long-term goal is to

validate and test a method based on such dynamical models to

compute the dose of arm and hand motor therapy for individual

patients and provide treating therapists with such a method to be

used in the clinic. A well-validated model of upper extremity

recovery that generates accurate predictions of long-term use and

performance, and the confidence intervals of the predictions, could

be highly valuable because the clinician, patient, or provider (if

applicable) will be able to make informed decisions about

treatment and potentially determine the critical dose of motor

therapy for an individual patient. If for instance the model predicts

that no amount of recovery can increase use, rehabilitation may be

in ‘‘vain’’, and compensatory strategy should be emphasized. On

Figure 5. Computer simulations of arm function showing dependence on model parameters. A. Simulations of the effect on use after
hypothetical changes in the confidence parameter w2 as a result of therapy. Initial parameters values: w1 = 0.6, w2 = 3, w3 = 3. For simplicity, we
assumed here that therapy has only an effect on the parameter w2 and not on use and performance (which it did in actual participants of the EXCITE
trial [3]). The increase in parameter w2 from before to after therapy parallels the increase in this parameter in the delayed group of the EXCITE trial
(see Figure 4). B. Parameter sensitivity analysis showing the asymptotic value of arm function F as a function of parameter w2 for a number of values
of w3 . LP: limit point. The line labeled w3 = 3 is generated by the same model as in A. For values of w3.3 the system behavior exhibits a non-stable
range between the two limit points. For w3 = 3.5 and w2 = 5 for instance, arm function F converges to either a low or a high value.
doi:10.1371/journal.pcbi.1002343.g005
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the other hand, if therapy is predicted to be effective, a well-

validated and accurate model could be used to determine

minimally effective dose of therapy to maximize the benefit/cost

ratio of therapy.

Supporting Information

Figure S1 Sensitivity analysis of the initial value of the data

accuracy bo for model of arm function (A), and model of arm use

(B). For this analysis, the group median of the log evidence

probability among all subjects was used to represent each model

performance; we then compared the model by computing a Bayes

factor with the group median evidence probabilities. The x axis is

the range of b0 in the power of 10 and y axis is the group median

of log Bayes factor for each model. Our reference model is

Equation (1) for arm function, and Equation (2) for arm use; see

the Table 1 in the main text for the other model entries. We varied

bo (1028
ƒb0ƒ1023), with fixed a= 10211. The Bayes factor

BF = 3 is shown by the black dashed lines in log scale. A:

Sensitivity analysis of bo for arm function model. The bluish color

lines correspond to the models of the 1st row of table 1, which are

regression models with F(t21) regressor. The light blue color line

shows a model with a single parameter, and the dark blue color

line shows a model with two parameters. Similarly, the grayish

color lines correspond to the models of the 2nd row of Table 1 with

regressor U(t21). The reddish lines correspond to the models of

the 3rd row (with regressor F(t21) and U(t21)). The darker lines

have the more number of model parameters. This graph shows

that our reference model outperforms the others, although the

differences with some models are barely worth mentioning in a

small range. B: Sensitivity analysis of bo for arm use model. The

bluish color lines correspond to the linear regression models. Light

blue is with regressor F(t), and dark blue with regressor F(t21).

The reddish color lines correspond to the sigmoidal regression

models with regressor F(t) (light red) and with regressor F(t21)

(dark red). This figure shows that for all b0,1021, the two

sigmoidal arm use model largely outperform the linear models,

with little differences between the sigmoidal models on one hand,

and the linear models on the other hand.

(DOCX)

Figure S2 Histograms of model parameter derived from

surrogate data as described in Text S2. These histograms of the

model parameters trained by surrogate data sets (2700 datasets for

arm function and 2900 datasets for arm use) compare favorably

with those derived from actual data in Figure 3. For more detail of

surrogate data set, please refer to Text S2.

(DOCX)

Table S1 Positive evidence ratio of the simulation as described

in Text S2. This table shows strong evidence that our proposed

model performs better than the others on the surrogate data set

(2700 datasets for arm function and 2900 datasets for arm use).

For more detail of surrogate data set, please refer to Text S2.

(DOCX)

Table S2 A Positive evidence ratio of arm function for subjects

with medium to low arm functions, as described in Text S3. This

table shows model comparison results of arm function for subjects

with medium to low arm function (normalized WMFT,0.5,

N = 22). Model comparisons for this sub-group of subjects with

medium to low function still largely favor our hypothesized models

over competitive models.

(DOCX)

Text S1 Bayesian regression and model parameter optimization.

Detailed derivation for Bayesian regression and optimization with

respect to model parameters are provided.

(DOCX)

Text S2 Simulations with surrogate data. Numerical simulations

are conducted to show that our inference procedure is able to

identify which model the data came from reliably (i.e., that the

model comparison works), and to recover the parameters of the

true underlying model well (i.e., that the model fitting works).

(DOCX)

Text S3 Model comparison for subjects with medium and low

WMFT scores.

(DOCX)
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