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Abstract

Substitutions of individual amino acids in proteins may be under very different evolutionary restraints depending on their
structural and functional roles. The Environment Specific Substitution Table (ESST) describes the pattern of substitutions in
terms of amino acid location within elements of secondary structure, solvent accessibility, and the existence of hydrogen
bonds between side chains and neighbouring amino acid residues. Clearly amino acids that have very different local
environments in their functional state compared to those in the protein analysed will give rise to inconsistencies in the
calculation of amino acid substitution tables. Here, we describe how the calculation of ESSTs can be improved by discarding
the functional residues from the calculation of substitution tables. Four categories of functions are examined in this study:
protein–protein interactions, protein–nucleic acid interactions, protein–ligand interactions, and catalytic activity of enzymes.
Their contributions to residue conservation are measured and investigated. We test our new ESSTs using the program
CRESCENDO, designed to predict functional residues by exploiting knowledge of amino acid substitutions, and compare the
benchmark results with proteins whose functions have been defined experimentally. The new methodology increases the Z-
score by 98% at the active site residues and finds 16% more active sites compared with the old ESST. We also find that
discarding amino acids responsible for protein–protein interactions helps in the prediction of those residues although they
are not as conserved as the residues of active sites. Our methodology can make the substitution tables better reflect and
describe the substitution patterns of amino acids that are under structural restraints only.
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Introduction

Proteins existing in living organisms have been selected through

the process of evolution. However, much of the amino acid

variation between orthologues appears to be selectively neutral [1]

as far as the whole organism is concerned and accepted amino acid

substitutions result in equal fitness. It has been long understood

that the rate and nature of accepted mutation or substitution is

different for the 20 amino acids in a protein [2–5]. Indeed the

different substitution rates and patterns for the 20 amino acids

were first quantified by Margaret Dayhoff as the PAM (Percentile

Accepted Mutation) matrix in 1970s [2], which measures the point

mutation for every 100 amino acids. The methodology was further

developed by Henikoff et al. [3] to reflect more divergent

relationships of protein sequences. The BLOSUM62 is now

recognized as a standard measure of substitution rate for the 20

amino acids in the sequence comparisons. Jones et al. [4]

introduced a fast and automated approach based on a maximum

parsimony counting method and Whelan et al. [5] applied a

maximum-likelihood method to estimate the rate for amino acid

replacement. All these substitution models are based on the

sequence alignments of closely related protein families.

Orthologous protein families (or superfamilies) are assumed to

be diverged from a common ancestor by accepting mutations that

are selectively neutral. The rate of evolution [1] is assumed to be

constant over evolutionary time [6,7] and so evolutionary

distances can be measured by analysing the substitutions of amino

acids. The degree of conservation and the nature of substitutions

of amino acids will be under many evolutionary restraints. One of

those is dependent on the need to retain the protein tertiary

structure and usually expressed as a tendency to maintain the local

structural environments of individual amino acids [8].

The Environment Specific Substitution Table (ESST) is a

substitution table that considers structural restraints in the

calculation of substitution patterns. Overington et al. [9,10] first

calculated ESSTs from a set of homologous protein families whose

three-dimensional structures were available. The rationale behind

ESSTs is that the acceptance of substitution of an amino acid in an

orthologous family is subject to its local tertiary environment. The

local structural environments of amino acids include (1) main-

chain conformation and secondary structure, (2) solvent accessi-

bility, and (3) hydrogen bonding between side-chain and main-

chain. 64 ESSTs can be derived from a combination of structural

features; four from secondary structures (a-helix, b-strand, coil and

residue with positive Q main-chain torsion angle), two from solvent

accessibility (accessible and inaccessible), and eight (23) from

hydrogen bonds to main-chain carbonyl or amide or to another

side-chain. These combinations of structural features restrict
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possible substitutions of an amino acid and give rise to distinct

patterns of substitution.

The ESST was improved and updated by Shi et al. [11] in 2001

by the use of the following features: (1) a clustering scheme to

correct sampling bias, (2) a smoothing procedure to correct data

sparsity, (3) using only high resolution structures in the alignments

as a source of substitution matrices and (4) reduction of the bias

caused by non-structural restraints. The last feature was designed

to separate functional restraints from structural restraints when

generating ESSTs. Because ESSTs take into account only

structural environments, substitutions where the amino acids are

conserved for functional reasons should not be counted in the

calculation of matrices. Shi et al. took two kinds of functional

residues into account to eliminate non-structural restraints which

may cause a bias in the ESST. They were (1) residues involved in

domain-domain interactions and (2) those interacting with ligand.

Such residues were masked in the alignment files and were not

taken into account in the substitution counts. However, the

masking appeared to have very little impact on the performance of

FUGUE [11]. Chelliah et al. [12] further developed ESSTs by

introducing functional restraints, particularly in enzymes, on

amino acid substitutions as a new environment in addition to 64

structural environments. They measured the Euclidean distance

between every amino acid and the known functional residues and

compared the degree of conservation in terms of the proximity

with the functional residues. Their ESST, known as the function-

dependent ESST, showed improvements in sequence to structure

homology recognition.

Compared with traditional substitution tables (PAM, BLO-

SUM) derived from sequence information only, ESSTs were

shown to give more precise and discriminating measures of

substitution probabilities [13]. ESSTs have been shown to be

useful in applications to secondary structure prediction [13] and

sequence-structure homology recognition [14,15]. Recently,

CRESCENDO [8] has been successful in prediction of functional

residues by comparing the observed substitution patterns for

amino acids which are under both functional and structural

constrains with those that are predicted on the basis of structure

alone.

Here we investigate the impacts of various functional restraints

on the conservation of amino acids in three-dimensional

structures. The functional residues are divided into four categories.

They are residues involved in (1) protein–protein interaction, (2)

protein–nucleic acid interaction, (3) protein–ligand interaction,

and (4) catalytic reaction at enzyme active sites. Such residues will

be under greater pressure to be conserved throughout the

evolution process where they remain critically important to the

activity of protein and thus the selective advantage of the

organism. We measure the degree of functional residue conser-

vation by masking the locations in the alignment file and then

discarding them in the calculation of substitution probabilities.

The substitution models are compared with the non-masking

model which counts those functional residues in the calculation of

substitution probabilities. We measure relative contributions of

four categories of functional residues by making several masking

tables in combinatorial fashion. We test our substitution models by

performing computational experiments using CRESCENDO [8]

which is a program predicting functional residues from known

three-dimensional structures of proteins and which should be more

sensitive to the accuracy of the predicted substitution tables than

FUGUE [11]. We show that our new ESST can find 16% more

functional residues compared with the ESST of Shi et al. [11] for

the same test-set. The new ESST is different from previous ones in

that we cover a broader range of protein families, we take into

account more three-dimensional structures and we consider a

wider variety of functional residues which may bias amino acid

substitution patterns.

Results/Discussion

Locating Functional Residues in Three-Dimensional
Structures

Four categories of functional residues are considered in this

study (Table 1). The first category of functional residues comprises

catalytic residues of enzyme active sites, which are strongly

conserved in orthologous families and often across superfamilies.

CSA [16] and ‘‘ACT_SITE’’ records in UniProt [17] were used.

The Catalytic Site Atlas (CSA) is a database of enzyme active sites

and catalytic residues of enzymes whose 3D structures are

available. It provides two types of entries: (1) original hand-

annotated entries derived from the primary literature and (2)

entries homologous to one of the original entries by sequence

similarity. We took into account only the hand curated entries for

reasons of reliability. The second category comprised amino acids

involved in protein–protein interactions. Data concerning protein

interactions were retrieved from InterPare [18] which is a

database for interacting interfaces between protein domains.

InterPare uses SCOP [19] as a domain definition and detects

interacting domain pairs if there are at least five pairs of residues

which fall within 5 Å distance between two adjacent domains.

Residues interacting with nucleic acids comprise the third

category. BIPA (S. Lee, unpublished) and ‘‘DNA_BIND’’ records

in UniProt were used for this category. BIPA is a database for

protein–nucleic acid interactions, which defines the atomic

interactions using a distance threshold of 5 Å for van der Waals

contacts, and HBPLUS [20] default options for hydrogen bonds

and water mediated hydrogen bonds. The final category comprises

the ligand-binding residues. For this information, the following

Author Summary

Identification of residues responsible for a specific function
of a protein can provide clues about the mechanism of
action. Computational approaches to identifying function-
al residues have emerged as low-cost alternatives to
experimental methods by providing fast and large-scale
analyses. Moreover, the demand for such approaches is
increasing as more sequences become available from
genome sequencing projects. Here, we focus on the use of
CRESCENDO to identify functional residues in proteins of
known structure by comparing the amino acid substitu-
tions observed in a family of proteins with those predicted
on the basis of the protein structure. CRESCENDO uses
Environment Specific Substitution Tables, or ESSTs, which
define the way that accepted amino acid substitutions are
influenced by the local structural environment. We
describe how the calculation of ESSTs can be improved
by using only amino acids that are not involved in catalytic
activity, metal or ligand binding, nucleic acid or protein
interactions, and other molecular functions. Our new
substitution table can better describe the degree of amino
acids substitutions that are under structural restraints. It
should be of value in all applications of ESSTs, including
their use in sequence–structure homology recognition,
structure validation, and structure prediction in addition to
their use in the identification of functional residues. These
approaches should enhance the understanding of protein
structure and function, which is critically important in the
postgenomic era.

Functional Residues and The New ESST
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UniProt feature annotations were used: ‘‘BINDING’’, ‘‘METAL’’,

‘‘NP_BIND’’, and ‘‘CA_BIND’’ (see Table 1 for details).

The data from InterPare, CSA and BIPA are based on three-

dimensional structures of proteins. Hence, those functional

residues can be easily identified and mapped into PDB entries

using chain and residue numbers as unique identifiers. However,

as the functional feature annotations from UniProt are based on

sequence information, they are required to be mapped into their

corresponding PDB entries. For this purpose, we developed a

mapping protocol named ‘‘double-map’’ to align a sequence from

UniProt with that of PDB at the residue level. This mapping

protocol is critically important as we should find and mask the

exact functional residues from the structural alignment. The

detailed algorithm of double-map is described in Material and

Methods.

Structure Alignments and New Environment Specific
Substitution Table

The new Environment Specific Substitution Table (ESST) was

built based on the alignments of three-dimensional structures of

proteins which belong to the same protein family. We used PDB as

a source for the three-dimensional structures of proteins and

SCOP as the definition of protein families and domains. SCOP

version 1.71, which was used in this study, classifies 3004 families

and 75930 domains from 27599 PDB entries. For each SCOP

family, domains were clustered with sequence identity of 80% or

more, after pre-processing the structure data (see Materials and

Methods for details). Within a cluster defined in this way, a

structure having the best resolution was selected as a representa-

tive for the structure alignments. This process yielded 1187 SCOP

families having 5833 domains from 4309 PDB entries. These final

alignments, which are shown as ‘‘ALL’’ in the matrix type of

Table 2, were used as a source for the calculation of substitution

tables.

Table 2 shows 17 ESSTs and compares the numbers of

structures and the functional residues masked from the alignments.

There are four matrix types which differ in the alignment source;

OLD, ENZ, NOENZ and ALL. ‘‘OLD’’ is based on the 177

HOMSTRAD families, from which the ESST of Shi et al. [11] was

derived. ‘‘ENZ’’ is for the 221 enzyme-specific SCOP families

whose members contain at least one ‘‘ACT_SITE’’ residue or

CSA hand-curated entry. ‘‘NOENZ’’, the opposite of ‘‘ENZ’’,

does not contain any ‘‘ACT_SITE’’ annotations or CSA entries at

all. These two matrix types are prepared in order to assess the

effect of alignment sources in the substitution patterns of amino

acids. ‘‘ALL’’ is based on 1187 SCOP families described above.

SCOP families that belong to ENZ and NOENZ are subsets of

ALL type and do not overlap as they include different SCOP

families. Each matrix type is further divided into several subtypes

(A, B, C, and D) which differ in the masking sources of functional

residues (see Table 1). This is to investigate the effect of a specific

category of functional residues by comparing the differences in the

substitution patterns. For example, the effect of masking enzyme

active sites can be measured by calculating the difference between

two matrices D and X, because X does not mask any functional

residues whereas D masks only active site residues. We made

random-masking models (R), in order to assess the value of

masking models in benchmarking the new ESSTs. Our new

ESSTs mask more functional residues than the ESST (J) of Shi et

al., because our models take into account a broad range of

structural families and functional residues. ESSTs and structure

alignments in Table 2 are available from http://www-cryst.bioc.

cam.ac.uk/ESST.

Differences between Substitution Tables: The Effects of
Alignment Source and Masking

Our new ESSTs differ from those of Shi et al. [11] in the

source of structure alignments and the categories (and the

number) of functional residues removed from the alignments.

The differences between 17 substitution tables were measured

and investigated in terms of 1) the conservation probability of

amino acids (PCONS) and 2) the distance (DIST) between ESSTs

(see Materials and Methods). We first looked at the different

sources of structure alignments to assess their effects on the

amino acid conservation in the substitution table. For this

purpose, the non-masking models (X) from four alignment

sources (OLD, ENZ, NOENZ and ALL) were compared.

Figure 1A plots the PCONS of 21 amino acids (PCONS in Table

Table 1. Four Categories of Functional Residues Considered in this Study.

Functional Category Database
Feature
Identifier Description Masking Type URL

A B C D

Protein–protein
Interaction

InterPare N/A Database of domain–domain interaction interface ! ! http://interpare.net

Catalytic activity CSA N/A Database documenting enzyme active sites and
catalytic residues in enzymes of 3D structure

! ! ! http://www.ebi.ac.uk/thornton-srv/
databases/CSA/

UNIPROT ACT_SITE Amino acid(s) involved in the activity of an enzyme ! ! ! http://www.uniprot.org

Protein–nucleic acid
interaction

BIPA N/A Database of protein–nucleic acid interactions ! ! ! N/A

UNIPROT DNA_BIND Extent of a DNA-binding region ! ! ! http://www.uniprot.org

Protein–ligand
interaction

UNIPROT BINDING Binding site for any chemical group (co-enzyme,
prosthetic group, etc.)

! ! ! http://www.uniprot.org

CA_BIND Extent of a calcium-binding region ! ! !

NP_BIND Extent of a nucleotide phosphate-binding region ! ! !

METAL Binding site for a metal ion ! ! !

The versions of CSA [16] and UniProt [17] were 2.2.7 and 12.2, respectively. InterPare [18] was based on SCOP [19] version 1.71. The ‘‘Feature Identifier’’ is only for
UniProt annotations. (A: all masking, B: no protein–protein interaction, C: no active sites, D: active-site only.)
doi:10.1371/journal.pcbi.1000179.t001

Functional Residues and The New ESST
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S1). The conservation probability in the figure is averaged over

the diagonal entries (i.e. those amino acids which are not

substituted) from 64 ESSTs for each model. The overall degree

of conservation is 28.93, 29.10, 32.08, and 36.73% for NOENZ,

ALL, ENZ and OLD respectively (see Table S1 for details). All

the amino acids in OLD-type are more conserved than those of

ALL-type. We are aware that the number of structures and

families in the alignment may affect the PCONS. In addition, the

definition of protein families and domains of HOMSTRAD is

more stringent than those of SCOP. This will make the

sequences less divergent and the alignments more conserved.

The distance of substitution tables (Table S2) shows that

NOENZ and ENZ are the most distant (507) among four tables

and NOENZ and ALL are the closest. This is clear as NOENZ

and ENZ do not share nay families but all the families in

NOENZ belong to ALL. Figure 1A shows that amino acids R,

K, H and S of ENZ-type are more conserved than those from

NOENZ by 17, 14.2, 8.5 and 7%, respectively. However, C and

W from ENZ are less conserved than those of NOENZ by 24%

and 9%.

Figure 1B shows PCONS of amino acids from the same source

of alignment (ENZ) but having different masking types (A, B, C

and D), being compared with non-masking (X), random-masking

(R) and ESST of Shi et al. (OLD-J). Overall, the differences of

PCONS among the tables are less clear than the differences shown

in Figure 1A. In addition, Table S2 shows that the distances

(DIST) between tables of different masking types, but having the

same alignment source, are smaller than the distances of tables

from the different alignment sources. This explains why the

variations of PCONS and DIST between tables are more affected

by the source of alignments than the masking sources. However,

the relationship between PCONS (or DIST) and the number of

masking residues (%Mask) could be clearly understood by the

Spearman’s rank correlation between two (see Table 3). The

more we mask functional residues (%Mask) from the alignments,

the smaller PCONS gets and the greater the difference as

measured by DIST between the substitution tables. We found

that the correlation between PCONS and %Mask (20.3) was not

made more distinctive by removing residues involved in protein–

protein interactions. A-type masks 13.4% and 16.9% many more

residues than B-type in ENZ and ALL, respectively, where the

discrepancies lie in the protein–protein interactions as B does not

include InterPare as masking sources. However, the average

PCONS of A is bigger than B, although A masks much more

residues than B. This becomes much clearer on looking at the

PCONS of A and D where the difference is in residues annotated

as CSA and ACT_SITE. The PCONS of D is bigger than A,

although D masks many fewer residues than A. The result shows

that the residues involved in protein–protein (or domain-domain)

interactions are not as conserved as residues responsible for the

catalytic activity of enzymes. From PCONS of ENZ-D and ENZ-

X (Table S1), which differ in active sites as masking source, we

observe that active site residues J, D, H and E are most

conserved throughout enzyme families, where H is the most

abundant amino acid annotated as ACT_SITE or CSA followed

by D, E, and J.

Table 2. 17 ESSTs and the Number of Functional Residues Masked from the Alignments.

Alignment Source Number Matrix Type Masking Type
Masking
Residuesb %Maskc

Family Structure Residuea

HOMSTRAD 177 706 146,437 OLD X 0 0.00

J 2,048 1.40

B 4,601 3.14

R 4,601 3.14

SCOP 221 902 235,588 ENZ X 0 0.00

A 37,808 16.05

B 6,195 2.63

C 36,265 15.39

D 1,615 0.69

R 37,808 16.05

566 2,556 384,618 NOENZ X 0 0.00

1,187 5,833 1,096,027 ALL X 0 0.00

A 198,411 18.10

B 21,830 1.99

C 191,377 17.46

D 1,840 0.17

R 198,411 18.10

New ESSTs were based on the structure alignments of SCOP families [19]. ENZ is 221 enzyme-specific SCOP families which contain at least one ACT_SITE annotation of
UniProt [17] or hand-curated CSA entry [16]. NOENZ is the opposite of ENZ. NOENZ does not even contain the predicted entries of CSA. ALL is the final alignment
source obtained from the filtering process (see Materials and Methods). The masking sources of A, B, C, and D are in Table 1. X is for non-masking and R is for random-
masking. R is set as a control to see the significance of removing functional residues from the substitution models. The ESST of Shi et al. (OLD-J) [11] is based on 177
HOMSTRAD families which consist of 706 structures. It masks 2,048 resides which are involved in (1) interaction with heteroatoms and (2) domain–domain interaction.
OLD-X and OLD-R is non-masking and random-masking model of J.
aNumber of all residues.
bNumber of masking residues.
c%Mask = number of masking residues/number of all residues*100.
doi:10.1371/journal.pcbi.1000179.t002

Functional Residues and The New ESST
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Benchmarking Design
The performance of the new ESSTs was benchmarked by using

CRESCENDO [8], which is a program for predicting functional

residues given a three-dimensional structure. The rationale behind

CRESCENDO is to distinguish functional restraints from

structural restraints, both of which give rise to the conservation

of amino acids in the evolutionary process. For example, amino

acids in the core region of a protein are conserved or

conservatively varied in order to maintain an appropriate structure

(and ultimately function) whereas the catalytic triad of a protease,

such as CYS-HIS-ASP, is conserved to maintain the functional

properties of the enzyme family. CRESCENDO quantifies the

degree of amino acid conservation by measuring (1) the observed

value based on the alignment to which a queried protein sequence

belongs and (2) the expected value calculated by using ESST. Note

that the first value reflects both structural and functional restraints,

whereas the latter only reflects the structural restraints because

ESST, by definition, only takes structural environments into

account. The overall difference between the two is converted into

Z-score (or CRESCENDO score) which can represent extra

restraints—probably functional—on the process of evolution.

Hence, the more accurate the ESST, the less good the agreement

between the probabilities of conservation observed and that

predicted on the basis of the structure of the protein alone.

CRESCENDO can be a good benchmarking tool for the

evaluation of new ESSTs, because more functional residues are

masked than the old ESST. In addition, we can identify relative

contributions of four masking resources on the performance of

ESSTs. The benchmarking was designed to investigate the

following two questions. (1) How well can a new ESST identify

functional residues compared with the ESST of Shi et al. which is

used currently as the default by CRESCENDO? (2) If there is any

improvement, what makes the improvement?

From 221 enzyme-specific SCOP families for ENZ in Table 2,

one third (73 SCOP families) was selected as a test-set and the rest

were used to make benchmarking-ESSTs for ENZ. The test-set

consists of 339 SCOP domains having 81,410 residues in total.

Out of 81,410 residues, 602 residues are active sites (ACT_SITE

or CSA), 11,917 residues are annotated by InterPare, 194 residues

for nucleic-acid interactions and 1,348 residues are involved with

ligand interactions. They are the true functional residues that we

are trying to predict using CRESCENDO in order to evaluate the

performance of our new ESST. In our analysis we took only the

first cluster as the predicted residues. The performance of our new

ESST was compared with that of the old in terms of detecting

functional residues. Note that, for both ENZ and ALL types, the

73 SCOP families in the test-set were removed from the original

Figure 1. Probabilities of Residue Conservation for 21 Amino Acids. The probability of residue conservation (PCONS) was averaged for the
diagonal axis of substitution tables. (A) PCONS of three matrix-types (ENZ, NOENZ and ALL) are compared with the OLD. Non-masking models (X) were
used for three matrix-types and OLD to see the effect of alignment source. (ENZ: enzyme-specific 221 SCOP families, NONENZ: non-enzymes, ALL: all
the alignments, OLD: non-masking ESST of Shi et al. [11]. See Table 2 for details.) (B) Five masking tables and one non-masking table are compared
with the ESST of Shi et al. [11]. Masking and non-masking tables are from the 221 enzyme-specific alignments (ENZ). Masking sources of A, B, C, and D
are listed in Table 1. (R: random-masking, X: non-masking.)
doi:10.1371/journal.pcbi.1000179.g001

Table 3. Rank Correlation.

PCONS Z-Score SENS DIST %Mask

PCONS 1 20.85 20.93 20.38 20.30

Z-score 1 0.95 0.54 0.45

SENS 1 0.48 0.45

DIST 1 0.29

%Mask 1

Spearman’s rank correlations were calculated between the variables of PCONS, Z-
score, SENS, DIST, and %Mask. See Materials and Methods for the definition of
Spearman’s rank correlation. %Mask is from Table 2. Z-Score and SENS are from
Table 5. DIST is from the first row of Table S2. PCONS is from the bottom line of
Table S1. Pcons: probability of residue conservation, Z-score: average Z-score 602
active sites, SENS: sensitivity, DIST: distance between two ESSTs, %Mask:
percentage of discarded functional residues.
doi:10.1371/journal.pcbi.1000179.t003

Functional Residues and The New ESST
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ESST. The benchmarking ESSTs were renamed as At, Bt, Ct, Dt,

Rt, and Xt to distinguish them from the original new ESSTs which

are A, B, C, D, R, and X, respectively. This is in order to make

our benchmarking an unbiased blind test by removing sequences

in the test-set which might affect the benchmarking results. In the

case of OLD and NOENZ, the original masking types were used

in the benchmarking process as they do not contain SCOP families

in the test-sets. The test-sets and benchmark results are accessible

from http://www-cryst.bioc.cam.ac.uk/ESST.

Performance of New ESSTs in Detecting Functional
Residues

Table 4 shows the average Z-score of CRESCENDO for 602

active sites, 11,917 PPI residues, 194 residues for protein–nucleic

acid interactions (PNI) and 1348 residues responsible for

interaction with ligands (PLI) along with the P-values for the

predicted residues. The P-value demonstrates that the Z-score of

the predicted residues is different from the randomly selected

residues with a 0.09 level of significance. In other words, we can

say that the predicted residues of CRESCENDO are far from the

random within 0.09 error rate. The Z-scores for all the residues

(81,410) in the test-sets are compared with those of functional

residues predicted by CRESCENDO. The average Z-score of all

the residues is near zero, regardless of masking types, which means

there are no differences between the probabilities of residue

conservations observed in the alignments and those predicted by

ESST. However, the Z-scores for 602 active sites range between

0.48 and 0.93 depending on the matrix types and the masking

sources. This observation suggests there are extra restraints which

make the active sites more conserved in families of homologous

proteins. The Z-scores of 1,348 PLI (Protein–Ligand Interaction,

see Table 4) residues also imply that they are under extra restraints

other than structural reasons. On the other hand, the average Z-

scores for PPI and PNI residues are much smaller than that of 602

active sites. This may suggest that residues at protein–protein

interfaces are under less strong restraints than residues responsible

for the catalytic activity. However, there is strong evidence that

sub-regions in protein interfaces—so called hot spots—are

energetically more important and may be under stronger restraints

in evolution [21,22].

In Table 5, the performance of 17 ESSTs is compared in

terms of recognizing 602 active-site residues. SENS, SPEC and

COV were measured using the ratios of TP (true positive), FP

(false positive), FN (false negative) and TN (true negative) (see

Material and Methods for the definitions). The Z-score and

SENS are plotted together in Figure 2; they are highly correlated

having 0.95 Spearman’s rank correlation score (Table 3). As

shown in Figure 2, the average Z-scores and SENS of non-

masking (X) and random-masking (R) models are always less

than those from masking-models (A, B, C, and D) within the

same matrix type. This clearly shows that the position of masking

is significant and discarding the substitution counts of functional

residues from the substitution table can increase the performance

of CRESCENDO by making ESST less dependent on the

Table 4. Z-Score of CRESCENDO for Functional Residues.

Matrix Type Masking Type Average Z-Score Ratiog P-Valueh

Alla Predictedb Active Sitec PPId PNIe PLIf

OLD X 0.00063 1.396 0.480 0.0250 0.055 0.449 0.78 0.081

R 0.00067 1.402 0.483 0.0249 0.052 0.450 0.79 0.080

J 0.00062 1.410 0.612 0.0284 0.055 0.461 1.00 0.079

B 0.00065 1.420 0.734 0.0274 0.059 0.490 1.20 0.078

ENZ Xt 0.00060 1.387 0.635 0.0042 0.024 0.426 1.04 0.083

Rt 0.00060 1.387 0.652 0.0067 0.025 0.431 1.06 0.083

Ct 0.00063 1.413 0.734 0.0100 0.025 0.427 1.20 0.079

Dt 0.00062 1.399 0.772 0.0078 0.051 0.428 1.26 0.081

At 0.00063 1.423 0.858 0.0143 0.056 0.433 1.40 0.077

Bt 0.00064 1.411 0.870 0.0086 0.068 0.447 1.42 0.079

NOENZ X 0.00063 1.420 0.835 0.0046 0.099 0.508 1.36 0.078

ALL Xt 0.00063 1.414 0.696 0.0085 0.068 0.489 1.14 0.079

Rt 0.00064 1.415 0.771 0.0065 0.075 0.501 1.26 0.079

Dt 0.00066 1.412 0.798 0.0055 0.078 0.495 1.30 0.079

At 0.00064 1.433 0.860 0.0159 0.069 0.495 1.41 0.076

Ct 0.00067 1.436 0.893 0.0155 0.077 0.515 1.46 0.076

Bt 0.00068 1.435 0.936 0.0073 0.086 0.518 1.53 0.076

The average Z-scores are shown for four categories of functional residues in the test-sets: catalytic activity, protein–protein interactions, protein–nucleic acid
interactions, and protein–ligand interactions. The test-sets consist of 73 SCOP families, which is one third of SCOP families in ENZ (see Table 2).
aTotal number of residue from test-sets (81,410).
bResidue predicted by CRESCENDO.
cActive-site residues (602).
dProtein–protein interaction sites (11,917).
eProtein–nucleic acid interaction sites (194).
fProtein–ligand interaction sites (1,348).
gRatio of Z-score at the active site residues compared with that of OLD-J.
hP-value (right-tail) of the predicted residues.
doi:10.1371/journal.pcbi.1000179.t004
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Table 5. Performance of 17 ESSTs on Detecting Active Sites.

Matrix Type Masking Type TP FP FN TN SENS SPEC COV F-Measure

OLD X 168 4832 432 75976 0.28 0.9401 0.0336 0.060

R 168 4830 432 75978 0.28 0.9401 0.0336 0.060

J 189 4877 411 75931 0.315 0.9395 0.0373 0.067

B 219 4888 381 75920 0.365 0.9394 0.0429 0.077

ENZ Xt 221 4942 379 75866 0.3683 0.9387 0.0428 0.077

Rt 225 4968 375 75840 0.375 0.9384 0.0433 0.078

Ct 240 4870 360 75938 0.4 0.9396 0.047 0.084

Dt 248 4977 352 75831 0.4133 0.9383 0.0475 0.085

At 264 4805 336 76003 0.44 0.9404 0.0521 0.093

Bt 270 4984 330 75824 0.45 0.9382 0.0514 0.092

NOENZ X 273 5234 327 75574 0.455 0.9351 0.0496 0.089

ALL Xt 249 5283 351 75525 0.415 0.9345 0.045 0.081

Dt 259 5285 341 75523 0.4317 0.9345 0.0467 0.084

Rt 262 5246 338 75562 0.4367 0.935 0.0476 0.086

At 273 5150 327 75658 0.455 0.9362 0.0503 0.091

Ct 277 5136 323 75672 0.4617 0.9363 0.0512 0.092

Bt 282 5187 318 75621 0.47 0.9357 0.0516 0.093

Out of 81,410 residues in the test-sets, 602 residues are annotated as ‘‘ACT_SITE’’ by UniProt [17] or CSA [16]. For those active sites, CRESCENDO [8] could either correctly
predict (TP) or fail to predict (FN) (see text). Two active sites of ‘d7odca1’ (A chain of PDB 7odc), which is a SCOP domain in the test-sets, was discarded as of an internal
error; hence, 600 active sites either in the TP or FN. The number of predicted residues is same as the sum of TP and FP for each ESST type. Note that residues only from
the first cluster of predicted residues (rank 1) were considered in this analysis. TP: True Positive, FP: False Positive, FN: False Negative, TN: True Negative, SENS: Sensitivity,
SPEC: Specificity, COV: Coverage.
doi:10.1371/journal.pcbi.1000179.t005

Figure 2. Performance of 17 ESSTs on Detecting Active Site Residues. Z-score (blue) and sensitivity (red) are plotted against 17 ESSTs. Z-
score is averaged for 602 active-site residues in the test-sets (see text). Z-score and sensitivity (SENS) are highly correlated (0.95 in Spearman’s rank
correlation, Table 3). If any SCOP families in the test-sets are included in 17 ESSTs, they are removed from the ESSTs to avoid any bias. Those
benchmarking ESSTs are marked by ‘t’ (e.g., At, Bt, Ct and Dt) to distinguish from the original. Z-score and SENS of non-masking (X) and random-
masking (R) tables are always lower than those of masking models (At, Bt, Ct, and Dt) within the same matrix type (OLD, ENZ, ALL). All the masking-
tables outperform the ESST of Shi et al. (J) [11].
doi:10.1371/journal.pcbi.1000179.g002
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substitution patterns of the residues under functional restraints.

This result is clearer from the rank correlation (0.45) between

%Mask and SENS in Table 3. In addition, our new masking

models (A, B, C and D) outperform the ESST of Shi et al. (J) and

even the non-masking model (ENZ-X, NOENZ-X and ALL-X)

outperform J (see Figure 2 and Table 5). This can be explained

in terms of PCONS and SENS; the average PCONS is highest in

the order of J, followed by ENZ-X, ALL-X and NOENZ-X, but

the performance (SENS) is exactly the reverse order of PCONS.

Figure 3A shows an example of predicting active sites of a SCOP

domain d1evua4 (a domain in the A chain of PDB 1evu, [23])

which is a cysteine proteinase containing three active site

residues annotated by UniProt. Three active site residues (CYS-

314, HIS-373 and ASP-396) could be identified only by ALL-

type ESSTs (ALL-B and ALL-C) which are highly ranked in

Figure 2. This is probably because PCONS of ALL is lower than

that of ENZ and OLD for the local environments of the three

catalytic residues.

Table 6 shows the recognition performance for 11,917 PPI

residues with the same measurements (TP, FP, FN, and TN) in

Table 5. Four masking substitution tables of ALL-matrix could

detect more PPI residues than that of Shi et al. (J), but not all tables

in ENZ-matrix outperform J. Regardless of matrix types and

masking types, the sensitivity (SENS) of detecting PPI residues is

much lower than those for detecting active site residues. We think

that this arises from the average Z-score for PPI residues (see

Table 4) which is close to zero, suggesting less strong evidence for

extra restraints. Figure 3B shows an example of predicting PPI

residues of a SCOP domain d1i7kb_ (B chain of PDB 1i7k, [24])

which is a ubiquitin conjugating (UBC) enzyme containing 14

residues interfacing with the A chain. Using ALL-A, CRESCEN-

DO predicted 12 residues of which five were correct PPI residues

(true positive, coloured in pink in Figure 3B). Among the nine

missing residues (orange), PRO-30, SER-87, TYR-91, GLU-120

and LYS-121 were highly accessible (more than 50 Å2) to solvent

in the complex whereas five true positives had relatively small

solvent accessible area (see Figure 3B for details). Thus, as

expected, residues within the protein–protein interaction interface

which are partially accessible are less conserved and more difficult

to identify by CRESCENDO. Table S3 contains benchmark

results for detecting residues interacting with nucleic acids and

ligands. The sensitivity is better than the benchmarking results of

recognizing PPI residues but still less than that of detecting active

site residues. Figure 3C and 3D show examples of predicting

Figure 3. Predicting Four Categories of Functional Residues by CRESCENDO. Four case-studies of predicting functional residues are shown;
(A) active-sites, (B) PPI (protein–protein interaction), (C) PNI (protein–nucleic acid interaction, (D) PLI (protein–ligand interaction). SCOP domains
d1evua4 [23], d1i7kb_ [24], d1k8wa5 [33] and d1ed9a_ [34] were used for A, B, C, and D, respectively. True positives (TP) are coloured in pink, false
negatives (FN, missing residues) in orange and false positives (FP) in green. TP and FN are shown as sticks (bold-frame). (A) Cysteine protease.
CRESCENDO predicted 27 residues as functional residues. All three (CYS-314, HIS-373 and ASP-396) catalytic residues were correctly identified. ALL-B
type ESST (see Table 2) was used in this figure. FP (green) are clustered around the three real active sites (pink). (B) Ubiquitin conjugating (UBC)
enzyme. 12 residues were predicted by CRESCENDO using ALL-A ESST. Five (coloured in pink) were correctly identified among 14 residues annotated
as PPI residues. Interacting partner (A chain of 1i7k) is placed at the bottom and coloured in gray. The solvent accessible surface areas (SASA) for five
TP are as follow; ARG-34 (35.64), PRO-90 (4.12), SER-123 (4.74), ALA-124 (0.55), LEU-125 (72.39). SASA for 9 FN are as follow; PRO-30 (77.26), VAL-31
(24.02), SER-87 (110.40), GLY-88 (16.05), TYR-89 (0.01), TYR-91 (58.29), GLU-120 (108.68), LYS-121 (113.96), TRP-122 (7.20). The SASA is from InterPare
[18]. (C) Pseudouridine synthase. BIPA (S. Lee, unpublished) annotates 43 residues as PNI. 14 residues were TP (coloured in pink) among 20 residues
predicted by CRESCENDO. ALL-D was used as ESST. DNA is coloured in blue. (D) Alkaline phosphatase. UniProt annotates 9 residues as metal-binding
(METAL), which were all correctly identified by CRESCENDO among 30 predicted residues. ALL-B was used as ESST. ZN (zinc) and MG (magnesium) are
coloured in cyan and blue, respectively.
doi:10.1371/journal.pcbi.1000179.g003
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residues interacting with nucleic-acids and ligands, respectively

(see Figure 3 for details).

The Effect of Discarding Residues Involved in the
Protein–Protein Interactions

We found that the number of functional residues masked and

discarded (%Mask) from the substitution table does not always

guarantee the best performance (SENS) of ESST in detecting

functional sites using CRESCENDO. The rank correlation

between %Mask and SENS is 0.45 (see Table 3). Hence, it is

very evident that masking-models outperform non-masking and

the ESST of Shi et al. as described above. However the category

of functional residues does matter and affects the performance.

Figure 2 shows the performance of 17 ESSTs on the predictions

of 602 active sites of the test-sets. Regardless of the alignment

source, the performance (Z-score and SENS) of table B (no-PPI

mask) is always better than table A (all mask), which means

discarding PPI residues is not effective in the recognition

performance of enzyme’s active sites. In addition, OLD-B also

outperforms OLD-J by 5% in the sensitivity, where the

difference lies in the PPI residues as well. However, in the case

of recognizing PPI residues, table A of ALL-matrix outperforms

table B by 5.2% in terms of TP (Table 6). Interestingly, table C,

which does not mask active sites, ranked as second highest and

the performance of table D, which masks only active sites, is

worse than the random-masking (R) substitution table (see

Table 6). This result indicates that discarding PPI residues can

increase the recognition performance of PPI residues but does

not improve predictions of active sites of enzymes. This

observation probably arises from the fact that the interfacial

interactions differ in nature from those residues in catalytic sites

and therefore masking of catalytic residues has little impact on

those in interfaces.

Concluding Remarks
We have shown that discarding functional residues from the

calculation of the substitution table improves the detection of

functional residues when the new substitution table is used with

CRESCENDO. We considered four categories of functional

residues in this study (Table 1) and found that functional residues

can be best predicted when the relevant category is discarded from

the calculation of the substitution table. Our new masking models

outperformed non-masking, random masking and the old ESST

(Shi et al., [11]) not only in terms of true positives but also

sensitivity. However, as shown in Tables 5 and 6, false positives

(FPs) and false negatives (FNs) are relatively high compared with

the number of true positives (TPs). The reason for high FPs is

expected to arise from the restricted definition of functional

residues. As shown in Figure 3A, FPs, coloured in green, are

clustered around the catalytic triad (CYS-HIS-ASP) of the cysteine

protease shown here. Some of these residues will be important for

the local architecture of the active site and may even be buried; the

substitutions accepted at these positions will therefore be

restrained. Others will be directly involved in binding and

positioning the substrate for catalysis. We have previously shown

that CRESCENDO identifies such residues in predicting the

active site [8]. Furthermore we have shown that the degree of

residue conservation is significantly higher the closer the residues

are to the active site and that geometrical proximity to the known

active sites can be considered to constitute a new environment of

ESST [12]. A reason for some high FNs is that we took only the

first cluster predicted by CRESCENDO into account as positive

results in the benchmark analysis; however CRESCENDO is

expected to predict all regions under functional restraints and

occasionally those critical for protein interactions, allostery, metal

binding, post-translational modification and so on will be as

conserved and score as high or higher than the active

Table 6. Performance of ESSTs on Protein–Protein Interaction Residues.

Matrix Type Masking Type TP FP FN TN SENS SPEC COV F-Measure

OLD B 931 4176 10986 65317 0.0781 0.8560 0.1823 0.1094

R 934 4064 10983 65429 0.0784 0.8563 0.1869 0.1104

X 939 4061 10978 65432 0.0788 0.8563 0.1878 0.1110

J 939 4127 10978 65366 0.0788 0.8562 0.1854 0.1106

ENZ At 906 4163 11011 65330 0.0760 0.8558 0.1787 0.1067

Ct 908 4202 11009 65291 0.0762 0.8557 0.1777 0.1067

Xt 921 4242 10996 65251 0.0773 0.8558 0.1784 0.1078

Rt 925 4268 10992 65225 0.0776 0.8558 0.1781 0.1081

Dt 960 4265 10957 65228 0.0806 0.8562 0.1837 0.1120

Bt 973 4281 10944 65212 0.0816 0.8563 0.1852 0.1133

NOENZ X 893 4614 11024 64879 0.0749 0.8548 0.1622 0.1025

ALL Xt 930 4602 10987 64891 0.0780 0.8552 0.1681 0.1066

Bt 953 4516 10964 64977 0.0800 0.8556 0.1743 0.1096

Dt 963 4581 10954 64912 0.0808 0.8556 0.1737 0.1103

Rt 980 4528 10937 64965 0.0822 0.8559 0.1779 0.1125

Ct 1000 4245 10917 65248 0.0839 0.8567 0.1907 0.1165

At 1003 4420 10914 65073 0.0842 0.8564 0.1850 0.1157

11,917 residues are annotated by InterPare [18] out of 81,410 residues in the test-sets. The definitions of TP, FP, FN, TN, SENS, SPEC, COV, and F-measure are same as
Table 5. Residues only from the first cluster of predicted residues were considered in this analysis. TP: True Positive, FP: False Positive, FN: False Negative, TN: True
Negative, SENS: Sensitivity, SPEC: Specificity, COV: Coverage.
doi:10.1371/journal.pcbi.1000179.t006
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site residues. In addition, the annotations of functional residues

might not be complete, which makes both FPs and FNs relatively

high.

Other than CRESCENDO, there are several computational

approaches to detecting possible functional regions of a protein

in a fast and low-cost manner. Among them, the Evolutionary

Trace method (ET), introduced by Lichtarge et al. [25] in 1996,

is widely used and very successful in identifying functional

regions, for example of SH2, SH3, and DNA binding domains.

ET differs from CRESCENDO in that it identifies conserved

residues only on the protein surface and exploits the use of a

phylogenetic tree to identify local patterns of conservation

unique but distinct amongst different branches which constitute

protein subfamilies. Hence, the performance of ET highly

depends on the quality of a phylogenetic tree which is

determined by a set of sequences to which a query protein

belongs. If the set of sequences were recently diverged, the

branch-specific conservation could not be detected because the

substitutions were not accumulated enough to construct a

reasonable phylogenetic tree. CRESCENDO does not explicitly

use the phylogenetic tree (although it could well do so), but will

also not work well if the degree of divergence is low. It will,

however, gain from local conservation of buried residues in the

active site, for example the threonine of the aspartic proteinase

catalytic triad. It also gains from a careful definition of the

expected substitution patterns in any local environment and for

this the proper treatment of functional residues when deriving

substitution tables is of critical importance.

Materials and Methods

Structure Alignments
New ESSTs were derived from the structure alignments of

SCOP families [19]. Baton (D.F. Burke, unpublished, Table S4),

which is a successor of COMPARER [26], was used as a structure

alignment program. The domain boundary and classification

scheme of protein families were adopted from SCOP 1.71 as of

this writing. PDB [27] was used as a source for protein three-

dimensional structures. SCOP class F, which contains membrane

and cell surface proteins, was not included in the alignment

process as their amino acids can be in environments which differ

from those in the cytoplasm. Also, non-canonical SCOP classes,

H, I, J, and K, which are coiled-coil proteins, low resolution

protein structures, peptides, and designed proteins, respectively,

were removed from the alignment sources.

To guarantee the best alignment quality, the following three

filtering conditions were applied. (1) Filtering by resolution: NMR

structures and structures having resolution worse than 2.5 Å were

not included in the alignment procedures. (2) Filtering by sequence

identity: For each SCOP family, protein domains were clustered

by running CD-HIT [28] with sequence identity of 80% or

more. Within a cluster, a protein structure having the best

resolution was selected as the representative. This is to remove

any bias arising from the majority sequences of proteins in a

SCOP family. (3) Filtering by sequence length: Within a SCOP

family, the average sequence length is maintained by removing

any domains having sequence below (120.3)*mean-length and

above (1+0.3)*mean-length. Single member SCOP families were

removed as they can not provide multiple alignments for the

substitution calculation.

Mapping UniProt and PDB at Residue Level
To take advantage of UniProt annotations in terms of three-

dimensional structures, we developed a mapping protocol,

‘‘double-map’’, which aligns a sequence of UniProt with that

of PDB at residue level. Three sequences are required for every

PDB chain; 1) one from SEQRES record of a PDB file, 2)

another from the residue (SEQ) in ATOM record of a PDB file,

and 3) the third (SP) from the corresponding UniProt entry of a

PDB chain. Double-map makes two alignments from the three

sequences (so the name ‘‘double-map’’). The first is an alignment

between SEQ and SEQRES and the second is between

SEQRES and SP. Using SEQRES as a reference, SP can be

aligned with SEQ and the locations of UniProt residues can be

mapped onto three-dimensional structures. Ideally, the align-

ment between SEQ and SP is enough to locate UniProt residues

in PDB. However, residues in the sequence (SEQRES) can be

absent and sometimes different from the coordinate section

(SEQ) for various reasons (e.g., the position in space is

undetermined) and this makes the direct alignment between

SEQ and SP incomplete. Double-map uses two sequence

alignment programs; EXONERATE [29] and BL2SEQ of

NCBI blast package [30]. If EXONERATE fails to run for a

short sequence around 10–15 amino acids, BL2SEQ succeeds to

complete the alignment.

Calculation of Substitutions and Distance of Substitution
Table

The program SUBST (http://www-cryst.bioc.cam.ac.uk/,kenji/

subst), written by Dr Kenji Mizuguchi (unpublished software, Table

S4), was used in the calculation of substitution table. SUBST takes

structural templates as inputs which can be generated by JOY [31], a

program to identify the local structural environments of amino

acids in the structure alignment files. The Euclidean distance

between two ESSTs, X and Y, (DIST(X?Y)) was calculated as;

DIST X:Yð Þ~
P64

i~1

P21

j~1

P21

k~1

X i
j?k{Y i

j?k

� �2

 ! !1=2

, where X i
j?k

and Y i
j?k is the probability of amino acid j to be substituted by k from

the ESST of X and Y under the structure environment of i. Note that

there are 64 structure environments (4*2*8 from the secondary

structures, solvent accessibility and H-bonds, respectively) and 21

amino acids (Cysteine and half-cysteine using one-letter code J and C,

respectively).

Benchmarking
CRESCENDO [8] was used to benchmark new ESSTs based

on the predictions of four categories of functional residues: (1)

catalytic residues of enzyme active sites, (2) residues involved in

protein–protein interactions, (3) protein–nucleic acid interactions,

and (4) protein–ligand interactions (see Table 1 for the source).

The divergent score was used as it is more sensitive to the

environments and it better discriminates functionally conserved

residues from structurally conserved residues. The CRESCENDO

scores (Z-score) were smoothed and contoured using Kin3Dcont

[32]. CRESCENDO returns several clusters of predicted residues

based on the size of grid points contoured using the Z-score.

Residues only in the first cluster were used as the predicted

residues of functional residues in the analysis. The details of the

equation can be found in the original paper [8]. The P-value of the

predicted residues is calculated using a one-tailed test under the

standard normal distribution.

The performance ESSTs were assessed by measuring sensitivity

(SENS), coverage (COV) and F-measure. These measurements

were calculated based on the ratios derived from TP (true

positives), FP (false positives), FN (false negatives), and TN (true

negatives), which are defined as follow.
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SENS~
TP ESSTð Þ

TP ESSTð ÞzFN ESSTð Þ ,

SPEC~
TN ESSTð Þ

TN ESSTð ÞzFP ESSTð Þ ,

COV~
TP ESSTð Þ

TP ESSTð ÞzFP ESSTð Þ and

F{measure~2
SENS � COV

SENSzCOV

TP is the number of residues correctly predicted by CRE-

SCENDO. If the residues predicted by CRESCENDO are the

same as those annotated by the reference database, they are

counted as being correct. FN is the number of real functional

residues where CRESCENDO failed to predicted. FP is the

number of false hits that CRESCENDO predicted as functional

residues but not actually annotated by the references. TP, FP, FN,

and TN are exclusively determined by the ESST used in

CRESCENDO.

The Spearman’s rank correlation (r) was calculated as follows;

r~1{
6
P

d2
i

n n2{1ð Þ, where di is the difference between each rank of

corresponding values and n is the number of pairs of values.
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