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Abstract

DNA in eukaryotes is packaged into a chromatin complex, the most basic element of which is the nucleosome. The precise
positioning of the nucleosome cores allows for selective access to the DNA, and the mechanisms that control this
positioning are important pieces of the gene expression puzzle. We describe a large-scale nucleosome pattern that jointly
characterizes the nucleosome core and the adjacent linkers and is predominantly characterized by long-range oscillations in
the mono, di- and tri-nucleotide content of the DNA sequence, and we show that this pattern can be used to predict
nucleosome positions in both Homo sapiens and Saccharomyces cerevisiae more accurately than previously published
methods. Surprisingly, in both H. sapiens and S. cerevisiae, the most informative individual features are the mono-nucleotide
patterns, although the inclusion of di- and tri-nucleotide features results in improved performance. Our approach combines
a much longer pattern than has been previously used to predict nucleosome positioning from sequence—301 base pairs,
centered at the position to be scored—with a novel discriminative classification approach that selectively weights the
contributions from each of the input features. The resulting scores are relatively insensitive to local AT-content and can be
used to accurately discriminate putative dyad positions from adjacent linker regions without requiring an additional
dynamic programming step and without the attendant edge effects and assumptions about linker length modeling and
overall nucleosome density. Our approach produces the best dyad-linker classification results published to date in H.
sapiens, and outperforms two recently published models on a large set of S. cerevisiae nucleosome positions. Our results
suggest that in both genomes, a comparable and relatively small fraction of nucleosomes are well-positioned and that these
positions are predictable based on sequence alone. We believe that the bulk of the remaining nucleosomes follow a
statistical positioning model.
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Introduction

DNA in eukaryotes is packaged with histone and other proteins

into a chromatin complex. The most basic element of chromatin is

the nucleosome, which consists of a core of eight histone proteins

around which is wound approximately 147 bp of double-stranded

DNA. The precise positioning of the nucleosome cores and the

inter-nucleosomal linker regions allows for selective access to the

DNA by the cellular machinery; understanding the mechanisms

that control this positioning is therefore crucial to our under-

standing of gene regulation and expression.

The recently published high-resolution maps of 20 histone

methylations in H. sapiens CD4z T-cells [1] provided the first H.

sapiens genome-wide experimental data from which nucleosome

positions could be inferred. Barski et al. combined chromatin

immunoprecipitation (ChIP) with direct high-throughput sequenc-

ing of the ChIP DNA samples in the new procedure known as

ChIP-seq. To resolve the histone modification signals to individual

nucleosomes, templates from purified CD4z T-cells were created

by micrococcal nuclease (MNase) digestion of native chromatin,

followed by a mononucleosome-length selection on a gel. The

sequencing process resulted in roughly 185 million sequence tags

which were unambiguously mapped to the H. sapiens genome.

Zhang et al. developed and applied a computational approach for

identifying positioned nucleosomes to this histone-methylation

ChIP-seq data, and identified over 438,000 positioned nucleosomes

[2]. A subsequent set of experiments by Schones et al. eliminated the

ChIP step to produce genome-wide maps of nucleosome positions in

both resting and activated H. sapiens CD4z T-cells [3]. These two

experiments respectively resulted in 154 million and 142 million

unambiguously mapped sequence tags. A similar genome-wide

experiment, conducted in S. cerevisiae by Field et al., produced

*380,000 fully sequenced nucleosomes which were mapped to the

S. cerevisiae genome with at least 95% identity [4].
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In the past three years, at least eight significant papers have

described nucleosome positioning models based on DNA sequence

signals. A commonly cited nucleosome affinity feature is a *10 bp

periodicity of certain dinucleotides, which was first described by

Trifonov et al. in 1980 [5] and has since been confirmed in both

synthetic [6,7] and natural sequences from a variety of organisms

including chicken [8], mouse [7], S. cerevisiae [4,9,10], worm [10,11],

and H. sapiens [12]. The periodic repetition of these sequence

elements, with a period that matches the pitch of the DNA helix, is

thought to encourage the large-scale bending of the DNA molecule

necessary to form a nucleosome. As a result, several computational

models have emphasized the presence of this dinucleotide

periodicity within the nucleosome core [4,9,10,13]. However, based

on a large dataset of S. cerevisiae nucleosomes, Mavrich et al. [14]

observed that an enrichment of AA dinucleotides toward the 59 end

of the nucleosome was in fact a better descriptor of nucleosome

positioning than the 10 bp periodicities of AA/TT. In contrast to

the computational models derived from short sequences chosen for

their high affinity to wrap around histones and form nucleosomes,

models derived from larger nucleosome-occupancy datasets have

frequently found that the strongest sequence signals are nucleo-

some-inhibiting rather than nucleosome-forming [4,14,15]. Dis-

criminative models [16,17] as well as regression-based models

[15,18] found that the most statistically significant features were

more often exclusion signals rather than occupancy signals. In the

approach described by Peckham et al. [16], of the top 17 features

only 5 are nucleosome occupancy signals. The same trend was

observed by Yuan et al. [15] even though their statistical model

explicitly sought to extract dinucleotide periodicities using wavelet

analysis: out of the 17 selected features only 3 are positive for

nucleosome occupancy, and none of the positive features were

related to the 10 bp periodicity of any dinucleotide. Lee et al. [18]

also concluded that nucleosome occupancy is probably more often

directed by exclusion signals, and their Lasso-based model assigned

the greatest significance to DNA structural features (e.g. tilt and

propeller twist).

In this work we present a new approach to predicting

nucleosome positioning directly from DNA sequence. Although

our model also includes features describing dinucleotide and

trinucleotide sequence patterns, it was originally inspired by our

observation of a dramatic mono-nucleotide sequence pattern

surrounding the nucleosome positions identified using the

Nucleosome Positioning from Sequencing (NPS) algorithm [2]

applied to the Barski at al. dataset. We subsequently obtained a

nearly identical nucleosome pattern from the Schones dataset

derived from resting H. sapiens CD4z T-cells [3] by using a version

of the NPS software that we modified to estimate nucleosome dyad

positions rather than nucleosome occupancy regions. An analysis

of the distribution of start-to-start and start-to-end distances for the

short-read sequencing tags (as described in [11], and shown in

Figure S1) indicates that the Schones dataset has more consistent

nucleosome-sized start-to-end distances than a combination of the

21 separate ChIP-seq experiments in the Barski dataset. We

conclude that nucleosome dyad positions inferred from the

Schones dataset have a smaller average error than those inferred

from the Barski dataset, and therefore use the Schones data to

evaluate the performance of our model.

We show that in both H. sapiens and S. cerevisiae, the most

informative individual features are the mono-nucleotide patterns,

although the additional information provided by di- and tri-

nucleotide features improves the performance of our sequence

scoring method. Our method for computing the dyad score of a

given DNA sequence position consists of two steps: first a set of

patterns are correlated with the local DNA sequence, and second

the resulting correlation values are weighted and summed to

produce the final score. The two elements most responsible for our

method’s discriminative power are the length of the patterns used

and the discriminative weights applied to the sequence features.

We determined that the optimum pattern length is between 300

and 350 nucleotides—indicating that the DNA sequence pattern

of a nucleosome includes not just the core region that is tightly

wound around the histone proteins, but the adjacent linkers as

well. Notably, this result was the same for both H. sapiens and S.

cerevisiae. In the second step, the weights allow our method to

selectively assign greater importance to the more informative

features—e.g., the trinucleotide AAA is given a higher weight than

GTA. By examining the patterns associated with and the

classification performance achieved by each of the mono, di-

and tri-nucleotides, we may also be able to gain a deeper

understanding of the forces that influence nucleosome positions

within the chromatin structure, and to what extent these forces are

consistent between H. sapiens and S. cerevisiae. Toward this end, we

hypothesize that the close proximity of the two superhelical coils

within each nucleosome and the structure of the 30 nm fiber also

play a role in determining the DNA sequence preference of

nucleosomes.

The dyad scores produced by our method are relatively

insensitive to local AT-content and can be used to accurately

discriminate dyad positions from adjacent linker regions without

requiring an additional dynamic programming step to capture the

linker-nucleosome-linker pattern. Although not required, such a

post-processing step can be easily applied to these scores in order

to estimate the probability that a nucleosome is centered at any

particular genomic position or that a particular nucleotide is

‘‘occupied’’ by a nucleosome, as has been done previously [4,19].

While such a post-processing step entails making assumptions

regarding overall nucleosome density and the distribution of linker

lengths, it can be used to find the most likely parse of a DNA

sequence into nucleosomes and linkers, and to compute posterior

probabilities of nucleosome occupancy at each position along the

sequence. The most likely parse identifies nucleosome positions

which can then be compared to experimentally estimated

Author Summary

DNA in eukaryotes is packaged into a chromatin complex,
the most basic element of which is the nucleosome. The
precise positioning of the nucleosome cores allows for
selective access to the DNA, and the mechanisms that
control this positioning are important pieces of the gene
expression puzzle. In this work, we describe a large-scale
DNA sequence pattern that jointly characterizes the
sequence preferences of the nucleosome core and the
adjacent linkers. We show that this pattern can be used to
predict nucleosome positions in both H. sapiens and S.
cerevisiae more accurately than previously published
methods. The model is most accurate in predicting the
most stably positioned nucleosomes, and describes a
sequence composition pattern that determines a locally
optimal dyad (nucleosomal DNA mid-point) position. In
contrast to some previous models, this model is not based
primarily on excluding poly-A/T sequences, nor does the
model prefer *10 bp periodicity. Our results suggest that
local sequence composition is one of many factors that
direct the positioning of nucleosomes, while dynamic
processes such as transcriptional elongation and the
actions of chromatin remodeling complexes also play a
significant role in the overall chromatin landscape.

Sequence Model of the Nucleosome Core and Linker
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nucleosome positions, an evaluation method which has been used

in, e.g. [9,16]. Posterior probabilities of nucleosome occupancy

provide normalized scores which are more amenable to computing

average landscapes of nucleosome occupancy surrounding geno-

mic features such as transcription start sites. In this work we

choose to evaluate our dyad-scoring method by testing how well

the raw scores are able to discriminate dyad positions from

adjacent linker regions, a similar but more stringent evaluation

criterion than has been used previously [4,10,16,17].

We present an evaluation of our method on the Schones dataset

derived from H. sapiens T-cells, as well as on the genome-wide S.

cerevisiae data made available by Field et al. [4]. In addition, we

compare our approach to two recently published methods [4,10]

and show that our method is significantly better at discriminating

dyad positions from adjacent linkers. Further, we compare the H.

sapiens trained patterns to the S. cerevisiae trained patterns and find

large-scale similarities despite the presence of *10 bp periodicities

in the S. cerevisiae patterns and the striking lack thereof in the H.

sapiens patterns. We also apply our method to the entire H. sapiens

and S. cerevisiae genomes as well as to specific subsets of interest

including transcription start sites, CTCF binding sites, and H.

sapiens repetitive elements.

Results

Highly significant pattern of mono-nucleotide
oscillations found in H. sapiens nucleosomal sequences

A recently published dataset [2] provides the largest collection

to date of experimentally determined H. sapiens nucleosome

positions. This set of 438,652 nucleosome positions, which we

will refer to as the Zhang positions, was derived from the histone

methylation ChIP-seq data from CD4z T-cells [1] using the NPS

algorithm [2]. Each nucleosome position in the Zhang dataset is a

short segment of DNA, specified by a pair of chromosome

coordinates, and is annotated with a p-value and a list of histone

marks. Estimating the nucleosome dyad position as the mid-point

of each of the Zhang nucleosome regions, we extracted DNA

sequence from the reference genome centered at each of these

dyad positions, and we computed the mono-nucleotide position

specific frequency matrix shown in Figure 1 (top). Far from the

nucleosome dyad (as shown in Figure S2), the background GC

fraction is 0.46, which is higher than the H. sapiens genome-wide

average of 0.41, and consistent with the known bias of the Barski

et al. dataset toward GC-rich regions of the H. sapiens genome. In

the nucleosome core, however, the average GC content is

significantly higher than the average AT content. Within a narrow

window around the dyad, a nucleosome-sized pattern is observed.

The pattern is its own reverse-complement: the A and T traces

mirror each other across the dyad, as do the C and G traces, and

the pattern emerges even when only the reference strand is used

for each nucleosome positions. (Using both strands enforces this

reverse-complement symmetry by construction.) The reverse-

complement symmetry is an expected consequence of the dyad

symmetry of the nucleosome particle. However, the fact that each

trace is not itself symmetrical around the dyad axis is intriguing

and shows that there is a directionality to the nucleosome which

obeys the antiparallel, complementary nature of the double-

stranded helix: the highest local density of G’s and the lowest local

density of T’s occur *40 nucleotides 59 of the dyad, and the

highest local density of C’s and the lowest local density of A’s occur

*40 nucleotides 39 of the dyad.

The dominant hypothesis regarding DNA sequence preference

of nucleosome formation is related to the curvature required to

wrap the double helix tightly around the histone core [20].

However, as illustrated in Figure 2a, the curvature is relatively

uniform throughout the nucleosome core [21] and therefore, while

this hypothesis explains the frequently observed *10 bp period-

icity, it does not explain asymmetric patterns such as those shown

in Figure 1, with extrema at some distance from the dyad. We

propose that two other structural aspects of the chromatin may

explain why the extremes of the nucleosome pattern (local maxima

for C and G, and local minima for A and T) are centered

approximately 40 bp on either side of the dyad rather than at the

dyad itself. The first structural aspect that we will consider is the

close proximity of the two superhelical coils within each

nucleosome: DNA regions that are *80 bp apart are brought

into close proximity [22], as shown in Figure 2b, while the 10–

20 bp immediately surrounding the dyad are not in similarly close

proximity to another double helix, as shown in Figure 2c.

Specifically, base pair i is brought into close proximity with

basepair iz80, for i[½{70,{10� (with the dyad defined as

position 0). If this close proximity of the two double-helices has an

effect on the nucleosome sequence preference, this effect would be

observed most strongly *40 bp on either side of the dyad. The

second structural aspect is related to the structure of the ‘‘30 nm

fiber’’. Although this structure is not yet well understood, all

proposed structures are such that dyads face the center of the fiber

while the DNA regions 20–60 bp on either side of the dyad form

the exterior of the fiber [23–25]. We hypothesize that DNA

regions on the outside of the 30 nm fiber may experience different

selective pressures than regions on the inside of the fiber, and the

result of this difference would be a nucleosome sequence pattern

with extreme deviations centered approximately *40 bp on either

side of the dyad. We note that while both of these hypotheses are

consistent with the asymmetric patterns presented here, they

would also be consistent with symmetric, M- or W-shaped patterns

with local maxima or minima at +40 bp.

In order to quantify the significance of the pattern shown in

Figure 1 (top), we consider each of the four mono-nucleotide traces

separately. The most striking aspect of the pattern is the relatively

large variation in the probability of each of the nucleotides, across

a distance of less than 150 bp, averaged over more than 400,000

DNA segments. Based on a null model of a similarly constructed

pattern using randomly sampled DNA segments, we estimate the

probability that this observed variation could occur by chance to

be pv10{500. (See Methods for details and Figure S3 for a plot of

the null model distribution.)

In order to determine whether the observed pattern might be

the result of an artifact in part of the dataset, we considered the

possible impacts of varying AT-content and repetitive sequences.

We found that each of the five patterns obtained after partitioning

the data into quintiles according to AT-content were similar to the

original pattern, disregarding vertical translations of the individual

components reflecting increases in AT content and corresponding

decreases in GC content (Figure S4). Partitioning the dataset into

three subsets according to the distance to the nearest repeat also

does not significantly alter the shape of the pattern (Figure S5).

We noted earlier that the A and T traces mirror each other

across the dyad, as do the C and G traces, and that intriguingly A

and C mirror each other across a horizontal line of symmetry, as

do the T and G traces. The first symmetry, of A/T and C/G

across the dyad, is a natural consequence of the dyad symmetry of

the nucleosome, while the second A/C and T/G symmetry is not.

Although a similar downward trend 59 to 39 across the nucleosome

dyad and a local minimum 39 of the dyad in the AA dinucleotide

frequency can be seen in the figures in an early paper by Ioshikhes

et al. [26], the trend was not explicitly noted. Instead the authors

emphasized the asymmetry in the peaks of the dinucleotide

Sequence Model of the Nucleosome Core and Linker
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patterns and found that the *10 bp periodicity exhibited by the

AA and TT dinucleotides had opposite phase, in contrast to the

same-phase periodic pattern described earlier by Satchwell et al.

[8] and more recently by Segal et al. [9]. More recently, the

enrichment of AA dinucleotides 59 of the dyad and TT

dinucleotides 39 of the dyad has been described [14], although

Figure 1. Mono-nucleotide patterns in H. sapiens. These patterns were derived by aligning DNA sequences at experimentally determined
nucleosome dyads, and computing the resulting position specific frequency matrix. The correlation between the corresponding mono-nucleotide
patterns derived from the Barski nucleosome positions (top) and the Schones nucleosome positions (bottom) is 0:99.
doi:10.1371/journal.pcbi.1000834.g001

Figure 2. X-ray structure of the nucleosome core particle. These views of NCP147, at 1:9Å resolution, show the two strands of the double-helix
in purple and green, with the protein core in grey. (A) shows the curvature of DNA around the histone core, with the dyad at the top, center; (B)
represents a 900 rotation of the particle, showing the adjacent segments of DNA, opposite the dyad; and (C) represents a 900 rotation in the opposite
direction, showing the DNA crossing over the dyad. As indicated by the coordinate system axes, in (A) the y-axis is pointing out of the page, in (B) the
z-axis is pointing into the page, and in (C) the z-axis is pointing out of the page.
doi:10.1371/journal.pcbi.1000834.g002

Sequence Model of the Nucleosome Core and Linker
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no biological hypothesis for this directional preference has yet

been suggested.

We will refer to the pattern illustrated in Figure 1 as AGCT,

based on the 59 to 39 ordering of the local maxima. This simple

pattern is consistent with the common nucleosome model: higher

AT content in the linker regions and higher GC content in the

core. We hypothesized the existence of alternative forms of this

pattern in which the ordering of the individual nucleotides is

permuted while conforming to the common model—the other

possible patterns would be ACGT, TGCA, and TCGA. To test

this hypothesis, we created models of all four pattern variants and

partitioned the input set of sequences according to which of the

four patterns best matched each individual sequence (if a

particular DNA sequence did not correlate well with any pattern,

it was assigned to the no-match partition). We found, as expected,

that more of the input sequences correlated well with the AGCT

pattern than with any other pattern (25%). However, our

hypothesis was validated in that an even larger fraction (32%) of

the sequences correlated well with one of the other three patterns

(details in Supplement and Figure S6).

Identical pattern derived from independent H. sapiens
dataset

To verify that this nucleosome pattern is not an artifact of the

Barski et al. dataset, we estimated nucleosome dyad positions from

the tag coordinate files for resting CD4z T-cells published by

Schones et al. [3]. The experimental procedure used by Schones

et al. is very similar to the one used by Barski et al., but without the

ChIP step used to isolate specific histone modifications. We

modified the NPS software [2] so that it would output nucleosome

dyad positions rather than variable length nucleosome regions (see

Methods), and applied it to the Schones dataset. The result was a

list of over 828,000 nucleosome dyad positions with NPS-assigned

p-values v10{5. The mono-nucleotide patterns learned from this

independently derived list of nucleosome positions are nearly

identical to the corresponding patterns derived from the Zhang

positions (Pearson correlation 0.99), as shown in Figure 1. In

addition, we computed patterns based on the top-50% and top-

25% scoring dyad positions (corresponding to p-value thresholds

of 10{8 and 10{11 respectively), and found the correlations

between the patterns derived from the full set and these subsets to

also exceed 0.99, indicating that the pattern is stable and can be

learned from smaller datasets. A subset of the dinucleotide patterns

are shown in Figure S7. The patterns for AT, TA, GC, and CG

are symmetric about the dyad, as expected, because each

dinucleotide is its own reverse complement. What is intriguing,

however, is that the standardized pattern for CG is nearly identical

to that for GC—despite the dramatically different occurrence rates

of these two dinucleotides. The standardized patterns for TA and

AT are also nearly identical.

We note that neither of these independently derived mono-

nucleotide patterns show evidence of *10 bp periodicity, and this

is also true of similarly computed dinucleotide patterns. There are

two possible explanations for this lack of a periodic component in

this pattern. First, the NPS software uses a bin size of 10

nucleotides in processing the short-read sequencing data and

estimating the dyad positions, resulting in an average error of at

least +5 nucleotides in each position estimate which would

smooth out any 10 bp periodicity in the average pattern. Second,

10 bp periodicity of the AA dinucleotide has to date been observed

only in small sets of H. sapiens nucleosomal sequences and is not

observable on a genome-wide scale in H. sapiens, in sharp contrast

to S. cerevisiae [12,27]. While removing the binning step in the NPS

process may yield more accurate dyad positions, we caution that it

may also amplify the impact of the MNase sequence specificity as

is apparent in the higher-resolution yeast data set discussed below.

Furthermore, 10 bp periodicity has been most apparent in

alignments of nucleosomal sequences but has not been shown to

be a significant factor in identifying and classifying such sequences.

Pattern in S. cerevisiae follows similar trend, with
additional *10 bp periodicity component

A recently published genome-wide experimental assay in S.

cerevisiae produced a dataset of *380,000 fully-sequenced

nucleosomal sequences [4]. This experiment was based on a

sequencing technology capable of *200 bp reads, thereby

eliminating the uncertainty inherent in the Barski and Schones

datasets regarding the precise lengths of the MNase-cleaved DNA

fragments. Estimating dyad positions from the genomic positions

of these nucleosomal sequences can therefore be done using a

simpler approach (see Methods), which produced a total of 50,815

unique dyad positions. This is a significant fraction of the

estimated *70,000 nucleosomes required by the entire 12 Mb

genome. We divided this set of dyad positions according to the

confidence associated with each position (estimated as the number

of locally overlapping reads), to produce successively smaller

subsets of size 25384, 12698, 6355, and 3180 respectively, with

each dyad position in the smallest subset estimated from an

average of 20 overlapping reads.

The patterns derived from this set of S. cerevisiae dyad positions,

as shown in Figure 3, include two elements not present in the H.

sapiens nucleosome patterns: a very strong artifact due to the

MNase sequence bias at a distance of *80 bp on either side of the

dyad (corresponding to roughly half of the mean read length of

156 nucleotides), and evidence of *10 bp periodicity for certain

dinucleotides. Figure 4 shows the summed patterns for A/T-only

and C/G-only dinucleotides, illustrating the lack of apparent

periodicity in H. sapiens as compared to S. cerevisiae, although we

also note that the artifact in the S. cerevisiae patterns due to the

MNase sequence-specificity has a significantly larger amplitude

than the 10 bp periodicity. The common elements between S.

cerevisiae and H. sapiens include the downward trend across the dyad

of the A nucleotide in the 59 to 39 direction, the corresponding

upward trend of the T nucleotide, and the local minima in the A-

and T-patterns at z40 bp and {40 bp respectively. The

standardized patterns for S. cerevisiae and H. sapiens for A, AA, and

AAA are shown in Figure S8. Aside from the 10 bp periodicity

evident in the S. cerevisiae patterns, the overall shapes of these

patterns are strikingly similar (Pearson correlations are A:0.77,

AA:0.88, AAA:0.91), suggesting that perhaps it is this wider

underlying oscillation, more than the 10 bp periodicity, which

promotes nucleosome positioning across species.

To avoid biases arising from the MNase sequence specificity,

Field et al. restricted their model to the 127 positions centered at

the dyad [4]. The presence of this artifact in the nucleosome

patterns is also an indication that many of the estimated dyad

positions are shifted by a few nucleotides from the true positions—

more accurate dyad positions could potentially be estimated by

inserting an alignment step in the pattern-estimation procedure

similar to [26,28]. We instead eliminate the MNase artifact while

still learning a large-scale pattern by linearly interpolating each

pattern across a 30 bp width centered at +80 as shown in

Figure 3.

Discriminative nucleosome pattern model
Based upon the observed oscillatory pattern of nucleotide

composition across the nucleosome, we present here a novel

approach to predicting nucleosome positioning from DNA

Sequence Model of the Nucleosome Core and Linker
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sequence alone. Previous methods have frequently taken a

hypothesis-testing approach common in motif-finding algorithms

in which a foreground or motif model score is compared to a

background model score. In determining the nucleosome-formation

potential of a given DNA sequence, a nucleosome model is used to

compute a score under the nucleosome hypothesis, and a linker

model is used to compute a score under the null (linker) hypothesis.

The final score is typically either a ratio or a difference of these two

scores. For a given input DNA sequence (the length of which

varies depending on the specific implementation but is generally

147 nucleotides or less), the basic question being asked is thus:

which of these two models best represents this particular sequence?

Figure 3. Mono-nucleotide patterns in S. cerevisiae with MNase sequence-specificity artifact. These patterns were derived from *25,000
sequences aligned at experimentally determined dyad positions. The top figure illustrates the MNase sequence specificity artifact at a distance of
+80 bp from the dyad. To remove this artifact, we linearly interpolated across a 30 bp region as shown in the bottom figure. (The vertical axis scales
are different in the two figures.)
doi:10.1371/journal.pcbi.1000834.g003

Figure 4. Dinucleotide A/T and G/C patterns. These figures show the frequency of dinucleotides composed exclusively of A/T (red) and G/C
(blue). The H. sapiens patterns show no evidence of 10 bp periodicity, while the S. cerevisiae patterns do, with peaks in the A/T pattern at 13, 24, 36,
47, 58, and 68, and peaks in the C/G pattern at 0, 20, 32, 42, 50, 61, and 72 bp from the dyad. The larger-scale trends of increasing GC-content and
decreasing AT-content near the dyad are, however, similar between the two species.
doi:10.1371/journal.pcbi.1000834.g004

Sequence Model of the Nucleosome Core and Linker
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When scoring the likelihood that a particular nucleotide is at the

center of a nucleosome, we have found that using a wider

sequence window asks the more appropriate question: do the 147

nucleotides centered at this position fit our model of the

nucleosome core and do the adjacent regions fit our model of

the linker region? In previously published approaches, this

alternating linker-nucleosome-linker model is captured by a

subsequent dynamic-programming step (e.g. [9]), but we will show

that the predictive power of the model can be significantly

improved by including this longer pattern directly into the initial

scoring function.

Based upon our observation that the overall shape of the mono-

nucleotide pattern first derived using the Zhang positions was

relatively insensitive to local AT-content, our initial insight was

that the model should be insensitive to the average local sequence

composition. This goal is consistent with the biological require-

ment for packaging DNA sequences with widely varying AT-

content not only within any one genome but across the genomes of

all eukaryotes [20]. We avoid inherent sequence composition bias

by comparing the input DNA segment to the shape of the

nucleosome pattern using a Pearson correlation which disregards

vertical scaling or translation of the individual pattern compo-

nents. Further, rather than framing the model in a probabilistic

setting, we choose to take the more general approach of extracting

an arbitrary number of informative, sequence-related features

which are then individually weighted and combined to produce a

final dyad score. The complete details of our algorithm are given

in the Methods section, but we will outline the basic approach

below.

Given an input sequence S, of (odd) length W , we extract a

number of descriptive features and compute the dyad score for the

mid-point of sequence S as the weighted sum of these features.

The primary features in our model are correlation coefficients:

each one represents the correlation between a previously learned

pattern Pm and the new input pattern Sm for a given k-mer m, of

length K . Based on our earlier observation that individual

components within the pattern are occasionally reversed, each

input pattern Sm is compared to two versions of the trained

pattern: Pm and P(r)
m where Pm is the m-pattern learned from the

training set of nucleosome sequences aligned at the inferred dyads,

and P(r)
m is simply the reflection of Pm across the axis of symmetry

at the dyad. We further add, as secondary features, the number of

occurrences of each k-mer m in the input sequence S and its

reverse-complement. The intuition here is that a correlation

coefficient of 0 could be the result of sequence S containing zero

occurrences of m, or it could be a true lack of correlation between

two non-zero vectors. Likewise, a high correlation score may be

more significant if it is based on a sequence with a high number of

occurrences of m.

In the final step of the training process, we train a binary

classifier known as a linear support vector machine (SVM) [29,30]

to discriminate between two sets of examples, each of which is

described by a vector of the features defined above and is labeled

either positive (dyad) or negative (linker or non-dyad). The output of

this training step is a set of feature-specific weights which, when

applied to the set of training examples, optimizes the discrimina-

tion between the positive and negative examples. These weights

can subsequently be used to compute a score (the dyad score) for

any future test example. The sign of the score indicates which side

of the decision boundary the test example falls on, and the

magnitude of the score is an indication of the confidence of the

classification. Although previously published models have com-

monly used long linkers or nucleosome-free regions as negatives in

training and evaluation [4,15], each nucleosome core is flanked by

two linker regions, and we define a more stringent discrimination

task by testing how well each dyad position in the test set can be

distinguished from the corresponding set of adjacent linkers.

In order to completely define the model described above, the

width of the individual patterns W , the k-mers of interest, and the

distance L to the linker positions to be used as negative training

examples need to be specified. Note that these linker positions and

the nucleotide sequence surrounding them are used only in

training the SVM weights and do not affect the learning of the k-

mer patterns. Further, there is no implicit relationship between the

values of W (the pattern width) and L (the distance between the

dyad positions and the ‘‘negatives’’ examples). We evaluated the

effect of these two parameters on the discrimination performance

of our model and found that the width of the patterns (W ) has the

most significant effect on the ultimate performance, as shown in

Figure 5. For shorter patterns (Wƒ151) the kmer-count features

significantly improve the performance, while for longer patterns

(W§201) they provide relatively little improvement. The

optimum pattern width varies somewhat across different datasets,

but is generally between 301 and 351 nucleotides, i.e. extending

150–175 positions on either side of the dyad. We also examined

the sensitivity of the discrimination performance to the distance L
between the dyad and non-dyad positions. When this distance is

zero, it is of course impossible to discriminate between the two sets,

and the resulting area under the ROC curve is 1=2. We would

expect the performance to improve as the distance increases, up to

a maximum value when the distance is roughly half the inter-dyad

distance. Beyond this point, we would expect the performance to

begin to get worse as the ‘‘negative’’ position approaches the

neighboring dyad, and this intuition is borne out by the

experimental results shown in Figure S9. The peak performance

occurs when the distance between the positive and negative

examples is *110–120 nucleotides. Based on these analyses, our

final model is defined with patterns of width 301 nucleotides, and

the SVM is trained with negative examples at a distance of 110

nucleotides on either side of each dyad. We chose to limit our set

of k-mers to those of length 1, 2, and 3. Using longer k-mers would

require exponentially more parameters, and we found that the

improvement gained even by adding trinucleotides was relatively

small.

We evaluate our method using a cross-validation approach to

ensure that the model is not over-fitting the data. For each

chromosome C, the training set contains all dyad positions Di not

on chromosome C, and the held-out test set consists only of those

dyad positions on chromosome C. The training of the model

consists of three steps: first, a position-specific pattern Pm of width

W is learned for each k-mer m from the sequence centered at each

Di in the training set. Second, features describing the local context

of each position Di as well as Di+L are computed: these include

correlation scores against each of the learned patterns and counts

for each of the k-mers. Third, these feature vectors and labels are

used to train a linear SVM. The evaluation on the held-out test set

involves similarly computing features describing the DNA

sequences centered at each Di and Di+L on chromosome C,

and computing scores for each by using the SVM weights learned

during training. The ability of these scores to discriminate between

the dyad and non-dyad positions in the test set are evaluated using

standard ROC analysis.

Model classification performance
The datasets we used to train and test this model were described

earlier and consisted of *800,000 H. sapiens dyad positions

estimated from the Schones dataset, and *50,000 S. cerevisiae dyad

positions estimated from the Field dataset. Although different
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methods were used to create each of these sets of dyad positions,

both include experimentally-derived confidence scores. We used

these confidence scores to further subdivide each dataset by

repeatedly taking the top-scoring half, resulting in 3 H. sapiens sets

(all, top 1/2, and top 1/4) and 5 S. cerevisiae sets (all, top 1/2, top

1/4, top 1/8, and top 1/16). We trained our H. sapiens nucleosome

model on the top 1/4 subset (approximately 200,000 dyad

positions), and we trained the S. cerevisiae nucleosome model on

the top 1/2 set (approximately 25,000 dyad positions). Figure 6

shows the composite results for our model, based on chromosome-

by-chromosome cross-validated training and testing. The number

of dyad positions on each chromosome and the per-chromosome

area under the ROC curve for each dataset are provided in Tables

S1 and S2 in the supplement. The area under the ROC curve is an

indication of how well our model discriminates between dyad and

linker positions, and the fact that the model performance improves

for the highest-scoring subsets shows that, on average, the most-

consistently positioned nucleosomes are also the ones given the

highest scores by our model, while the adjacent dyads are

simultaneously given lower scores. We also found that the

difference between the cross-validated results shown here and

those obtained when using all of the data for both training and

testing were negligible, due to the large amount of training data

and the relatively simple model being trained.

We note that the performance for the top 1/4 H. sapiens dataset

is nearly identical to the performance for the top 1/16 S. cerevisiae

dataset, and the same is true for the top 1/2 H. sapiens dataset and

the top 1/8 S. cerevisiae dataset. The top 1/16 S. cerevisiae dataset

contains positions sampled on average every *4000 bp across the

entire S. cerevisiae genome. Assuming an average nucleosome repeat

length of 170 bp, this represents approximately 4% of all

nucleosomes. The comparable H. sapiens dataset, based on the

ROC curve, is the top 1/2 set which consists of positions sampled

on average every *7500 bp across the H. sapiens autosomes. (The

X and Y chromosomes are significantly undersampled as

compared to the autosomes, so we exclude them in this analysis.)

Considering the limits imposed by sequencing depth and the

unique mapping of short sequence tags to the H. sapiens genome, it

seems reasonable to suggest that perhaps half of the highly-

positioned nucleosomes were missed in the genome-wide Schones

Figure 5. Area under the ROC curve as a function of pattern width. The classification performance was evaluated on one dataset each for S.
cerevisiae and H. sapiens. The impact of the kmer counts feature was also examined and found to be most significant at smaller pattern widths, and
not significant for widths beyond 201 bp.
doi:10.1371/journal.pcbi.1000834.g005

Figure 6. Cross-validated classification performance on H.
sapiens and S. cerevisiae datasets. The H. sapiens all dataset contains
*800,000 dyad positions, and the S. cerevisiae all dataset contains
*50,000 positions. In all cases, the set of negative examples is twice as
large as the set of positive examples, and the negative positions are
110 bp away from the dyads. The area under the ROC curves for H.
sapiens are 0.93, 0.91, and 0.89. The area under the ROC curves from S.
cerevisiae are 0.91, 0.89, 0.85, and 0.74.
doi:10.1371/journal.pcbi.1000834.g006
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experiment. With this assumption we estimate that approximately

4% of the nucleosomes in both H. sapiens and S. cerevisiae are

positioned consistently enough across a population of cells to

produce an area under the ROC curve of 0.91, which corresponds

in this case to a true positive rate of 73% at a false positive rate of

10%. Doubling the size of the set takes us to the next curve for

each species: approximately 8% of nucleosomes are positioned

consistently enough to produce an area under the ROC curve of

0.89, which corresponds in this case to a true positive rate of 66%

at a false positive rate of 10%.

We compared the predictive performance of our model to the

two recently published nucleosome prediction models described by

Field et al. [4] and by Kaplan et al. [10]. These two previously

published models are algorithmically very similar, the main

distinction being that the Field model was trained on in vivo S.

cerevisiae mono-nucleosomes, while the Kaplan model was trained

using a genome-wide occupancy map of nucleosomes assembled in

vitro on purified S. cerevisiae genomic DNA. For comparisons in H.

sapiens, we downloaded the occupancy probabilities and raw

binding scores from the Segal lab website, and for comparisons in

S. cerevisiae, we downloaded the executable and obtained raw

binding scores, start probabilities and occupancy probabilities for

the entire S. cerevisiae genome. Our model is a purely local scoring

function, requiring only 301 bp of sequence to make a prediction

at a single point, and as such, is computationally most similar to

the raw binding scores from these two models. However, the Field

and Kaplan raw binding scores are sensitive to variations in the

local AT-content and are not able to discriminate accurately

between, for example, nucleosome dyad positions in high-AT

regions and linker positions in low-AT regions. The dynamic

programming stage of the Field and Kaplan models corrects for

this sensitivity, and the resulting occupancy and start probabilities

are better able to discriminate between dyads and linkers. The

ROC curves for the Field and Kaplan models on representative

datasets from S. cerevisiae and H. sapiens are shown in Figure 7,

together with the corresponding ROC curves for our model.

In all binary classification tests presented here, the positive

examples are the experimentally determined dyad positions, while

the negative examples are the positions 110 bp to either side of

each dyad. This definition of negatives examples (i.e. linkers) is

different from that used in [4] in which linkers were defined as

contiguous regions of length 50–500 bp not covered by any

nucleosome. We chose to use a different definition for two reasons:

first, long nucleosome-free regions may be a result of the

experimental protocol [31,32], and second, sequencing-depth

limitations in H. sapiens genome-wide experiments mean that true

negatives are far outweighed by false negatives. Furthermore, the

extent to which an individual dyad position can be distinguished

from its immediately adjacent linker regions is a direct indication

of the apparent positioning stringency. The difference in

discrimination performance between our model and the two

previous models is more significant in the H. sapiens dataset. This is

to be expected as the Field and Kaplan models were both trained

on S. cerevisiae datasets. In the S. cerevisiae evaluation (Figure 7a), the

Field model outperforms the Kaplan model, which is also to be

expected as it was trained on this test data (although the

classification task here is different than that shown in [4] because

we have defined the negative class differently). In Figure 7a, at a

false positive rate of 10%, our model has a true positive rate in S.

cerevisiae of 64% compared to true positive rates of 55%, 51% and

22% for the three Field scores, and 46%, 38%, and 22% for the

three Kaplan scores. For the H. sapiens evaluation shown in

Figure 7b, the Kaplan model outperforms the Field model. At a

false positive rate of 10%, our model has a true positive rate of

79% compared to true positive rates of 49% and 26% for the two

Kaplan scores, and 41% and 17% for the two Field scores.

We further analyzed the performance of our model by

considering different subsets of the features as well as features

Figure 7. Classification performance comparisons. (A) Comparison in S. cerevisiae between our model and the models of Field et al. [4] and
Kaplan et al. [10]. These two previously published models each produce three types of scores at each nucleotide: a raw binding score, a probability
that a nucleosome starts at that position, and a nucleosome-occupancy probability. The S. cerevisiae dataset used in this evaluation contains the top-
scoring 6,355 positions or approximately 1/8 of the entire dataset. (Top-scoring means most well-positioned based on experimental data, not highest
pattern-correlation scores.) (B) Similar comparison in H. sapiens between our model and the models of Field et al. and Kaplan et al. The raw binding
scores and the occupancy probabilities were downloaded from the Segal lab website. The H. sapiens dataset used in this evaluation contains
*200,000 dyad positions.
doi:10.1371/journal.pcbi.1000834.g007
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associated with individual k-mers in order to determine which

features are most informative, and to investigate whether this was

consistent between H. sapiens and S. cerevisiae (Figure 8). Not

surprisingly, in general the more features are used, the better the

performance, but the best individual features are the mono-

nucleotides—and this is true for both H. sapiens and S. cerevisiae.

This result is rather surprising and indicates that these mono-

nucleotide patterns are able to summarize the relevant information

in longer homo-polymer stretches. The most informative di- and

tri-nucleotides are AA/TT and AAA/TTT, reconfirming

the importance of poly(dA:dT) tracts in the organization of

nucleosomes [33].

Analysis of model-predicted nucleosome repeat lengths
Nucleosomes are the basic repeat element of the first level of the

chromatin structure, forming the ‘‘beads-on-a-string’’ fiber which

in turn coils into a larger structure known as the 30 nm fiber. The

average length of the linker DNA between adjacent nucleosomes

defines the nucleosome repeat length which in turn affects the

structure and size of the 30nm fiber [34,35]. Because our model is

essentially a pattern-matching algorithm, we were interested in

evaluating whether the nucleosome pattern described by our

model appeared to repeat at regular intervals along the H. sapiens

and S. cerevisiae genomes.

It is possible to obtain an empirical distribution of distances

between successive experimentally-determined S. cerevisiae dyad

positions because this set constitutes a significant fraction of the

total number of nucleosomes expected in S. cerevisiae. The resulting

distribution is shown in Figure 9 and confirms the dominant

nucleosome repeat length of *165 bp in S. cerevisiae [36]. The

empirical distribution obtained from the far sparser set of

experimentally-determined H. sapiens dyad positions is less reliable

(in the largest set of over 800,000 positions, over 80% of the

positions are more than 500 bp away from the nearest upstream

position), but it too shows a clear peak—in this case at *200 bp,

although less than 2% of the dyad positions are between 190 and

210 bp from the nearest upstream position. We made genome-

wide predictions for both H. sapiens and S. cerevisiae using our

model, and found that the distribution of distances between

successive predicted dyad positions (local maxima with positive

model scores), showed interesting trends. For S. cerevisiae, aside

from an over-representation of dyads predicted to be close

together, there is a single broad peak between *175 and

*200 bp, while for H. sapiens there is a bimodal distribution with

one peak at *175, and one at *225 bp, as shown in Figure 9. If

the local maxima were randomly distributed, the distribution of

distances from one to the next would follow a geometric

probability distribution, monotonically decreasing for longer

inter-dyad distances.

We hypothesized that repetitive sequences may be responsible

for a significant number of consistent inter-dyad distances in H.

sapiens, and found that partitioning the predicted dyad positions

according to the local repeat content showed that the predicted

dyads in repetitive regions contribute to both local maxima in the

distance distribution, while the predicted dyads in non-repetitive

regions contribute mainly to the second peak in the distance

distribution. The relationship between Alu repeats and nucleosome

formation has been widely studied—specifically, Alu sequences

have been shown to facilitate the formation of nucleosomes in vivo

[37,38], with one putative nucleosome centered over the RNA

polymerase III promoter A box (near the 59 end of the Alu

sequence), and a second putative nucleosome positioned over the

right arm of the Alu element, flanked by two A-rich regions.

Because the upstream and downstream sequence also affect our

model predictions, we extracted DNA sequence surrounding 4930

separate AluSx sequences (the most common type of Alu repeat),

and found that our model predicts two strong dyad positions

*170 nucleotides apart, as shown in Figure 10. Our model’s

prediction of just two locally optimal dyad positions, which could

be simultaneously occupied by a pair of adjacent nucleosomes, is

in contrast with recently published predictions of several

alternative nucleosome positions separated by multiples of 10.4

bases [39]. A nucleosome centered at position 40 would wrap the

first 110 bp of the Alu sequence as well as approximately 30

upstream base pairs around the histone octamer, effectively

blocking access to the two internal Pol III promoters and possibly

an upstream enhancer, and rendering the Alu transcriptionally

silent. We also analyzed all H. sapiens repetitive sequences in

RepBase[40] (considering only the consensus sequence and

disregarding flanking regions from specific instances of the repeat

in the H. sapiens genome) and found that several longer repetitive

elements resulted in predicted dyad positions at spacings between

Figure 8. Classification performance of individual k-mers and subsets of k-mers. Area under the ROC curve obtained using features
associated with individual k-mers as well as certain subsets of k-mers. All represents the set of all k-mers of length 1, 2, 3. Tri represents the set of all
trinucleotides, Di the set of all dinucleotides, and Mono the set of mono-nucleotides. The features are ordered in the graph according to the average
performance on H. sapiens and S. cerevisiae. All subsets perform better than any individual k-mer, and the most discriminative individual k-mers are
the mono-nucleotides A/T and G/C, followed by the dinucleotide AA/TT and the trinucleotide AAA/TTT. This analysis is based on the top-scoring
12,698 S. cerevisiae positions, and the top-scoring 209,101 H. sapiens positions.
doi:10.1371/journal.pcbi.1000834.g008
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165 and 185 bp, including endogenous retroviruses (ERV1, ERV2

and ERV3), non-LTR retrotransposons (L1 in particular), and

DNA transposons (such as the Mariner transposable element).

Predicted nucleosome positioning near strong boundary
elements

Transcription start sites (TSS) and CTCF-binding sites have

been shown to be strongly correlated with ordered arrays of

nucleosomes based on numerous experimental assays. Using high-

resolution tiling microarrays to analyze nucleosomal DNA in S.

cerevisiae, Lee et al. [18] identified a general pattern of nucleosome

occupancy anchored at the TSS. The average nucleosome

occupancy signal, aligned at the TSS and averaged over all genes,

shows a nucleosome free region centered approximately 30 bp

upstream of the TSS, flanked by the 21 nucleosome centered

*170 bp upstream of the TSS and the +1 nucleosome centered

*100 bp downstream. The strict positioning of nucleosomes

further upstream and downstream from the TSS decays gradually,

although more slowly in the transcribed region (downstream). A

statistical packing model of nucleosome positioning was proposed

by Mavrich et al. [14] whereby the genomic sequence specifies the

locations of the +1 and 21 nucleosomes, and these strictly

positioned nucleosomes maintain a relatively large nucleosome-

free region over the TSS, acting as barriers against which adjacent

nucleosomes are packed. Using the Barski ChIP-seq dataset,

Zhang et al. showed similar results in H. sapiens, with the +1

nucleosome again the most strongly positioned, just downstream of

the TSS [2]. Using the same approach, they observed 3-4 well

positioned nucleosomes on either side of CTCF binding sites,

while the binding site itself showed strong depletion. Further

Figure 9. Distribution of distances between successive nucleosome dyad positions. The distributions shown here were derived from Field
et al. [4] S. cerevisiae data (red), and from genome-wide model predictions in S. cerevisiae (green), and in H. sapiens (dark blue). The predicted dyad
positions in H. sapiens are also shown partitioned according to the fraction of the neighboring 200 bases that are marked as repetitive (v25% repeat
in pink, and w75% repeat in aqua). For the purposes of this analysis, a predicted dyad position is a local maximum in the dyad score trace. The grey
line shows the geometric distribution resulting from random positions with an average spacing of 165 bp.
doi:10.1371/journal.pcbi.1000834.g009

Figure 10. Average dyad scores for AluSx repetitive element. Dyad scores were computed for 4930 AluSx elements, including adjacent
sequence, and then aligned at the start position and averaged. The model predicts locally optimal dyad positions at *40 and *210 bp relative to
the start of the 313 bp long repetitive element.
doi:10.1371/journal.pcbi.1000834.g010
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studies of nucleosome organization surrounding CTCF binding

sites have suggested that binding of CTCF provides an anchor

point for positioning nucleosomes [41,42], while unbound sites are

occluded and rendered inaccessible by the presence of a

nucleosome [42]. We note, however, that recent studies have

shown that regions that have been previously described as

‘nucleosome-free’ are in fact frequently occupied by nucleosomes

that are unusually unstable under the conditions normally used in

sample preparation [31,32].

In order to evaluate to what extent our model replicates these

experimental results for transcription start sites, we applied our

scoring method to a set of S. cerevisiae DNA segments aligned at

5,015 high-confidence TSS and clustered according to promoter

nucleosome signatures as in [18] (Figure S10), and to a set of H.

sapiens DNA segments aligned at the 32,079 TSS from the DBTSS

database of H. sapiens transcriptional start sites [43] (Figure S11a).

The S. cerevisiae TSS predictions agree with the experimental

results in the cluster-dependent strength of the nucleosome-free

region upstream of the TSS, and indicate that the sequences

associated with clusters identified experimentally also result in

different average model predictions. The H. sapiens TSS

predictions are dominated by the +1 nucleosome dyad peak

*65 bp downstream of the TSS, with two additional peaks clearly

visible further downstream. Unlike the S. cerevisiae TSS predictions,

which show evidence of a larger than average linker between the

+1 nucleosome at *60 bp downstream of the TSS and the 21

nucleosome at *190 bp upstream, the H. sapiens TSS predictions

suggest the presence of a weakly positioned ‘‘0’’ nucleosome

*105 bp upstream of the TSS, between the 21 nucleosome (at

approximately 2270 bp) and the +1 nucleosome (at approximate-

ly +65 bp). We caution, however, that computing average profiles

by averaging these locally-computed scores over a set of aligned

DNA sequences has inherent drawbacks in that the resulting

average will be dominated by the sequences with the highest-

scoring dyad locations (and the lowest-scoring linker locations) as

well as by the relative positions of these peaks (and troughs).

Posterior probabilities of nucleosome occupancy, obtained by

post-processing these local scores using a dynamic programming

approach may result in average profiles that more closely

reproduce experimental results. Indeed, such average profiles,

representing thousands of TSS, whether based on predictions or

on experimental data, fail to convey the substantial variation that

exists in the position of the +1 nucleosome. In order to confirm

that our model accurately reproduces this variation, we formed

subsets of the DBTSS sites according to the position of the ‘‘+1’’

nucleosome in the Zhang dataset (if any), using 30 bp windows

spanning the region from 40 bp upstream of the TSS to 200 bp

downstream, and computed average predictions for each of these

subsets. We found that the average predicted position of the +1

nucleosome for each of these subsets correlates extremely well

(R = 0.99) with the average experimentally-inferred position. (See

Figure S11b for three representative subsets.)

We similarly aligned and analyzed a pair of CTCF-binding site

datasets [41]: a set of *6000 occupied binding sites and a set of

*6000 unoccupied sites (Figure S12). The average model scores

near CTCF binding sites indicate that the binding site itself is a

favorable nucleosome dyad position, in agreement with the

experimental observation that unbound sites are occluded by

nucleosomes [42]. These predictions are similar to those in [15],

although our method produces a significantly narrower peak at the

binding site. On either side of the CTCF binding site, at +300 bp

are two weak peaks in the average dyad score, but the regular

pattern of nucleosomes on either side of occupied CTCF sites that

has been observed experimentally [41,42] is not matched by the

predictions, suggesting that the positioning of nucleosomes near

occupied CTCF sites is driven primarily by statistical packing

against a barrier.

Discussion

The nucleosome DNA pattern that we have described here is

largely consistent with previously described nucleosome position-

ing signals. However, our finding that the two mono-nucleotide

patterns (A/T and G/C) are individually more predictive than any

single dinucleotide or trinucleotide pattern represents a significant

departure from the widely held belief that dinucleotide periodic-

ities and poly-A/T tracts are the strongest nucleosome positioning

elements. Our model agrees with the hypothesis that periodicity

seen in the average profile of a set of nucleosomal sequences

reflects an alignment imposed by the structural organization of the

nucleosome core particle, rather than periodicity in individual

sequences [27]. Elevated GC-content is widely known to be a key

feature of nucleosomal sequences and was previously found to be

one of the strongest individual predictors of nucleosome

occupancy in S. cerevisiae [16,18]. GC-rich dinucleotides have also

been associated with reduced DNA deformation energy which

would facilitate their integration into the core of the nucleosome

[44,45]. The downward trend 59 to 39 across the nucleosome core

of the AA dinucleotide frequency has been previously observed

[14,26], but the significance of this asymmetry in localizing

nucleosomes has not been emphasized.

The symmetry of the nucleosome around the dyad axis and the

reverse-complementarity of the two strands of the double helix

require that the A and T patterns form a mirror-image pair, and

likewise for G and C. If each individual pattern was symmetric

around the dyad axis, then only two distinct patterns would exist:

one for A/T and one for G/C. Furthermore, because p(A+T) and

p(G+C) must sum to unity, these two patterns would be perfectly

negatively correlated, and from an information-theoretic point of

view the second pattern would provide no additional information

not already available in the first. Because each individual pattern is

not symmetric around the dyad axis, the four mono-nucleotide

patterns combine to provide more information regarding the

locally optimal dyad position. We verified this by mapping the

DNA sequences down to a two-letter fW ,Sg alphabet and

training the model as before, and found that the discrimination

performance as measured by the area under the ROC curve was

significantly reduced.

Our model combines the features that promote nucleosome

occupancy as well as those that enforce exclusion into a set of k-mer

specific patterns. The pattern-correlation method that we use is

normalized to remove sequence composition biases, as is also done in

the nucleosome-core portions of the Field and Kaplan models [4,10].

However, the widening of the model to include the adjacent linkers in

each pattern similarly removes composition bias from the scoring of

the linkers, resulting in an overall description of the nucleosome that

is insensitive to large-scale variations in AT content, an insensitivity

which naturally reflects the pervasive presence of nucleosomes in all

genomic regions. Our approach also combines elements of previous

probabilistic models [4,9,10,13], with a discriminative approach

[16,17]. This weighted combination of features allows us to

simultaneously make use of mono, di- and tri-nucleotide patterns

which provide complementary information. Ioshikhes et al. [13]

modeled only the distribution of AA and TT dinucleotides, effectively

giving zero weight to all other dinucleotides. Our approach is a

generalization of this idea, and we confirm that, of the 10 unique

dinucleotides, AA/TT is the most predictive of nucleosome position,

while AC/GT and GA/TC are the least predictive.

Sequence Model of the Nucleosome Core and Linker
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Examining distances between predicted dyad positions on a

genome-wide scale, we find evidence for two classes of preferred

nucleosome repeat lengths in H. sapiens—one near 175 bp and the

other near 225 bp. In S. cerevisiae, a similar analysis produces a broad

peak between 175 and 200 bp. This predicted distribution in S.

cerevisiae implies longer linkers than the experimentally inferred

distribution, a bias toward longer nucleosome repeat lengths which

may be caused by the length of our pattern. Although the pattern

length of 301 bp was chosen to optimize performance on our

datasets of nucleosome positions, the original experiments them-

selves and the post-processing of the data to obtain estimated dyad

positions may produce an ascertainment bias that favors not only

highly-positioned nucleosomes but also those flanked by longer

linkers. In the H. sapiens genome, the shorter class of linkers are

associated with repetitive elements while the longer class of linkers

are associated with both repetitive and non-repetitive elements. We

hypothesize that, by preferring two different classes of linker lengths,

the repetitive elements promote the formation of the two distinct

classes of 30 nm chromatin fiber described by Robinson et al. [24].

The processing of the high-throughput sequencing data ensures

that only the most stringently positioned nucleosomes will result in

high-confidence dyad positions. The largest S. cerevisiae dataset we

considered contained approximately 50,000 nucleosome positions,

or nearly 70% of the expected total number of nucleosomes within

the S. cerevisiae genome. By contrast, the largest H. sapiens dataset

we considered contained only 5% of the 15,000,000 nucleosomes

we estimate would be required by a single copy of the H. sapiens

genome. Our model achieved similar performance on two pairs of

datasets: the 3,000 S. cerevisiae nucleosomes and 400,000 H. sapiens

nucleosomes, and the 6,000 S. cerevisiae nucleosomes and 800,000

H. sapiens nucleosomes. For the smaller pair of datasets, we report

a true positive rate of 74% at a false positive rate of 10%, and for

the larger datasets, we report a true positive rate of 65% at a false

positive rate of 10%. If we assume that roughly half of the well-

positioned nucleosomes in H. sapiens were missed through a

combination of issues due to short-read sequence mappability and

sequencing-depth limitations, then these two pairs of datasets

represent 4% and 8% respectively of the entire set of nucleosome

positions for these two genomes. This implies that, in both

genomes, a comparable and relatively small fraction of nucleo-

somes are well-positioned and that these positions are predictable

based on sequence alone. We believe that the bulk of the

remaining nucleosomes follow a statistical positioning model [14].

Our results lead us to a middle ground between, on the one hand,

the idea that nucleosome positions in vivo are determined primarily

by DNA sequence [9,10], and, on the other, the idea that intrinsic

histone-DNA interactions play no part in creating the in vivo

pattern [46]. Nucleosome occupancy models in which short linkers

are preferred [19] may predict certain nucleosomes to be well-

positioned not as a result of a strong local sequence signal, but

rather as a direct result of a nearby nucleosome that is itself

positioned by a particularly strong sequence signal, the effects of

which ripple outwards in the chromatin structure. Knowing which

nucleosomes are strongly positioned due to local sequence signals

and which ones are merely ‘‘packed’’ against a barrier would

further our understanding of the organization of the chromatin.

Our estimates that relatively small fractions of nucleosomes are

strongly-positioned based on local sequence alone may seem

surprising in light of some earlier claims that 50% or more of

nucleosome positions could be accurately predicted based on

sequence alone [9,26]. However, these earlier claims were based

on very small sets of well-positioned nucleosomes (a few hundred

as opposed to tens or hundreds of thousands), or on criteria which

could be satisfied for 32–45% of nucleosome positions by chance.

We have defined a more stringent classification task and have tried

to assess the fraction of nucleosome positions that are strongly

influenced by local sequence features.

Further avenues for research to improve this model include

discriminatively combining patterns of different lengths or different

horizontal scales to capture the variation in linker lengths, as well as

investigating the possibility that different types of nucleosomes may

be associated with different DNA sequence patterns—for example,

a difference in the GC profile of H2A.Z nucleosomes has been

recently described [27]. Another interesting direction is to use these

dyad scores as well as the experimentally estimated nucleosome

positions to train a dynamic Bayesian network which could then be

used to make nucleosome-positioning and occupancy predictions.

In addition, these predictions could be constrained by the

experimental evidence and used to fill in gaps in the data.

Methods

Dyad position estimation from sequencing
The dyad positions in H. sapiens were estimated using a modified

version of the NPS (Nucleosome Position from Sequencing)

software [2]. The original implementation combines offset tags

from each strand into a smoothed nucleosome occupancy trace. A

p-value threshold is applied to this trace, and the end-points of the

regions that exceed the threshold (with boundaries on the

minimum and maximum region extents) are called positioned

nucleosome regions. Our initial pattern was obtained using the

Zhang nucleosome positions by assuming that the dyad was at the

mid-point of each of these nucleosome regions. The modified NPS

software finds the local maximum within each region that crosses

the threshold and calls that the dyad position.

To estimate dyad positions from the Field dataset of mapped

reads [4], each mapped read was represented on the genomic axis

by a triangle of height 1, and base given by the length of the actual

read, and these overlapping triangles were summed to produce a

‘‘dyad’’ trace. All local maxima within local windows of length 141

nucleotides were called dyad positions.

Nucleosome sequence pattern estimation
Given a set of N nucleosome dyad positions and a k-mer m of

length K , we compute the m-pattern Pm in four steps as follows.

First, extract a DNA segment Si of width W (where W is odd)

centered at each dyad position Di from the reference genome.

Second, for Si and its reverse complement Ri, convert the DNA

segment into a numerical representation in which all positions are

zeros except each position of an exact sub-string match to m is set

to the value 1=K . If m is a mono-nucleotide, then K~1, and the

numerical representation is a simple bit vector of 1’s and 0’s. For

longer m it is possible to have overlapping matches (e.g. the

dinucleotide AA occurs four times with overlap in the segment 5-

mer AAAAA), and in such cases the values are summed. The sum

of the W values in the resulting numerical representation is equal

to the number of (possibly overlapping) occurrences of m in the

input DNA segment and its reverse complement. Third, average

all 2N numerical representations to obtain the average pattern,

and finally standardize this pattern such that its mean is equal to

zero and its variance is equal to 1. This procedure (excluding the

standardization step) is expressed in the following equation:

Pm½j�~
1

2NK

XN

i~1

XK

k~1

I Si½j1 : j2�~m½1 : K�ð Þf

zI Ri½j1 : j2�~m½1 : K �ð Þg
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where j is the position relative to the dyad and ranges from

{(W{1)=2 to (W{1)=2, j1~jzk{1, j2~jzkzK{1,

S½j1 : j2� indicates the substring in S from position j1 through

position j2{1 inclusive, and I(_) is the indicator function which is

equal to 1 if the argument is TRUE, and 0 otherwise. This

procedure will produce mirror-image patterns for k-mers that are

reverse-complements of one another. For example, the pattern PA

for the mono-nucleotide A, and pattern PT for the mono-

nucleotide T, will be related as follows: PA½j�~PT ½{j�, for j as

defined above. Dinucleotides, such as TA or GC, which are their

own reverse-complements will result in symmetric patterns for

which P½j�~P½{j�.

3D structure visualization
The 3D visualizations of the nucleosome core particle shown in

Figure 2 were created using PyMol [47] and PolyView-3D [48]

and PDB [49] structure 1KX5 [50].

Null model estimation
Our null model for the variation expected by chance of each

nucleotide across a distance of 151 bp was derived empirically

from 800,000 random sets of DNA sequence fragments. Each

random set is equal in size (M~438000) to the Zhang positions

set: for each nucleosome dyad position Di, we choose a random

position Ri within 1000 bp (in either the 39 or the 59 direction).

We then extract a set of M DNA sequences of length 151 bp

centered at each of the random positions fRig, and construct the

position specific frequency matrix (PSFM) as described earlier. We

search for the absolute maximum and minimum values for each

nucleotide across the 151 bp PSFM, and compute the difference,

D. For each of the four traces in the observed pattern shown in

Figure 1 (top), D~0:046. Our empirical null model is shown in

Figure S3. The right tail of the empirical null model falls off

proportional to 10{ax2

based on which we estimate the probability

of observing a D§0:046 by chance to be pv10{500.

DNA sequence pattern correlation
Given the pre-computed pattern Pm for the k-mer m and a new

input DNA sequence Sx of length W , we start by translating both

Sx and its reverse-complement Rx into the numerical represen-

tations Ux and Vx according to m:

Ux½j�~
1

K

XK

k~1

I Sx½j�~m½k�ð Þ

Vx½j�~
1

K

XK

k~1

I Rx½j�~m½k�ð Þ

Both Ux and Vx are then standardized to have mean zero and

variance one, and the sum of the dot-products between each of

these vectors and the pre-computed pattern vector is our

correlation coefficient:

r~Ux_PmzVx_Pm

This correlation coefficient represents how well the input DNA

sequence pattern Sx matches the patterns for both the k-mer m
and its reverse complement.

Support vector machine training and testing
Given a set of positive and negative examples described by

feature vectors xi of length L, a support vector machine (SVM)

learns an optimal discriminant function defined by a weight vector w
such that the dot-product yi~w_xi will ‘‘best’’ separate the

positive examples (with yiw0) from the negative examples (with

yiv0). If the positive examples cannot be separated from the

negative examples by a hyperplane in the high-dimensional

feature space, w will define the hyperplane that minimizes the

misclassification costs [30].

Evaluation using ROC curves, and evaluation of individual
features or subsets of features

ROC curves provide a means of evaluating a binary classifier. A

set of positive examples and a set of negative examples are assigned

scores, and the examples are then ordered from highest score

down to lowest. The ROC curve is generated by varying a

threshold from the minimum score up to the maximum score, and

at each step computing the true positive rate (the fraction of

positives scoring above the threshold) and the false positive rate

(the fraction of negatives scoring below the threshold). A perfect

classifier will result in a line from (0,0) up to (0,1) and across to

(1,1), and an area ‘‘under’’ the curve (AUC) of 1.0, while a random

classifier will result in a diagonal line from (0,0) to (1,1), and an

AUC of 0.5.

For our classification tasks, the negative examples were defined

to be at a distance of 110 bp on either side of each positive

example, resulting in twice as many negative examples as positive

examples.

When evaluating the Field and Kaplan models, start probabilities

were converted to dyad probabilities by shifting the predictions by

73 bp. The raw binding scores were locally averaged over a window

of width 9, and the start probabilities were locally averaged over a

window of width 41—these window sizes were chosen to optimize

the area under the ROC curve. Our model predictions were locally

averaged over a window of width 11.

Partitioning according to local repeat content
For the ‘‘v25% repeat’’ and ‘‘w75% repeat’’ curves in Figure 9,

dyads were partitioned into sets according to the fraction of bases

annotated as repetitive by RepeatMasker [51] within a 200 bp

window centered at the dyad. For the ‘‘v25% repeat’’ curve, only

those dyads with fewer than 50 out of 200 bp marked as repetitive

were considered to compute the inter-dyad distance histogram.

Similarly, for the ‘‘w75% repeat’’ curve, only those dyads with

more than 150 out of 200 bp marked as repetitive were considered.

AluSx analysis
There are over 340,000 AluSx elements annotated by Repeat-

Masker [51], with lengths generally between 291 and 313. In order

to perfectly align a large set of AluSx sequences with flanking

regions, we used only the 4,930 AluSx sequences of length 313 with

no insertions or deletions. We then extracted 901 bp of sequence

surrounding the mid-point of each of these AluSx sequences and

computed the dyad score along each of these sequences. The

average of these dyad score traces is shown in Figure 10.

Supporting Information

Table S1 Breakdown of nucleosome position sets and ROC

scores by chromosome for H. sapiens. The All dataset was obtained

using a threshold of 1.e-05 on the NPS-assigned p-value, and

contains the top 828,883 scoring nucleosome dyad positions

obtained from the Schones resting T-cells dataset. The Top 1/2

dataset was obtained by lowering the threshold to 1.e-08, and

contains 398,291 dyad positions, and the Top 1/4 dataset was

obtained by further lowering the threshold to 1.e-11, and contains

Sequence Model of the Nucleosome Core and Linker
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209,101 dyad positions. For each chromosome and for each set,

the number of positions in that set and on that chromosome is

given, followed by the density of positions estimated simply as the

chromosome length divided by the total number of positions,

followed by the cross-validated area under the ROC curve

obtained by training on all other chromosomes. Note that both X

and Y are significantly under-represented in terms of nucleosome

positions as compared to the autosomes. The performance as

measured by the area under the ROC curve is very consistent

across all of the chromosomes except Y.

Found at: doi:10.1371/journal.pcbi.1000834.s001 (0.01 MB PDF)

Table S2 Breakdown of nucleosome position sets and ROC

scores by chromosome for S. cerevisiae. This table is very similar to

the one on the previous page for H. sapiens. The All dataset (far

right) represents all of the nucleosome dyad positions inferred from

the Field et al. data [4]. Moving from right to left, each successive

dataset contains the top-scoring half of the dataset to the right.

Found at: doi:10.1371/journal.pcbi.1000834.s002 (0.01 MB PDF)

Figure S1 Histogram of distances between short-read tags

mapped to the top- and bottom-strands for the composite Barski

data set and the Schones data set. The histogram consists of counts

in bins of width 10 nucleotides, and the y-axis is normalized by the

count in the first bin. The NPS algorithm looks for regions in

which sets of plus-strand tags and minus-strand tags are separated

by a distance that corresponds to a single nucleosome core. Based

on the analysis shown in this figure, it is clear that the Schones

data set provides a more consistent set of tags separated by a

distance of approximately 140 nucleotides. The agglomeration of

the 21 separate ChIP-Seq experiments in the Barski data set is less

enriched for tags separated by the expected distance, and the

observed spread is significantly wider. Based on this analysis, we

chose to proceed with our analysis using only the Schones data set.

Found at: doi:10.1371/journal.pcbi.1000834.s003 (0.01 MB PDF)

Figure S2 Single-nucleotide PSFM computed across all nucle-

osome sequences, using only the top-strand sequence centered at

each nucleosome dyad. The bottom figure zooms in on the 300

positions centered at the dyad. The gradual increase in the total

GC-content shown in Figure,S1 as the distance to the

nucleosome dyad decreases is due to a relative over-representation

of nucleosome positions in the Zhang dataset in GC-rich regions of

the genome. This over-representation of nucleosome positions in

GC-rich regions is also described by Zhang et al. [2] and is

attributed to a combination of the ChIP-selection for histone

modifications that are known to be over-represented in genes and

near promoters, and the known GC-bias in the coverage of Solexa

sequencing.

Found at: doi:10.1371/journal.pcbi.1000834.s004 (0.10 MB PDF)

Figure S3 The x-axis represents the maximum absolute

variation observed in a mono-nucleotide pattern derived by

averaging 438,000 individual DNA sequences of length 151 bp

each. The null-model distribution was obtained empirically from

800,000 random sets of DNA fragments. (a) shows the null model

distributions based on random sampling for each of the 4

nucleotides as well as the observed deltas based on the nucleosome

pattern derived from the Zhang positions, and (b) shows the null

distributions at higher resolution.

Found at: doi:10.1371/journal.pcbi.1000834.s005 (0.01 MB PDF)

Figure S4 The nucleosome positions are over-represented in

GC-rich regions, but the pattern is observed across different

ranges of AT content and is strongest in the very high AT content

subset (c) and weakest in the very low AT content subset (f). (a)

shows the pattern derived from all of the nucleosome positions and

(b) through (f) show the patterns derived from non-overlapping

quintiles, divided according to AT content. (For each plot, A

(green) and T (red) are plotted against the y-axis on the left, while

C (blue) and G (yellow) are plotted against the y-axis on the right.)

Found at: doi:10.1371/journal.pcbi.1000834.s006 (0.04 MB PDF)

Figure S5 The nucleosome pattern is largely unchanged when

the dataset is partitioned according to local repeat content,

although the A and T curves shift upwards relative to the C and G

curves. (a) 70% of the nucleosome positions are at least 30 bases

away from a repeat; (b) 19% are in a repeat that extends at least 30

bases to both sides; and (c) 11% are near the edge of a repeat. The

Pearson correlation between local AT content and local repeat

fraction is +0.23 (although Alu repeats are only 45–50% AT, other

repeats generally have higher AT content, particularly LINE1

repeats which are approximately 65% AT). The increased noise in

the patterns in (b) and (c) is due to the smaller number of sequences

used to create these two patterns.

Found at: doi:10.1371/journal.pcbi.1000834.s007 (0.02 MB PDF)

Figure S6 The four possible permutations of the original pattern

were correlated against all nucleosome sequences. Each sequence

was then assigned to one of four classes, and new patterns derived

after realigning the sequences according to the peak correlation

offset (green = A, red = T, blue = C, yellow = G).

Found at: doi:10.1371/journal.pcbi.1000834.s008 (0.03 MB PDF)

Figure S7 A subset of the nucleosome patterns derived from the

training set of ,200,000 nucleosome dyad positions. The pattern

for T is a reflection of the A pattern across the (vertical) dyad axis,

and similarly the TT pattern is a mirror image of the AA pattern.

(The same holds for C/G and CC/GG.) The patterns for

dinucleotides which are their own reverse complements are

symmetrical about the dyad axis. Intriguingly, the normalized

patterns for CG and GC are nearly identical to one another,

suggesting that these dinucleotides play the same role in

positioning nucleosomes despite their dramatically different

occurrence rates.

Found at: doi:10.1371/journal.pcbi.1000834.s009 (0.02 MB PDF)

Figure S8 These figures show the S. cerevisiae and H. sapiens

nucleosome patterns for A, AA, and AAA. Note that these S.

cerevisiae patterns still contain the MNase artifact, which was most

apparent in the A pattern. The Pearson correlation coefficients for

each S. cerevisiae pattern and the corresponding H. sapiens pattern

are: A:0.77, AA:0.88, and AAA:0.91, suggesting that the

underlying oscillation common to both patterns plays a role in

positioning nucleosomes across species.

Found at: doi:10.1371/journal.pcbi.1000834.s010 (0.02 MB PDF)

Figure S9 Area under the ROC curve as a function of the

distance L between the dyad positions and the non-dyad positions

on either side. Near the dyad, discrimination is difficult and the

performance is not much better than random, especially in H.

sapiens. As the distance from the dyad increases, performance

improves, reaching a maximum in the linker, after which the

performance degrades again.

Found at: doi:10.1371/journal.pcbi.1000834.s011 (0.01 MB PDF)

Figure S10 These four traces represent the average dyad score

across four subsets of S. cerevisiae transcription start sites, clustered

according to promoter nucleosome profile by Lee et al. [18]. The

grey curves accompanying each of the dyad score traces were

taken from Figure 4a in the same paper by Lee et al. (Note that the

grey traces are not plotted on the same y-axis scale as the average

dyad score traces, but are plotted on the same scale relative to each

other.) The GO Slim biological process term most overrepresented
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by genes in each cluster, as reported by Lee et al. were: ‘‘response

to stress’’ (top, red); ‘‘translation’’ (next, green); ‘‘ribosome

biogenesis and assembly’’ (next, dark blue); and ‘‘organelle

organization and biogenesis’’ (bottom, light blue).

Found at: doi:10.1371/journal.pcbi.1000834.s012 (0.02 MB PDF)

Figure S11 (A) Model predictions averaged over 32,000+
transcription start sites from DBTSS (red), and experimentally

derived dyad curve based on the Zhang set of nucleosome

positions (grey). Note the ,40bp offset between the red and grey

curves, and the prediction of a nucleosome near 2100 bp, in the

apparent ‘‘nucleosome free region’ (NFR) upstream of the TSS.

The apparent disagreement between the predictions and the

experimental averages are due to two effects: first, the experimen-

tal data only spans approximately one third of the entire set of

32,000 TSSs; and second, the locally optimal dyad score for each

+1 nucleosome (for example) may vary considerably, thereby

contributing unequally to the average profile. In order to verify

that the ,40 bp offset did not represent a systematic bias in our

method, we created subsets of the DBTSS positions according to

the relative position of an experimentally-determined dyad. We

then computed the mean predicted dyad score across these

subsets. Three representative subsets are shown in (B): the number

of TSS in each subset is indicated by the number in the

parentheses, and the mid-point of the 30 bp window is given by

the number preceding the parentheses. For example, the red curve

represents an average over 1252 predictions, for transcription start

sites with experimental dyad positions mapped between 20 and

50 bp downstream of the TSS. The position of the peak in each of

these average curves matches the mid-point of the 30 bp window

almost exactly. (The grey curve in (A) is not plotted on the same y-

axis as the red curve and is shown only for reference.)

Found at: doi:10.1371/journal.pcbi.1000834.s013 (0.02 MB PDF)

Figure S12 Model predictions averaged over two sets of CTCF

binding sites: occupied (red) and unoccupied (green). The solid

grey trace represents the experimentally-determined nucleosome

occupancy derived from Figure 5B in Cuddapah et al. [42] near

unbound CTCF binding sites, and the thin grey line with triangles

is the nucleosome occupancy curve surrounding bound CTCF

sites from Figure 3A in Zhang et al. [2]. Without CTCF binding,

the sequence-dependent nucleosome-positioning does not result in

a strong coherent pattern of flanking nucleosomes, in agreement

with the data from Cuddapah et al. In contrast, CTCF binding

results in a significantly more coherent pattern of flanking

nucleosomes. The difference between the red and the green

curves suggests that the set of ‘‘unoccupied’’ CTCF sites includes a

number of false-positives which appear to have significantly

different flanking sequence characteristics. (The grey curves are

not plotted on the same y-axis as the red and green curves and are

shown only for reference.)

Found at: doi:10.1371/journal.pcbi.1000834.s014 (0.02 MB PDF)
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