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Abstract

Cell-surface receptors are the most common target for therapeutic drugs. The design and optimization of next generation
synthetic drugs require a detailed understanding of the interaction with their corresponding receptors. Mathematical
approximations to study ligand-receptor systems based on reaction kinetics strongly simplify the spatial constraints of the
interaction, while full atomistic ligand-receptor models do not allow for a statistical many-particle analysis, due to their high
computational requirements. Here we present a generic coarse-grained model for ligand-receptor systems that accounts for
the essential spatial characteristics of the interaction, while allowing statistical analysis. The model captures the main
features of ligand-receptor kinetics, such as diffusion dependence of affinity and dissociation rates. Our model is used to
characterize chimeric compounds, designed to take advantage of the receptor over-expression phenotype of certain
diseases to selectively target unhealthy cells. Molecular dynamics simulations of chimeric ligands are used to study how
selectivity can be optimized based on receptor abundance, ligand-receptor affinity and length of the linker between both
ligand subunits. Overall, this coarse-grained model is a useful approximation in the study of systems with complex ligand-
receptor interactions or spatial constraints.
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Introduction

Extracellular signals, such as morphogens and hormones,

bind to specific receptors on the cell surface to activate

signaling cascades that ultimately regulate key cell decisions,

such as proliferation, migration or apoptosis. In multicellular

organisms, dysregulation of this receptor-initiated signaling can

lead to uncontrolled cell proliferation and cancer. Nowadays,

around 60% of all commercial drugs are designed to target

specific receptors on the cell surface. Due to this role in

stimulus recognition and upstream regulation of cell signaling,

mathematical modeling of ligand-receptor interaction consti-

tutes a major effort in the development and rational design of

novel therapeutic strategies. The majority of these models are

based on a chemical kinetics description of ligands in a three-

dimensional environment that bind to receptors diffusing in a

two-dimensional surface [1,2]. In more complex scenarios [3,4]

where the spatial constraints of the interaction are important,

the reaction rates are assumed to be simply modulated by

receptor diffusion, while interactions at the membrane level are

assumed to be facilitated by the reduction in the dimensionality

of the system, following Adam and Delbruck seminal contri-

bution [5].

Although these assumptions may be valid in simple scenarios,

they neglect several important regulatory mechanisms induced by

the structural details of the interaction, such as diffusion

inhomogeneities or conformational changes after multimerization,

or sequential binding [3]. Alternative computational approaches

use a detailed atomistic description of both ligands and receptors

[6–9] to fully account for the spatial regulation in the interaction,

such as receptor orientation or ligand asymmetry. Unfortunately,

such models require large computational resources, making

prohibitive the implementation of many-particle simulations for

statistical analysis or the implementation of slow degrees of

freedom, such as receptor diffusion. Other more computationally

efficient approaches reduce some degrees of freedom using hybrid

models where some parts of the system, usually the membrane or

regions of the receptor, are coarse-grained [10,11]; applying

Monte Carlo simulations with statistical reconstructions to

reproduce the dynamics of the ligand-receptor interaction [12];

or taking advantage of lattice models where both binding/

unbinding events follow a given probability [13–15].

In this work we present a coarse-grained approximation to

ligand-receptor interactions, which allows for a computationally

feasible study of the dynamics of systems with different sets of

PLOS Computational Biology | www.ploscompbiol.org 1 November 2013 | Volume 9 | Issue 11 | e1003274



ligands and receptors at biologically relevant temporal and spatial

scales. The model takes into account both spatial and kinetic

features of the interaction, while allowing many particle simula-

tions, and statistical analysis. The interaction between ligand and

receptor is described by two basic parameters (angular specificity

and strength) which can be tuned to fit a broad range of affinities

and dissociation rates to model different ligand-receptor pairs.

First, we show that the kinetics of ligand binding and unbinding

behave as predicted by chemical kinetics theory, in terms of

diffusion and receptor abundance. Then we correlate the

parameters defining the interaction (angular specificity and

strength) with the experimentally relevant affinity and dissociation

rate parameters. As a case study, the model is applied to the

analysis of the binding properties of generic chimeric ligands,

where we show how cell specificity is achieved and how it depends

on receptor diffusion and length of the linker between ligand

subunits of the chimera.

Methods

Using a coarse-grained approximation, the ligand-receptor

interaction is characterized by the geometry of the reactants and

by the chemical nature of their binding. The first feature sets the

interaction specificity by inducing a steric contribution that limits

the binding region to a specific area of the receptor molecule; the

chemical contribution, in turn, sets the strength of the bond.

Within this representation, ligands and receptors are simplified

as spherical particles of diameters sL and sR respectively. Particles

of the same type interact via a repulsive WCA potential [16]:

Vrep(r)~
4e0
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� �12
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� �6
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with r being the distance between particles, si the diameter of the

reactant type i (either sL or sR), and rc~21=6si the cutoff distance

for the potential. For the simulations, we set sR~3:3sL to mimic

the typical size ratio between epidermal growth factor ligands and

its complementary receptor [17]. Results are shown in terms of

reduced units, where e0 and s0:sL are the characteristic energy

and length units of the system, respectively.

To account for the interaction between ligand and receptor

VLR, we use an angular-dependent form of a generic Lennard-

Jones potential which takes non-zero values for rvrcut

VLR(r,w)~4e
sR

r{D(w)

� �12

{a(w)
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where e is the interaction strength, rcut~21=6sRzD(w), and Vcut

is set such that the interaction is zero at the cutoff, VLR(rcut,w)~0.

The functions a(w) and D(w) are defined as follows:

D(q)~

sRzsL

2(1z20 cos6 (2q))
{sR ; wvp=2

sRzsL

2
{sR ; w§p=2

8>><
>>: ð3Þ

a(w)~
cosc (2w) ; wvp=2

0 ; w§p=2

�
ð4Þ

These functions are chosen so that they and their derivatives are

continuous at w~p=2 and represent a smooth angular dependen-

cy with w. For wwp=2, VLR is reduced to the repulsive term of the

Lennard-Jones. The parameter c can be understood as a

geometric factor that modulates the angular specificity of the

interaction.

The ligand-receptor interaction potential can be identified as

the effective shape of the receptor seen by a ligand molecule

(Fig. 1A). The effect of the parameters e and c on the interaction

strength and the binding area are showed in Fig. 1B and Fig. 1C.

The ligand-receptor interaction is studied using molecular

dynamics simulations where ligands of reduced mass mL follow

Langevin dynamics with diffusion coefficient DL at constant

temperature given by kBT~e0 [18]. These magnitudes fix the

characteristic time-scale of the system t0~sL

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mL=kBT

p
. Recep-

tor diffusion within the membrane is much slower than ligand

diffusion, so it is neglected during the study of the monovalent

binding of ligands to receptors, but will be taken into account in

the characterization of chimeric ligands (see Results). Receptor

diffusion is implemented following the Langevin formalism, using

a receptor mass mR~100m0 and diffusion coefficient DR. For the

initial configuration, the number of receptors Rtotal is fixed

(typically between 100–200) and they are randomly distributed in

the x-y plane of a box with dimensions lx, ly and lz. The lateral

dimensions of the box are calculated, given a receptor concentra-

tion per unit area ½Rtotal�A, as lx~ly~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rtotal=½Rtotal�A

p
. The

magnitude of lz is adjusted to facilitate analysis depending on the

process studied (see Results). In order to avoid finite size effects,

periodic boundary conditions are applied.

Typically, 4 to 32 independent simulations are run for each set

of parameters, and the results are averaged to calculate rate

constants. Standard deviations due to system fluctuations are

represented by error bars. Results are plotted in terms of the

characteristic length s0, energy e0, and time t0 of the system.

Volume concentrations are denoted by variables in brackets, while

Author Summary

The current importance of cell surface receptors as primary
targets for drug treatment explains the increasing interest
in a mathematical and quantitative description of the
process of ligand-receptor interaction. Recently, a new
generation of synthetic chimeric ligands has been devel-
oped to selectively target unhealthy cells, without harming
healthy tissue. To understand these and other types of
complex ligand-receptor systems, conventional chemical
interaction models often rely on simplifications and
assumptions about the spatial characteristics of the
system, while full atomistic molecular dynamics simula-
tions are too computationally demanding to perform
many particle statistical analysis. In this paper, we describe
a novel approach to model the interaction between
ligands and receptors based on a coarse grained approx-
imation that includes explicitly both spatial and kinetic
details of the interaction, while allowing many-particle
simulations and therefore, statistical analysis at biologically
relevant time scales. The model is used to study the
binding properties of generic chimeric ligands to under-
stand how cell specificity is achieved, its dependence on
receptor concentration and the influence of the distance
between subunits of the chimera. Overall, this approach
proves optimal to study other ligand-receptor systems
with complex spatial regulation, such as receptor cluster-
ing, multimerization and multivalent asymmetric ligand
binding.

A Coarse-Grained Model for Ligand-Receptor Systems
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the sub-index ‘‘A’’ indicates surface concentrations. Sub-index ‘‘0’’

corresponds to initial values.

Simulations were performed using in-house code where the

model was implemented in a Verlet algorithm (source code

available as Supplementary Material Software S1 in this manu-

script). Given the simplicity of the model, simulations were ran in a

regular desktop computer. For a system with 300 receptors and

500 chimeras (1000 ligands), one million steps were performed in

20 min using one core at 2.76 GHz, this is a performance of

around 830 TPS (time steps per second).

Results

Characterization of simple ligand-receptor interactions
To validate our coarse-grained model, we first apply it to

characterize simple ligand-receptor interactions. The chemical

interaction between a freely diffusing ligand L and its correspond-

ing receptor R that lies on the cell membrane to form a complex C

follows the reaction scheme:

LzR
kon

koff

C ð5Þ

where kon and koff correspond to the affinity and dissociation

rates. Using mass-action kinetics, the dynamics of the system are

described by a simple ordinary differential equation:

dC

dt
~kon½L�R{koff C: ð6Þ

One of the main advantages of our modeling framework is that

both rate constants can be directly computed using statistical

many-particle analysis: for the dissociation rate constant koff ,

molecular dynamics simulations are performed with initially all

receptors bound (C0~Rtotal) and no free ligands (L0~0). These

complexes (200 per simulation run) were placed in a box with

a large lz size (lz~100s0) and receptor density

½Rtotal�A~6:10{3s{2
0 to avoid rebinding events (Fig. 2A). In

this situation, the first term in Eq.(6) is zero and the average

amount of complexes decays as:

C(t)~C0e{koff t ð7Þ

We thus fit the amount of complexes as a function of time to an

exponential to estimate koff values (Fig. 2B).

To calculate kon, we initially set all available receptors unbound,

and then monitor the formation of complexes as a function of time

(Fig. 2C). The simulations were done with 100 receptors at

high ligand concentration, ½L0�~0:01s{3
0 , lz~10s, and

½Rtotal�A~6:10{3s{2
0 . The affinity rate at steady state can be

calculated from the equilibrium condition in Eq. (6). However, at

short times (before dissociation events start to be relevant) the

solution of Eq. (6) with C0~0 can be approximated as

C(t)~kon½L0�Rtotalt, ð8Þ

Figure 1. Spatial characteristics of the ligand-receptor interac-
tion. A) Profile of the ligand-receptor potential VLR for e~e0 and c~3.
Attractive interaction is plotted in blue, while repulsive interaction is
represented in yellow and red. B) Effect of the interaction parameter e
on the interaction strength along the z axis. The binding energy
increases with e. C) Effect of the geometric coefficient c on the ligand-
receptor interaction. The binding area decreases with c.
doi:10.1371/journal.pcbi.1003274.g001

Figure 2. Affinity and dissociation simulations. A) Schematic of
the initial configuration of ligands and receptors to calculate the
dissociation rate. B) Dynamics of ligand-receptor dissociation follows a
exponential decay that allows to calculate the dissociation constant
koff . C) Schematic of the initial configuration of ligands and receptors to
calculate the affinity rate. D) Dynamics of ligand-receptor affinity
follows a linear growth at short times following Eq. (8).
doi:10.1371/journal.pcbi.1003274.g002

A Coarse-Grained Model for Ligand-Receptor Systems
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so kon can be directly obtained from a linear fit in this regime

(Fig. 2D). We checked that both long and short time estimates of

kon produced the same results within numerical accuracy.

Dependence of affinity and dissociation rates on the
simulation parameters

To investigate how the affinity/dissociation rates depend on the

two main parameters of our model, we calculate kon and koff

varying simultaneously e (interaction strength factor) and c
(geometric factor) in a significant range. The affinity rate kon

shows a strong dependence on both parameters (Fig. 3A), since

binding depends on the depth of the Lennard-Jones potential and

the available attractive area on the receptor surface. On the

contrary, koff shows a weak dependence on the geometric factor c
(Fig. 3B) since, after the ligand is bound to the receptor,

dissociation depends mainly on the depth of the attractive well

through a Boltzmann factor, while geometrical aspects such as the

curvature of the dissociation barrier [19] play a minor role. Due to

this weak dependence of koff on c, both free parameters e and c
can be tuned to fit different combinations of kon and koff ;

therefore our model can be easily tailored to represent different

ligand-receptor systems.

Other aspects of the monovalent ligand-receptor system can be

characterized within our modeling framework, such as the effect of

ligand diffusion on the binding kinetics. The measured kinetic

rates kon and koff depend on diffusion through a transport rate

constant kdiff as [20,21]:

kon~
kdiff k’on

kdiffzk’on

ð9Þ

koff~
kdiff k’off

kdiffzk’off
ð10Þ

Here, kdiff is proportional to the diffusion constant of the ligand

DL[22,23], while k’on and k’off state for the intrinsic reaction

rates. We obtained that both affinity and dissociation rates exhibit

a linear dependency with the diffusion coefficient (Fig. 3C–D).

This indicates that, for the parameters used, the system is

operating in a diffusion-limited regime (k’on=offwwkdiff ) and

therefore kon&kdiff!DL. This behavior is consistent with an

scenario where typical affinity/dissociation time-scales are much

faster than diffusion time-scales.

Overall, we have shown that the coarse-grained model

reproduces the main aspects of the ligand-receptor interaction,

and provides a good description to statistically obtain the affinity

Figure 3. Dependence of the reaction rates on the system parameters. A and B): Dependence of kon and koff with the tuning parameters for
DL~0:1s2

0=t0 and ½Rtotal�A~6:10{3s{2
0 . kon (A) was determined via association experiments with ½L0�~0:01s{3

0 and R0~200. koff (B) was

determined via dissociation experiments with R0~100. C and D): kon and koff as a function of the diffusion coefficient DL for ½L0�~0:01s{3
0 ,

½Rtotal�A~6:10{3s{2
0 , R0~200, e~8e0 and c~2. Dashed lines: linear fit for the dependence of the reaction rates with the diffusion coefficient DL ,

with slopes: mon~3:5+0:5s0 , moff~0:050+0:007s{2
0 . In all four panels each outcome is the result of 4 independent simulations and has an error

v4%. In panels C and D, error bars are within the size of the symbols.
doi:10.1371/journal.pcbi.1003274.g003
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and dissociation rates via dynamical simulations. We next apply

our model to characterize more complex ligand-receptor scenar-

ios.

Coarse-grained model to study the dynamics of chimeric
ligands

One of the most promising strategies to improve the efficiency

and selectivity of drug-based therapies is the use of synthetic

chimeric ligands [24–26]. Typically, these chimeras consist of two

subunits: an activity element (AE) that triggers a desired cellular

response, by interacting with a specific receptor (for instance a

receptor involved in an apoptotic signaling cascade), and a

targeting element (TE) that binds to a receptor differentially

expressed in healthy versus unhealthy cells, (Fig. 4). The efficiency

of these chimeric constructs relies on a mechanism of reduction of

dimensionality [5]: binding of the TE to its receptor restricts the

AE search for its complementary receptor to a small volume close

to the cell surface, increasing the chance to interact with it and

producing the desired effect. As chimeric ligand-receptor interac-

tions are in many cases limited by receptor diffusion [4,26],

molecular dynamics simulations can be instrumental to properly

select the optimal balance between affinity and dissociation rates of

AE and TE to achieve maximum selectivity, or to determine the

length of the protein linker between AE and TE.

To test our coarse-grained description of the chimeric ligand-

receptor interaction, we implement a chimeric ligand formed by

two subunits representing the TE and the AE coupled by a linker,

(Fig. 4). The linker is usually a polypeptide chain composed of

identical subunits [26]. Polypeptide chain dynamics can be well

described by a Worm-Like Chain model [27]; therefore the linker

is modeled here as an effective force between both subunits given

by a Worm-Like Chain interaction [28]:

f (r)~
kBT

2lp

2r

rmax
z

1

2

rmax

rmax{r

� �2

{
1

2
ð11Þ

where r is the distance between AE and TE, and

rmax~Nl cos(h=2) is the size of the polymer chain when

completely stretched. N represents the number of monomers in

the chain, l the size of each monomer, and h the angle between

monomers. The persistence length is given by lp~2l=h2.

This force leads to an average end-to-end distance between AE
and TE that follows

vr2
w~2lprmax{2l2

p 1{exp
{rmax

lp

� �� �
ð12Þ

Two different types of receptors, referred as AER and TER, are

implemented in our model. They are allowed to interact

specifically with the AE or the TE subunit of the chimera via

Eqs.2, 3 and 4, while non complementary ligands and receptors

interact via a purely repulsive steric interaction:

Vrep(r)~
4e0

sR
r{D

� �12
{

sR
r{D

� �6
z

1

4

� �
; rƒrc

0 ; rwrc

8<
: ð13Þ

where D~
sRzsL

2
{sR and rc~21=6sRzD. Elements of the same

type, i.e., ligand-ligand or receptor-receptor, interact also repul-

sively through Eq. (1). In this situation, receptor diffusion cannot

be neglected since it allows receptors of different type to get close

enough for a chimeric ligand to bind to them simultaneously.

The selective potential of chimeric ligands against specific cell

types relies on the differential expression of the TER in different

cells in a tissue [4,26]. To study the dependence of the chimeric

efficiency on the amount of TER in the cell surface, we compute

the number of AE-AER complexes formed in chimeric versus

monomer configuration for different initial abundances of

targeting element receptors, TER0. Results are plotted in Fig. 5

for two different situations: high (Fig. 5A) and low (Fig. 5B)

interaction strengths of the AE towards its corresponding receptor.

As expected, when no TER0s are present, the number of AE-AER

complexes formed is equivalent to a non-chimeric ligand in both

situations (dark blue in Figs. (5A–B). At high affinity rate values of

the AE, increasing the number of TER0s results in a maximum

relative increase of 35% in the amount of active complexes (red in

Fig. 5C). For reduced values of the AE affinity rate, the relative

change in activity reaches 140% (blue in Fig. 5C). Increasing the

geometric factor c further reduces the affinity rate of the

interaction, as shown in Fig. (3). Accordingly, rising the value of

cAE enhances the specificity of the chimeric ligands for both high

and low interaction strengths, as shown in Fig. S1 in Supplemen-

tary Information. We therefore conclude that the specificity of the

chimeric ligands towards cells overexpressing TERs is enhanced

when the affinity of the AEs towards their receptors is reduced.

This result is consistent with experimental observations by Cironi

and coworkers [26], where chimeras with different mutants of the

AE showing reduced affinity exhibit higher selectivity(discrimina-

tion of healthy versus unhealthy cells) compared to the monomer.

Figure 4. Schematic of chimeric binding. A) Binding of activity
elements (AE’s) to activity element receptors (AER0s) is mediated by
the binding of the target elements (TE’s and TER0s) via a polymer
chain of length a. B) Schematic of a multi component system with
receptors diffusing within a surface, and freely diffusing chimeras. The
colors represent different species, while the polymer chain is
approximated via a worm-like chain potential.
doi:10.1371/journal.pcbi.1003274.g004

A Coarse-Grained Model for Ligand-Receptor Systems
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Apart from the kinetic rates of both AE and TE towards their

corresponding receptors, a key feature in chimera design is the

length of the linker between both subunits. To avoid in vivo cleavage

of the polypeptide linker chain and other undesired effects, the

linker is often engineered with the shortest possible length required

for both chimeric subunits to bind simultaneously to both AER and

TER receptors subtypes [26]. In principle, linkers longer than the

minimum length could also favor the chance of AE{AER
formation by facilitating the encounter of a AE subunit with its

receptor after TE{TER binding, counteracting in this way the

slow two-dimensional receptor diffusion. To analyze that, we

perform simulations to compute the dependence of the effective

affinity rate of AEs for different linker lengths and for different

average distances between TER0s and AER0s (Fig. 6). We initially

set freely diffusing chimeras at a concentration of 5:10{4s{3
0

interacting with 200 TER0s and 100 AER0s. Receptor concentra-

tions are varied by adjusting the size of the x-y plane of the

simulation box as indicated in the previous sections, leading to

different average distances between target and activity receptors.

The vertical size of the simulation box is set to lz~30s0, and the

interaction parameters are set to eTE~15e0, eAE~8e0, cTE~cAE~1.

The linker length a, is given by the end-to-end-distance of the

worm-like chain approximation described by Eq.12, a~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vr2

w

p
.

The average distance between receptors, d, is calculated as follows:

for a given number of TERs distributed within a surface A, we

define an average area per TER as ATER~A=TER0, with an

associated radius rTER~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ATER=p

p
. Any AER in the surface will

be at a distance r from a TER between 0 and rTER. We therefore

define d as the average value of r:

d~
1

ATER

ð2p

0

ðrTER

0

r2drdh~
2

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
A

p:TER0

s
ð14Þ

Results plotted in Fig. 6 show an increase in kon as the distance

between receptors decreases, due to the limiting role of receptor

diffusion in the dynamics of AE{AER formation. For very short

distances (mimicking the situation of receptors clustered in lipid

rafts on the cell membrane [15,29]), receptor diffusion does not

limit the binding of the AE{AER complex, so the effective kon is

maximized (blue line). Since, in principle, the mechanism of

reduction of dimensionality is more effective for shorter linker

lengths (i.e., the AE is maintained closer to the membrane after

TE{TER binding), it could be expected that the optimal design

would correspond to the shortest linker capable of reaching the

two complementary receptors simultaneously (a^d). We see,

however, that the maximum affinity for each given d is achieved at

lengths of the linker larger that the minimal. For very short

Figure 5. Binding specificity. A) and B): Percentage of occupied activity receptors as a function of time for different number of total target
element receptors (color lines) for (A) high (eAE~12e0) and (B) low AE affinity (eAE~8e0). C): corresponding proportional increment in the number of
activity complexes at equilibrium versus the total number of TERs for the low (blue) and high (red) AE affinities of the previous panels. Simulations
are performed for diffusions DR~1:10{3s2

0=t0 , DL~1:10{1s2
0=t0 ; polymer length N~7; number of receptors AER0~100, and chimeras at

concentration ½K0�~5:10{4s{3
0 . The TE{TER affinity rate is set to eTE~15e0 , and geometric factors to cTE~cAE~1. Each trajectory is the result of

averaging over 12 independent simulations. Lines connecting points are represented as a guide to the eye.
doi:10.1371/journal.pcbi.1003274.g005

Figure 6. Effect of the linker length. Affinity rate as a function of
the linker length for different average distances between receptors. The
simulations were done for cTE~cAE~1, eTE~15e0 , and eAE~8e0 . Each
outcome is the average of 32 independent simulations. Lines
connecting points are represented as a guide to the eye.
doi:10.1371/journal.pcbi.1003274.g006
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receptor distances (blue line), values of the linker around

amax^8=s0 maximize the effective affinity. This is due to effects

of linker chain stiffness [30], which we confirmed performing

simulations with binding exclusively on the surface, without

chimeras in solution. At linker lengths longer than amax, the effect

of dimensionality reduction decreases, and so thus the effective

affinity rate for clustered receptors. When receptors are not

clustered (red, green and black lines), receptor diffusion plays a

major role by limiting the interaction [21], so larger linkers

facilitate the reaction by counteracting the low receptor diffusion,

slightly increasing kon as expected. Overall, the model shows that,

in both situations of receptor clustered or far apart, linkers slightly

longer that the minimum distance between receptors, (i.e., larger

than the one used in [26]), increase the affinity rate of the

chimeras, amplifying this way the selectivity of the chimera

towards cells overexpressing the targeting element receptor.

Discussion

In this work we have introduced a tunable coarse grained model

for the simulation of ligand-receptor interactions. Our model

represents a trade-off between a detailed description of the spatial

aspects of the interaction and computational efficiency. Basic

spatial features are described by a geometric factor accounting for

the directional specificity of the interaction, while ligand-receptor

affinity is modulated by the depth of a Lennard-Jones potential.

This approach captures relevant spatial constraints while allowing

for an explicit description of the diffusive dynamics. The simplicity

of the model, together with the computational efficiency of the

presented algorithms, facilitates the application of the model to

study many-particle systems with geometrical constraints or

multiple interactions that cannot be explicitly solved with

theoretical considerations of molecular binding or with all-atom

simulations. We note, however, that other potentially relevant

geometric aspects of the ligand-receptor interaction, such as

asymmetry and steric complementarity of the binding pocket and

ligand can not be captured by this model.

The model applied to a monovalent ligand-receptor interaction

allows to statistically determine the values for the affinity and

dissociation rates and link it to the model parameters. The reduced

dependence of the dissociation rates on the strength of the ligand-

receptor interaction (Fig. 3B) allows to easily find values for e and c
to fit different combinations of kon and koff . We applied the model

to a situation in which typical diffusion time-scales are much larger

than binding time-scales, characteristic of a diffusion limited-

regime [22]. While, in principle, a reaction-limited regime could

also be explored by means of the present model by increasing

either e or DL, this would result in much longer simulations, as it

occurs with many other coarse grained models [31]. We thus focus

on applications where geometric, spatial and diffusion effects are

important.

As a proof of concept of the capabilities of this type of coarse-

grained models applied to ligand-receptor systems, we implement-

ed within this framework a model for chimeric ligands to study the

dependence of their selective potential on the concentration of

both receptor subtypes, affinity of ligand subunits towards their

corresponding receptor, or linker length. Our model shows that

the selectivity of the chimera towards cells over-expressing TER is

increased when the intrinsic affinity of the AE towards AER is

reduced. This is consistent with the observations reported

experimentally by Cironi and coworkers [26], where they used a

mutant form of the human interferon IFNa{2a with reduced

affinity to improve the selectivity of the treatment towards EGFR-

overexpressing cells.

Experimentally, longer linkers are more difficult to implement

due to potential cleavage of the linker (basically, due to multiple

repeats of the same amino acid sequence in the linker), so the

shortest linker possible is often implemented experimentally [26].

Analysis of the effect of the linker length shows that linker lengths

longer than the minimum distance between receptors increase the

effective affinity of the AE, in both situations of clustered and non

clustered receptors. In the case of clustered receptors, the model

predicts an optimal linker length that depends on structural

properties of the linker itself, such as the stiffness of the amino acid

chain.

The presented coarse grained model represents a powerful tool

to understand general properties of complex ligand-receptor

systems with no analytical solutions available, or where analytical

approximations remain to be validated. This is the case of systems

with many agents involved, multi-interactions between species or

situations with special geometries. Some examples could involve

receptor dimerization and its influence on binding, multivalent

binding and receptor cross-linking. A careful definition of the

geometric factor would also allow multiple ligands to bind

simultaneously to the same receptor. In addition, the coarse-

grained approximation could be implemented as a module for

more complex systems including downstream signaling propaga-

tion, or even cell membrane dynamics described via generic coarse

grained models, opening the possibility to study the effects of

membrane fluctuations or membrane inhomogeneties on ligand-

receptor dynamics.

Supporting Information

Figure S1 Binding specificity as a function of cAE.
Proportional increment in the number of activity complexes at

equilibrium versus the total number of TERs for different cAE (see

figure legends), given high (A) and low (B) AE interaction

strengths. Simulations are performed for diffusions

DR~1:10{3s2
0=t0, DL~1:10{1s2

0=t0; polymer length N~7;

number of receptors AER0~100, and chimeras at concentration

½K0�~5:10{4s{3
0 . The TE{TER affinity rate is set to eTE~15e0,

and the geometric factor to cTE~1. Each trajectory is the result of

averaging over 12 independent simulations. Lines connecting

points are represented as a guide to the eye.

(TIF)

Software S1 Collection of source code files to compile
and run the coarse-grained simulations used in this
manuscript can be found in the Software S1 supplemen-
tary file.

(BZ2)
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