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Our nervous system can efficiently recognize objects in spite of changes in contextual variables such as perspective or
lighting conditions. Several lines of research have proposed that this ability for invariant recognition is learned by
exploiting the fact that object identities typically vary more slowly in time than contextual variables or noise. Here, we
study the question of how this ‘‘temporal stability’’ or ‘‘slowness’’ approach can be implemented within the limits of
biologically realistic spike-based learning rules. We first show that slow feature analysis, an algorithm that is based on
slowness, can be implemented in linear continuous model neurons by means of a modified Hebbian learning rule. This
approach provides a link to the trace rule, which is another implementation of slowness learning. Then, we show
analytically that for linear Poisson neurons, slowness learning can be implemented by spike-timing–dependent
plasticity (STDP) with a specific learning window. By studying the learning dynamics of STDP, we show that for
functional interpretations of STDP, it is not the learning window alone that is relevant but rather the convolution of
the learning window with the postsynaptic potential. We then derive STDP learning windows that implement slow
feature analysis and the ‘‘trace rule.’’ The resulting learning windows are compatible with physiological data both in
shape and timescale. Moreover, our analysis shows that the learning window can be split into two functionally
different components that are sensitive to reversible and irreversible aspects of the input statistics, respectively. The
theory indicates that irreversible input statistics are not in favor of stable weight distributions but may generate
oscillatory weight dynamics. Our analysis offers a novel interpretation for the functional role of STDP in physiological
neurons.
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Introduction

The ability to recognize objects in spite of possible changes
in position, lighting conditions, or perspective is doubtlessly
an advantage in everyday life. However, our brain usually
performs this task with such astonishing ease that we are
seldom aware of the complexity this recognition problem
comprises. On the level of primary sensory signals (e.g., light
that stimulates a single retinal receptor), even small changes
in the position of the object to be recognized may lead to
vastly different stimuli. Our brain thus has to somehow
identify rather different stimuli as representations of the
same underlying cause, i.e., it has to develop an internal
representation that is invariant to irrelevant changes of the
stimulus. The work presented here is motivated by the
question of how such invariant representations could be
established.

Because of the limited amount of information in the
genome as well as the apparent flexibility of the neural
development in different environments, it seems unlikely that
the information needed to form invariant representations is
already there at the beginning of individual development.
Some information must be gathered from the sensory input
experienced during interaction with the environment; it has
to be learned. As this learning process is likely to be at least
partially unsupervised, the brain requires a heuristics as to
what stimuli should be classified as being the same.

One possible indicator for stimuli to represent the same
object is temporal proximity. A scene that the eye views is
very unlikely to change completely from one moment to the
next. Rather, there is a good chance that an object that can be

seen now will also be present at the next instant of time. This
implies that invariant representations should remain stable
over time, that is, they should vary slowly. Inverting this
reasoning, a sensory system that adapts to its sensory input in
order to extract slowly varying aspects may succeed in
learning invariant representations. This ‘‘slowness’’ or ‘‘tem-
poral stability’’ principle is the basis of a whole class of
learning algorithms [1–7]. Most applications of this approach
have focused on models of the visual system, in particular on
the self-organized formation of complex cell receptive fields
in the primary visual cortex [8,9].
For clarity, we will focus on one of these algorithms, slow

feature analysis (SFA; [10]); a close link to the so-called ‘‘trace
rule’’ will arise naturally. The goal of SFA is the following:
given a multidimensional input signal x(t) and a finite-
dimensional function space F, find the input–output func-
tion g1(x) in F that generates the most slowly varying output
signal y1(t)¼ g1(x(t)). It is important to note that the function
g1(x) is required to be an instantaneous function of the input
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signal. Otherwise, slow output signals could be generated by
low-pass filtering the input signal. As the goal of the slowness
principle is to detect slowly varying features of the input
signals, a mere low-pass filter would certainly generate slow
output signals, but it would not serve the purpose.

As a measure of slowness, or rather ‘‘fastness,’’ SFA uses the
variance of the time derivative,h _yðtÞ2it, which is the objective
function to be minimized. Here, h�it denotes temporal
averaging. For mathematical convenience and to avoid the
trivial constant response, y1(t)¼ const, a zero-mean, and unit
variance constraint are imposed. Furthermore, it is possible
to find a second function g2(x) extracting y2(t) ¼ g2(x(t)) that
again minimizes the given objective under the constraint of
being uncorrelated with y1(t), a third one uncorrelated with
both y1(t) and y2(t), and so on, thereby generating a set of slow
features of the input ordered by the degree of slowness.
However, in this paper, we will consider just one single
output unit.

SFA has been applied to the learning of translation,
rotation, and other invariances in a model of the visual
system [10], and it has been shown that when applied to image
sequences generated from static natural images, SFA learns
functions that reproduce a wide range of features of complex
cells in primary visual cortex [8]. Iteration of the same
principle in a hierarchical model in combination with a
sparseness objective has been used to model the self-
organized formation of spatial representations resembling
place cells as found in the hippocampal formation of rodents
[11] (see [12] for related work).

These findings suggest that on an abstract level SFA reflects
certain aspects of cortical information processing. However,
SFA as a technical algorithm is biologically rather implau-
sible. There is in particular one step in its canonical
formulation that seems especially odd compared with what
neurons are normally thought to do. In this step the
eigenvector that corresponds to the smallest eigenvalue of
the covariance matrix of the time derivative of some

multidimensional signal is extracted. The aim of this paper
is to show how this kind of computation can be realized in a
spiking model neuron.
In the following, we will first consider a continuous model

neuron and demonstrate that a modified Hebbian learning
rule enables the neuron to learn the slowest (in the sense of
SFA) linear combination of its inputs. Apart from providing
the basis for the analysis of the spiking model, this section
reveals a mathematical link between SFA and the trace
learning rule, another implementation of the slowness
principle. We then examine if these findings also hold for a
spiking model neuron, and find that for a linear Poisson
neuron, spike-timing–dependent plasticity (STDP) can be
interpreted as an implementation of the slowness principle.

Results

Continuous Model Neuron
Linear model neuron and basic assumptions. First, consider

a linear continuous model neuron with an input–output
function given by

aoutðtÞ ¼
Xn
i¼1

wia in
i ðtÞ; ð1Þ

with aini ðtÞ indicating the input signals, wi the weights, and aout

the output signal. For mathematical convenience, let aini ðtÞand
aout (t) be defined on the interval t 2 [�‘, ‘] but differ from
zero only on [0,T], which could be the lifetime of the system.
We assume that the input is approximately whitened on any
sufficiently large interval [ta,tb] � [0,T] (i.e., each input signal
has approximately zero mean and unit variance and is
uncorrelated with other input signals):

Ztb
ta

a in
i ðtÞdt’ 0 ðzero meanÞ; ð2Þ

1
Tab

Ztb
ta

a in
i ðtÞ

2 dt’ 1 ðunit varianceÞ; ð3Þ

Ztb
ta

a in
i ðtÞ a in

j 6¼i ðtÞdt’ 0 ðdecorrelationÞ: ð4Þ

This can be achieved by a normalization and decorrelation
step of the units projecting to the considered unit.
Furthermore, we assume that the output is normalized to
unit variance, which for whitened input means that the
weight vector is normalized to length 1. In an online learning
rule, this could be implemented by either an activity-
dependent or a weight-dependent normalization term. Thus,
for the output signal we have:

Ztb
ta

aoutðtÞdt ’
ð1;2Þ

0; ðzero meanÞ ð5Þ
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Author Summary

Neurons interact by exchanging information via small connection
sites, so-called synapses. Interestingly, the efficiency of synapses in
transmitting neuronal signals is not static, but changes dynamically
depending on the signals that the associated neurons emit. As
neurons receive thousands of synaptic input signals, they can thus
‘‘choose’’ the input signals they are interested in by adjusting their
synapses accordingly. This adaptation mechanism, known as
synaptic plasticity, has long been hypothesized to form the neuronal
correlate of learning. It raises a difficult question: what aspects of the
input signals are the neurons interested in, given that the
adaptation of the synapses follows a certain mechanistic rule? We
address this question for spike-timing–dependent plasticity, a type
of synaptic plasticity that has raised a lot of interest in the last
decade. We show that under certain assumptions regarding
neuronal information transmission, spike-timing–dependent plasti-
city focuses on aspects of the input signals that vary slowly in time.
This relates spike-timing–dependent plasticity to a class of abstract
learning rules that were previously proposed as a means of learning
to recognize objects in spite of contextual changes such as size or
position. Based on this link, we propose a novel functional
interpretation of spike-timing–dependent plasticity.

Slowness Principle and STDP



1
Tab

Ztb
ta

aoutðtÞ2 dt ’
ð1;3ÞXn

i¼1
w 2
i :¼ 1: ðunit varianceÞ ð6Þ

In the following, we will often consider filtered signals.
Therefore, we introduce abbreviations for the convolution f�g
and the cross-correlation f * g of two functions f(t) and g(t):

Convolution: ½ f � g�ðtÞ :¼
Z‘
�‘

f ðsÞgðt� sÞ ds; ð7Þ

Cross - correlation: ½ f � g�ðtÞ :¼
Z‘
�‘

f ðsÞgðtþ sÞ ds: ð8Þ

For convenience, we will often use windowed signals,
indicated by a hat

ŝðtÞ ¼ sðtÞ for t 2 ½ta; tb�
0 otherwise

;

�
ð9Þ

which allows us to replace the integration of a signal s(t) over
[ta,tb] by an integration of ŝ(t) over [�‘, ‘]. We assume that the
interval [ta,tb] is long compared to the width of the filters. In
this case, effects from the integration boundaries are
negligible, and we have

Ztb
ta

½ f � s�ðtÞ hðtÞ dt’
Z‘
�‘

½ f � ŝ�ðtÞhðtÞ dt: ð10Þ

Similar considerations hold for the cross-correlation (Equa-
tion 8).

Since convolution and cross-correlation are conveniently
treated in Fourier space, we repeat the definition of the
Fourier transform Fs(m) and the power spectrum Ps(m) of a
signal s(t).

Fourier transform: sðtÞ ¼:

Z‘
�‘

F sðmÞ e2pimt dm; ð11Þ

Power spectrum: PsðmÞ :¼ F sðmÞ �F sðmÞ: ð12Þ

Throughout the paper, we make the assumption that input
signals (and hence also the output signals) do not have
significant power above some reasonable frequency mmax.

Reformulation of the slowness objective. SFA is based on
the minimization of the second moment of the time

derivative,
Z

_aoutðtÞ2 dt. Even though there are neurons with

transient responses to changes in the input, we believe it
would be more plausible if we could derive an SFA-learning
rule that does not depend on the time derivative, because it
might be difficult to extract, especially for spiking neurons. It
is indeed possible to replace the time derivative by a low-pass
filtering as follows:

minimize
Z‘
�‘

_aoutðtÞ2 dt ð13Þ

¼
Z‘
�‘

P _aoutðmÞdt ðbecause of Parseval0s theoremÞ ð14Þ

¼ 4p2
Z‘
�‘

m2Paout ðmÞdm ðsince F _sðmÞ ¼ 2pimF sðmÞÞ ð15Þ

, maximize
Z‘
�‘

�m2PaoutðmÞdm ð16Þ

, maximize
Z‘
�‘

ðm2max � m2ÞPaout ðmÞdm

since
Z ‘

�‘

Paout mð Þdm ¼
Z ‘

�‘

aout tð Þ2 dt ’
6ð Þ
const

! ð17Þ

¼
Z‘
�‘

maxð0; ðm2max � m2ÞÞPaoutðmÞdm

ðsince PaoutðmÞ ¼ 0 for jmj.mmax by assumptionÞ

ð18Þ

¼
Z‘
�‘

P fSFAðmÞPaout ðmÞdm ð19Þ

with fSFAðtÞ defined such that P fSFAðmÞ ¼ maxð0; ðm2max � m2ÞÞÞ
�

ð20Þ

¼
Z‘
�‘

½ fSFA � aout�ðtÞ
2 dt: ð21Þ

Thus, SFA can be achieved either by minimizing the variance
of the time derivative of the output signal or by maximizing
the variance of the appropriately filtered output signal.
Figure 1 provides an intuition for this alternative. The filter
fSFA is obviously a low-pass filter, as one would expect, with a
m2max � m2 power spectrum below the limiting frequency mmax.
Because the phases are not determined, further assumptions
are required to fully determine an SFA filter. However, we
will proceed without defining a concrete filter, since it is not
required for the considerations below.
Hebbian learning on filtered signals. It is known that

standard Hebbian learning under the constraint of a unit
weight vector applied to a linear unit maximizes the variance
of the output signal. We have seen in the previous section that
SFA can be reformulated as a maximization problem for the
variance of the low-pass filtered output signal. To achieve
this, we simply apply Hebbian learning to the filtered input
and output signals, instead of to the original signals.
Consider a hypothetical unit that receives low-pass filtered

inputs and, therefore, because of the linearity of the unit and
the filtering, generates a low-pass filtered output
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½ fSFA � aout�ðtÞ ¼
ð1Þ

fSFA �
Xn
i¼1

wia in
i

" #
ðtÞ ¼

Xn
i¼1

wi½ fSFA � a in
i �ðtÞ;

ð22Þ

where fSFA is the kernel of the linear filter applied. It is
obvious that a filtered Hebbian learning rule

_wi ¼ c f in � a
in
i

� �
ðtÞ½ f out � aout�ðtÞ ð23Þ

with f in:¼ f out:¼ fSFA maximizes the objective in Equation 21.
Remember that the input is white (i.e., the aini are

uncorrelated and have unit variance), and the weight vector
is normalized to norm one by some additional normalization
rule, so that we know that the output signal aout has the same
variance no matter what the direction of the weight vector is.
Thus, the filtered Hebbian plasticity rule (together with the
normalization rule not specified here) optimizes slowness
(Equation 13) under the constraint of unit variance (Equation
6). Figure 2 illustrates this learning scheme. It also underlines
the necessity for a clear distinction between processing and
learning. Although the slowness principle does not allow low-
pass filtering as a means of generating slow signals during
processing, the learning rule may well make use of low-pass
filtered signals to detect slowly varying features in the input
signal. This distinction will become particularly important for
the Poisson model neuron below, as it incorporates an
excitatory postsynaptic potential (EPSP) that acts as a low-
pass filter during processing. An implementation of the
slowness principle in such a system must avoid the system
exploiting the EPSP as a means of generating slow signals.

Alternative filtering procedures. If learning is slow, the
total weight change over a time interval [ta,tb] in a synapse can
be written as

Dwi :¼
Ztb
ta

_wiðtÞdt ð24Þ

¼ð23Þ c
Ztb
ta

f in � a
in
i

� �
ðtÞ½ f out � aout�ðtÞdt ð25Þ

’
ð10Þ

c
Z‘
�‘

f in � â
in
i

� �
ðtÞ½ f out � âout�ðtÞdt ð26Þ

¼ c
Z‘
�‘

½½ f out � f in� � â in
i �ðtÞ âoutðtÞdt ð27Þ

¼ c
Z‘
�‘

â in
i ðtÞ½½ f in � f out� � â

out�ðtÞdt ð28Þ

¼ c
Z‘
�‘

½ f in � f out�ðtÞ½âout � â in
i �ðtÞdt: ð29Þ

Thus, one can either convolve input and output signal with
filters f in and f out, respectively, the input signal with f out * f in,
or the output signal with f in * f out. Note that [ f in * f out](t) ¼
[ f out * f in](�t). One can actually use any pair of filters f in and
f out as long as f in * f out fulfills the condition

F f in�f outðmÞ ¼ P fSFAðmÞ: ð30Þ

Relation to other learning rules. Hebbian learning on low-
pass filtered signals is the basis of several other models for
unsupervised learning of invariances [1,4,6]. These models
essentially subject the output signal to an exponential
temporal filter f(t) ¼ h(t)exp(�ct) and then use Hebbian
learning to associate it with the input signal. Here, h(t)
denotes the Heaviside step function, which is 0 for t , 0 and 1
for t � 0. This learning rule has been named the ‘‘trace rule.’’
The considerations in the last section provide a link between

Figure 1. Choosing Slow Directions of the Input

Finding the direction of least variance in the time derivative of the input
(which is part of the SFA algorithm) can be replaced by finding the
direction of maximum variance in an appropriately low-pass filtered
version of the input signal.
doi:10.1371/journal.pcbi.0030112.g001

Figure 2. Filtered Hebbian Learning Rule

Input and output signals are filtered (downward arrows). The weight
change is the result of applying the Hebbian learning rule on the filtered
signals (square box and upward arrow). Thereby, the variance of the
filtered version of the output is maximized without actually filtering the
output during processing.
doi:10.1371/journal.pcbi.0030112.g002
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this approach and ours. We simply have to replace f in with a
d-function and f out with f(t). Equation 29 then takes the form

Dwi ¼ c
X
j

Z ‘

�‘

f ðtÞ½â in
j � â in

i �ðtÞdt
� �

wj; ð31Þ

since the output signal aout ¼
P

j wja in
j is a linear function of

the input (see Equation 1). In the previously mentioned
applications of the trace rule, the statistics of the input
signals were always reversible, so we will assume that all
correlation functions ½â in

i � â in
j �ðtÞ are symmetric in time. This

implies that only the symmetric component of f(t) is relevant
for learning:

f symðtÞ :¼ 1
2
ð f ðtÞ þ f ð�tÞÞ ¼ c

2
expð�cjtjÞ: ð32Þ

It is easy to show that the learning rule in Equation 31 can be
interpreted as a gradient ascent on the following objective
function:

W ¼
Z‘
�‘

f symðtÞ½âout � âout�ðtÞdt ð33Þ

¼
Z‘
�‘

F f symðmÞP âoutðmÞdm: ð34Þ

By comparison with Equation 19, it becomes clear that the
trace rule implements a very similar objective as our model.
The only difference is that the power spectrum in Equation
20 is replaced by the Fourier transform of the filter f sym. Note
that in order to be able to interpret W as an objective
function, it should be real-valued. The replacement of f with
f sym ensures that F f sym is real-valued and symmetric, so W is
real-valued as well. The Fourier transform of f sym is given by

F f symðmÞ ¼
c

c2 þ ð2pmÞ2
: ð35Þ

This shows that the only difference between the trace rule
and our model lies in the choice of the power spectrum for
the low-pass filter. While we are using a parabolic power
spectrum with a cutoff (Equation 20), the trace rule uses a
power spectrum with the shape of a Cauchy function
(Equation 35).

From this perspective, one can interpret SFA as a quadratic
approximation of the trace rule. To what extent this
approximation is valid depends on the power spectra of the
input signals. If most of the input power is concentrated at
low frequencies, where the power spectrum resembles a
parabola, the learning rules can be expected to learn very
similar weight vectors. In fact, any Hebbian learning rule that
leads to an objective function of the shape of Equation 19
with a low-pass filtering spectrum in the place of PfSFA
essentially implements the slowness principle, as among
signals with the same variance, it will favor slower ones.

Spiking Model Neuron
Real neurons do not transmit information via a continuous

stream of analog values like the model neuron considered in
the previous section, but rather emit action potentials that
carry information by means of their rate and probably also by

their exact timing, a fact we will not consider here. How can
the model developed so far be mapped onto this scenario?
The linear Poisson neuron. Again, we restrict our analysis

to a simple case by modeling the spike-train signals by
inhomogeneous Poisson processes. Note that at this point, we
restrict our analysis to a rate code, thus neglecting possible
coding paradigms that rely on precise timing of spikes.
To generate the input spike trains, we first add sufficiently

large constants c ini to the continuous and zero-mean signals
a in
i ðtÞ to turn them into strictly positive signals that can be
interpreted as rates

r in
i ðtÞ :¼ c ini þ a in

i ðtÞ: ð36Þ

The constants c ini represent mean firing rates, which are
modulated by the input signals a in

i . From the input rates
r in
i ðtÞ, we then derive inhomogeneous Poisson spike trains
S in
i ðtÞ drawn from ensembles E in

i such that

hS in
i ðtÞiE in

i
¼ r in

i ðtÞ; ð37Þ

where h�iE in
i

denotes the average over the ensemble E in
i .

The output rate is modeled as a weighted sum over the
input spike trains convolved with an EPSP e(t) plus a baseline
firing rate r0, which ensures that the output firing rate
remains positive. This is necessary as we allow inhibitory
synapses (i.e., negative weights).

mðtÞ :¼ r0 þ
Xn
i¼1

wi e � S
in
i

� �
ðtÞ ð38Þ

Note that in this scheme, the EPSP reflects the change in
the postsynaptic firing probability due to a presynaptic spike
rather than a change in the membrane potential. Ideally, it
includes all delay effects in neuronal transmission.
The output of this spiking neuron is yet another

inhomogeneous Poisson spike train Sout(t) drawn from an
ensemble Eout, given a realization of the input spike trains S in

i
such that

hSoutðtÞiEout jfS in
i g
¼ mðtÞ: ð39Þ

It should be noted that not only is the output spike train
Sout(t) stochastic in this model, but also the underlying output
rate m(t), which is a function of the stochastic variables SiðtÞ
and generally differs for each realization of the input. This is
the reason why the input and output spike trains are not
statistically independent. However, due to the linearity of the
model neuron, the output rate is still simply

routðtÞ ¼ hSoutðtÞiE in
i ;Eout ð40Þ

¼ð39;38;37Þ
r0 þ

Xn
i¼1

wi e � r
in
i

� �
ðtÞ ð41Þ

¼ð36Þ r0 þ
Xn
i¼1

wic ini

Z‘
�‘

eðtÞdt

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼:cout

þ
Xn
i¼1

wi e � a
in
i

� �
ðtÞ ð42Þ

¼ cout þ e �
Xn
i¼1

wia in
i

" #
ðtÞ ð43Þ
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¼ð1Þ cout þ ½e � aout�ðtÞ; ð44Þ

and the joint firing rate is

r in;out
i ðt; t9Þ :¼ hS in

i ðtÞ Soutðt9ÞiE in
i ;Eout ð45Þ

¼ r in
i ðtÞroutðt9Þ þ wieðt9�tÞr in

i ðtÞ ðsee ½13�Þ: ð46Þ

The first term would result also from a rate model, while
the second term captures the statistical dependencies
between input and output spike trains mediated by the
synaptic weights wi and the EPSP e(t).

STDP can perform SFA. In this section, we will demonstrate
that in an ensemble-averaged sense it is possible to generate
the same weight distribution as in the continuous model by
means of an STDP rule with a specific learning window.

Synaptic plasticity that depends on the temporal order of
pre- and postsynaptic spikes has been found in a number of
neuronal systems [14–18], and has raised a lot of interest
among modelers [19,20] (for a review, see [21]). Typically,
synapses undergo long-term potentiation (LTP) if a presy-
naptic spike precedes a postsynaptic spike within a timescale
of tens of milliseconds and long-term depression (LTD) for
the opposite temporal order. Assuming that the change in
synaptic efficacy occurs on a slower timescale than the typical
interspike interval, the STDP weight dynamics can be
modeled as

Dwi ¼ c
Xm in

i

a

Xmout

b

Wðtinia � toutb Þ: ð47Þ

Here, tinia denotes the spike times of the presynaptic
spikes at synapse i and toutb denotes the postsynaptic spike
times. W(t) is the learning window that determines if and to
what extent the synapse is potentiated or depressed by a
single spike pair. The convention is such that negative
arguments t in W(t) correspond to the situation where the
presynaptic spike precedes the postsynaptic spike. min

i and
mout are the numbers of pre- and postsynaptic spikes
occurring in the time interval [ta, tb] under consideration. c
is a small positive learning rate. Note that due to the presence
of this learning rate, the absolute scale of the learning
window W is not important for our analysis.

We circumvent the well-known stability problem of STDP
by apply ing an expl i c i t we ight normal i za t ion
(wnew ¼ ðwold þ DwÞ=jjwold þ Dwjj) instead of weight-depend-
ent learning rates as used elsewhere [22–24]. Such a normal-
ization procedure could be implemented by means of a
homeostatic mechanism targeting the output firing rate (e.g.,
by synaptic scaling; for reviews, see [25,26]).

Modeling the spike trains as sums of delta pulses (i.e.,
Sin=outðtÞ ¼

P
j dðt� t in=outj Þ), the learning rule in Equation 47

can be rewritten as

Dwi ¼ c
Ztb
ta

Ztb
ta

Wðt� t9ÞS in
i ðtÞSoutðt9Þdtdt9 ð48Þ

’ c
Z‘
�‘

Z‘
�‘

Wðt� t9ÞŜ in
i ðtÞŜ

outðt9Þdtdt9: ð49Þ

Taking the ensemble average allows us to retrieve the rates
that underlie the spike trains and thus the signals â in

i and âout

of the continuous model:

hDwiiEin;Eout ’
ð49Þ

c
Z�‘

�‘

Z�‘

�‘

Wðt� t9Þ hŜ in
i ðtÞŜ

outðt9ÞiEin ;Eout dtdt9

ð50Þ

¼ð46Þ c
Z‘
�‘

Z‘
�‘

Wðt� t9Þ r̂ in
i ðtÞ r̂outðt9Þ þ wieðt9�tÞr̂ in

i ðtÞ
� 	

dtdt9

ð51Þ

¼ð36;44Þc
Z‘
�‘

Z‘
�‘

Wðt� t9Þ½c ini þ â in
i �ðtÞ½cout þ e � â

out� ðt9Þdtdt9

þc
Z‘
�‘

Z‘
�‘

Wðt� t9Þwieðt9�tÞ½c ini þ â in
i � ðt9Þdtdt9:

ð52Þ

Expanding the products in Equation 52 gives rise to a
number of terms, among which only one depends on both the
input and the output signal â in

i and âout. Because each input
signal has a vanishing mean, terms containing just one input
signal lead to negligible contributions. The remaining terms
depend only on the mean firing rates c ini and cout:

hDwiiEin ;Eout ’
ð52Þ

c
Z‘
�‘

Wðt� t9Þâ in
i ðtÞ½e � â

out�ðt9Þdtdt9

þcwic ini Tab

Z‘
�‘

WðtÞ eð�tÞdt

þccoutc ini Tab

Z‘
�‘

WðtÞdt:

ð53Þ

A generalized version of Equation 53 that incorporates
non-Hebbian plasticity (i.e., terms that depend on the pre/
postsynaptic signals only) has been derived and discussed by
Kempter et al. [27]. Regarding the effects of the input signals
on learning, the decisive term is the first one. The other two
are rather unspecific in that they do not depend on the
properties of the input and output signals â in

i and âout.
The second term alone would generate a competition

between the weights: synapses that experience a higher mean
input firing rate c ini grow more rapidly than those with
smaller input firing rates. If we assume that the input neurons
fire with the same mean firing rate, all weights grow with the
same rate, so the direction of the weight vector remains
unchanged. Thus, due to the explicit weight normalization,
this term has no effect on the weight dynamics and can be
neglected.
If the integral over the learning window is positive, the
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third term in Equation 53 favors a weight vector that is
proportional to the vector of the mean firing rates of the
input neurons. It thus stabilizes the homogeneous weight
distribution and opposes the effect of the first term, which
captures correlations in the input signals. Note that this is
only true if the integral over the learning window is positive;
otherwise, this term introduces a competition between the
weights [24,27]. One possible interpretation is that the
neuron has a ‘‘default state’’ in which all synapses are equally
strong and that correlations in the input need to surpass a
certain threshold in order to be imprinted in the synaptic
connections. Interestingly, this threshold is determined by
the integral over the learning window, which implies that
neurons that balance LTP and LTD should be more sensitive
to input correlations.

An alternative possibility is that the neuron possesses a
mechanism of canceling the effects of this term. From a
computational perspective this would be sensible, as the
mean firing rates c ini and cout do not carry information about
the input, neither in rate nor in a timing code. If we conceive
neurons as information encoders aiming at adapting to the
structure of their input, this term is thus more hindrance
than help. Assuming that the neuron compensates for this
term, the dynamics of the synaptic weights are governed
exclusively by the correlations in the input signals as reflected
by the first term. In the following, we will restrict our
considerations to this term and omit the others.

Rearranging the temporal integrations, we can rewrite
Equation 53 for the weight updates as

hDwiiEin ;Eout ’
ð53Þ

c
Z‘
�‘

½W � e�ðtÞ½âout � â in
i �ðtÞdt: ð54Þ

The first conclusion we can draw from this reformulation is
that for the dynamics of the learning process the convolution
of the learning window with the EPSP and not the learning
window alone is relevant. As discussed below, this might have
important consequences for functional interpretations of the
shape of the learning window.

Second, by comparison with Equation 29, it is obvious that
in order to learn the same weight distribution as in the
continuous model, the learning window has to fulfill the
condition that

½W � e�ðtÞ ¼ ½f in � f out�ðtÞ ¼: W0ðtÞ ð55Þ

, FW � e
ðmÞ ¼ FW ðmÞF eðmÞ ¼ F f in�f outðmÞ ¼ P fSFAðmÞ ¼ FW0ðmÞ:

ð56Þ

Here, W0 is the convolution of W with e and is equal to the
learning window in the limit of an infinitely short, d-shaped
EPSP. As the power spectrum P fSFAðmÞ is of course real, W0 is
symmetric in time. Note that the width of W0 scales inversely
with the width of the power spectrum P fSFAðmÞ, which in turn
is proportional to mmax. Once the power spectrum P fSFAðmÞ
and the EPSP is given, Equation 56 uniquely determines the
learning window W. Because it is W0 rather than W that
determines the learning dynamics, we will refer to W0 as the
‘‘effective learning window.’’

Learning windows. According to the last section, we
require special learning windows to learn the slow directions

in the input. This of course raises the question of which
window shapes are favorable, and in particular if these are in
agreement with physiological findings.
Given the shape of the EPSP and the power spectrum P fSFA ,

the learning window is uniquely determined by Equation 56.
Remember that the only parameter in the power spectrum
P fSFA is the frequency mmax, above which the power spectrum
of the input data was assumed to vanish. For simplicity, we
model the EPSP as a single exponential with a time constant s:

eðtÞ ¼ hðtÞ e�t
s: ð57Þ

For this particular EPSP shape, the learning window can be
calculated analytically by inverting the Fourier transform in
Equation 56. The result can be written as

WðtÞ ¼ d
dt
þ 1

s

� �
W0ðtÞ: ð58Þ

W0 is symmetric, so its derivative is antisymmetric. Thus, the
learning window is a linear combination of a symmetric and
an antisymmetric component. As the width of W0 scales with
the inverse of mmax, its temporal derivative scales with mmax.
Accordingly, the symmetry of the learning window is
governed by an interplay of the duration s of the EPSP and
the maximal input frequency mmax. For s � 1 / mmax the
learning window is dominated by W0 and thus symmetric,
whereas for s 	 1 / mmax, the temporal derivative of W0 is
dominant, so the learning window is antisymmetric.
We have assumed that the input signals have negligible

power above the maximal input frequency mmax. Thus, the
temporal structure of the input signals can only provide a
lower bound for mmax. On the other hand, exceedingly high
values for mmax lead to very narrow learning windows, thereby
sharpening the coincidence detection and reducing the speed
of learning. Moreover, it may be metabolically costly to
implement physiological processes that are faster than
necessary. Thus, it appears sensible to choose mmax such that
1 / mmax reflects the fastest timescale in the input signals.
Accordingly, the symmetry of the learning window is
governed by the relation between the length of the EPSP
and the fastest timescale in the input data. If the EPSP is short
enough to resolve the fastest input components, the learning
window is symmetric. If the EPSP is too long to fully resolve
the temporal structure of the input (i.e., it acts as a low-pass
filter), the learning window will tend to be antisymmetric.
We choose a value of mmax ¼ 1 / (40 ms). The argument for

this choice is that within a rate code, the cells that project to
the neuron under consideration can hardly convey signals
that vary on a faster timescale than the duration of their
EPSP. It is thus reasonable to choose the time constant of the
EPSP and the inverse of the cutoff frequency to have the same
order of magnitude. Typical durations of cortical EPSPs are
of the order of tens of milliseconds (see [28] for further
references and a critical discussion), so 40 ms seems a
reasonable value.
Figure 3 illustrates the connection between P fSFA , W0, the

learning window, and the EPSP. It also shows the learning
windows for three different durations of the EPSP, while
keeping mmax¼ 1 / (40 ms). The oscillatory and slowly decaying
tails ofW(t) are due to the sharp cutoff of the power spectrum
P fSFA at jmj ¼ mmax and become less pronounced if P fSFA is
smoothened out.

PLoS Computational Biology | www.ploscompbiol.org June 2007 | Volume 3 | Issue 6 | e1121142

Slowness Principle and STDP



As negative time arguments in W(t) correspond to the case
in which the presynaptic spike (and thus the onset of the
resulting EPSP) precedes the postsynaptic spike, the shape of
the theoretically derived learning window for physiologically
plausible values of s and mmax (s¼1 / mmax¼ 40 ms; middle row
in Figure 3) predicts potentiation of the synapse when a
postsynaptic spike is preceded by the onset of an EPSP and
depression of the synapse when this temporal order is
reversed. This behavior is in agreement with experimental
data from neocortex and hippocampus in rats as well as from
the optic tectum in Xenopus [14–18]. To further illustrate this
agreement, Figure 4 compares the data as published by Bi and
Poo [16] with the learning window resulting from a
smoothened power spectrum with the shape of a Cauchy
function (Equation 35) instead of P fSFA . As demonstrated
above, this corresponds to implementing the slowness
principle in form of the trace rule. Interestingly, the resulting
learning window has the double-exponential shape that is
regularly used in models of STDP (e.g., [24,29,30]). As the
absolute scale of the learning window is not determined in
our analysis, it was adjusted to facilitate the comparison with
the experimental data.

Interpretation of the learning windows. The last section
leaves a central question open: why are these learning
windows optimal for slowness learning and why does the
EPSP play such an important role for the shape of the learning
window?
Let us first discuss the case of the symmetric learning

window, that is, the situation in which the EPSP is shorter
than the fastest timescale in the input signal. Then, the
convolution with the EPSP has practically no effect on the
temporal structure of the signal and the output firing rate can
be regarded as an instantaneous function of the input rates.
We can thus neglect the EPSP altogether. The learning
mechanism can then be understood as follows: assume at a
given time t the postsynaptic firing rate rout is high and causes
a postsynaptic spike. Then, the finite width of the learning
window leads to potentiation not only of those synapses that
participated in initiating the spike but also of those that
transmit a spike within a certain time window around the
time of the postsynaptic spike. As this leads to an increase of
the firing rate within this time window, the learning
mechanism tends to equilibrate the firing rates for neighbor-
ing times and thus favors temporally slow output signals.

Figure 3. Relation between the EPSP and the Learning Window

The power spectrum P fSFA is the Fourier transform of the effective learning window W0, which in turn is the convolution of the learning window W and
the EPSP e. The figure shows the learning windows required for SFA for three different EPSP durations (s¼ 4, 40, 400 ms). The maximal input frequency
mmax was 1 / (40 ms) in all plots.
doi:10.1371/journal.pcbi.0030112.g003
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If the duration of the EPSP is longer than the fastest
timescale in the input signal, the output firing rate is no
longer an instantaneous function of the input signals but
generated by low-pass filtering the signal aout with the EPSP.
This affects learning, because the objective of the continuous
model is to optimize the slowness of aout, whose temporal
structure is now ‘‘obscured’’ by the EPSP. In order to
optimize the objective, the system thus has to develop a
deconvolution mechanism to reconstruct aout. From this
point of view, the learning window has to perform two tasks
simultaneously. It has to first perform the deconvolution and
then enforce slowness on the resulting signal. This is most
easily illustrated by means of the condition in Equation 55.
The convolution of the learning window with the EPSP
generates the effective learning window W0 that is independ-
ent of the EPSP and which coincides with the learning
window for infinitely short EPSPs. Intuitively, we could solve
Equation 55 by choosing a learning window that consists of
the ‘‘inverse’’ of the EPSP and the EPSP-free learning window
W0. An intuitive example is the limiting case of an infinitely
long EPSP. The EPSP then corresponds to a Heaviside
function and performs an integration, which can be inverted
by taking the derivative. Thus, the learning window for long
EPSPs is the temporal derivative of the learning window for
short EPSPs. The dependence of the required learning
window on the shape of the EPSP is thus caused by the need
of the learning window to ‘‘invert’’ the EPSP.

These considerations shed a different light on the shape of
physiologically measured learning windows. The antisymme-
try of the learning window may not act as a physiological
implementation of a causality detector after all, but rather as

a mechanism for compensating intrinsic low-pass filters in
neuronal processing such as the EPSP. For functional
interpretations of STDP, it may be more sensible to consider
the convolution of the learning window with the EPSP than
the learning window alone.
It should be noted that, according to our learning rule, the

weights adapt in order to make a hypothetical instantaneous
output signal aout optimally slow. This does not necessarily
imply that the output firing rate rout, which is generated by
low-pass filtering aout with the EPSP, is optimally slow. In
principle, the system could generate more slowly varying
signals by exploiting the temporal structure of the EPSP.
However, the motivation for the slowness principle is the idea
that the system learns to detect invariances in the input signal,
and that from this perspective the goal of creating a slowly
varying output signal is not an end in itself but a means to
learn invariances. Thus, the low-pass filtering effect of the
EPSP should not be exploited but ignored or compensated.
General learning windows and EPSPs. Although the

asymmetry in LTP/LTD induction observed by Bi and Poo
[16] has also been observed in other studies, the decay times
for the LTP and the LTD branches of the learning window
appear to be different in other preparations [18]. One may
thus ask how robust our interpretation is with respect to the
detailed shape of the learning window. To address this
question, we start with some general learning window W and
EPSP e and ask under which conditions the effective learning
window W0 ¼ W 8 e prefers slowly varying features in the
input.
As a starting point, we use the dynamics of the weights in

Equation 54 as generated by the input statistics. Using

Figure 4. Comparison of the Learning Window with Experimental Data

The plot compares the theoretically predicted learning window with experimental data from hippocampal pyramidal cells as published by Bi and Poo
[16] (larger plot in the middle). Instead of the ideal power spectrum P fSFA with the abrupt cutoff at mmax as stated in Equation 20, a Cauchy function with
c ¼ 1 / 15 ms was used (top left, the dashed line is P fSFA for mmax ¼ 1 / (40 ms)). Again, the EPSP decay time was s ¼ 40 ms. This learning window
corresponds to an implementation of the ‘‘trace rule’’ [1,4,6] for a decay time of the exponential filter of 15 ms.
doi:10.1371/journal.pcbi.0030112.g004
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aout ¼
P

j wja in
j and defining the correlation functions

CijðtÞ ¼ ½a in
j � a in

i �ðtÞ yields

hDwiiEin ;Eout ¼
X

j
c
Z

W0ðtÞCijðtÞdt
� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼:Aij

wj: ð59Þ

The dynamics thus follows a linear difference equation with a
dynamic matrix Aij whose properties are determined by the
correlation function Cij(t) and the effective learning window
W0(t). One important question is whether the weights
approach a stable fixed-point state or oscillate. In this
context, the symmetry properties of Aij and thus those of Cij

are crucial. The correlation functions obey the relation

CijðtÞ ¼ Cjið�tÞ; ð60Þ

which couples their spatial symmetry (i.e., the symmetry with
respect to the indices i and j) to their temporal symmetry. For
instance, if the input statistics are reversible, i.e., for Cij(t) ¼
Cij(�t), Cij is symmetric in the indices and so is Aij. If the input
statistics were ‘‘perfectly irreversible,’’ i.e., Cij(t)¼� Cij(�t), Cij

and Aij would be antisymmetric. This motivates the splitting
of the correlation functions Cij into a temporally symmetric
and an antisymmetric component: Cij¼Cij

þþCij
�with Cij

6(t)¼
6Cij

6(�t). In a similar fashion, we split the effective learning
window W0 ¼ W0

þ þ W0
�. For symmetry reasons, the

dynamical matrix Aij can then be separated into two
components

Aij ¼ c
Z

Wþ
0 ðtÞC þij ðtÞdt|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼:A þij

þ c
Z

W �
0 ðtÞC �ij ðtÞdt|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼:A �ij

: ð61Þ

Because of the symmetry relation in Equation 60, Aij
þ is

symmetric in i and j, while Aij
� is antisymmetric. This shows

that the effective learning window W0 can be split into two
functionally different components. The symmetric compo-
nent picks up the reversible aspects of the input statistics
while the antisymmetric component detects irreversibilities,
e.g., possible causal relations within the input data. It is this
antisymmetric component of the learning window that has
previously been interpreted as a means for sequence learning
and predictive coding [19,31]. Note that the associated weight
update

P
jAij
�wj is always orthogonal to the weight itself.

Thus, irreversibilities in the input data in combination with
an antisymmetric learning window work against the develop-
ment of a stable weight distribution, even if the input
statistics are stationary. In particular, weight oscillations on
the timescale of learning may occur. For instance, in networks
with recurrent connections that learn according to STDP,
previous studies have shown that the network tends to
develop a state of distributed synchrony [32] that resembles
synfire chains. These activity patterns display a pronounced
causal structure, so it would be interesting to check if the
synaptic weights that emerge in such a network are stable or
show oscillations. It is likely that in this context the model
constraints on the weights play an important role. If the
weights are limited by hard boundaries as in [32], they tend to
saturate, thereby avoiding oscillatory solutions. In the case of
softer weight constraints, e.g., in models of STDP with
multiplicative weight-dependence, oscillations may occur.

If W0 is symmetric or if the input statistics are reversible,

Cij
� ¼ 0, the dynamical matrix Aij ¼ Aij

þ is symmetric. As
already seen for the case of the continuous model neuron, the
learning dynamics can then be interpreted as a gradient
ascent on the objective function

W ¼ 1
2

X
i;j

wiA þij wj ¼
1
2

Z
W þ

0 ðmÞPaoutðmÞdm: ð62Þ

As discussed earlier, this objective function can be
interpreted as an implementation of the slowness principle
if W0

þ(m) is a low-pass filter, i.e., it has a global maximum at
zero frequency. This indicates that at least for reversible
input statistics the preference of STDP for slow signals may
be rather insensitive to details of the learning window.

Discussion

Neurons in the central nervous system display a wide range
of invariances in their response behavior, examples of which
are phase invariance in complex cells in the early visual
system [33], head direction invariance in hippocampal place
cells [34], or more complex invariances in neurons associated
with face recognition [35]. If these invariances are learned,
the associated learning rule must somehow reflect a heuristics
as to which sensory stimuli are supposed to be categorized as
being the same. Objects in our environment are unlikely to
change completely from one moment to the next but rather
undergo typical transformations. Intuitively, responses of
neurons with invariances to these transformations should
thus vary more slowly than others. The slowness principle
uses this intuition and conjectures that neurons learn these
invariances by favoring slowly varying output signals without
exploiting low-pass filtering.
SFA [10] is one implementation of the slowness principle in

that it minimizes the mean square of the temporal derivative
of the output signal for a given set of training data. SFA has
been used to model a wide range of physiologically observed
properties of complex cells in primary visual cortex [8] as well
as translation, rotation, and other invariances in the visual
system [10]. In combination with a sparse coding objective,
SFA has also been used to describe the self-organized
formation of place cells in the hippocampal formation [11].
The algorithm that underlies SFA is rather technical, and it

has not yet been examined whether it is feasible to implement
SFA within the limitations of neuronal circuitry. In this paper
we approach this question analytically and demonstrate that
such an implementation is possible in both continuous and
spiking model neurons.
In the first part of the paper, we show that for linear

continuous model neurons, the slowest direction in the input
signal can be learned by means of Hebbian learning on low-
pass filtered versions of the input and the output signal. The
power spectrum of the low-pass filter required for imple-
menting SFA can be derived from the learning objective and
has the shape of an upside-down parabola.
The idea of using low-pass filtered signals for invariance

learning is a feature that our model has in common with
several others [1,4,6]. By means of the continuous model
neuron, we have discussed the relation of our model to these
‘‘trace rules’’ and have shown that they bear strong
similarities.
The second part of the paper discusses the modifications
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that have to be made to adjust the learning rule for a Poisson
neuron. We find that in an ensemble-averaged sense it is
possible to reproduce the behavior of the continuous model
neuron by means of spike-timing–dependent plasticity
(STDP). Our study suggests that the outcome of STDP
learning is not governed by the learning window alone but
rather by the convolution of the learning window with the
EPSP, which is of relevance for functional interpretations of
STDP.

The learning window that realizes SFA can be calculated
analytically. Its shape is determined by the interplay of the
duration of the EPSP and the maximal input frequency mmax,
above which the input signals are assumed to have negligible
power. If mmax is small, i.e., if the EPSP is sufficiently short to
temporally resolve the most quickly varying components of
the input data, the learning window is symmetric, whereas for
large mmax or long EPSPs, it is antisymmetric. Interestingly,
physiologically plausible parameters lead to a learning
window whose shape and width is in agreement with
experimental findings. Based on this result, we propose a
new functional interpretation of the STDP learning window
as an implementation of the slowness principle that
compensates for neuronal low-pass filters such as the EPSP.

An important question in this context is on which
timescales is this interpretation valid. It is conceivable that
for signals that vary on a timescale of less than a hundred
milliseconds, a learning window with a width of tens of
milliseconds can distinguish slower from faster signals. STDP
could thus be sufficient to establish invariant representations
in early sensory processing, e.g., visual receptive fields that
become invariant to microsaccades inducing small trans-
lations. Although it is unlikely that STDP alone can
distinguish between signals that vary on behavioral timescales
of hundreds of milliseconds or even seconds, this may not be
problematic, because it is probably not sensible to order all
aspects of the stimuli according to how quickly they vary.
Rather, one should distinguish input components that vary so
quickly that they are unlikely to be behaviorally relevant from
those that vary on behavioral timescales. From this perspec-
tive, the intrinsic timescale of the learning rule should be
such that its discriminative power is best on a timescale where
this transition occurs. It is conceivable that this transition
timescale lies on the order of several tens of milliseconds. The
learning of high level invariances that correspond to
behavioral timescales will probably require additional mech-
anisms with corresponding intrinsic timescales, e.g., sustained
firing in response to a stimulus [36].

For general learning windows and EPSPs, the convolution
of the learning window with the EPSP can be split into a
symmetric component and an antisymmetric component.
The symmetric component picks up reversible aspects of the
input statistics while the antisymmetric component detects
irreversible aspects. Previous functional interpretations of
STDP have mostly concentrated on the antisymmetric
component, which has been interpreted, e.g., as a mechanism
for sequence learning or predictive coding [19,31] or for
reducing recurrent connectivity in favor of feed-forward
structures [30,32]. Other studies have neglected the phase
structure of the learning window altogether and concen-
trated on its power spectrum, proposing that timing-depend-
ent plasticity performs Hebbian learning on an optimal
estimate of the input signals in the presence of noise [37,38].

Note that these interpretations are not necessarily contra-
dictory to ours, because the slowness interpretation relies on
the symmetric component of the learning window only and
thus on the reversible aspect of the input statistics. These
considerations indicate that depending on the temporal
structure of the input, STDP may have different functional
roles.
A different approach to unsupervised learning of invari-

ances with a biologically realistic model neuron has been
taken by Körding and König [39]. In their model, bursts of
backpropagating spikes gate synaptic plasticity by providing
sufficient amounts of dendritic depolarization. These bursts
are assumed to be triggered by lateral connections that evoke
calcium spikes in the apical dendrites of cortical pyramidal
cells.
Of course the model presented here is not a complete

implementation of SFA. We have only considered the central
step of SFA, the extraction of the most slowly varying
direction from a set of whitened input signals. To implement
the full algorithm, additional steps are necessary: a nonlinear
expansion of the input space, the whitening of the expanded
input signals, and a means of normalizing the weights. When
traversing the dendritic arborizations of a postsynaptic
neuron, axons often make more than one synaptic contact.
As different input channels may be subjected to different
nonlinearities in the dendritic tree (cf. [40]), the postsynaptic
neuron may have access to several nonlinearly transformed
versions of the same presynaptic signals. Conceptually, this
resembles a nonlinear expansion of the input signals.
However, it is not obvious how these signals could be
whitened within the dendrite. On the network level, however,
whitening could be achieved by adaptive recurrent inhibition
between the neurons [41]. This mechanism may also be
suitable for extracting several slow uncorrelated signals as
required in the original formulation of SFA [10] instead of
just one. We assumed an explicit weight normalization in the
description of our model. However, one could also use a
modified learning rule that implicitly normalizes the weight
vector as long as it extracts the signal with the largest
variance. A possible biological mechanism is synaptic scaling
[25], which is believed to multiplicatively rescale all synaptic
weights according to postsynaptic activity, similar to Oja’s
rule [26,42]. Thus, it appears that most of the mechanisms
necessary for an implementation of the full SFA algorithm
are available, but that it is not yet clear how to combine them
in a biologically plausible way.
Another critical point in the analytical derivation for the

spiking model is the replacement of the temporal by the
ensemble average, as this allows recovery of the rates that
underlie the Poisson processes. The validity of the analytical
results thus requires some kind of ergodicity in the training
data, a condition which of course needs to be justified for the
specific input data at hand.
It is still open whether the results presented here can be

reproduced with more realistic model neurons. The spiking
model neuron used here was simplified in that it had a linear
relationship between input and output firing rate. In many
real neurons, highly nonlinear behavior was observed.
Interestingly, Hebbian learning for nonlinear rate-based
neurons has previously been associated with the detection
of higher-order moments of the input statistics [43], thereby
providing a mechanism for extracting statistically independ-
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ent components of the input signal. Because for sparse input
statistics independent component analysis is closely related to
sparse coding [44], it is tempting to speculate that within a
rate picture, temporally nonlocal plasticity with a nonlinear
input–output relation implements a combination of sparse-
ness and slowness. Learning paradigms that combine these
two objectives are thus an interesting field for further studies
[11,45].

Another nonlinearity that we have neglected is the
frequency- and weight-dependence of STDP [16,46]. Addi-
tional work will be needed to examine how these interfere
with the proposed functional role of STDP. Furthermore,
modeling the spiking mechanism of a neuron by an
inhomogeneous Poisson process is also a severe simplification
that ignores basic phenomena of spike generation in bio-
logical neurons such as refractoriness and thresholding. It is
not clear how these characteristics would change the learning
rule that leads to an implementation of the slowness
principle. It seems to be a very difficult task to answer these
questions analytically. Simulations will be necessary to verify
the results derived here and to analyze which changes appear
and which adaptations must be made in a more realistic
model of neural information processing.

In summary, the analytical considerations presented here
show that (i) slowness can be equivalently achieved by
minimizing the variance of the time derivative signal or by
maximizing the variance of the low-pass filtered signal, the
latter of which can be achieved by standard Hebbian learning
on the low-pass filtered input and output signals; (ii) the
difference between SFA and the trace learning rule lies in the

exact shape of the effective low-pass filter—for most practical
purposes the results are probably equivalent; (iii) for a spiking
Poisson model neuron with an STDP learning rule, it is not
the learning window that governs the weight dynamics but
the convolution of the learning window with the EPSP; (iv)
the STDP learning window that implements the slowness
objective is in good agreement with learning windows found
experimentally. With these results, we have reduced the gap
between slowness as an abstract learning principle and
biologically plausible STDP learning rules, and we offer a
completely new interpretation of the standard STDP learning
window.

Methods

The methods employed in this paper rely on standard mathemat-
ical techniques as commonly used in the theory of synaptic plasticity
(see, e.g., [47]).
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9. Körding KP, Kayser C, Einhäuser W, König P (2004) How are complex cell
properties adapted to the statistics of natural stimuli? J Neurophysiol 91:
206–212.

10. Wiskott L, Sejnowski T (2002) Slow feature analysis: Unsupervised learning
of invariances. Neural Comput 14: 715–770.

11. Franzius M, Sprekeler H, Wiskott L (2007) Unsupervised learning of place
cells, head direction cells, and spatial-view cells with slow feature analysis
on quasi-natural videos. Cognitive Sciences EPrint Archive (CogPrints)
5492. Available: http://cogprints.org/5492/. Accessed 4 June 2007.

12. Wyss R, König P, Verschure PFMJ (2006) A model of the ventral visual
system based on temporal stability and local memory. PLoS Biol 4: e120.

13. Kempter R, Gerstner W, van Hemmen JL (1999) Hebbian learning and
spiking neurons. Phys Rev E 59: 4498–4514.
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