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Abstract

Transcription factor (TF) binding to its DNA target site is a fundamental regulatory interaction. The most common model
used to represent TF binding specificities is a position specific scoring matrix (PSSM), which assumes independence between
binding positions. However, in many cases, this simplifying assumption does not hold. Here, we present feature motif models
(FMMs), a novel probabilistic method for modeling TF–DNA interactions, based on log-linear models. Our approach uses
sequence features to represent TF binding specificities, where each feature may span multiple positions. We develop the
mathematical formulation of our model and devise an algorithm for learning its structural features from binding site data.
We also developed a discriminative motif finder, which discovers de novo FMMs that are enriched in target sets of
sequences compared to background sets. We evaluate our approach on synthetic data and on the widely used TF
chromatin immunoprecipitation (ChIP) dataset of Harbison et al. We then apply our algorithm to high-throughput TF ChIP
data from mouse and human, reveal sequence features that are present in the binding specificities of mouse and human
TFs, and show that FMMs explain TF binding significantly better than PSSMs. Our FMM learning and motif finder software
are available at http://genie.weizmann.ac.il/.
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Introduction

Precise control of gene expression lies at the heart of nearly all

biological processes. An important layer in such control is the

regulation of transcription. This regulation is preformed by a

network of interactions between transcription factor proteins (TFs)

and the DNA of the genes they regulate. To understand the

workings of this network, it is thus crucial to understand the most

basic interaction between a TF and its target site on the DNA.

Indeed, much effort has been devoted to detecting the TF–DNA

binding location and specificities.

Experimentally, much of the binding specificity information has

been determined using traditional methodologies such as foot-

printing, gel-shift analysis, Southwestern blotting, or reporter

constructs. Recently, a number of high-throughput technologies

for identifying TF binding specificities have been developed. These

methods can be classified into two major classes, in vitro and in

vivo methods. In vitro methods can further be classified to

methods that select high-affinity binding sequences for a protein of

interest [1,2] (reviewed in Elnitski et al. [3]), and high-throughput

methods that measure the affinities of specific proteins to multiple

DNA sequences. Examples of the latter class of methods include

protein binding microarrays [4–6] and microfluidic platforms [7],

which claim to achieve better measurement of transient low

affinity interactions. The in vivo methods are mainly based on

microarray readout or high throughput sequencing technologies

readout of either DNA adenine methyltransferase fusion proteins

(DamID) or of chromatin immunoprecipitation DNA-bound

proteins (ChIP-chip, ChIP-PET, ChipSeq/Chip-seq) [8–16].

The in vivo methods were recently used to characterize the

binding specificities of all TFs in the yeast Saccharomyces cerevisiae

[8,9,17–21] and, more recently, to identify genomic targets in

mammalian cells [10–16,22–26].

However, despite these technological advances, distilling the TF

binding specificity from these assays remains a great challenge,

since in many cases the in vivo measured targets of a TF do not

have common binding sites, and in other cases genes that have the

known and experimentally determined site for a TF are not

measured as its targets. For these reasons, the problem of

identifying transcription factor binding sites (TFBSs) has also been

the subject of much computational work (reviewed by Elnitski [3]).

The most common approaches start by defining sets of genes that

are potentially coregulated, either from clusters of coexpressed

genes in microarray data [27], from functional annotations of

genes [28], or from TF chromatin immunoprecipitation [17,29].

They then attempt to identify regulatory elements by searching for

common motifs in the promoter regions of the genes in each group

[30–35]. Recently, Eden et al. [36] developed a discriminative

motif finder that is well suited for finding motifs in a ChIP-chip

experiment. Their method combines the search for a cutoff that

defines the positive set, with the search for a motif that

discriminates the positive set from the rest of the chip probes.

Other approaches work in the opposite direction, by first reducing

the sequence data into some predefined features of the gene (e.g.,
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presence or absence of all DNA-words of length 6–7), and then

identifying the putative binding sites, for example, by keeping the

features, or combinations thereof, whose genes are coexpressed

[37–39]. Recently, this latter approach was extended to compar-

ative genomic methods that filter the initial library of features to

those that show high conservation in evolutionarily closely related

species [40–42].

The experimental and computational approaches above

revealed that TFBSs are short, typically 6–20 base pairs, and that

some degree of variability in the TFBSs is allowed. For these

reasons, the binding site specificities of TFs are described by a

sequence motif, which should represent the set of multiple allowed

TFBSs for a given TF. The most common representation for

sequence motifs is the position specific scoring matrix (PSSM), which

specifies a separate probability distribution over nucleotides at

each position of the TFBS. The goal of computational approaches

is then to identify the PSSM associated with each TF.

Despite its successes, the PSSM representation makes the strong

assumption that the binding specificities of TFs are position-

independent. That is, the PSSM assumes that for any given TF

and TFBS, the contribution of a nucleotide at one position of the site

to the overall binding affinity of the TF to the site does not depend on

the nucleotides that appear in other positions of the site. In theory, it

is easy to see where this assumption fails. For example, consider the

models described in Figure 1. The TFBS (Figure 1A) data contains

only ‘‘CG’’ or ‘‘GC’’ in the center positions. Although the PSSM

learned from this data (Figure 1B) assigns high probability to these

nucleotide pairs, it also undesirably (and unavoidably) assigns high

probability to ‘‘CC’’ and ‘‘GG’’ in the center positions. However, if

instead of the PSSM representation, we allow ourselves to assign

probabilities to multiple nucleotides at multiple positions, we could

use the same number of parameters to specify the desired TF binding

specificities (For example, consider the model illustrated in

Figure 1C, which uses two parameters that are each associated with

two positions to give exact description of the binding specificities over

the center positions). This observation lies at the heart of our

approach.

From the above discussion, it should be clear that the position-

independent assumption of PSSMs is rather strong, and that relaxing

this assumption may lead to a qualitatively better characterization of

TF motifs. Indeed, recent studies revealed specific cases in which

dependencies between positions may exist [7,43]. Several models

were developed to capture such dependencies (see [44] for a brief

review). These models can be classified into two main classes:

Markov chains based models [44,45] and Bayesian Network based

models [46–49]. In the first class, the dependencies between

neighboring positions are modeled using a Markov model of some

order. A recent representative of this class is the permutated variable

length Markov model (PVLMM) of Zhao et al., which incorporates

two major improvements: it searches for the best permutation of the

motif positions, and it reduces the number of parameters by using a

context tree representation for the Markov model representation.

Although Markov chain based models may perform well in some

datasets, they have a limited ability to model dependencies between

more distant positions. Since modeling these dependencies by

increasing the order of the Markov model exponentially increases the

size of the model representation, it was suggested to search for a

Figure 1. Comparison between FMMs and PSSMs in a toy example of a TFBS with four positions. (A) Eight input TFBSs that the TF
recognizes. (B) A PSSM for the input data in (A), showing its log-linear model network representation, probability distributions over each position, and
sequence logo. Note that the PSSM assigns a high probability to CG and GC in positions 2 and 3 as expected by the input data, but it also undesirably
(and unavoidably) assigns the same high probability to CC and GG in these positions. (C) An FMM for the input data in (A), showing the associated
log-linear model network, with 3 features and sequence logo. Note that features f1 and f2 assign a high probability to CG and GC in positions 2 and 3
but not to CC and GG in these positions, as desired.
doi:10.1371/journal.pcbi.1000154.g001

Author Summary

Transcription factor (TF) protein binding to its DNA target
sequences is a fundamental physical interaction underly-
ing gene regulation. Characterizing the binding specifici-
ties of TFs is essential for deducing which genes are
regulated by which TFs. Recently, several high-throughput
methods that measure sequences enriched for TF targets
genomewide were developed. Since TFs recognize rela-
tively short sequences, much effort has been directed at
developing computational methods that identify enriched
subsequences (motifs) from these sequences. However,
little effort has been directed towards improving the
representation of motifs. Practically, available motif finding
software use the position specific scoring matrix (PSSM)
model, which assumes independence between different
motif positions. We present an alternative, richer model,
called the feature motif model (FMM), that enables the
representation of a variety of sequence features and
captures dependencies that exist between binding site
positions. We show how FMMs explain TF binding data
better than PSSMs on both synthetic and real data. We also
present a motif finder algorithm that learns FMM motifs
from unaligned promoter sequences and show how de
novo FMMs, learned from binding data of the human TFs
c-Myc and CTCF, reveal intriguing insights about their
binding specificities.

TF-DNA Interaction Model
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permutation of the binding site positions that produces the best

model. However, this is only a partial solution, as it poses a limitation

on the model learned and easily becomes computational intensive for

long motifs (Zhao et al. limit their motifs to length 9 bp).

The second class of models was proposed by Barash et al. [46],

who developed a Bayesian network approach to represent higher

order dependencies between motif positions. They showed that

these models predict putative TFBSs in ChIP-chip data with

higher accuracy than PSSMs. Ben-Gal et al. [47] extended this

approach by using a context dependent representation of the

conditional probability distributions, which, to some extent,

reduces the representation size (depending on the data). Zhou et

al. suggested a simpler Bayesian network model (GWM) where

only dependencies between nonoverlapping positions are modeled

[49]. Pudimat et al. also extended the Bayesian network

framework by adding structural DNA features [48]. However,

the Bayesian network representation, due to its acyclicity

constraints, imposes nonnatural restrictions on the motif structure,

and its conditional probability distributions limit the number of

dependencies that can be introduced between positions in practice,

due to the exponential increase in the number of parameters

introduced with each additional dependency. Although some of

these issues may be addressed, e.g., using sparse conditional

probability distribution representations, Bayesian networks do not

seem to be the ideal and most intuitive tool for the task.

Another class of TF binding specificities models that is

complementary to the above two is a mixture of models. In the

above mentioned work, Barash et al. also used a mixture of PSSMs

to model TFBSs. In this representation, each motif is modeled as a

mixture of PSSMs each defining a different mode of binding. This

approach was later extended as a part of the LOGOS [50] and

MotifBooster [51] motif finding software. However, this approach

does not explicitly represent dependencies between binding site

positions.

Here, we propose a novel approach for modeling TFBS motifs,

termed feature motif models (FMMs). Our approach is based on

describing the set of sequence properties, or features, that are

relevant to the TF–DNA interactions. Intuitively, the binding

affinity of a given site to the TF increases as it contains more of the

features that are important for the TF in recognizing its target site.

In our framework, features may be binary (e.g., ‘‘C at position 2,

and G at position 3’’) or multivalued (e.g., ‘‘the number of G or C

nucleotides at positions 1–4’’), and global features are also allowed

(e.g., ‘‘the sequence is palindromic’’). Each feature is assigned a

statistical weight, representing the degree of its importance to the

TF–DNA interaction, and the overall strength of a TFBS can then

be computed by summing the contribution of all of its constituent

features. We argue that this formulation captures the essence of

the TF–DNA interaction more explicitly than PSSMs and other

previous approaches. It is easy to see that PSSMs are a special case

of FMMs, since a PSSM can be described within our framework

using four single nucleotide features per position. Our approach

can also naturally represent complex and distant dependencies

efficiently, thereby overcoming a limitation of other models that

have been proposed.

The rest of the paper is organized as follows: The Results

section starts with a brief overview of our methodology. We then

validate our approach by learning FMMs from synthetic and real

aligned TFBS data. Next, we devise a novel motif finder algorithm

that finds motifs in a set of unaligned sequences, and validate its

performance on yeast TF ChIP data [17]. Using this motif finder,

we demonstrate the benefits of using FMMs instead of PSSMs as a

basic building block of a motif finder, which represents TF binding

motifs. Finally, we present insights that we gained from learning

FMMs for two human TFs, CTCF and c-MYC. In the Methods

section we discuss the details and the mathematical formulation of

our FMM approach. The problem of learning an FMM from

TFBS data is quite difficult, as it reduces to structure learning in

Markov networks, a paradigm that is still poorly developed. In the

Methods section we elaborate on our learning strategy and suggest

an improved methodology for optimizing the data likelihood,

which we define as our objective function.

Results

Framework and Algorithms in a Nutshell
We first briefly describe the FMM representation, and how it is

learned from aligned TFBS sequences. Next, we give a high-level

view of our motif finder, that finds motifs in unaligned sequences,

and allows their representation as FMMs. All of the algorithms

described here are available as downloadable software or as an

online web service at our web site: http://genie.weizmann.ac.il/.

See the Methods section for a more elaborate description.

Feature motif model (FMM). As mentioned above, we

represent TF binding specificities as the set of sequence features

(denoted by f), which contribute to the binding interaction.

Although our framework can handle various definitions of sequence

features, in this work we focus on features that are indicators for the

appearance of specific nucleotides in a specific set of one or two

positions (as in the above example: ‘‘C at position 2, and G at

position 3’’). It is easy to see that our model can represent PSSMs,

by defining the set of all possible single position features (of the

type: ‘‘A at position 1’’). However, it can also account for

dependencies between different positions of the TF binding motif

by defining features that span two positions. A representation of

Markov networks, which is often referred to as log-linear models

[52], is a natural framework for compact representation of a

distribution as a set of feature functions. Intuitively, in this

framework, each feature fk is associated with a weight hk,

representing its contribution to the binding affinity. Given a

sequence x, we compute its binding probability by summing over

all the weights of the features that appear in the sequence:

P xð Þ~ 1

Z
exp

X
fk[F

hkfk xkð Þ
 !

,

where Z is a normalization factor and xkare the domain positions

of fk. A motif is then defined as a set of features and a set of weights

associated with these features. Given a binding position xi, its

Markov blanket xMB
i is defined as all the other positions that are in

some feature that contains xi. Thus, the motif model encodes the

following independence assumptions: each positon is independent

of all other positions given the sequence of its Markov blanket:

xi\x\ xi|xMB
i

� ���xMB
i . This definition does not pose any

limitations on the dependencies that may be learned. The log-

linear representation is equivalent to any other representation of a

Markov network. In terms of Markov networks, our motif can be

represented as an undirected graph with a vertex for every binding

position and a clique over each feature domain (see Figure 1 for an

example). The parameters of the network are defined by the

exponent of the feature weights. Thus, learning the set of features

is equivalent to learning a Markov network structure and learning

the features weights is equivalent to learning the network

parameters. We will therefore use the term log-linear model to

describe a log-linear representation of Markov networks. Given a

dataset D = {x[1],…,x[N]} of N aligned i.i.d TFBSs, our aim is to

optimize the data likelihood over all possible models. We hence

TF-DNA Interaction Model
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define our objective function F as the data log likelihood

F~log P Djh,Mð Þ~
PN
i~1

log P x i½ �jh,Mð Þ, where M denotes the

model and h denotes the sets of weights.

A detailed description of the learning process is presented in the

Methods section. Here we briefly describe the general flow of

learning an FMM from TFBS data. First, for every possible feature

of maximum domain size D (here D = 2), we count its number of

appearances in the data. For example, we count the number of

times that the feature ‘‘G in position 2 and A in position 4’’

appears in the data. There are at most O(LD) such possible features

(where L is the motif length), but a much smaller number of

features typically exists in TFBSs data (see Protocol S1 for more

details). Next, we reduce the feature space using a Binomial test to

evaluate the statistical significance of features that span more than

one position (as described in the Methods section). The test

evaluates the statistical significance of observing the number of

feature appearances, given the single position nucleotides

empirical distributions (as evaluated by the single position

appearances counts). We filter out nonsignificant features using

FDR [53] (using a threshold of 0.2). We then use the grafting

methodology of Perkins et al. [54], which optimally selects features

from the feature space according to their gradient in the objective

function. In order to control for model complexity and to achieve

a sparse representation, we use the L1-Regularization suggested by

Lee et al. [55], which penalizes models linearly by their sum of

weights. We therefore modify our above objective function F by

adding to it a linear penalty term, resulting in

F~log P Djh,Mð Þ{a
X
hk[h

hkj j~
XN

i~1

log P x i½ �jh,Mð Þ{a
X
hk[h

hkj j,

where a is a free parameter of the L1 penalty term of our objective

function. This process of features selection is guaranteed to

converge. Finally, the output FMM is represented using a simple

sequence logo as in the example given in Figure 1. In this logo,

each indicator function feature is represented by a box. The

horizontal position of the box and the nucleotides that are written

inside it, define the indicator function. The height of the box is

linear with respect to the expectation of the feature according to

the model (as computed in Equation 4 in the Methods section).

Features over more than one position have a gray background.

The problem of representing complex dependencies in a relatively

simple and readable logo is not trivial. Nevertheless, a clear logo is

important for easy interpretation of the results. On our web site,

we also offer different logo representations and an XML format

representation of the model. Our model logo is very useful for

deriving hypotheses on specific TF binding specificities, and on

dependencies between the motif positions.

FMM motif finder. As a proof of concept, we developed a

novel motif finder software and used it to compare the FMM to

the PSSM as models for motif representation, within a de novo

motif finding process. Our motif finder follows a discriminative

methodology, which means that it finds motifs that are enriched in

a positive set of unaligned sequences compared to a negative set of

unaligned sequences. It receives as input a set of unaligned

sequences that a TF binds to (positive set), and a background set of

unaligned sequences that are not bound by the TF (negative set).

The motif finding scheme consists of two main steps: In the first,

we extract all sequences of length K (referred to as ‘‘K-mers’’) and

greedily grow motifs (defined by a set of OR and AND operations

on a set of K-mers) that are discriminatively enriched in the

positive set over the negative set. We refer to such motifs as K-mer

set motif models, or ‘‘KMM’’s. An important property of KMMs

is that they preserve dependencies between motif positions, unlike

most of the commonly used motif representations (e.g., PSSMs,

Hamming balls, etc.). This property is the essence of how our motif

finder can later produce FMM motifs that accurately represent the

data. Another advantage of the KMM methodology is that KMMs

maintain an alignment of their K-mers, which induces the motif

length (see Protocol S1 and Figure S1). Thus, our algorithm does

not require the motif length as input. The enrichment measure we

use is the multidimensional hyper-geometric p-value (MHG p-

value), suggested by Eden et al. [36], as described in the Methods

section (Finding De Novo FMM Motifs). This measure takes into

account the ratio between the number of motif hits in the positive

set and the number of motif hits in the negative set. The higher the

ratio, the smaller the MHG p-value, indicating higher enrichment.

In the second step, each enriched KMM is used for extracting

aligned TFBSs from the positive set, from which a motif model,

FMM or PSSM, is learned. The scheme is illustrated in Figure 2

and described in details in the Methods section (Finding De Novo

FMM Motifs). We used this two step scheme in order to generate

high quality data for an FMM-PSSM comparison.

Results Overview
We now present an experimental evaluation of our FMM

learning approach. First, we used synthetic data to tune the free

parameter of the penalty term and to test whether our method can

reconstruct sequence features that span multiple positions when

these are present. We then compared the ability of our approach

to that of PSSMs on learning real binding site specificities of

human TFs from two datasets of TFBS [10,13]. Next, we validated

the ability of our motif finder to find TFBS motifs in yeast ChIP-

microarry data [17]. We show that its performance is comparable

to state-of-the-art motif finders. Finally, we compiled a collection

of high throughput human and mouse TF ChIP datasets, and used

our motif finder to learn de novo motifs for each of the TFs. We

show that our FMM approach learns the binding specificities of

these TFs better than the PSSM approach.

FMMs Reconstruct Binding Specificities from Synthetic
Aligned TFBS Data

Before integrating our algorithm for learning FMM from

aligned TFBS data into our motif finder algorithm, we separately

evaluated it in a controlled setting. As an initial test for our

method, we wanted to evaluate the ability of our algorithm to

learn sequence features that span multiple positions when such

exist, and to avoid learning such features when none exist. For this

purpose, we manually created eight sequence models of varying

weights and features (which we will refer to as ‘‘true’’ models), and

learned both PSSM and FMMs from aligned TFBSs that we

sampled from them (Figure 3). Our eight sequence models

contained three manually-curated models with features over single

and double positions (we denoted these models as Synthetic model

I–III). In order to make sure that our model does not learn double

position features when none exist, we used as our true model the

PSSMs of yeast GCN4 and SWI5 TFs from MacIsaac et al. [29]

(denoted GCN4 PSSM and SWI5 PSSM). Even though the

relatively small size of the MacIsaac et al. dataset may cause

overfitting when used directly for FMM learning, sampling from

such an FMM may give a dataset with relatively realistic

dependencies, of the type that our model should learn. Thus, we

learned also FMMs of yeast GCN4 and SWI5 TFs from the

MacIsaac et al. dataset [29], and used them as relatively realistic

synthetic models (denoted GCN4 FMM and SWI5 FMM). Finally,

in order to test the performance of our approach when strong

TF-DNA Interaction Model
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dependencies are present, we created a model with strong

dependencies by adding eight double position features to the

GCN4 PSSM model (denoted GCN4 PSSM++). We evaluated the

learned models by computing the log-likelihood that the learned

models assign to a test set of 10,000 unseen TFBSs sampled from

the true model, and by computing the Kullback–Leibler (KL)

distance between distributions of the true and learned models. The

larger the test set likelihood and the smaller the KL distance, the

better the reconstruction. We evaluated two specific aspects of our

approach: the dependency of the learning on the penalty term free

parameter, a, and the minimum number of samples needed for

learning FMMs. We repeated each experiment setting three times.

We first tested the effect of the penalty term free parameter, a,

on the quality of the model reconstruction. Intuitively, the larger

the value of a, the harder it is to learn large weights. Thus, the

value of a correlates with our prior belief that the model is simple

(close to uniform). Therefore, there is a trade off between setting a
to large values that decrease the risk of overfitting but might miss

important features, and setting it to small values that might allow

overfitting but also increase the ability to learn features. Since

larger input datasets have relatively larger values for the gradients,

a given value of a allows more weak features to be learned in large

sets as compared to smaller datasets. This effect fits well with the

notion of lower noise in larger datasets (see Lee et al. [55] and

references within for an exact analysis). To this end, we varied a in

the range of 1026 to 100, while using a varied number of 10–1,000

input sequences. The results in the range 1021#a#10 and 50–

1,000 input sequences are shown in Figure S2 in terms of test set

likelihood. The results show that in the range tested the best

overall reconstruction performance is achieved for a<1. While

smaller values tend to allow overfitting, higher values pose harsh

constraints on the learned model and learn too few features.

Though the effect is stronger for small datasets, a<1 seems to give

good performances also for relatively large datasets.

Second, we estimated the minimum number of samples needed

for learning FMMs, by sampling different training set sizes in the

range of 10–500. In these experiments, we fixed the penalty term

free parameter to a = 1. As can be seen in Figure 3, in six out of

eight cases, our model reconstructs the true model with high

accuracy even with a modest number of ,100 input TFBSs, and

reconstructs the true model nearly perfectly with 200 or more

samples. For the more complex GCN4 FMM and SWI5 FMM

Figure 2. FMM motif finder flow chart. The algorithm gets as input (1) sets of positive and negative (in terms of TF binding) unaligned sequences. It
then (2) computes for every possible K-mer its enrichment multidimensional hypergeometric p-value (MHG p-value) by finding all its occurrences in the
input sequences. The K-mers are ranked by the MHG p-value. (3) Non-significant K-mers are then filtered, using FDR controlled threshold. Next (4) an
undirected graph is built. Each K-mer is a vertex, and two K-mers are connected with an edge if their Hamming distance is smaller then HDistance or if they
can be aligned without mismatches with a relative shift of up to MShift (here blue line edge stands for Hamming distance 1 and dotted green edge for
Hamming distance 2). The algorithm then (5) iteratively selects the most significant K-mer in the graph and grows a KMM along the edges as described in
the text. After each K-mer is associated with exactly one KMM set, (6) all the sets are ranked according to their MHG p-value, and the best M sets are
chosen. The process is repeated for every Kmin#K#Kmax and again the overall M best KMM are chosen. Each of the chosen KMMs is used (7) to produce
either an FMM or a PSSM motif in the method described in the text. As a last step similar motifs are removed.
doi:10.1371/journal.pcbi.1000154.g002

TF-DNA Interaction Model
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Figure 3. Evaluation of our approach on synthetic data. Results are shown for eight manually constructed models, from which we drew samples
and constructed FMMs and PSSMs. The presented models from top down are three synthetic models. A PSSM and an FMM learned from MacIsaac et al.
[29] data for the TF GCN4. GCN4 MacIsaac et al. A PSSM learned from the MacIsaac et al. [29] data for the GCN4 transcription factor, with manually addition
of eight synthetic features over two positions each (referred as GCN4 PSSM++). A PSSM and an FMM learned from MacIsaac et al. data for the TF SWI5. For
each model, shown are its sequence logo (left), training and test log-likelihood (average per instance for the true model, and learned FMM and PSSM) and
KL distance of the learned FMM and PSSM models from the true model (train likelihood error bars were excluded for clarity). The height of each feature in
the sequence logo is linear with respect to its expectation. Features over more than one position have gray background.
doi:10.1371/journal.pcbi.1000154.g003
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models, although high accuracy is achieved with ,200 samples,

adding ,200 more samples further improves the model accuracy.

As can be seen from the GCN4 and SWI5 PSSM models,

although less than 100 samples might cause overfitting, due to

under sampling of the distribution space, when the sample number

is sufficient no dependencies are learned. As expected, when the

true model includes dependencies between positions, our model

significantly outperforms the PSSM, in some cases even when only

20 input sites were used. Examining the learned features, we found

that for a sample size of 100 or more, only features that appeared

in the true model were learned with significant weights. Our

results thus show that when we use synthetic data we can

successfully learn FMMs, even with a modest setting of 100 input

sequences. These numbers are surprisingly small considering the

number of parameters examined. Using smaller sets which

represent under sampling of the TFBS distribution space or sets

that contain noise may lead to overfitting. Therefore, we expect

that similar analyses, using a cross validation scheme, on datasets

taken from TRANSFAC [56], JASPAR [57] and MacIsaac et al.

[29] to be less successful, as most of these datasets are small or

contain a considerable amount of noise. Nevertheless, these

numbers are far below those for data generated by current genome

wide experiments (such as ChIP-chip and ChIP-seq), so our

approach is valid for learning TFBS data in realistic settings.

FMMs Learned from Aligned Transcription Factor Binding
Sites Describe Binding Specificities Better Than PSSMs

Having validated our approach on synthetic data, we next

applied it to TFBSs data of human TFs. Our goal was to identify

whether FMMs can describe the sequence specificities of human

TFs better than PSSMs. To that end, we compared FMMs and

PSSMs that were learned from the same sets of aligned TF binding

sites. We chose three published sets of aligned binding sites

sequences of two important human TFs. The first set contains

aligned NRSF binding sites published by Johnson et al. [10].

NRSF binds a DNA element called the neuron-restrictive silencer

element (NRSE), canonically described as a 21 bp element.

Johnson et al. found 1,655 regions that were enriched for such

canonical NRSEs in two independent experiments. The two other

sets contain aligned predicted CTCF binding sites published by

Kim et al. [13]. They mapped CTCF binding sites through a

ChIP-chip experiment, and found a 20 bp motif, defined by a

PSSM, that appears in 75% of the binding sites. Using this PSSM

motif (and by constraining positions 6, 11, 14, and 16 to match the

consensus) the authors predicted 31,905 CTCF binding sites,

12,799 of which are conserved in at least one more vertebrate. We

will refer to these two sets of predicted sites as ‘‘CTCF predicted’’

and ‘‘CTCF predicted conserved’’ sites, respectively. Clearly, our

choice of input sets is not biased in favor of the FMM. The

canonical NRSE motif is characterized by a highly informative

PSSM and the two CTCF sets were extracted from the genome

using an initial PSSM representation, thus may contain a bias

towards independence of different positions.

For each input set we tested whether FMM represents the

TFBSs better than PSSM using the following 10-fold cross

validation (CV) scheme. Each input set was partitioned into ten

subsets. Ten CV groups were created, where in each one a

different subset was used as test data, while the other nine were

used as training set from which both an FMM and a PSSM were

learned. For each CV group, we computed the average likelihood

of the test TFBSs according to both the PSSM and FMM, as a

measure for the learned sequence model success in representing

the binding specificities. The difference between the log average

FMM likelihood and the log average PSSM likelihood expresses

the improvement of the FMM over the PSSM. The mean and

standard deviation for these differences were calculated over the

ten CV groups. The results for all three input sets are shown in

Figure 4A. The FMM model was found to provide 1.3–1.4-fold

more likely representations of the binding specificities of the above

TFs than the PSSM, with high significance (above 5 standard

deviations over the ten CV groups).

Figure 4B and 4C show the PSSM and FMM features

expectations logo for CTCF predicted conserved BSs. Although

four positions were forced to match the consensus, our FMM

recognizes several inter-position dependencies. We will discuss the

details of the CTCF motif at the end of the Results section, where

we use unaligned CTCF bound regions from the same work [13]

to derive de novo FMM using our motif finder. Figure 4D and 4E

show the PSSM and FMM features expectations logo for NRSF.

Notably, the FMM found that ‘‘T’’ at position 11 has strong

dependencies to the consensus sequence at positions 12–14 and

16. On the other hand, ‘‘C’’ at position 6 prefers either ‘‘C’’ or

‘‘G’’ at position 11. These results show that the improvement of

the FMM over the PSSM is due to the representation of inter-

position dependencies by the FMM.

Evaluating the Motif Finder Performance on Yeast
Transcription Factors Binding Data

As previously described, our motif finder algorithm consists of

two steps. The first step results in a collection of K-mer set Motif

Models (KMMs). Each KMM is a set of K-mers that defines an

enriched motif, and can be used to extract a set of aligned TFBSs

from the input positive sequences (see Methods section). These

aligned TFBSs are input to the second step, where a motif model is

learned from them, be it a FMM or a PSSM. A question arises,

then: do KMMs found by the motif finder represent true motifs?

Here we show that the KMMs found by our motif finder indeed

represent true motifs, and are comparable in quality to motifs

found by common motif finding software.

In order to evaluate our motif finder’s performance we chose

the dataset of Harbison et al. [17]. Although this dataset contains

less information for each TF than more recent experiments that

used ChIP followed by tilling array or parallel sequencing

technologies, it is the most comprehensive study done for TF–

DNA interactions and was used by many motif finding software for

performance comparison. This data includes 238 sets of sequences

of regions which a TF binds under a specific condition (238 TF-

condition sets). The 238 datasets represent 146 TFs in various

conditions. For 111 TFs (198 datasets), a motif was published by

MacIsaac et al. [29]. The MacIsaac et al. motifs were found by

two independent motif finding software which use conservation

information and were augmented by the authors using literature-

known motifs. These motifs were considered by us as biologically

true motifs in order to asses the quality of our motifs. For each of

the sets we took the sequences from all of the other 237 sets as a

negative set. The total number of sequences in all sets is 6,725,

with sets ranging between 10 and 195 sequences. Out of the 238

sets, we discarded those with less than 35 sequences, leaving 123

TF-condition sets, for 78 distinct TFs. The choice of the 35

sequences threshold is discussed in Protocol S1.

In order to distinguish between biologically relevant motifs and

motifs that can appear by chance, we followed the following

procedure. We partitioned the Harbison et al. TF-condition sets

into 15 bins according to their sizes. The bins were tagged by the

center set sizes, [10,20,…,100,120,…,200]. For example, bin ‘‘50’’

contained all TF-condition sets of sizes 45–54. For each bin ‘‘X,’’

we generated 1,000 sets of X sequences that were randomly picked

out of the entire collection of 6,725 Harbison et al. microarray

TF-DNA Interaction Model
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sequences. For each set, all remaining sequences out of the 6,725

sequences were considered as a negative set. We ran our motif

finder on all 123 true and 15,000 random sets and computed the

best motif MHG p-value. We then assessed for each TF-condition

set the percentage of random sets in its bin that got a motif with

lower MHG p-value. We considered this percentage as the

empirical p-value for getting such MHG p-value for a random set.

Hence, we considered this empirical test as an assessment of the

percentage of false positive motifs for a given MHG p-value and a

given set size. Figure 5A shows the fraction of TF-condition sets

that contain a motif with a MHG p-value that is better than the

empirical threshold as defined by the x-axis for the set bin. It is

clear that the results were distinctively better for TF-condition sets

than what would be expected by random. As a threshold for

biologically relevant motifs we chose for each bin a MHG p-value

that allowed a random motif finding rate of 16%. At this threshold

we found motifs for 81% of the TF-condition sets. Thus, our

results suggest that we found true motifs for at least 65% of the TF-

condition sets.

Having chosen biologically relevant motif MHG p-value

thresholds, we next compared the KMM motifs found by our

motif finder for the TF-condition sets with the motifs published by

MacIsaac et al. [29]. For each TF-condition set, we allowed the

motif finder to output up to five unique motifs. Only those that

passed their sets’ bin threshold were considered. We compared our

KMM motifs to the MacIsaac et al. PSSMs by learning a PSSM

representation of each KMM, and comparing this PSSM with the

respective MacIsaac et al. PSSM, relying on a method previously

used by Narlikar et al. [58]. (For a complete description of the

motif comparison method, see Protocol S1.) A summary of this

comparison is shown in Figure 5B. For 66% of the sets we found

motifs similar to those found by MacIsaac et al. These results,

although they can only be approximately compared with recently

published results by Narlikar et al. [58] and Eden et al. [36], show

that our motif finder does not fall behind state of the art motif

finders, and is at least comparable to other methods. In Protocol

S2, we further compare our motif finder to other motif finders,

demonstrating that our motif finder has advantages over other

Figure 4. Evaluating our approach on real TFBSs from human. (A) Train (green points) and test log-likelihood (blue bars), shown as the mean
and standard deviation improvements in the average log-likelihood per instance compared to a PSSM for the datasets of NRSF, CTCF predicted sites,
and CTCF predicted conserved sites. (B) and (C) show the PSSM and FMM features expectations logo for CTCF predicted conserved sites respectively.
(D) and (E) show the same for NRSF sites. Each feature in the FMM feature expectation logo ((B) and (E)) is represented by a box. The horizontal
position and the letters in the box define the feature. For example, the feature in the purple dashed box in (C) represent the feature ‘‘T at position 2
and A at position 7.’’ The height of the feature is linear with respect to its expectation in the probability distribution defined by the model. Gray
background marks a double position feature.
doi:10.1371/journal.pcbi.1000154.g004
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motif finders. Thus, we can use the first step of our motif finder to

produce TFBSs data for an FMM-PSSM comparison.

Learning TF Binding Specificities Features from
Unaligned Human and Mouse TF Bound Regions

In a previous section, we compared FMMs and PSSMs learned

from aligned TFBS data. Although there are databases that

contain sets of aligned TFBS [56,57], these databases usually

contain a relatively small number of TFBS for each TF and

contain repeating sequences. Learning FMMs from such datasets,

although possible in many cases, might lead to overfitting and is

problematic for testing in a cross validation scheme. Recent

experiments, however, produced larger sets of TF bound regions.

After validating our motif finder on smaller sets, we can now use it

to produce aligned TFBS data for a comparison of our FMM

approach to the PSSM approach. Table 1 summarizes the

collection of datasets that we used. For each dataset, since it

contains only positive sequences, we generated a negative set (as

described in Protocol S1). We scanned each dataset for de novo

motifs in a 5-fold cross validation (CV) scheme. We considered the

top motif as the true TF motif. From manual examination of the

motifs and comparison of the top motif to the literature, this

assumption seems to hold (except for some differences in the

Nanog_Boyer and E2F4_Boyer sets motifs). In order to compare

the learned FMM to the learned PSSM, we assumed that each

sequence in the positive set has at least one TFBS. We computed

for each test positive sequence the top motif’s FMM and PSSM

binding probabilities over all possible locations on the sequence.

Following our assumption, for the FMM, as for the PSSM, the best

binding probability was considered as the sequence likelihood to

be bound by the TF. Figure 6 shows the improvement of our

FMM approach over PSSM in terms of test and train log of the

average likelihood. The results clearly show that the likelihood of

the maximal-likelihood site is better under the FMM model than

under the PSSM, and the results are significant in terms of

standard deviation over the CV groups. For more than 50% of the

sets, the FMM is at least 2-fold more likely to represent the TFs

binding specificities. The entire collection of motifs found for all

datasets appears in Protocol S2.

We focus next on our results for three important human TFs.

For the first two, c-Myc and CTCF, we discuss their best FMM

and PSSM motifs, and show how their FMM motifs reveal

intriguing insights about their binding specificities, that are missed

by the PSSM, and that may be correlated with previously

published experimental results. For the third, STAT1, we found

several motifs, exhibiting the cooccurrence of STAT1 and other

TFs binding sites.
c-Myc/Max binding specificity features. In Figure 7A

and 7B we present the FMM and PSSM motifs found by our motif

finder, based on unaligned sequences of the datasets ‘‘c-Myc’’ and

‘‘c-Myc_PET3’’ (see Table 1), respectively. Notably, the most

significant part of the motif is an E-box motif, marked by a

rectangle in Figure 7A and 7B. According to the PSSM in

Figure 7A there is only a single low informative position to the left

of the E-box. The PSSM in Figure 7B, which relies on less noisy

data, adds another low informative position to the right of the E-

box. However, when relying on the FMM motifs, even for the

noisy data, we find a significant ‘‘C-G’’ feature that connects the

two flanking positions of the E-box (and is marked by a dashed

rectangle in Figure 7A and 7B). Notably, this feature is

palindromic, continuing the E-box palindrome. Comparing the

observed dinucleotides at positions 3 and 10 to those expected by

single position nucleotide distributions (Figure 7C), reveals a

significant enrichment for the ‘‘C-G’’, and the less abundant ‘‘G-

C’’ features. We asked ourselves whether the enrichment of the

flanking ‘‘C-G’’ feature by our motif finder is biologically

meaningful. We examined the abundance of ‘‘C-G’’ pairs

flanking c-Myc/Max canonical E-box (‘‘CACGTG’’) hits in the

input positive and negative sequence sets of the ‘‘c-Myc_PET3’’

dataset. This pair’s relative abundance in the positive set is almost

3-fold higher than in the negative set. The only pair with a higher

ratio than that is ‘‘C-T’’ (‘‘C’’ in position 3 and ‘‘T’’ in position

10), but it appears in a very small number of sequences, less than

half the number of sequences in which the ‘‘C-G’’ appeared. We

conclude that the FMM captured a potentially important feature

that the PSSM misses.

What may be the biological significance of the flanking ‘‘C-G’’

feature? The ‘‘CACGTG’’ E-box is known to be optimal for the

binding of not only the c-Myc/Max heterodimer, but also of other

basic/helix-loop-helix/leucine zipper (bHLHZ) dimers such as

Mad/Max, Max/Max and USF/USF. Past works claimed that

flanking bases contribute to binding specificities [59]. In particular,

a flanking ‘‘C-G’’ pair was noted to increase binding specificity of

Figure 5. Evaluating the motif finder on yeast data. (A) Shown is the fraction of Harbison et al. [17] sets for which a motif was found with
better MHG p-value than expected to be found in a set of the same size of randomly selected sequences from Harbison et al. (x-axis). We chose a
cutoff that defines as a biologically true motif, a motif with MHG p-value that is worse than at most 16% of the best motif MHG p-value of 1,000
randomly chosen sets. 81% of the Harbison et al. sets contain such a motif. (B) A comparison between KMM motifs predicted by our motif finder and
a published combination of predictions by two softwares that use conservation and literature motifs reported in [29].
doi:10.1371/journal.pcbi.1000154.g005
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c-Myc/Max over Max/Max [60]. Our results support this claim.

Moreover, they show how the FMM may reveal biologically

important features that reflect different binding modes of a TF.

CTCF binding specificities features. In Figure 7D we

present the FMM and PSSM motifs found by our motif finder,

based on the unaligned sequences of ‘‘CTCF’’ dataset (see

Table 1. TFBS Enriched Sequences Datasets.

Dataseta Symbolb Enriched protein Organism Experimentc Size Reference

Robertson et al. STAT1_Unstimulated STAT1 Human ChIP-seq 11004 [11]

Robertson et al. STAT1_INFg STAT1 Human ChIP-seq 41582 [11]

Johnson et al. NRSF NRSF Human ChIPSeq 1946 [10]

Kim et al. CTCF CTCF Human ChIP-chip 13804 [13]

Lee et al. PRC2_SUZ12 SUZ12 Human ChIP-chip 3465 [16]

Wei et al. P53 P53 Human ChIP-PET 510 [14]

Wei et al. P53_PET3 P53 Human ChIP-PET 307 [14]

Zeller et al. c-Myc c-Myc Human ChIP-PET 4297 [72]

Zeller et al. c-Myc_PET3 c-Myc Human ChIP-PET 593 [72]

Loh et al. Oct4_Loh Oct4 Mouse ChIP-PET 1051 [15]

Loh et al. Nanog_Loh Nanog Mouse ChIP-PET 2971 [15]

Boyer et al. Oct4_Boyer Oct4 Human ChIP-microarray 603 [12]

Boyer et al. Nanog_Boyer Nanog Human ChIP-microarray 1554 [12]

Boyer et al. Sox2_Boyer Sox Human ChIP-microarray 1165 [12]

Boyer et al. E2F4_Boyer E2F4 Human ChIP-microarray 957 [12]

aNote that the Robertson et al. STAT1 sequences contain two sets: an interferon c stimulated dataset and unstimulated dataset.
bFor p53 and c-MYC we consider both the noisier set of sequences that were represented by two PETs and a smaller and less noisy set (suffixed by ‘‘_PET3’’) of

sequences that were represented by at least three PETs. For every dataset we created a negative dataset as described in Protocol S1.
cBoth Chip-seq and ChipSeq (as referred by the authors) use Illumina 1G system as platform. ChIP-PET methodology is described in [14]. ChIP-chip refers to 38
Affymetrix genomewide chips and ChIP-microarray refers to an Agilent promotors microarray.

doi:10.1371/journal.pcbi.1000154.t001

Figure 6. Evaluating our approach on real TFBS enriched sequences datasets from human and mouse. We searched each dataset for de
novo motifs using a 5-fold cross validation scheme. We assumed that each sequence in the positive set has at least one TFBS. Following this, we
computed for each positive sequence the top motif’s FMM and PSSM best TFBS probability and considered it as the sequence binding likelihood. We
show here the improvement of our FMM approach over PSSM in terms of train (green dots) and test (blue bars) log average likelihood. In the dataset
STAT1_IFNg, two different motifs appear as best/second best in different cross validation runs and are marked by one and two asterisks, respectively.
doi:10.1371/journal.pcbi.1000154.g006
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Table 1). In a previous section we used TFBSs that were predicted

by Kim et al. [13] to learn FMM and PSSM (Figure 4B and 4C).

We note that the motifs learned from the predicted TFBS data and

those learned from the original unaligned sequences data are

highly similar (although several positions in the predicted sites

were constrained to match the consensus). In particular, when

comparing the two FMMs, we find similar dinucleotide features.

We note especially the dinucleotide features connecting the

neighboring positions 6–7, 10–11, 15–16, and 17–18 in

Figure 7D (marked by dashed rectangles) that correspond to

features in positions 8–9, 12–13, 17–18, and 19–20 in Figure 4C.

In both FMMs, we find a significant 12 bp core (positions 3–14 in

Figure 7D and 5–16 in Figure 4C). Indeed, this 12 bp core

element was recently experimentally identified by Renda et al.

[61] as essential for high affinity binding of CTCF. Notably, the

FMM finds mostly dinucleotide features that are contained within

each of the four triplets that comprise the core, with little sequence

diversity in the two outer triplets, relative to the inner triplets (as

exhibited by the features in positions 6–7 and 10–11 in Figure 7D

and 8–9 and 12–13 in Figure 4C that do not follow the consensus

in these positions). This also corresponds to the findings of Renda

et al. that the core is bound by 4 out of the 11 zinc finger (ZF)

domains of the CTCF, where the two ZFs that bind the outer

triplets play a more important role in the binding. The

confinement of dinucleotide features within triplets seem to

break outside of the 12 bp core, as exhibited by the features in

positions 15–16 and 17–18 in Figure 7D and 17–18 and 19–20 in

Figure 4C. Not much is known about the CTCF binding to the

regions flanking the 12 bp core. Our FMMs suggest sequence

features that are important for the weaker and less specific binding

to these regions.

Notably, our results are also well correlated with recently

published work by Xie et al. [62], who found three variants of

CTCF binding motifs (represented by PSSMs) that are highly

conserved in mammalian genomes. The main differences between

these three variants correspond to the dinucleotide features found

in positions 6–7 and 15–16 in Figure 7D and 8–9 and 17–18 in

Figure 4C, emphasizing that the FMM detects features that are

involved in partitioning the TFBS space into subclasses.

Finally, to emphasize the significance of features captured by

the FMM in Figure 7D, the table in Figure 7E compares observed

numbers of dinucleotides at positions 15 and 16 in TFBSs found

Figure 7. FMM biological findings. (A) c-Myc FMM and PSSM. (B) c-Myc FMM and PSSM learned only from sequences of PET3+ clusters (a cleaner
set). The black square in (A) and (B) highlights the E-Box motif. (C) Statistics for the c-Myc FMM feature marked by a dashed line. Expected
occurrences are according to the PSSM in (B). The p-values were computed using a Binomial test, as described in the Methods section (‘‘Reducing the
features space’’). (D) CTCF FMM and PSSM. Dashed line squares highlight features that are referenced in the text. (E) Statistics for the CTCF FMM
features at positions 15,16 (marked by a dashed line). Expected occurrences are according to the PSSM in (D).
doi:10.1371/journal.pcbi.1000154.g007
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by our motif finder, to those expected by single position nucleotide

distributions. Thus, FMMs capture several candidate features that

define important CTCF binding specificities.

STAT1 motifs. We ran our motif finder on two STAT1

datasets. The ‘‘STAT1_IFNg’’ (see Table 1) set includes sequences

bound by STAT1 in human HeLa S3 cells stimulated by IFNc,

while the ‘‘STAT1_Unstimulated’’ set includes sequences bound

by STAT1 in unstimulated cells. In the IFNc stimulated data, we

found a highly enriched GAS motif (the third best motif), that was

not found in the unstimulated data, as expected from the literature

(see [11]). Interestingly, we found that the AP1 motif,

‘‘TGAGTCA,’’ is the best motif for the IFNc stimulated data

and the third best motif for the unstimulated data. This result

supports the recent results of Bhinge et al. [63], who point at the

significance of STAT1-AP1 binding sites’ cooccurrence. Further,

we found a GC-rich motif as the best motif for the unstimulated

data and the second best for the IFNc stimulated data. This GC-

rich motif resembles the GC-box motif to which SP1 binds.

Cooccurrence of STAT1 binding sites and GC-boxes and STAT1-

SP1 interaction have been previously reported for specific

promotors [64]. Our findings suggest a genomewide role for the

STAT1-SP1 interaction in both conditions. The AP1 and the GC-

rich motifs are the ones for which the cross validation testing

results appear in Figure 6 (the AP1 motif is the one marked by an

asterisk). These results demonstrate our motif finder’s ability to

extract multiple meaningful motifs from a single input dataset.

Discussion

In this paper we present feature motif models (FMMs), a novel

probabilistic method for modeling the binding specificities of TFs.

The current dominant model used is the position specific scoring

matrix (PSSM), which assumes independence between binding

motif positions. The richer FMM formulation may be viewed as a

generalization of the PSSM model, enabling complex position

dependencies to be captured, as well as other high-level features

(e.g., palindromes). In this work, we used FMM models that

extend the PSSM by capturing dinucleotide dependencies.

To show that FMM models describe TF binding motifs better

than PSSM models, we compared their likelihoods over held-out

synthetic and real data. The real biological data included both

aligned TFBS data and unaligned TF bound regions data. We

showed that for all types of data, the FMM representation of

motifs outperforms the PSSM representation.

Importantly, FMMs can be presented using a clear and easy to

understand logo, where important position dependencies are

plainly visible. Examining our FMM results for two human TFs, c-

Myc and CTCF, we found intriguing dinucleotide features that

may be important for their binding. Some of those features are

well-correlated with previously published results, while others may

provide hypotheses on the binding specificities of these TFs. These

hypotheses can be further studied experimentally to gain better

understanding of how the TF recognizes its binding sites. Notably,

in those examples, the FMMs hint at the importance of positions

that are regarded uninformative by the PSSMs.

In order to allow de novo FMM motif finding, we developed a

novel motif finder. Our motif finder finds motifs that are

discriminatively enriched in a positive set of unaligned sequences

over a negative set of unaligned sequences. For each motif, it

learns either an FMM or a PSSM representation. An important

property of our motif finding algorithm is that it extracts enriched

sets of K-mers from the data, thus maintaining dependencies

between positions, if such exist. We show that our motif finder

performs well and use it to demonstrate how FMMs can easily be

integrated as a basic building block of a motif finding software

which represents TF binding specificities. As a future direction, we

suggest to integrate the FMM into both common and novel state-

of-the-art motif finding algorithms.

We demonstrated the benefits of using log-linear models (a

representation of Markov networks) for representing important

features of TF binding specificities, and suggested a methodology to

learn such features from both aligned and unaligned input

sequences. In the Methods section we also contribute to the general

problem of learning log-linear models by suggesting a methodology

for optimizing the objective function, which may give better

performance under settings that require approximation.

There are several directions for refining and extending our

FMM approach. First, our rich framework can model many other

types of features. Examples of features that can be added are: to

what extent is the sequence a palindrome and the structural

curvature of the sequence. Another direction is to add to our

learning process the ability to learn binding energies associated

with a given set of sequences. Finally, using our models as an

improved basic building block, we can integrate it into higher level

regulatory models (e.g., [65]) and obtain a much better

quantitative understanding of the underlying principles of

transcriptional regulatory networks.

Methods

The Feature Motif Model
We now present our approach for representing TF binding

specificities. Much like in the PSSM representation, our goal is to

represent commonalities among the different TFBSs that a given

TF can recognize, and assign a different strength to each potential

site, corresponding to the affinity that the TF has for it. The key

difference between our approach and the PSSM is that we want to

represent more expressive types of motif commonalities compared

to the PSSM representation, in which motif commonalities can

only be represented separately for each position of the motif.

Intuitively, we think of a TF–DNA interaction as one that can be

described by a set of sequence features, such as pairs or triplets of

nucleotides at key positions, which are important for the

interaction to take place: the more important features a specific

site has, the higher affinity it will have for the TF.

One way to achieve the above task is to represent a probability

distribution over the set of all sequences of the length recognized

by the given TF. That is, for a motif of length L, we represent a

probability distribution over all 4L possible L-mer sequences.

Formally, we wish to represent a joint probability distribution

P(X1,…,XL), where Xi is a random variable with domain

{A,C,G,T} corresponding to the nucleotide at the ith position of

the sequence. However, rather than representing this distribution

using the prohibitively large number of 4L21 independent

parameters, our goal is to represent this joint distribution more

compactly in a way that requires many fewer parameters but still

captures the essence of TF–DNA interactions. The PSSM does

exactly this, but it forces the form of the joint distribution to be

decomposable by positions. Barash et al. [46] presented alternative

representations to the PSSM, using Bayesian networks, that allow

for dependencies to exist across the motif positions. However, as

discussed above, the use of Bayesian networks imposes unneces-

sary restrictions and is not natural in this context.

A more natural approach that can easily capture our above

desiderata is the framework of undirected graphical models, such as

log-linear representation of Markov networks (log-linear model),

which have been used successfully in an increasingly large number of

settings. As it is more intuitive for our setting, we focus our
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presentation on log-linear models. Let X = {X1,…,XL} be a set of

discrete-valued random variables. A log-linear model is a compact

representation of a probability distribution over assignments to X.

The model is defined in terms of a set of feature functions fk(Xk), each of

which is a function that defines a numerical value for each

assignment xk to some subset Xk , X. Given a set of feature functions

F = {Fk}, the parameters of the log-linear model are weights h = {hk:

fk M F}. The overall joint distribution is then defined as:

P xð Þ~ 1

Z
exp

X
fk[F

hkfk xkð Þ
 !

,

where Z~
X
x[X

exp
X
fk[F

hkfk xkð Þ
 ! ð1Þ

is the partition function that ensures that the distribution P is properly

normalized (i.e., gxMX P(x) = 1), and xk is the assignment to Xk in x.

Although we chose the log-linear model representation, we note that

it is in fact equivalent to the Markov network representation, and the

mapping between the two is straightforward. We now demonstrate

how we can use this log-linear model representation in our setting, to

represent feature-based motifs. We start by showing how PSSMs can

be represented within this framework.

Representing PSSMs. Recall that a PSSM defines

independent probability distributions over each of the L

positions of the motif. To represent PSSMs in our model, we

define 4 features fiJ for each position that indicate whether a

specific nucleotide J M {A,G,C,T} exists at a specific position

1#i#L of the TFBS. We associate each feature with a weight hiJ

that is equal to its marginal log probability over all possible TFBSs.

It is easy to show that putting this into Equation 1 defines the exact

same probability distribution as of the PSSM, and that the partition

function as defined in Equation 1 is equal to 1 in this case.

Representing feature motifs. Given a TF that recognizes

TFBSs of length L, our feature-based model represents its motif

using the log-linear model of Equation 1, where each feature fk
corresponds to a sequence property that may be defined over

multiple positions. As an example for a feature, consider the

indicator function: ‘‘C’’ at position 2 and ‘‘G’’ at position 3, as in

Figure 1. This feature illustrates our ability to define features over

multiple positions. Although in this work we focus on indicators of

a single nucleotide or a nucleotide pair, we note that continuous

and even global features (such as G/C content) can easily be

defined within our model. We then associate each feature with a

weight, hk, that defines its importance to the TF–DNA binding

affinity. Given a sequence, we can now compute its probability

using Equation 1, which boils down to summing the value of all

the features present in the sequence, each multiplied by its

respective weight parameter, and exponentiating and normalizing

this resulting sum. Intuitively, this model corresponds to

identifying which of the features that are important for the TF–

DNA interaction are present in the sequence, and summing their

contributions to obtain the overall affinity of the TF to the site.

This intuitive model is precisely the one we set out to obtain.

Learning Feature Motif Models
In the previous section, we presented our feature-based model

for representing motifs. Given a collection of features F, our

method uses the log-linear model to integrate them, as in

Equation 1. As we showed, the standard PSSM model can be

represented in our framework. However, our motivation in

defining the model was to allow for integration of other features,

which may span multiple positions. A key question is how to select

the set of features for a given model. In this section, we address this

problem. Since log-linear models are equivalent to Markov

networks, our problem essentially reduces to structure learning

in Markov networks. This problem is quite difficult, since even the

simpler problem of estimating the parameters of a fixed model

does not have an analytical closed form solution. Thus, the

solutions proposed for this problem have been various heuristic

searches, which incrementally modify the model by adding and

deleting features to it in some predefined scheme [55,66].

We now present our algorithm for learning a feature-based

model from TFBSs data. Our approach follows the Markov

network structure learning method of Lee et al. [55]. It

incrementally introduces (or selects) features using the grafting

method of Perkins et al. [54]. We first present the simpler task of

estimating the parameters of a given model, as this is a sub-

problem that we need to solve when searching over the space of

possible network structures.

Parameter estimation. For the parameter estimation task,

we assume that we are given as input a dataset D = {x[1],…,x[N]}

of N aligned i.i.d TFBSs, each of length L, and a model M defined

by a set of sequence features F = {f1,…,fk}. Our goal is to find the

parameter vector h = {h1,…,hk} that specifies a weight for each

feature fi M F, and maximizes the log-likelihood function

log P Djh,Mð Þ~
XN

i~1

log P x i½ �jh,Mð Þ~

XN

i~1

X
fk[F

hkfk x i½ �k
� �

{N log Z

ð2Þ

where x[i]k corresponds to the nucleotides of the ith TFBS at the

positions relevant to feature k, and Z is the partition function as in

Equation 1. It can easily be shown that the gradient of Equation 2 is

L log P Djh,Mð Þ
Lhk

~
XN

i~1

fk x i½ �k
� �

{N
1

Z

LZ

Lhk

ð3Þ

Although no closed-form solution exists for finding the

parameters that maximize Equation 2, the objective function is

concave (as discussed by Lee et al. [55]), and we can thus find the

optimal parameter settings using numerical optimization proce-

dures such as gradient ascent or conjugate gradient [67]. We now

deal with optimizing Equation 2.

Optimization of the objective function. Applying

numerical optimization procedures such as gradient ascent

requires the computation of the objective function and the

gradient with respect to any of the hk parameters. Although the

fact that the objective function is concave and that both the

function and its gradient have simple closed forms may make the

parameter estimation task look simple, in practice computing them

may be quite expensive. The reason is that the second terms of

both the function and the gradient involve evaluating the partition

function, which requires, in a naive implementation, summing

over 4L possible TFBSs sequences.

Since algorithms for learning log-linear models usually require

computation of the partition function, this problem was intensively

researched. Although in some cases the structure of the features may

be such that we can decompose the computation to achieve efficient

computation, in the general case it can be shown to be a NP-hard

problem and hence requires approximation. Here we suggest a novel

strategy of optimizing the objective function. We first use the (known)

observation that the gradient of Equation 2 can also be expressed in
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terms of features expectations. Specifically, since

1

Z

LZ

Lhk

~

P
x[X fk xkð Þexp

P
f [Fk

hkfk xkð Þ
� �

P
x[X exp

P
f [Fk

hkfk xkð Þ
� � ~EP*h fk xkð Þð Þ ð4Þ

we can rewrite Equation 3 as:

Llog P Djh,Mð Þ
Lhk

~
XN

i~1

fk x i½ �k
� �

{NEP*h fk xkð Þð Þ ð5Þ

We further observe that since Equation 2 is a concave function,

its absolute directional derivative along any given line in its

domain is also a concave function. We used this observation to use

the conjugate gradient function optimization algorithm [67] in a

slightly modified version: Although the gradient that was given to

the algorithm was indeed as in Equation 5, the function value

along every line search step of the algorithm was the absolute

directional derivative along this line. For example, at the line

search step along direction y our function F*(h,y) value is:

F*(h,y) = |Æ, log P(D|h,M)æ|. Following the above strategy allows

us to optimize Equation 2 without computing its actual value.

Specifically, it means that we can optimize our objective without

computing the partition function. Instead, the problem reduces to

evaluating feature expectations, a special case of inference in log-

linear models, that can be exactly computed using algorithms such

as loopy belief propagation [68]. The ability of these algorithms to give

an exact result depends on the underlying network structure. As

the network structure becomes more complex, the algorithms need

to use approximations. Since this family of algorithms can also

approximate the partition function, our method will be similar to

methods that evaluate the partition function when the network

structure allows for exact inference. However, as the error bounds

for approximate inference are better characterized then the error

bounds of partition function estimations, it is possible that our

approach may work better under conditions that require

approximation.

Learning the Features
Above, we developed our approach for estimating the feature

parameters for a fixed model in which the feature set F is defined.

We now turn to the more complex problem of automatically

learning the set of features from aligned TFBSs data. This problem

is an instance of the more general problem of learning the

structure of Markov networks from data. However, quite

surprisingly, although Markov networks are used in a wide variety

of applications, there are very few effective algorithms for learning

Markov network structure from data.

In this paper we followed the Markov network structure

learning approach suggested by Lee et al. [55]. This approach

extends the learning approach of Perkins et al. [54] to learning the

structure of log-linear representation of Markov networks using the

L1-Regularization over the model parameters. To incorporate the

L1-Regularization into our model we need to introduce a Laplacian

parameter prior over each feature, leading to the modified

objective function:

log P D,hjMð Þ~log P Djh,Mð Þzlog P hjMð Þ ð6Þ

where log P hjMð Þ~ a
2

� � Fj j
exp {

P
fk[F a hkj j

� �
and log P(D|h,M)

is the data likelihood function as in Equation 2. Taking the log of

this parameter prior and eliminating constant terms, we arrive at

the final form of our objective function:

log P D,hjMð Þ~
XN

i~1

hkfk x i½ �k
� �

{N log Z{a
X
hk[h

hkj j ð7Þ

It is easy to see that this modified objective function is also

concave (as it is an addition of a concave function and a linear

function) in the feature parameters h and we can thus optimize it

using the same conjugate gradient procedure described above. We

then follow the grafting approach of adding features in a stepwise

manner. In each step, the algorithm first optimizes the objective

function relative to the current set of active features F, and then

adds the inactive feature fi 1 F with the maximal gradient at

hi = 0. Using an L1-Regularized concave function provides a

stopping criteria to the algorithm that leads to the global optimum

[54]. The L1-Regularization has yet another desirable quality for

our purpose, as it has a preference for learning sparse models with

a limited number of features [55]. It has long been known to have

a tendency towards learning sparse models, in which many of the

parameters have weight zero [69] and theoretical results show that

it is useful in selecting the features that are most relevant to the

learning task [70]. Since the grafting feature addition method is a

heuristic, it seems reasonable that features that were added at an

early stage may become irrelevant at later stages, and hence get a

zero weight. We thus introduce an important difference from the

method of Lee et al., by allowing the removal of features that

become irrelevant.

Reducing the features space. Although the method described

above is complete in the sense that it searches over all possible

features for the features that are relevant for the optimal solution, the

number of possible motifs increases with the max size of the feature

domain D and the length of the motif L (O(LD)). For these reasons we

incorporated a preprocessing step that reduces the space of possible

features by considering only features that pass a statistical test for

significance. In this work we used a Binomial test to evaluate the

statistical significant of a feature f of the form ‘‘nucleotide xi1 at

position i1 and nucleotide xi2 at position i2’’ that appear in n TFBSs

out of N TFBSs. The null hypothesis is that the two positions are

independent, and therefore the test p-value is calculated as follows:

P fð Þ~
PN

i~1 P ið Þ where P ið Þ*B N,P Xi1~xi1
1Xi2~xi2ð Þð Þ. We

control for multiple hypothesis false positive using FDR [53] (with a

threshold of 0.2). As a future improvement for our algorithm we can

incorporate diverse statistical tests in this step such as those suggested

by Tomovic et al. [71].

Finding De Novo FMM Motifs
In the previous sections we described how to learn an FMM

model from aligned TFBS data. We now turn to the more

complex problem of finding de novo FMM elements that are

enriched in a target set of relatively long and unaligned sequences

compared with a background set. Recent years have shown a

development of several high throughput methods reviewed in the

introduction. The most dominant methods include chromatin

immunoprecipitation (ChIP) of DNA-bound proteins followed by

either DNA chip (ChIP-chip) [12,13,16] or high throughput

sequencing (ChIP-PET, ChIPSeq/ChIP-seq) [10,11]. The com-

mon analysis of these two methods usually includes a step of peak

finding (or fitting) [10,21] which results in a set of unaligned DNA

sequences that are bounded by the TF with a measure of intensity.

A common practice is then to define an intensity cutoff. This cutoff

defines a target set of sequences bound by the TF (positive set),

while the sequences below some cutoffs are defined as background
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set (negative set). The problem of optimally determining such a

cutoff was previously addressed by Eden et al. [48]. We, however,

do not address it, and assume that the cutoff is given. Having these

two sets we can search for a TF binding motif that is enriched in

the positive set compared to some negative model, or compared to

the negative sequences set. Here we developed a novel motif finder

that searches the positive set for motif elements that are enriched

compared to the negative set. Our motif finder is unique in its

ability to output either PSSM or an FMM. We use the motif finder

both to produce data for an FMM - PSSM comparison, and as a

proof of concept of integrating FMM into a motif finding

algorithm.

To properly describe our motif finding algorithm, we introduce

the notion of a K-mer set motif model (KMM). A KMM consists of

a set of short aligned (not necessarily overlapping) sequences (see

Figure S1 for a KMM example). The KMM can be described as

having an ‘‘OR’’ term between all of its sequences. Following this

description, a ‘‘hit’’ of a KMM is defined as an appearance (‘‘hit’’)

of at least one of its sequences in an input sequence. Our motif

finding algorithm consists of two main steps. In the first step we

extract KMMs that are enriched in the positive set compared to

the negative set. In the second step we use the hits of each of the

top scored KMM in the positive set to generate aligned sequences

(these are putative TFBSs) from which a FMM or a PSMM is

learned.

In the first step we start with extracting the hits of all sequences

of length K (referred as ‘‘K-mers’’) that appear in positive or

negative input sequences (Figure 2 (1)). In order to evaluate the

enrichment of a K-mer (and later a KMM) in the positive set

compared to the negative set, we use its hits count as input for the

multidimensional hypergeometric p-value (MHG p-value) test,

introduced by Eden et al. [36]. Preferring the MHG p-value over a

‘‘simple’’ hypergeometric p-value has the benefit of quantifying the

significance of a multiple motif occurrence in the same sequence in

a data driven manner [36]. As Eden et al., we too restricted

ourselves to three dimensions, considering cases of 0, 1, and $2

hits per input sequence. Let n be the number of positive sequences,

and N be the total number of sequences (positive and negative).

For a certain KMM, suppose first that there is a single KMM hit

in K1 of the N sequences and in k1 of the n positive sequences, and

second, that there are two or more KMM hits in K2 of the N and in

k2 of the n positive. The multidimensional hypergeometric

probability for that event is given by:

MHG N,K1,K2,n,k1,k2ð Þ~

n

k1 k2

� 	
N{n

K1{k1 K2{k2

� 	
N

K1 K2

� 	

and the multidimensional hypergeometric p-value is given by:

MHG pvalue N,K1,K2,n,k1,k2ð Þ~

Xmin K1,nf g

i1~k1

Xmin K2,n{i1f g

i2~k2

n

i1 i2

 !
N{n

K1{i1 K2{i2

 !

N

K1 K2

 !

Next we rank the K-mers based on their MHG p-value (Figure 2

(2)). We use a p-value threshold MHGthreshold, controlled by FDR

(in this work we used MHGthreshold = 1023), to filter the K-mers

(Figure 2 (3)). Due to computational resources constraints, we limit

the maximum number of K-mers that pass the filter to T = 200 top

scored K-mers. We use the filtered K-mers to construct a ‘‘K-mer

graph’’ (Figure 2 (4)). Each K-mer forms a singleton KMM and is a

vertex of the graph. Two K-mers (vertices) are connected by an

undirected edge if and only if one of two conditions hold: either

the Hamming distance between the K-mers does not exceed a

threshold HDistance (in this work we used HDistance = 1), or the two

K-mers can be perfectly aligned when one is shifted up to MShift

base pairs with respect to the other (in this work we usedMShift = 1).

The node with the best MHG p-value is then chosen as a ‘‘seed

KMM’’, and a greedy algorithm performs a series of steps along

the edges in which the seed neighbors are joined into the seed

KMM vertex, growing its KMM (Figure 2 (5)). For a detailed

description, see Protocol S1. In brief, this step either adds the

neighbor K-mer to the seed KMM or uses the neighbor K-mer to

extend a subset of the seed KMM sequences (this step allows the

KMM to grow in length). Each time, the step that best improves

the KMM seed’s MHG p-value is chosen. When no such step

exists, the seed node is removed from the graph and a new seed

node is chosen, repeating the process of growing the seed KMM.

When there are no more nodes left in the graph, the KMMs are

ranked by their MHG p-value, and the best M are picked (Figure 2

(5)). The above process is repeated for every Kmin#K#Kmax (in this

work we used Kmin = 5 and Kmax = 8). At the end of the first step

the best M of all picked KMMs are chosen as input for the next

step.

In the second step, the motif finder produces either a PSSM or a

FMM for each KMM. For each KMM, the algorithm uses all of its

hits in the positive set to generate aligned TFBS data (Figure 2 (6)),

with the length of these TFBSs (which will be the motif length)

induced by the KMM alignment (for an elaborate illustration of

this process see Figure S1). It then learns the requested model

(FMM or PSSM) that describes the KMM hits. As a last step

similar KMM motifs are removed (those with larger MHG p-

value) and unique motifs are outputted (the similarity measure is

described in Protocol S1).

A special case that our motif finder recognizes and handles is

that of dimer motifs. KMMs may represent dimers by holding two

different alignment offsets per single K-mer sequence. For a

detailed description of how dimer motifs are recognized and

produced, see Protocol S1.

The main novelty in our motif finder is in its ability to produce

FMMs instead of PSSMs. Producing FMMs requires the motif

finding algorithm to preserve inter-position dependencies, if they

exists in the data. Our KMM methodology of producing motifs

from K-mers, and of properly extracting TFBSs that contain these

K-mers from the data, ensures that we learn a motif model from

TFBSs in which inter-position dependencies are indeed preserved.

Finally, the performance of our motif finder with respect to

memory and running time is discussed in Protocol S1.

Supporting Information

Figure S1 An example for a transition from KMM to FMM or

PSSM. The KMM in this example contains four short sequences.

The length of the KMM sequence alignment is 11 bp. Hence, we

determine that the motif length will be 11 bp long. We next

extract all of the hits of each of the KMM K-mers in the positive

set. We extend each hit of a K-mer according to the KMM

alignment to produce an 11 bp long putative TFBS. For example,

for ‘‘Seq1’’ hits we extend two bases to the left and one to the

right, due to its position in the alignment. Note that different K-

mers may have mutual hits (in the figure the sequence is
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surrounded by a blue dashed line is a hit for both ‘‘Seq2’’ or

‘‘Seq3’’). In this way we generate a set of 11 bp long aligned

putative TFBS sequences from which we can learn an FMM or

PSSM.

Found at: doi:10.1371/journal.pcbi.1000154.s001 (0.77 MB TIF)

Figure S2 Evaluation of the L1 penalty term free parameter on

synthetic data. FMM model performance in terms of the average

test set likelihood on eight synthetic datasets (sampled from the

models in Figure 3) as a function of the number of data instances

and the L1 penalty free parameter ((alpha)). We observed that the

effect of the value of (alpha) is, as predicted, much stronger on

small datasets. Where too small values of (alpha) might not prevent

overfitting (those resulting in low average test likelihood), too large

values might pose too harsh restriction on the learned features.

However, relatively small values of (alpha) ((alpha) = 1) have

prevented overfitting for PSSM sampled datasets of size 1,000. On

the basis of these results, we selected the value 1, which gave

relatively good performances on all datasets, for our runs.

Found at: doi:10.1371/journal.pcbi.1000154.s002 (11.12 MB TIF)

Protocol S1 Supporting methods.

Found at: doi:10.1371/journal.pcbi.1000154.s003 (0.77 MB PDF)

Protocol S2 Supporting results.

Found at: doi:10.1371/journal.pcbi.1000154.s004 (11.12 MB

PDF)
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