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Abstract

Recently, a novel approach has been developed to study gene expression in single cells with high time resolution using RNA
Fluorescent In Situ Hybridization (FISH). The technique allows individual mRNAs to be counted with high accuracy in wild-
type cells, but requires cells to be fixed; thus, each cell provides only a ‘‘snapshot’’ of gene expression. Here we show how
and when RNA FISH data on pairs of genes can be used to reconstruct real-time dynamics from a collection of such
snapshots. Using maximum-likelihood parameter estimation on synthetically generated, noisy FISH data, we show that
dynamical programs of gene expression, such as cycles (e.g., the cell cycle) or switches between discrete states, can be
accurately reconstructed. In the limit that mRNAs are produced in short-lived bursts, binary thresholding of the FISH data
provides a robust way of reconstructing dynamics. In this regime, prior knowledge of the type of dynamics – cycle versus
switch – is generally required and additional constraints, e.g., from triplet FISH measurements, may also be needed to fully
constrain all parameters. As a demonstration, we apply the thresholding method to RNA FISH data obtained from single,
unsynchronized cells of Saccharomyces cerevisiae. Our results support the existence of metabolic cycles and provide an
estimate of global gene-expression noise. The approach to FISH data presented here can be applied in general to
reconstruct dynamics from snapshots of pairs of correlated quantities including, for example, protein concentrations
obtained from immunofluorescence assays.
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Introduction

Cells are well known to respond to external conditions by

altering their gene expression. In recent years, many examples of

altered gene expression programs have been revealed by

population level studies, including microarray studies of yeast,

mammalian, and bacterial cells. But many cells are also known to

alter gene expression is ways that are heterogeneous across a cell

population. Examples include the acquisition of competence for

DNA uptake [1,2] and spore formation [3] in Bacillus subtilis,

induction of the lac operon in Escherichia coli depending on

‘‘memory’’ of previous exposure to lactose and the presence of

lactose permease [4,5], and the response of Saccharomyces cerevisiae

(budding yeast) temperature-sensitive mutants to a shift to non-

permissive temperature depending on the position of cells in their

division cycle [6,7]. Heterogeneous changes in gene expression in

response to homogeneous external cues may be purely stochastic

as in the switch to competence in B. subtilis [1,2,8], or may depend

on pre-existing non-genetic differences such as the phase of the cell

cycle in budding yeast [6,7].

Since population level studies are not well suited to reveal

heterogenous behavior, how can heterogeneous changes in gene

expression be studied and quantified? Fluorescent reporter

proteins have been used successfully to report on expression of a

small number of genes either via FACS analysis or fluorescence

microscopy. However, the use of fluorescent reporters is generally

limited to highly expressed genes, with time resolution severely

limited by fluorescent protein maturation and the low turnover

rates of the fluorescent marker. Moreover, construction of

fluorescent reporters can be laborious and impractical for studies

of large-scale transcriptional responses.

A promising approach that has recently been used to study gene

expression on a cell-by-cell basis is Fluorescence In Situ Hybrid-

ization (FISH) [9–11]. In FISH, fixed cells are exposed to

fluorescently labeled probes of specific mRNA transcripts, so that

the number of these mRNAs can be counted in each cell by the

number of bright spots. Advantages of FISH include: (1) absolute

quantification since the actual number of mRNAs can be counted,

(2) time resolution since there is no delay for reporter maturation, (3)

ability to directly study wild-type cells, and (4) the ability to probe

simultaneously for multiple mRNAs, e.g. by employing probes with

different fluorescent spectra [10,12]. A significant disadvantage of

FISH is the requirement to fix cells. This disadvantage presents a

particular challenge when it is the dynamics of gene expression that

is of central interest. For example, each individual drawn from an

asynchronous yeast population represents a particular moment in

the cell division cycle. In essence, the problem we wish to address is

how to reconstruct the dynamics of gene expression from what

amount to ‘‘snapshots’’, where each individual cell represents a

different point in time.
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Here, we present an approach to extracting information about

the dynamics of gene expression from FISH data by considering

correlations of expression between pairs of genes (cf. Fig. 1). The

approach applies even if the dynamics of interest occurs

heterogeneously in a population. One class of dynamics we

consider are cyclic oscillations of gene expression. Common

examples are the cell cycle, circadian oscillations, and metabolic

oscillations [13]. Cyclic oscillations of gene expression, such as the

cell cycle, have been studied at the population level by

synchronizing cells, but for many organisms synchronization is

difficult without strongly perturbing the cells. A non-perturbative

approach to studying oscillatory gene expression is likely to be of

value in these cases. To study metabolic oscillations, cells of the

yeast Saccharomyces cerevisiae have been synchronized in chemostats

[13], but those cells demonstrably continue to influence each other

via levels of dissolved oxygen and other chemical species. To

ascertain if Saccharomyces undergoes metabolic oscillations outside

the chemostat, Silverman et al. [14] recently obtained an extensive

FISH data set, and argued for the existence of metabolic

oscillations based on correlations in gene expression. Using the

same data set, we apply our approach to reconstructing oscillatory

dynamics, and confirm the existence of metabolic cycles in

unsynchronized yeast populations [14]. Our approach can also be

applied to transient oscillations in response to external stimulation,

such as in the bacterial SOS response to DNA damage [15] or in

the analogous eukaryotic p53-Mdm2 system [16]. Another class of

dynamics we consider are stochastic switches among different

states of gene expression. Examples include persister cells in

Escherichia coli [17], competence [1,2,8] and swimming/chaining in

Bacillus subtilis [8], the stringent response in mycobacteria [18], and

galactose utilization in Saccharomyces cerevisiae [19].

Specifically, we show how Maximum Likelihood Estimation

(MLE) [20] can be applied to FISH data obtained for multiple

pairs of genes to reconstruct the underlying dynamics of gene

expression. MLE consists of finding the set of parameters within a

particular family of models for which the observed data is most

‘‘likely’’. MLE has been applied successfully to biological data

analysis in many contexts, from reconstruction of evolutionary

trees [21,22] to estimation of genetic parameters [23] to

understanding the evolution of gene structure [24]. We show

using synthetic FISH data that MLE can accurately reconstruct

dynamics, even in the presence of substantial noise, provided the

number of genes and the number of FISH observations per gene

pair are sufficient. Reconstructing gene-expression dynamics is

most challenging in the ‘‘bursty’’ regime where mRNAs are often

present at very low levels or not at all in the cell, except when

transcriptional bursts occur. For this regime, we present a robust

approach based on thresholding the FISH data into binary form,

followed by MLE analysis. In this case, we show that Principal

Component Analysis (PCA) of the covariance matrix performs

nearly as well as MLE. We suggest that the two-step approach of

thresholding followed by MLE or PCA is likely to prove the best

practical approach to reconstructing gene-expression dynamics for

most real FISH data sets, and we demonstrate this approach using

the data set of Silverman et al. [14].

Importantly, the method we present here for inferring

intracellular dynamics from data in the form of ‘‘snapshots’’ is

quite general, relying only on measurements of pairs of quantities

in single cells, with no requirement for exact counts. The method

can therefore be applied with little modification in other contexts

such as quantitative immunofluorescence or single-cell sequencing

studies.

Results

We presume that production of mRNA transcripts is a

stochastic process. Transcription factors bind to DNA at random

times, with a probability that depends on other signals, and which

can therefore also vary with time. Binding of one or more

transcriptional activators, or unbinding of repressors, typically

leads to production of a ‘‘burst’’ of mRNA transcripts. One can

distinguish three regimes, two of which are illustrated in Fig. 1. In

the first regime, many bursts typically contribute to the total

concentration of a particular mRNA species at any moment. The

distribution of mRNA is therefore approximately Gaussian with a

mean and variance that can vary with time, e.g. over the cell cycle.

We refer to this case as the continuous regime. The second regime

is the opposite limit where mRNA production is highly

intermittent [10] – typically there are very few mRNAs of a

particular species, and when there are more than a few, they all

stem from the same burst. We refer to this case as the bursty

regime. The third regime is the intermediate case, where a few

bursts typically contribute to the number of mRNA present at any

moment. In what follows we focus on the two first regimes.

Optimal treatment of the intermediate regime requires a more

detailed and/or empirical noise model, but the thresholding

method we develop for the bursty regime can also be usefully

applied in the intermediate case, as demonstrated by our analysis

of FISH data for metabolic cycles in yeast [14].

For each regime of mRNA expression, our approach consists of

defining a class of possible dynamics, and choosing the one for

which the observed data is most likely. Specifically, for a given set

of model parameters, we calculate the probability of the observed

data, and then ask for the particular set of parameters that

maximizes this probability. Since the probabilities don’t sum to

one over all models (i.e. sets of parameters), they are called

‘‘likelihoods’’ and hence this approach to parameter inference is

called Maximum Likelihood Estimation (MLE). Below, we

demonstrate the practicality of the MLE approach using

synthetically generated FISH data in both the continuous and

bursty mRNA regimes.

In practice the parameter optimization in MLE can be a

challenge, and algorithms used to search parameter space for the

Author Summary

Programs of gene expression lie at the heart of how cells
regulate their internal processes. Some dynamical gene-
expression programs, such as the cell cycle, are well known
and studied, others, such as metabolic cycles, have only
recently been recognized, and many other dynamical
programs including switches are likely to be discovered.
Traditional bulk studies typically fail to resolve such cycles
or switches, because individual cells are out-of-phase with
each other. On the other hand, standard techniques for
studying single cells are limited in time resolution and
scope. RNA Fluorescent In Situ Hybridization (FISH) is a
single-cell technique that offers both high time-resolution
and precise quantification of mRNA molecules, but
requires fixed cells. We have explored how, when, and
with what prior information FISH snapshots of pairs of
genes can be used to accurately reconstruct gene-
expression dynamics. The technique can be readily
implemented, and is broadly applicable from bacteria to
mammals. We lay out a principled and practical approach
to extracting biological information from RNA FISH data to
reveal new information about the dynamics of living
organisms.

Evaluating Dynamics Using FISH Data
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maximum likelihood can get stuck in local maxima. However, the

general formulation of the maximum likelihood approach is

conceptually distinct from the detailed choice of algorithms used to

optimize parameters, and so we have chosen to present only fully

optimized results in the main text. In Methods, we present a practical

method for searching parameter space that typically quickly finds the

model parameters that maximize the likelihood of the data.

It is important to recognize one absolute limitation of using

FISH data to reconstruct the dynamics of gene expression.

Because cells must be fixed before mRNAs are measured, only

‘‘snapshots’’ of individual dynamical trajectories are available. As a

consequence, it is impossible from FISH data alone to determine

the overall time scale of the dynamics of gene expression. Thus,

while it is possible to infer from correlated FISH data that cells

undergo cycles of gene expression, and even practical, as we will

show, to accurately reconstruct such cycles, it is not possible, even

in principle, to determine the period of these oscillations.

Similarly, it is not possible, even in principle, to determine which

direction around the cycle of gene expression corresponds to the

forward arrow of time. In many cases, we anticipate that other

methods, e.g. fluorescent reporters or population-level assays, can

be used to provide this missing information. In some cases, the

insensitivity of FISH data to cycle period may actually prove

advantageous. In bulk studies of synchronized cell populations,

different cycle periods of individual cells lead to loss of synchrony

and therefore loss of signal. In contrast, for single-cell FISH

studies, differences in cycle period among cells will not affect

mRNA correlations. Hence, variations of period will not affect the

ability to reconstruct cycle dynamics from mRNA snapshots.

However, cell-to-cell variations of the shape of the cycle constitute

noise even for FISH, which can at best allow reconstruction of the

mean cycle waveform.

At a qualitative level, the regime of continuous mRNA

production allows for relatively straightforward reconstruction of

Figure 1. Illustration of periodic mRNA transcription and pairwise FISH measurements in the continuous regime (upper panel) and
the bursty regime (lower panel). The dashed curves indicate mean transcript numbers. The actual number of mRNA transcripts will fluctuate from
cell to cell and from cycle to cycle. (A) Sketch of the number of mRNA transcripts versus time for two genes in the continuous regime, where
fluctuations about the mean are small. (B) Sketch of FISH observations corresponding to (A): a large number of mRNA transcripts from both genes will
typically be found in each cell. Inset: schematic of corresponding distribution of pairwise FISH data. (C) Sketch of the bursty regime where typically
only the most recent transcriptional burst contributes to the total mRNA number, implying large fluctuations about the mean. (D) Sketch of FISH
observations corresponding to (C): many cells display either no mRNA or bursts of a single mRNA type, and coincident bursts of both mRNA types are
rare. Inset: schematic of corresponding distribution of pairwise FISH data.
doi:10.1371/journal.pcbi.1000979.g001
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cyclic gene-expression dynamics. In the absence of noise, FISH

data for even a single pair of genes is sufficient. One can simply

plot the ordered pairs of FISH data as in Fig. 2A, and infer the

dynamics from the smooth trajectory that joins the data points.

(The fundamental limitations of FISH are already clear in this case

– from the FISH data points alone one cannot in principle infer

the period of the trajectory nor its direction.) Noise complicates the

reconstruction somewhat, and requires a computational means of

inferring the trajectory that best fits the data. Our solution

presented below is to find the trajectory most likely to account for

the data, within a family of harmonic functions, sin (2pt=Tzw1),
sin (4pt=Tzw2), etc. The ability to accurately reconstruct

trajectories in the presence of noise is greatly improved by FISH

data for multiple pairs of cycling genes. Geometrically, the true

trajectory is a path in the space of all the cycling genes. Each set of

pairwise FISH data represents a projection of this trajectory onto a

plane as in Fig. 2A. The more such projections are available, i.e.

the more sets of pairwise FISH data, the more accurate the

reconstruction of the true trajectory will be. This approach can be

readily extended to the case of a stochastic switch between distinct

gene-expression states, with the same improvements expected

from multiple FISH pairs.

Reconstruction of gene-expression dynamics in the regime of

bursty mRNA production is more challenging. In this case, the

data consists of the presence or absence of bursts of mRNAs, with

rare coincidences of bursts for two genes (cf. Fig. 1D). All of the

information in the data is therefore captured by a single number

for each pair of genes, namely the covariance of their mRNA

bursts. However, as we show below, the matrix of these

covariances for multiple gene pairs in principle contains enough

information to reconstruct the underlying parameters of cyclic

trajectories or stochastic switches (albeit in some case with

degeneracies that require additional constraints to resolve). Since

coincident bursts of mRNAs are likely to be rare, one expects the

covariance matrix derived from the data to be noisy. Nevertheless,

with a sufficient number of sets of pairwise FISH data, we find that

accurate reconstruction of the underlying gene-expression dynam-

ics is feasible.

Continuous production of mRNA
We first consider the continuous regime where many bursts

typically contribute to the instantaneous mRNA number. To

demonstrate the MLE algorithm, we reconstruct the dynamics of

gene expression using synthetic FISH data for which the

underlying dynamics is known. We focus on analyzing cyclic

dynamics, e.g. the cell cycle or a metabolic cycle; the results can be

readily extended to stochastic switches, which are introduced in a

later section. We denote the mean expression level of mRNA for

gene i by mi(t), which is taken to be periodic with the same period

for genes i~1,:::g. For concreteness, we denote the period as T ,

although T cannot be inferred from FISH data alone. FISH

observations ~OO are generated for pairs of genes at randomly

chosen times: ~OO~(Oi(t), Oj(t))~(mi(t)zji,mj(t)zjj), where the

j s reflect fluctuations in mRNA number around the mean, as well

as noise in the measurement. ji is assumed to be a Gaussian

random variable of mean zero and standard deviation si. We

assume that si is not a function of the mean expression mi(t),
but it is straightforward to extend the method to the more

general case. (A natural extension of the model is to consider

s2
i (t)~s2

i,0zaimi(t) where si,0 characterizes the measurement

noise and ai is the characteristic size of the independent events of

mRNA production leading to the total mRNA number.) We aim

at maximizing the likelihood of the observations within a family of

harmonic functions of period T . Bayes Theorem for the

probability r(fmi(t)gDf~OOg) of a particular model (i.e. set of

parameters) given the data states:

r(fmi(t)gDf~OOg)~r(f~OOgDfmi(t)g)
r(fmi(t)g)

r(f~OOg)
: ð1Þ

Figure 2. Maximum likelihood estimation (MLE) applied to synthetic FISH data in the continuous regime. (A) Comparison of true mRNA
dynamics (red curve) with MLE reconstructions based on 4 genes (solid blue curve) and 2 genes (dashed blue curve), for n~15 observations per gene
pair. The data points are the actual synthetic data used for genes 1 and 2 in both cases. The maximum noise amplitude used to generate the data is
s~0:4. (B) The reconstruction error R, averaged over 20 realizations of parameters with s~0:2, steadily decreases as the number of genes g and the
number of FISH observations n per gene pair are increased.
doi:10.1371/journal.pcbi.1000979.g002
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We neglect the term, r(fmi(t)g), corresponding to prior

knowledge of the parameters, as there is no obvious choice for

what such prior knowledge should be; moreover, with sufficient

data, including such priors generally has little effect on the results

of optimization. The probability of the data r(f~OOg) is a constant

normalization factor, and so does not affect the relative likelihood

of models. Therefore the probability of the model given the

observations is proportional to the probability of the observations

given the model r(f~OOgDfmi(t)g).
For each FISH observation, one therefore has:

r(~OOjmi(t))~

1

T

ð
dt

2psisj

exp ({
(Oi(t){mi(t))

2

2s2
i

{
(Oj(t){mj(t))

2

2s2
j

),
ð2Þ

and for the combined likelihood L over all observations,

L(s,fmi(t)g)~ P
k~1:::n

r(~OOk Dmi(t)), ð3Þ

where the product runs over all n FISH observations. In what follows

we maximize L assuming harmonic oscillations of mRNA levels,

mi(t)~ai0zai1 sin (2pt=Tzwi): ð4Þ

The method can be systematically extended to periodic trajectories that

are not simple sine waves by including higher harmonics. It is also

straightforward to extend the method to more detailed noise models.

For example, non-Gaussian noise can be incorporated by appropri-

ately modifying the Gaussian integrand in Eq. (2). Similarly, global

transcriptional noise [25] can be modeled in Eq. (2 via a single

additional random variable multiplying both mi(t) and mj(t). Later,

we consider both higher harmonics and global noise in detail for the

more physiologically relevant case of bursty mRNA production.

Synthetic data
We generate synthetic FISH data by first choosing the

parameters in Eq. (4) for the oscillating mRNA levels mi(t), and

then generating FISH observations based on these parameters.

Specifically, we choose random variables bi0,bi1,bi2 uniformly on

½0,1�, for genes i~1,:::g. We then define the model parameters in

Eq. (4) as ai0~0:1zbi0zbi1, ai1~0:1zbi1 and wi~2pbi2. This

construction ensures the positivity of the mRNA levels mi(t), and

also ensures that the genes considered oscillate in time with

significant amplitudes. The noise amplitudes si are random

variables, distributed continuously, si[½0,s�. The synthetic FISH

data are generated by choosing for each gene pair (i=j), n

random times tk and 2n random noise values jk
i=j , and constructing

~OOk~(mi(tk)zjk
i ,mj(tk)zjk

j ). In this way, the synthetic data

correspond to a set of independent, pairwise FISH observations.

An example is shown in Fig. 2 for g~4,n~15,s~0:4. The red

ellipse indicates the true mean-mRNA-level trajectory m1(t),m2(t),
and the crosses are the randomly generated FISH data points. The

blue ellipses correspond to reconstructions of the mean trajectory

via maximization of the likelihood in Eq. (3).

Reconstruction of mRNA dynamics
To test the accuracy of reconstruction of mRNA dynamics

using our MLE approach, we generated a large number of sets

of parameter, and for each parameter set generated synthetic

FISH data and then applied MLE to reconstruct the true

dynamics. Specifically, for each parameter set defining a

trajectory of mean mRNA levels m1(t),:::mg(t), we maximized

the likelihood L with respect to ai0,ai1,wi,and si. To ensure that

we always found the global maximum of the likelihood, the

initial guess for the parameters was taken to be the true

parameters describing the mean dynamics. (In Methods, we

present a simple algorithm that almost always finds the global

likelihood maximum without prior knowledge of the true

parameters. However, in Fig. 2, we chose to present the true

MLE optimum as the fundamental limit of reconstruction

accuracy, not limited by a particular algorithm.)

As shown in Fig. 2, with synthetic FISH data for only two genes

(dashed blue ellipse) the reconstruction is rather poor, in this case

mistakenly assigning too large a noise si to each gene and missing

the phase shift. However, the addition of pairwise information

from two more genes to make g~4 (for a total of g(g{1)=2~6
gene pairs) is enough to correct these errors and provide a very

accurate reconstruction. Since each pairwise data set is indepen-

dent, the total amount of data grows as g(g{1)=2*g2.

To quantify the accuracy of the MLE algorithm, we computed

the reconstruction error R, which characterizes how much the

reconstructed dynamics varies from the true mRNA dynamics,

R~
1

g

Xg

i~1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðT

0

dt½mMLE
i (t){mi(t)�2

ðT

0

dt½mi(t){SmiT�2

vuuuuuut , ð5Þ

where mMLE
i (t) is the MLE reconstructed trajectory for mRNA i,

and SmiT is the (true) average number of mRNA i over the period

T . Results for the reconstruction error are shown in Fig. 2B for

2ƒgƒ5, 15vnv175, and s~0:2. Each point is averaged over

20 randomly generated parameter sets. As expected, the results

improve with the number of genes g and the number of FISH

observations n per gene pair, but at this noise level the results are

already good (R&10%) for g~3 and n~15.

Bursty production of mRNA
We now consider the bursty regime where a cell will typically

either have few (or no) mRNAs of a particular type, or the mRNAs

present will come from a single recent burst of transcription. In

this limit, the information provided by FISH is essentially binary -

either mRNAs for a particular gene are present at significant

levels, indicating a recent burst, or they are not. Formally, if a

significant number of mRNAs for gene i are present, then xi~1,

otherwise xi~0. The optimal threshold Thi to set for the

‘‘presence’’ of mRNAs i will depend on burst size and

duration, measurement noise, and the total number of FISH

observations – see Discussion. FISH data yields an estimate

SxiT~
P

j=i

P
k xij,k=½n(g{1)� for the mean probability that

mRNAs are present above the threshold value Thi for each gene

(in the expression for SxiT, the variable xij,k~0,1 reports the

absence or presence of mRNA i for observation k of the pair ij,
and the sum is made on the n(g{1) observations that probe for

mRNA of gene i.) The FISH data also yields an estimate for the

covariance SCijT~SxixjT{SxiTSxjT~(1=k)
P

k xij,kxji,k{�xxi�xxj

for each pair of genes. We aim to accurately reconstruct the

mRNA dynamics from these quantities SxiT and SCijT, which

capture all the information provided by the binarized FISH data

in the bursty regime. However, even with perfect knowledge of

mean expression and covariance, the reconstruction of mRNA

dynamics has fundamental limitations in this regime. We illustrate

by considering both cyclic dynamics and stochastic switches.

Evaluating Dynamics Using FISH Data

PLoS Computational Biology | www.ploscompbiol.org 5 November 2010 | Volume 6 | Issue 11 | e1000979



Cyclic dynamics
We denote by pi(t) the probability that the number of mRNAs

of type i present at time t is larger than some threshold Thi, and

we call such an event a burst in what follows. Assuming pi(t) is any

periodic function with period T , it can be expanded in harmonics:

pi(t)~ai0zai1 cos (2pt=Tzwi1)zai2 cos (4pt=Tzwi2)z:::, ð6Þ

with more harmonics generally required to capture more complex

oscillation patterns. Note that if r is twice the number of harmonics

considered, the number of parameters is Np~g(rz1){1, the {1

coming from the invariance with respect to the overall phase. For

the following discussion it is sufficient to keep only the first two

harmonics, shown explicitly in Eq. (6). In this case, denoting by

S:::TT the average over a cycle, one finds:

�xxi~SpiTT~ai0 ð7Þ

Cij~SpipjTT{SpiTTSpjTT~

ai1aj1 cos (wi1{wj1)=2zai2aj2 cos (wi2{wj2)=2, ð8Þ

where �xxi and Cij denote the true cycle-averaged mean and

covariance, respectively. One immediately sees that the transfor-

mation (ai1,wi1)<(ai2,wi2) for all i leaves both �xxi and Cij

unchanged. Thus, in this bursty regime, pairwise FISH data alone

cannot disentangle different harmonics without prior knowledge.

However, any additional constraint, including even a single triplet

FISH data set, can readily resolve the ambiguity between

harmonics. (A triplet FISH observation, i.e. simultaneous mea-

surement of three different mRNA types, leads to terms

Cijk*ai1aj1ak1 cos (wi1zwj1{wk2)zpermutations, which do

not have the problematic symmetry.)

For simplicity, let us now consider only the lowest harmonic, as

in the previous section. We introduce the g-dimensional vectors A
and B, defined as Ai~ai1 cos (wi1)=

ffiffiffi
2
p

and Bi~ai1 sin (wi1)=
ffiffiffi
2
p

.

Each component can vary independently of the others, as there

are 2g parameters, and 2g coordinates for the two vectors. Then

by inspection the covariance matrix C from Eq. (7) can be written:

C~A6AzB6B ð9Þ

which shows that C is in general of rank 2. If the second

harmonics are included, C is of rank 4, etc. Note that all

symmetric matrices of rank r can be written in the form of Eq. (9),

with r eigenvectors, implying that for a covariance matrix of even

rank there is always an interpretation of the dynamics in terms of

cyclic trajectories. Unfortunately, this interpretation is not unique

except for the case of a single harmonic (r~2), which can be seen

as follows. The observed mean probabilities for mRNA bursts of

each type leads to g constraints. The observed covariances lead to

an additional gr{r(r{1)=2 constraints. Being a symmetric matrix

of rank r, the covariance matrix can be defined by this many

coefficients, i.e. the number necessary to describe the r eigenvec-

tors, enforcing orthogonality among them. The expression for the

number of covariance constraints is true for sufficient large g,

but in general is minfgr{r(r{1)=2,g(g{1)=2g.) The total

number of constraints provided by FISH is therefore

Nc~g(rz1){r(r{1)=2. Thus the number of unconstrained

parameters is Np{Nc~r(r{1)=2{1, which is zero for r~2, but

is already 5 for r~4. Hence, for two harmonics (r~4) at least 5

triplet FISH data sets or other constraints are required to be able

to infer all the parameters.

An important consideration in analyzing FISH data is that

overall transcription rates may vary from cell to cell. Indeed,

measurements of gene-expression noise in single yeast cells at the

protein level reveal *2{fold global fluctuations [25]. How can

the dynamics of bursty gene expression be reconstructed against

the background of these global correlations? We consider the case

of a simple harmonic cycle. The probability pi(t) that the number

of mRNAs of type i present at time t is larger than some threshold

Thi now reads:

pi(t)~E½ai0zai1 cos (2pt=Tzwi1)�, ð10Þ

where E, representing the fluctuating global level of transcription,

is a random variable of mean unity and standard deviation sE.

One then obtains for the true cycle-averaged mean �xxi and

covariance Cij :

�xxi~ai0, ð11Þ

Cij~ai0aj0s2
Ez(1zs2

E )ai1aj1 cos (wi1{wj1)=2: ð12Þ

Introducing the definitions Ai~(1zs2
E )1=2ai1 cos (wi1)=

ffiffiffi
2
p

,

Bi~(1zs2
E )1=2ai1 sin (wi1)=

ffiffiffi
2
p

, and Di~ai0sE, the covariance

matrix C from Eq. (12) can now be written:

C~A6AzB6BzD6D, ð13Þ

which shows that C is now of rank 3. If the second harmonics are

included, C is of rank 5, etc. The maximum likelihood

reconstruction for the model of Eq. (10) provides an estimate of

the level of global transcriptional noise, as we show below for our

reconstruction of metabolic cycles in yeast.

Switching dynamics
We now consider a model where the expression pattern can

switch stochastically among S distinct states, as illustrated in Fig. 3.

We assume all genes of interest switch their expression

synchronously, consistent with control by a single transcription

factor, and without delays, consistent with state lifetimes long

compared to mRNA lifetimes. On average, each state s occurs

with probability Ps. In state s, the true probability that a burst of

mRNAs of type i is present is denoted �xxi,s. For such models, the

number of parameters is therefore Np~Sgz(S{1), taking into

account that
P

Ps~1. One finds, following simple arithmetic:

�xxi~
XS

s~1

Ps�xxi,s ð14Þ

C~
XK

s~1

Psd�xxs6d�xxs, ð15Þ

where �xxi is the state-averaged burst probability and C is the

covariance matrix. d�xxs is a g-dimensional vector of components

d�xxi
s~�xxi,s{�xxi.
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It is straightforward to see that
P

s Psd�xxs~0, which implies that

the different vectors d�xxs are not independent. Together with Eq.

(15), this dependence implies that the covariance matrix C is in

general of rank S{1. Thus, pairwise FISH data alone cannot

distinguish a 3-state model from simple harmonic dynamics (or a

5-state model from a cycle including second harmonics, and so

on). Moreover, even if one assumes that the dynamics is a switch,

the parameters cannot be resolved uniquely: the number of

constraints set by the measured means and covariances is

Nc~gS{(S{1)(S{2)=2, so that the number of unconstrained

parameters is Np{Nc~(S{1)S=2, which is 1 for a 2-state switch,

and 3 for a 3-state switch. The corresponding number of triplet

FISH data sets or other constraints are therefore required for

parameter inference; however, if this additional data is available,

switching parameters can be inferred even in the presence of

global noise, as discussed above for the case of a simple cycle.

Maximum likelihood estimation
For either cyclic or switching dynamics, maximum likelihood

parameter estimation in the regime of bursty mRNA production

requires the following steps, (1) estimating the mean burst

probability and covariance from the FISH data, (2) determining

the uncertainty of these estimates, and (3) obtaining the

parameters for which the observed data is most likely. Taking

an average over FISH data provides an estimate SxiT of the cycle-

or state-averaged probability for a burst of mRNAs of type i to be

present. Specifically, SxiT~
P

j=i

P
k xij,k=½n(g{1)�, where

xij,k~0,1 reports the absence or presence of mRNA i for

observation k of the pair ij, and where the sum is made on the

n(g{1) observations that probe for mRNA of gene i. Similarly,

FISH data provide an estimate of the covariance, namely

SCijT~(1=k)
P

k xij,kxji,k{�xxi�xxj . For a finite number of data

points, these estimates will be noisy, i.e. SxiT=�xxi and SCijT=Cij ,

where the right hand sides are the exact values. Since coincident

bursts of mRNAs of type i and j will be rare, the covariance

estimate SCijT from finite FISH data may deviate significantly

from the true covariance Cij , and one must allow for this

uncertainty in the maximum likelihood calculation. In contrast,

one may safely neglect the uncertainty in the FISH estimate of the

mean burst probability, both because single mRNA bursts are

much more frequent than coincident bursts, and because each

mRNA type is probed g{1 times more frequently than each pair.

Figure 3. A stochastic switch in the regime of bursty mRNA production. (A) Illustration of the number of mRNA transcripts versus time, in
the bursty limit, for two genes subject to regulation by a stochastic 2-state switch (solid lines); dashed lines indicate true burst probabilities �xxi,s in
each state. Reconstruction error Rsw averaged over 20 realizations of parameters as number of genes g and number of FISH observations n per gene
pair are varied, for (B) maximum likelihood estimation, and (C) principal component analysis (PCA). The probability of the states was chosen as
P1~P2~1=2, and the parameters �xxi,s were chosen randomly on ½0,1�. To ensure that all genes considered are informative about the state of the
switch, the constraint D�xxi,1{�xxi,2 Dw0:3 was enforced.
doi:10.1371/journal.pcbi.1000979.g003
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In practice, we therefore demand that the MLE parameters yield

�xxi~SxiT exactly.

To estimate the uncertainty in the covariances, we first note that

the true variance in SCijT is

s2
ij~½xixj{(xixj)

2�=k, ð16Þ

where the overbar indicates the cycle or state average. We can

then estimate the relevant quantity from the data,

xixj^(1=k)
P

k xij,kxji,k, to obtain an estimate for the variance

s2
ij . Using this estimate for sij , the probability of obtaining a

covariance estimate SCijT if the true covariance is Cij is given by:

r(SCijTDCij)~
1ffiffiffiffiffiffi

2p
p

sij

exp (
(SCijT{Cij)

2

2s2
ij

): ð17Þ

Since the observations for the different mRNA pairs are

independent, the likelihood of the observed covariance estimates

SCijT for a given set of parameters is readily obtained from Eq.

(17).

Results for cyclic dynamics
As discussed above, for bursty mRNA production the means and

covariances alone cannot distinguish cyclic from switching dynam-

ics. However, if one has prior evidence that gene expression is cyclic,

maximum likelihood estimation can be usefully employed to

reconstruct the dynamics. If n§5 and for a sufficient data, the

algorithm works well, as illustrated in Fig. 4 for harmonic (h~1)
dynamics. A larger data set is needed than in the continuous mRNA

regime because observations of coincident bursts are rare. Note that

for gv5, the g(gz1)=2 constraints from the observed means and

covariances are fewer than the 3g parameters, and reconstruction

requires additional constraints, e.g. from triplet FISH data.

Results for switching dynamics
A stochastic switch between 2 states implies a covariance matrix

of rank 1, and therefore can be distinguished from cyclic dynamics,

which leads to a minimum rank of 2 (unless all the genes are

exactly in phase). Still, one piece of additional information is

required to reconstruct the dynamics. For example, it is sufficient

to know the expression level of a single gene in one state. Here, we

instead assume that the probability Ps~1 of being in one state is

known, and given that constraint we infer all the levels of gene

expression from synthetic FISH data. (Note that FISH data can

only reveal the probabilities to be in each state, not the kinetics of

switching, e.g. interval durations or branching ratios.) The MLE

algorithm works well, as shown in Fig. 3A, as long as g§3 and for

sufficient data. To quantify the accuracy of the MLE parameter

estimation for switching dynamics, we have plotted in Fig. 3B the

reconstruction error Rsw which measures the deviation of the

reconstructed rates from the true rates (normalized by the state-to-

state variation and weighted by the state probabilities) and

averaged over all measured genes:

Rsw~
1

g

Xg

i~1

X
s

Ps

(�xxMLE
i,s {�xxi,s)

2

(�xxi,s{�xxi)
2

, ð18Þ

where the �xxMLE
i,s are the reconstructed rates.

In principle, with enough FISH data it should be possible to

reconstruct more than just the probability of observing a burst.

For example, the entire distribution of mRNAs of each type in

each switching state could be obtained using MLE, e.g. via

Expectation Maximization (EM) [26], by treating the full

distributions rather than just the mean burst probabilities �xxi,s as

unknowns. However, the approach proposed above of threshold-

ing and binarizing the data has the advantage of reducing noise,

and thereby reducing the required number of FISH observations,

Figure 4. Accuracy of parameter inference for harmonically oscillating gene expression. Inference error R for harmonically oscillating
gene expression for (A) maximum likelihood estimation (MLE) and (B) principal component analysis (PCA), in the bursty mRNA limit for different
numbers of genes and FISH observations per gene pair. MLE is systematically more accurate, but only by a few percent. Averages are shown for 20
FISH data sets, generated using parameters (as defined in Eq. (6)) ai0~bi0zbi1 , ai1~bi1 , where bi0[½0,1=4�, bi1[½1=6,1=2� and wi[½0,2p� with uniform
distributions. These choices ensure that all genes considered display significant variations in burst probability along the cycle and always display a
positive burst probability. (On the rare occasions that a probability estimated from Eq. (6) is larger than one at some instant of time, a burst is
generated in the synthetic data with a probability of one.)
doi:10.1371/journal.pcbi.1000979.g004
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while still allowing for inference of the basic gene-expression

dynamics.

Comparison with Principal Component Analysis
In the regime of bursty mRNA production, all of the

information from FISH is contained in the mean burst

probabilities and the covariance matrix, suggesting that Principal

Component Analysis (PCA) could be usefully applied. For

example, for a 2-state switch the covariance matrix has rank 1.

Thus, according to Eq. (15), performing PCA by diagonalizing C
directly yields d�xxs, the vector of differences of burst probabilities

between the two states, as the only eigenvector with a non-

vanishing eigenvalue. Together with the mean burst probabilities,

�xxi, this yields full information on the switching dynamics. One

caveat is that all the diagonal terms are missing from the estimated

covariance matrix SCijT, as one cannot obtain an estimate of x2
i

directly from FISH data. To solve this problem, we initially

diagonalize the matrix SCijT with a zero diagonal, and obtain the

principal eigenvalue and eigenvector. We then approximate the

diagonal terms of SCijT with the diagonal terms of the rank-1

matrix l1e16e1 built using this single eigenvector e1. We repeat

this procedure iteratively to convergence, and take the converged

principal eigenvector as an estimate of d�xxs. This PCA approach

performs similarly well to MLE for the case of a 2-state switch, as

shown in Fig. 3. The PCA approach can be easily extended to

cases in which SCijT has a higher rank, where it also performs

well, see Fig. 4. Of course, like MLE, PCA has the same

fundamental limitations discussed above that are inherent to

coincidence detection.

In practice, elements of the PCA and MLE approaches can be

usefully combined. The main utility of PCA lies in diagonalizing

SCijT to infer its rank. (The iterative approach to filling in the

diagonals of SCijT can help refine this procedure.) From the rank

of SCijT, one has a direct estimate of the ‘‘complexity’’ of the

dynamics. Complexity here means the number of states in a switch

model, or the number of harmonics to be considered for cyclic

dynamics. This suggests the following heuristic approach to FISH

data analysis: First diagonalize SCijT. Then isolate a group of

eigenvalues that are significantly larger than the rest. Use prior

information to select between the different models (cyclic or

switching) leading to such a rank, and finally compute the model

parameters using maximum likelihood estimation.

Applying MLE to test the putative existence of a
metabolic cycle in yeast

In recent years, McKnight and coworkers demonstrated that

the yeast Saccharomyces cerevisiae grown in chemostats can undergo

synchronized metabolic oscillations [13,27]. As shown in Fig. 5,

the mRNA levels of three clusters of genes – Oxidative, Reductive

Building, and Reductive Charging – were found to cycle together,

with the expression of each cluster peaking at a different phase of

the cycle. These population-level chemostat studies raise the

question - is there an intrinsic metabolic cycle in individual cells in

unsynchronized cultures? To address this question, in [14] FISH

data were obtained from single, unsynchronized yeast cells.

Specifically, correlations of mRNA levels were determined for

pairs of genes, each of which cycled in the chemostat. The

correlations observed in single cells closely matched those found in

the chemostat studies, leading to the conclusion that metabolic

oscillations do occur in individual cells in unsynchronized

populations as well as in synchronized chemostats. However, in

[14] no attempt was made to go beyond correlations to reconstruct

the dynamics. Here we use MLE to infer metabolic gene dynamics

in unsynchronized populations. Our results support the conclusion

of [14] that the gene clusters observed in the chemostat persist in

individual cells in unsynchronized cultures. In particular, we find

that the genes of the Oxidative cluster oscillate together (pv0:06)
and so do the genes of the Reductive Building cluster (pv0:07).
The situation is still unclear for the Reductive Charging genes, but

is likely to be clarified by additional FISH data.

To analyze the dynamics, we first binarized the FISH data of [14]

as appropriate for bursty gene expression. The data consists of 79

Figure 5. Sketch of the dynamics of the three clusters of genes: Oxidative, Reductive Building, and Reductive Charging, as
identified by chemostat studies of Saccharomyces cerevisiae [13]. Note that the expression levels cycle periodically and approach zero at some
point along the cycle. Adapted from [13].
doi:10.1371/journal.pcbi.1000979.g005
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pairwise FISH experiments involving a total of 25 genes. To set an

appropriate binary threshold of expression for each gene, we found

the median mi of the mRNA distribution for each gene i. Only 7

genes have a median larger than zero (and in all cases miƒ6),

indicating that most genes are indeed bursty – despite the fact that

those 25 genes were selected, among other criteria, to have a high

expression level [14]. qi denotes the probability that the number of

observed mRNA of gene i is strictly larger than mi and is directly

measurable from the data. We found 0:13vqiv0:48, with the

lower range coming from genes for which the median mi~0.

We assumed that the dynamics is cyclic and considered the

expansion of Eq. 6 up to the first harmonic. Such a model has 74

independent parameters for 25 genes. Moreover, the number of

data points per pair of genes varies from 175 to 16032, with only

29 pairs having more than 2000 data points. Thus some of the

correlations are well-characterized, but others are not. If only the

29 gene pairs with more than 2000 data points are considered,

even a single-harmonic model is under-constrained. To circum-

vent this problem, we are guided by the observation apparent from

Fig. 5 that the gene expression in all clusters becomes much

smaller than its mean at some point in time. This suggests a

simplified model where the probability pi(t) of expressing more

mRNAs than the median mRNA number for gene i cycles as:

pi(t)~qi½1z cos (2pt=Tzwi)�: ð19Þ

Therefore, once qi is extracted from the data there is a single free

parameter per gene, namely its phase wi.

Next, the likelihood of all the observed FISH correlations was

maximized with respect to the phases wi. The global maximum

was found by considering various random initial phases, relaxing

to a maximum, repeating, and choosing the maximum with the

largest likelihood. We consistently found the same maximum after

the order of 10 optimization runs. Results for the reconstructed

dynamics are shown in Fig. 6 for the 14 most tested genes (per

gene number of observationsw10,000). Genes belonging to each

metabolic cluster identified by the chemostat studies are

represented by distinct colors as indicated in the legend. The

location of the maximum probability for each gene is indicated by

an arrow. From the positions of the arrows it is apparent that

genes belonging to the Oxidative cluster also cluster in an

unsynchronized population, and so do the genes of the Reductive

Building cluster. From the existing data we cannot yet conclude

whether the Reductive Charging genes also cluster.

To quantify our results statistically, we define for each cluster,

j~1,2,3, the quantity Qj(t)~
P

i[j ½1z cos (tzwi)�=(2nj), where

nj is the number of genes in cluster j. The Qj(t), which

characterize the average cluster activity, are plotted in Fig. 6. If

the genes belonging to a cluster are perfectly synchronized, i.e. wi

are identical for all i [ j, then Qj(t) will reach zero along the cycle.

More generally, the lower the minimum of Qj(t), the more

synchronized the cluster is for fixed nj . We find that the Oxidative

and Reductive Building genes are indeed clustered: the probability

of finding such low minima for the two corresponding curves

would be only 6% and 7% respectively (pv0:004 when considered

together) if the phases were random. On the other hand, the

minimum of the Reductive Charging cluster is comparable to the

typical value for random phases.

From the chemostat studies [13], we expect the amplitudes of

oscillation of metabolically cycling genes to be large (*10 fold),

and so global transcriptional noise (*2 fold [25]) should not

significantly affect our results. However, to test that our

reconstruction of the metabolic cycle is robust with respect to

global transcriptional noise, we reconstructed the dynamics

allowing for a global correlation among mRNA levels as in Eq.

(10). Specifically, we extended the model of Eq. (19) by adding the

possibility of a varying global level of transcription E:

pi(t)~Eqi½1z cos (2pt=Tzwi)�, ð20Þ

Figure 6. Reconstruction of the metabolic cycle. (A) Reconstructed dynamics of the probabilities pi(t) of expressing more mRNAs than the
median value mi . Likelihood maximization was performed on all 25 genes using all FISH data [14], but only the 14 genes with the largest number of
observations are shown. There are 6 Oxidative genes (CTP1, NOP1, SNU13, SUR4, UTR2, YEF3), 4 Reductive Building genes (GAS1, HXK2, POL30,
SCW10), and 4 Reductive Charging genes (CTS1, OM45, PFK26, YGP1). Genes belonging to the same clusters in Fig. 5 are represented by the same
color. For each gene the position of the maximum is indicated by an arrow. (B) Average cluster activities Qj(t) as defined in the text.
doi:10.1371/journal.pcbi.1000979.g006
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where E is a random variable of mean unity and standard deviation

sE. The results of the reconstruction are essentially identical to

those shown in Fig. 6, where the global level of transcription was

assumed to be fixed (for a comparison see Fig. S1). Moreover, from

the reconstruction we infer the amplitude of the global noise of

transcription to be sE~:55 (i.e. 55%), which is significant, but

considerably smaller than the typical variation during a cycle [13].

In Fig. 6, the lack of evidence for coherent oscillations of the

Reductive Charging genes may reflect a real feature of

unsynchronized populations. Alternatively, it may reflect the

limited data and/or the simplicity of the model of Eq. (19). To

investigate the limitations of this model we considered how the

pairwise gene covariances it predicts compare with the observed

FISH covariances, as shown in Fig. 7. Even the underlying ‘‘true’’

model should not capture the FISH correlations perfectly,

especially since some observations are very noisy due to the

limited data. However, some general trends appear. In particular

our model in Eq. (19) systematically underestimates the largest

covariances. This may be due to the fact that the single cosine

wave that we use to fit the dynamics is less peaked than the typical

expression profile observed in the chemostat [13]. Accordingly

higher harmonics should be included to obtain a more accurate

description of the gene-expression dynamics, an approach that will

be achievable once the data set is enlarged to include additional

gene pairs.

Methods

Finding the global likelihood maximum
In general, Maximum Likelihood Estimation (MLE) requires

finding the set of model parameters for which the observed data

are most likely. Finding the global maximum in the space of model

parameters can be a challenging task, particularly as there may be

many local maxima in which a search algorithm can get stuck. For

synthetic FISH data in the regime of continuous mRNA

production, we found that such local maxima occurred frequently.

(In contrast, for synthetic FISH data in the bursty regime a simple

steepest-descent algorithm invariably found the same maximum,

independent of initial conditions.) To find the global maximum in

the continuous regime, we developed a heuristic algorithm that

worked very well in practice to reconstruct simple cycles.

One approach is to consider various initial parameter values,

and to use a steepest-descent algorithm to find the local maximum

of the likelihood. Then the global maximum (with the highest

likelihood) could be chosen among the different solutions.

However, in practice this procedure can be very time-consuming

if initial conditions are chosen randomly. Here we propose two

approaches to first compute estimates of the parameters, and then

use these estimates to initiate the optimization protocol. In these

two approaches we estimated the parameters as follows: (1) For the

mean expression level we took ai0~SOiT. (2) For both the

amplitude of oscillations ai1 and the noise amplitude si we took

half the standard deviation of the observations of the correspond-

ing gene ai1~si~S(Oi{SOiT)2T1=2=2. (3) Empirically we found

that the initial choice of phase wi is critical in determining if the

global or only a local maximum is found. Therefore, to accurately

estimate the relative phases we introduced the Pearson correlation

matrix (a normalized variant of our covariance matrix) ~CCij~

S(Oi{SOiT)(Oj{SOjT)T=S(Oi{SOiT)2T1=2S(Oj{SOjT)2T1=2.

This definition implies ~CCij[½{1,1�. ~CCij yields a rough approxima-

tion of cos (wi{wj), which leads to the following two approxima-

tions, the first being extremely crude:

(a) We assign w1~0. Then the vector ~CC1j=1 is considered. The

maximum value of this vector occurs for some gene j0, and

we assign wj0
~2p=g. For the second maximum, at gene j1,

one fixes wj1
~4p=g, and so on. This procedure ensures that

the absolute value of the relative phases between gene 1 and

all other genes is approximatively correct. The main

drawback is that the procedure does not prescribe the sign

of the relative phases. In practice, we used this protocol twice

to get two distinct initial sets of phases. To obtain the second

set, we fixed w2~0, and considered the vector ~CC2j=2.

(b) In the second approach, we tried to approximate the relative

phases rather than their absolute values. The initial parameters

wi are chosen such that the matrix made of elements

cos (wi{wj) has the largest scalar product with ~CCij , specifically,

we required that
P

ij
~CCij cos (wi{wj)=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ij cos2 (wi{wj)

q
be maximized. In practice, approach (b) tended to fare better

than (a).

Results of optimization using approaches (a) and (b) to set initial

parameter values are shown in Fig. 8A. The results in Fig. 8A are

nearly indistinguishable from those obtained using the true

parameters as initial conditions, shown in Fig. 8B, demonstrating

that the above protocols performs well in identifying the global

maximum of the likelihood.

Discussion

The ability to count mRNA molecules in single cells by

Fluorescence In Situ Hybridization (FISH) [9–11] allows for highly

quantitative studies of cell-to-cell variation in gene expression.

However, the requirement that cells be fixed before RNA FISH

analysis precludes the use of RNA FISH to directly study

transcriptional dynamics in single cells. Nevertheless, we have shown

here how and when correlations between levels of different mRNAs

can be exploited to reconstruct transcriptional dynamics, even if cells

are asynchronous. All that is necessary is for FISH data to be obtained

simultaneously for pairs of genes (or in some cases triplets of genes) a

technique that is already well established [10,12]. As a practical

demonstration, we applied our approach to a large, pairwise FISH

data set obtained from a recent study of the yeast Saccharomyces cerevisiae

[14]. Our results help confirm the existence of cell-autonomous

metabolic cycles in unsynchronized yeast populations [13].

To reconstruct the dynamics of gene expression from FISH

data, our approach employs Maximum Likelihood Estimation

(MLE) [20] to obtain the set of transcriptional parameters most

likely to account for the observed data. In the regime of continuous

mRNA production, apart from rescaling and inversion of time for

cyclic dynamics, there is no intrinsic limit on the accuracy with

which transcriptional dynamics can be reconstructed given enough

data. In practice, we have shown that MLE applied to simple

parameterizations for transcription (such as the leading harmonics

for cyclic dynamics) allows faithful reconstruction from a moderate

number of FISH observations, including noise. On the other hand,

the regime where mRNA is produced in shortlived bursts [10]

presents additional challenges. In this bursty regime, FISH can at

most report coincidences of bursts of different mRNAs, and there

are consequently fundamental limits to reconstructing the

underlying dynamics. For this bursty regime, successful recon-

struction will generally rely on prior knowledge regarding the class

of dynamics, e.g. cycle vs. switch, and, even so, will in some cases

require additional inputs, such as triplet FISH data. (In Table S1,

we explicitly quantify the amount of such additional information

required for complete dynamical reconstruction.)
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In applying our approach, how should one choose among

models to reconstruct gene dynamics? For example, when is it

better to use multiple harmonics instead of a single harmonic to

model a cycle? The answer depends on the type of data. We

discuss first the regime of continuous mRNA production. For this

case, a standard and reliable way to choose among models when

fitting data is ‘‘leave-one-out’’ validation, which both rewards a

good fit while punishing overfitting. In the leave-one-out

approach, a model is selected and its parameters are optimized

on the entire data set, but with one data point left out. The

resulting parameterized model is then used to fit the neglected

data point. The average fitting error, taken over all possible left-

out data points, is a robust measure of the quality of the model.

Among competing models, the one that minimizes this error can

be selected as the better choice. In the regime of continuous

mRNA production, leave-one-out validation can be applied

within the MLE framework by using the log(likelihood) of the left-

out data point in place of the fitting error. Among competing

models, the one with the largest average log(likelihood) is the best

choice.

In contrast, finding the ‘‘best’’ model for data in the bursty

mRNA regime is generally an under-constrained problem. We

showed explicitly that for many cases it is impossible in principle to

distinguish among different types of models, or even to find a

unique best set of parameters for a given model. Intuitively,

reduction of bursty FISH data to pairwise covariances means that

even as the number of FISH data points approaches infinity, the

number of model constraints stays finite. So, for bursty FISH data

inference alone cannot guide one in choosing the model, and one

must also use common sense. Clearly, prior knowledge of the

system under study should be used in selecting a model. In

addition, a simple rule is that one should use models that are

sufficiently parsimonious in parameters not to have degenerate

solutions. For example, in analyzing FISH data on metabolic

cycles, we chose the one-harmonic model because there were not

enough low-noise covariances to constrain a two-harmonic model.

More generally, it is advisable to choose a model with significantly

more well-constrained data than parameters. If the model is barely

constrained, the peak of likelihood will generally be close to flat in

some directions in parameter space and the reconstruction will be

Figure 7. Reconstructed covariances versus observed FISH covariances for all 79 experiments in [14].
doi:10.1371/journal.pcbi.1000979.g007
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poor. Figure 4 illustrates this point: g~5 is the minimal number of

genes to avoid degeneracy, but it requires 3 times more data per

gene (or twice as many total data points) to reconstruct as well as

for g~6. In practice, one test for the quality of the reconstruction

in the bursty regime is to compare the observed covariances to the

reconstructed covariances, as shown in Fig. 7 for the case of the

yeast metabolic cycle genes.

Reconstruction of gene-expression dynamics from FISH data

presents multiple practical challenges. One important issue is noise

in the measurement of mRNA levels. For the regime of continuous

mRNA production, we have shown that sufficient data can

compensate for both the noise inherent in gene expression and the

noise arising from uncertainty in measurement. For the regime of

bursty mRNA production, ‘‘binarizing’’ the data into the presence

or absence of a significant number of mRNA molecules

substantially reduces the impact of measurement noise. A practical

question here is the best threshold to use for binarizing the data. In

many cases, the dynamics will be best reconstructed by setting the

threshold well above 1 mRNA transcript; for example, in treating

the data for metabolic cycles we chose the median expression level

for each gene as its threshold. A higher threshold is less sensitive to

measurement noise (fewer false positives), and to occasional

transcripts produced by promoter leakage (better identification

of true bursts), and a higher threshold also allows finer time

resolution, as a given burst will remain above threshold for a

shorter time (e.g. preventing blurring of boundaries between

switching states). However, a higher threshold reduces the number

of coinciding bursts in the data, requiring more overall FISH

observations. An important related issue is the possibility of

correlated noise in the transcription of different genes. An example

of such noise is the observed global correlation among transcrip-

tion rates in yeast [25]. Fortunately, global noise can be readily

incorporated within the MLE framework by introducing a single

additional variable in the model for gene expression, as in Eq. (10).

Indeed, our treatment of global noise among genes involved in the

yeast metabolic cycle yields an independent, and reasonable,

estimate for this noise at 55% of mean expression. (More complex

noise correlations among different genes would require case-by-

case analysis.)

False-positive rates and false-negative rates are also both

important considerations in analyzing FISH data. These are

essentially technical issues beyond the scope of our study, but a

few remarks are in order. In Ref. [14], both false positives and false

negatives were reduced by the use of multiple fluorescent probes

(*5) for each mRNA. Only high-contrast spots above a

fluorescence threshold indicative of multiple bound probes were

counted. This threshold was set empirically from the fluorescence

distribution of spots outside of cell boundaries, corresponding to

single probes. Nevertheless, with any such thresholding method,

there will be cases where the ‘‘presence’’ or ‘‘absence’’ of an mRNA

is ambiguous, and in the bursty regime such ambiguities can

strongly impact the binarization of the data. Fortunately, because

MLE is an intrinsically probabilistic approach, ambiguities can be

dealt with by treating the two possibilities, present or absent,

probabilistically. As in Ref. [14], by looking at spots outside of cell

boundaries, one can obtain the distribution of intensities for spots

that are actually noise (typically single probes that have not been

washed away), and by looking inside cell boundaries a similar

distribution can be obtained for spots that correspond to real

mRNAs (multiple probes). Spots inside cells that fall into the region

of overlap of these two distributions can then be assigned the

corresponding probabilities of being present (real) or absent (noise).

MLE can then incorporate both possible interpretations of the data,

with their appropriate weights, in the data set.

A related issue, highlighted by Zenklusen et al. [11], is the

existence of nascent mRNA transcripts at the locus of the gene. In

the regime of continuous mRNA production, an estimate of

nascent transcript number, possibly non-integer, could simply be

added to mRNA counts. In the bursty regime, the existence of

such transcripts might well be taken as prima facie evidence for

active transcription, and therefore treated as equivalent to the

presence of an above-threshold burst.

Another practical issue in reconstructing gene-expression

dynamics from FISH measurements is that data may come in

Figure 8. Quantification of the algorithm used to find the global maximum of the likelihood. Mean reconstruction error R averaged over
20 realizations as the number genes g and the number of FISH observations per gene pair n are varied for (A) the protocol described in the text and
(B) for the global maximum, as shown in Fig. 2B, found by taking the parameters describing the true dynamics as initial parameters for the
maximization. Results in (A) and (B) are very similar, indicating that the protocol described above generally finds the global maximum.
doi:10.1371/journal.pcbi.1000979.g008
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mixed forms, e.g. pairwise FISH data+triplet FISH data+additional

constraints or prior information. Again, MLE is naturally suited to

incorporating mixed data types since all sources of information can

be combined to produce the overall likelihood of the data given a

set of model parameters, including prior information on the model

parameters themselves (cf. Eq. (2)).

While these and other practical issues are important to consider,

our successful reconstruction of yeast metabolic cycles using the

FISH data of Silverman et al. [14] demonstrates that our approach

can provide a useful tool for analyzing gene-expression dynamics.

In fact, our analysis of this data raises several new questions. First,

since our reconstruction was statistically significant for the

Oxidative and Reductive Building clusters but not for the

Reductive Charging cluster, it is possible that cycles of the latter

may be weaker in unsynchronized cultures than in synchronized

chemostats. Second, our reconstruction indicates a spread among

the oscillatory phases of genes within each cluster – is this spread a

consequence of the limited data, or are the oscillation patterns of

genes within clusters distinct? We expect that additional FISH

data coupled with MLE analysis will soon provide answers to these

questions.

The many advantages of FISH – absolute quantification, high

time resolution, use of wild-type cells, ability to simultaneously

measure multiple mRNA types, and broad application across

species from bacteria [28] to yeast [11,14] to metazoans [9,10],

suggest that FISH will find many uses in future studies of gene

expression, including applications beyond those currently demon-

strated. For example, FISH can be applied to cells in structured

environments such as tissues or biofilms, or even cells in mixed-

species consortia. In all of these cases, population level studies of

gene expression cannot reveal the important cell-to-cell variations.

Of course, FISH is not the only technique that yields quantitative

snapshots at the single-cell level. Immunofluorescence and single-

cell sequencing also meet the requirements of simultaneous

measurements of two or more intracellular factors. We hope that

the analysis presented here can facilitate the application of FISH

and other single-cell snapshot assays to cases where both cell-to-

cell variation and the dynamics of gene expression are of central

interest.

Supporting Information

Figure S1 Average cluster activities Qj(t)as defined in the text,

taking into account the presence of global transcriptional noise.

Found at: doi:10.1371/journal.pcbi.1000979.s001 (0.96 MB TIF)

Table S1 Rank of covariance matrix and required number of

additional constraints (obtained from triplet-FISH measurements

or other sources) necessary for complete parameter inference in

the regime of bursty mRNA production, for both cyclic and

stochastic switching dynamics.

Found at: doi:10.1371/journal.pcbi.1000979.s002 (0.44 MB TIF)
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