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Abstract

Communication between distant sites often defines the biological role of a protein: amino acid long-range interactions are
as important in binding specificity, allosteric regulation and conformational change as residues directly contacting the
substrate. The maintaining of functional and structural coupling of long-range interacting residues requires coevolution of
these residues. Networks of interaction between coevolved residues can be reconstructed, and from the networks, one can
possibly derive insights into functional mechanisms for the protein family. We propose a combinatorial method for
mapping conserved networks of amino acid interactions in a protein which is based on the analysis of a set of aligned
sequences, the associated distance tree and the combinatorics of its subtrees. The degree of coevolution of all pairs of
coevolved residues is identified numerically, and networks are reconstructed with a dedicated clustering algorithm. The
method drops the constraints on high sequence divergence limiting the range of applicability of the statistical approaches
previously proposed. We apply the method to four protein families where we show an accurate detection of functional
networks and the possibility to treat sets of protein sequences of variable divergence.
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Introduction

The function and mechanical properties of a protein demand

strong evolutionary pressures along evolution which are directed

on the one hand, to conserve residues involved in catalytic sites

and in interactions with amino acids of other proteins [1–4], and

on the other hand, to mutually conserve residues involved in

networks of interacting residues lying within the protein itself [5,6].

Studies of many protein complexes indicate that long-range

interactions of amino acids are as important for the functional

mechanisms of the protein (binding specificity, allosteric regula-

tion, conformational change) as residues directly contacting the

substrate. A theoretical understanding of these experimental

observations leading to rigorous definitions of conservation and

coevolution would provide a framework for the development of

methods to predict and analyze groups of conserved and coevolved

residues. Two positions in a protein sequence are conserved under

’’independent’’ events and are coevolved under ‘‘correlated’’ events,

where an event is some evolutionary pressure imposed for

functional or structural reasons. To measure in a precise manner

different degrees of coevolution (where conservation is identified to

have maximal degree) is central to the understanding of

coevolution. To tackle this problem means to propose a method

to quantitatively measure coevolution of positions in aligned

sequences and to identify clusters of positions following similar

patterns of coevolution.

Several methods investigating evolutionary constraints in

proteins via the analysis of correlated substitutions of amino acids

have been proposed. Sequence-based statistical methods analyze

covariations between positions of aligned sequences by using

correlation coefficients [7,8], mutual information [9–11], and

deviance between marginal and conditional distributions to

estimate the thermodynamic coupling between residues

[5,12,13]. Phylogenetic information has been coupled to the

statistical approach in [14], and it is used to better treat sequences

displaying the same level of covariation, being this latter generated

by either a few independent substitutions in early ancestors or

correlated changes along multiple lineages [15,16]. A non-

equilibrium molecular dynamics simulation method has also been

proposed which measures the anisotropic thermal diffusion (ATD)

of kinetic energy originating from a specific residue. It extracts the

signaling pathway in which the residue is involved in the protein

[17]. Finally, those residue positions which are determinant for the

highest residue interconnectivity within a protein family have been

shown to be crucial for maintaining short paths in network

communication and to mediate signaling [18,19]. Some of these

residue positions are also found in networks of statistically coupled

residues predicted by Suel & Ranganathan [5].

We propose a sequence-based combinatorial alternative to

statistical approaches for the detection of functionally important

coevolved residue networks using phylogenetic information. This

combinatorial approach is based on the analysis of a set of aligned

sequences, on the associated distance tree and on the combina-

torics of its subtrees and does not need structural data nor the

knowledge of functional residues as the ATD method. The first

stage of the method selects conserved positions based on the

scattering of residues (within the position) in the tree. For this, a

novel notion of rank for an alignment position in a multiple

sequence alignment is used. It is purely based on information

extracted from the distance tree, and it is defined to be the number
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of Maximal SubTrees (MST) observed at the position, where a

MST is the largest subtree conserving a residue at the given

position. In the second stage of the method, all pairs of selected

conserved positions are evaluated accordingly to the distribution of

their residues in the tree. Namely, for each selected position, we

parse the distance tree and apply numerical criteria to score

coevolution between pairs of residues conserved on subtrees and

identify positions with similar residue distribution.

We apply the method to the haemoglobin and serine protease

families, which have been previously studied by Suel &

Ranganathan with the Statistical Coupling Analysis (SCA)

approach [5,12]. For this, we use the same alignments of highly

divergent sequences which satisfy stastitical constraints. The MST

method captures with the same accuracy the networks detected by

SCA and it predicts some new coevolved positions missed by SCA

because of the number of aligned sequences and of sequence

divergence which are required to be both high by the statistical

approach. In general, these constraints limit the domain of

applicability of SCA to well-described families. We successfully

apply the MST approach to the leucine dehydrogenase and PDZ

domain families and base the analysis on sequences selected with

PSI-BLAST, with no divergence constraints and only one

reference sequence. Mechanical and functional networks have

been detected for both families.

Methods

Rank of a position in a sequence alignment
The rank of a position s in a tree T corresponds to the number

of MSTs decomposing T at position s, where a MST is the largest

subtree conserving a same residue (see Figure 1A).

Let T be a tree associated to some aligned set of sequences,

N Tð Þ be its nodes, L Tð Þ be its leaves each labeled with an aligned

sequence, T xð Þ be the subtree of T rooted at x[N Tð Þ, and f xð Þ
be the father node of x[N Tð Þ, if it exists. If S is the length of the

alignment, then we distinguish S different positions. Let R sð Þ be

the set of residues belonging to the aligned sequences at position

s[ 1 . . . S½ �, and R Sð Þ~
S

s[ 1...S½ � R sð Þ. The function residue :
L Tð Þ| 1 . . . S½ �?R Sð Þ associates to a leaf l of T and to a position

s the residue r corresponding to the s-th position in the aligned

sequence labeling the leaf l, with r[R sð Þ(R Sð Þ.

A subtree T xð Þ is conserved at position s if Vl1,l2[L T xð Þð Þ,
residue l1,sð Þ~residue l2,sð Þ. By convention, gaps are considered to

be different residues, and if both residue l1,sð Þ and residue l2,sð Þ are

Figure 1. MSTs and ranks illustrated in a sequence alignment
and associated distance tree T. A. Analysis of conservation at
position s = 9 in the sequence alignment, MST rank R T ,sð Þ and ET rank
(as defined in [20]). The 5 MSTs conserving residues at position 9 are
delimited by purple dotted lines and their roots are represented by
purple circles. The 10 subtrees identified by the ET approach are
delimited by pink dotted lines and the node determining the rank of
conservation of the 9th position is indicated by a pink square. B.
Analysis of 6 different alignment positions marked with distinguished
colors in the alignment and in the tree. The rank R T ,sð Þ, its
corresponding ET rank and the roots of MSTs decomposing T with
respect to position s are colored the same way.
doi:10.1371/journal.pcbi.1000488.g001

Author Summary

Fine analyses of families of protein sequences reveal the
existence of networks of coevolved amino acids. These
networks are clusters of residues often entering in physical
contact one with the other, and they relate residues which
are located far apart on the three dimensional structure.
Coevolved residues often play a major biological role in
the protein, and the nature of their interactions might be
multiple, spanning among binding specificity, allosteric
regulation and conformational change of the protein. By
carefully tracing the way residues evolved within the
phylogenetic tree of sequences of a protein family, the
Maximal SubTree Method captures the transition along the
time scale evolution of a conserved position to a
coevolved position, and provides a numerical evaluation
of the degree of coevolution of pairs of coevolved residues
in a protein. This combinatorial approach drops the
constraints on high sequence divergence limiting the
range of applicability of the statistical approaches previ-
ously proposed, and it can be applied with high accuracy
to families of protein sequences with variable divergence.

Coevolved Amino Acids Networks
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gaps then residue l1,sð Þ=residue l2,sð Þ. A subtree T xð Þ is maximal at

position s if T xð Þ is conserved at position s and, if f xð Þ exists then

T f xð Þð Þ is not conserved at s.

A rank of a position s in T is defined as

R T ,sð Þ~j x[N Tð ÞjT xð Þ is maximal at position sf gj

with 1ƒR T ,sð ÞƒjL Tð Þj (see example in Figure 1).

This new definition of rank differs from the one initially used

in the Evolutionary Trace method (ET) [20] which corre-

sponds to the minimal distance from the root determining

subtrees that conserve a same residue. The ET rank is easily

affected by erroneous alignments and incorrect tree construc-

tions as shown in Figure 1A, where the ET rank is required to

be very low even though the residue V is conserved in almost

all sequences at position 9. It also differs from definitions which

combine tree structure information with information content

of aligned sequences [21] or from definitions combining tree

structure information with physico-chemical properties of the

residues [22]. A rank R T ,sð Þ~1 means that T is maximal at

position s, that is, s is completely conserved (see red positions in

Figure 1B), and a rank R T ,sð Þ~jL Tð Þj means that each leaf in

T at position s is a MST, that is, each pair of neighboring

leaves in the tree is associated to different residues at position s

(see the orange position in Figure 1B). Intuitively, positions

with small (big) rank have undergone strong (weak) evolu-

tionary pressure.

Selection of seed positions
To identify networks of coevolved residues, we work under the

hypothesis that coevolved positions are ‘‘enough conserved’’. For

this, we shall select a group of starting positions, called seeds, which

display a sufficiently high conservation level.
Conserved positions and stability. We consider any gap

occurrence as representing a different residue. This implies that

highly gapped positions will be ranked high. We could have

chosen to consider gaps as a specific residue and in this case highly

gapped positions would have been ranked the lower. The rank

distribution and the mean rank calculated over all alignment

positions turn out to be strictly dependent on the definition one

chooses (see Figure S1).

Let RD T ,sð Þ ~R T ,sð Þð Þ be the rank of position s in T and

RD Tð Þ be the mean rank calculated over all alignment positions in

T, when aligned gaps are considered as different (D) residues.

RI T ,sð Þ and RI Tð Þ denote the rank of position s in tree T and the

mean rank calculated over all alignment positions in T when

aligned gaps are considered as an identical (I) residue. A stable

position s in T is such that RD T ,sð Þ{RI T ,sð ÞvRD Tð Þ{RI Tð Þ,
that is a position whose rank is not much affected by gaps.

Let R Tð Þ be the mean rank calculated over all stable positions

in T. A position s in T is conserved if R T ,sð ÞvR Tð Þ. The intuition

here is to identify (and select for the analysis) as conserved those

positions exhibiting a stronger signal of conservation than the

average.

Since simple variations in sequences can lead to different tree

decompositions of T in MSTs, position ranking and mean ranks,

we want to check the robustness of the conservation for a position

over a number of landmark points on T, called checkpoint nodes.

Below, we formally describe how to select checkpoint nodes in T

accordingly to sequence divergence, and how to evaluate persistency

of conservation of a position in all subtrees of T rooted at

checkpoint nodes.
Checkpoint nodes. Checkpoint nodes are selected in T

going from the leaves of the tree up to the root. The first

checkpoint nodes are roots of the smallest subtrees of T whose

corresponding sequences present at least 60% of mutated

positions, that is 60% of positions in the aligned sequences

have rank.1. The minimal sequence divergence defining the

lowest checkpoint nodes is supported by the observation that

generally, important functional divergence in homologous

sequences appears under the threshold of 40% sequence

identity [23,24] and that the first three digits of an EC number

can be transferred with confidence between proteins presenting

at least 40% sequence identity [25]. The intuition is that

conserved positions detected in sequences under this threshold

are supposed to undergo strong evolutionary pressure and be

functionally relevant.

Checkpoint nodes with higher sequence divergence are defined

inductively to be nodes x in T which present at least 10% of

mutated positions more than the checkpoint node y with highest

divergence lying below x. A minimal increase of 10% in sequence

divergence in x is asked between successive checkpoint nodes in

order to favor diversity of subtrees in which positional conserva-

tion is evaluated. Jumps on 10% mutated positions are a way to

discretize the tree by avoiding an evaluation on all its nodes that

could be affected by phylogenetic effects (certain branches could

be more populated with very similar sequences) leading to an

overestimation of conservation signals.

Finally, a node in the tree that reached 90% of mutated

positions as well as its immediate children, is considered to be a

checkpoint node.

Persistent conservation of a residue. At each checkpoint

node x, the mean rank R T xð Þð Þ calculated over all stable positions

in T xð Þ, is compared to the rank R T xð Þ,sð Þ at each position s.

The persistency of conservation of a position s is identified by a

persistency score Ps modified at each checkpoint node in the tree

accordingly to the conserved status of the alignment position s

within the subtree rooted at this node. If a position s is conserved

at checkpoint node x (i.e. R T xð Þ,sð ÞvR T xð Þð Þ), Ps is

incremented of a weight i T xð Þ,sð Þ corresponding to the

maximal number of consecutive checkpoint nodes encountered

on a path of the tree T xð Þ from x down to some leaf. If a position s

is not conserved (i.e. R T xð Þ,sð Þw~R T xð Þð Þ), Ps is decremented

of a weight d T xð Þ,sð Þ corresponding to the maximal number of

consecutive checkpoint nodes where s is not conserved

encountered on a path of the tree T xð Þ from x (included) down

to some leaf (see Figure 2).

At the root of T, Ps measures the stability of conservation for a

position s in T. Positions conserved in all subtrees rooted at

checkpoint nodes have a positive persistency score Ps&0 and

positions conserved in none of the subtrees rooted at checkpoint

nodes have a negative persistency score Ps%0. The persistency

score of other positions might take a positive or negative value

accordingly to the global conservation evaluated at different

checkpoint nodes. Positions with a positive persistency score

Psw0 at the root of T are considered as persistently conserved and

they are selected as seed positions for the analysis of coevolving

residues.

Notice that not all seed positions are guaranteed to belong to

some coevolving network at the end of the analysis. Seeds display

some evolutionary pressure and consistent behaviour along the

tree, and in this respect they form a set of potential coevolving

residues where to restrict the analysis so to reduce the overall

computational time coming from the large number of combina-

torial residue coupling. Notice, also, that the thresholds defining

checkpoint nodes along the distance tree provide a computation-

ally fast manner to avoid phylogenetic effects that might contribute

negatively to persistency conservation.

Coevolved Amino Acids Networks
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Combinatorics of MSTs and correspondence scores
between pairs of residues

To evaluate the coevolution of a pair of seed positions, we

proceed in two steps. First, we analyze the combinatorics of MSTs

associated to a pair of residues at these seed positions and construct

a correspondence matrix summarizing the degree of coevolution

between all pairs of residues occurring at the seed positions. In a

second step, coevolution scores for pairs of seed positions are

inferred from the correspondence matrix. They represent how well

MSTs associated to a position mirror MSTs associated to another

position compared to what would be expected for ideally

coevolved positions (see ‘‘perfect inclusion’’ in Figure 3 and

Figure 4A).

Correspondence matrix construction. Let Ai be a residue

at seed position i. For each pair of residues Ai,Aj at seed positions

i,j, we consider the ‘‘inner’’ tree T Ai,Aj

� �
of T for which only the

leaves of T which are labelled by the residue Ai at position i or by

Aj at position j are considered (see examples in Figure 5). The

inner tree is used to evaluate the overlap of MSTs associated to Ai

and Aj . We denote MST Aið Þ the set of all MSTs associated to a

residue Ai at seed position i.

A correspondence score C Ai,Aj

� �
is assigned to each pair of

residues Ai,Aj at positions i,j:

C Ai,Aj

� �
~

NAizAj

NAizAj zNAi{Aj zNAj{Ai

where NAizAj is the number of nodes (leaves excluded) that are

common to MST Aið Þ and MST Aj

� �
, NAi{Aj (resp. NAj{Ai ) is

the number of nodes (leaves excluded) of MST Aið Þ (resp.

MST Aj

� �
) that do not belong to MST Aj

� �
(resp. MST Aið Þ).

Correspondence scores vary between 0ƒC Ai,Aj

� �
ƒ1 with

C Ai,Aj

� �
~0 in case of a perfect disjunction of MST Aið Þ and

MST Aj

� �
, and C Ai,Aj

� �
~1 in the case of a perfect inclusion of

MST Aið Þ and MST Aj

� �
(Figure 3).

Correspondence scores are calculated for each pair of residues

Ai,Aj for seed positions i,j and they are organized in a

correspondence matrix Ci,j indexed by residues from the most to

the least frequent (an arbitrary order is followed for equal

frequencies). A row (column) indexed by Ai (Aj) contains all

correspondence scores obtained by Ai (Aj ) with residues at

positions j (i). The sum of correspondence scores on each line and

on each column of matrix Ci,j is at most 1.

Patterns in a correspondence matrix. Specific patterns

might appear in the correspondence matrix accordingly to the

combinatorics of the MSTs associated to pairs of residues. The

evaluation of a position i with itself, for instance, corresponds to

the ideal case of coevolution and is characterized by a perfect

inclusion of MSTs associated to the same residue (Ci,i Ai,Aið Þ~1)

and by a perfect disjunction of MSTs associated to all other

residues (Ci,i Ai,Bið Þ~0). This ‘‘perfect’’ configuration

corresponds to an identity matrix. In the case of a pair of

independent positions i,j, a random overlapping of the MSTs

MST Aið Þ and MST Aj

� �
is expected instead.

Patterns in matrices capture three kinds of relations between

MSTs associated to pairs of positions:

1. coupling: MSTs associated to residues at position i mirror MSTs

associated to residues at position j. This correspondence is

represented by an identity correspondence matrix (Figure 4A).

2. multi-inclusion: a MST associated to a residue at position i (j)

includes several MSTs associated to different residues at

position j (i). In Figure 4B, residue A obtains its best

correspondence score with residue C (since it overlaps mostly

with C) but it lacks specificity for C since MST Að Þ also includes

MST Dð Þ. Residues C and D are A specific since they do not

overlap with any other MST at position i.

3. multi-overlapping: MSTs associated to different residues at

position i overlap with MSTs associated to several residues at

Figure 3. Overlap of MSTs and correspondence scores. Different
inner trees specific of residues A and B at positions i and j and their
corresponding correspondence scores. White squares identify nodes of
MST Að Þ (leaves excluded) and black squares identify nodes of
MST Bð Þ. White and black squares identify common nodes between
MST Að Þ and MST Bð Þ. The first two trees illustrate perfect inclusion
and exclusion. The last two trees illustrate intermediate cases where the
number of sequences with residues A and B are equal but
correspondence scores are different due to a different distribution of
sequences in the tree.
doi:10.1371/journal.pcbi.1000488.g003

Figure 2. Checkpoint nodes. Distance tree with checkpoint nodes
colored differently depending on the conserved status of a position s in
the subtree t rooted at the checkpoint node: grey if s is not conserved,
and white if s is conserved. All nodes in the tree which are not checkpoint
nodes, and that are possibly located between two checkpoint nodes, are
not indicated. At the white checkpoint node 1, the longest monochro-
matic path starting at 1 and going towards the leaves has length 3. This
asks for Ps to be incremented by 3. At the grey checkpoint node 2, the
longest monochromatic path starting at 2 and going towards the leaves
has length 2, and this asks for Ps to be decremented by 2.
doi:10.1371/journal.pcbi.1000488.g002

Coevolved Amino Acids Networks
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position j. In Figure 4C, residue A shares residue D with B. The

interference of MST(D) with MST Að Þ neither excludes nor includes

MST Dð Þ in MST Að Þ.

Coupling describes perfect coevolution between two positions.

Since it is unlikely to be observed on real sequence data, the

evaluation of coevolution between pairs of positions cannot be

reduced to a simple assessment on the presence or absence of a

perfect identity matrix. In particular, even for a pair of positions

with a good overlap of MSTs, noise in the data caused by a single

residue disrupting the maximality of the tree can lead to a diagonal

matrix which is not an identity matrix. See Figure 6. Thus, we

define a coevolution score between two seed positions by

evaluating the ‘‘distance’’ between an ideal identity matrix

(coupling) and the actual correspondence matrix which displays

less regularity (issued by a possible combination of multi-

overlapping and multi-inclusion), for all residues associated to

the positions.

Coevolution score for pairs of seed positions
The coevolution score of two seed positions i,j is the sum of two

subscores, one evaluating each residue at position i accordingly

to all residues occupying position j and the other evaluating

each residue at j accordingly to all residues at i. For each

residue, three multiplicative factors are computed. Intuitively,

they numerically describe divergence of the correspondence

matrix from the identity matrix, which is expected in the ideal

case. In case of perfect coevolution, the three factors will

provide no penalties, they equal 1 for all pairs of residues at i,j,
and will make the two subscores equal 1. The more the

correspondence matrix diverges from the identity matrix, the

Figure 4. Correspondence matrices and matrix patterns. Two positions i,j are represented by two residues each. MSTs for these residues are
represented by triangles with the associated residue indicated in the center. A. Coupling pattern with an identity correspondence matrix. B. Multi-
inclusion pattern where a single residue at position i is associated to several residues at j. C. Multi-overlapping pattern where several residues at i are
associated to several residues at j.
doi:10.1371/journal.pcbi.1000488.g004

Figure 5. Inner trees. A tree T (left) and ‘‘inner’’ trees T A,Eð Þ specific
of residues A and E (1), T A,Dð Þ (2), T A,Fð Þ (3) at positions i and j
respectively. Only residues at positions i and j of aligned sequences are
taken into consideration. Branches of T labeled with A at position i and
with E at position j are colored in blue and green respectively and
determine the inner tree T A,Eð Þ (1). The inner trees T A,Dð Þ (2) and
T A,Fð Þ (3) are determined in a similar way. Blue circles in T A,Eð Þ,
T A,Dð Þ and T A,Fð Þ identify roots of MSTs associated to residue A at
position i, and green circles identify roots of MSTs associated to
residues E, D and F at position j.
doi:10.1371/journal.pcbi.1000488.g005

Figure 6. Tree analysis of the residue distribution over two
positions and the associated correspondence matrix. Each
position is occupied by two residues, with MST Að Þ, MST Cð Þ and
MST Bð Þ, MST Dð Þ essentially mirroring each other (see tree, top left).
Correspondence scores calculated for inner trees (T A,Cð Þ (1), T B,Dð Þ
(2), T A,Dð Þ (3) and T B,Cð Þ (4)) are reported in the correspondence
matrix (bottom left). Within an inner tree defined for a pair of residues,
nodes (leaves excluded) conserving both residues are represented with
filled black squares, and all others by unfilled squares. In this example,
correspondence scores end up to be the ratio between the number of
filled squares over the total number of squares (see formal definition in
the text).
doi:10.1371/journal.pcbi.1000488.g006

Coevolved Amino Acids Networks
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more the factors will tend to 0 and will penalize the coevolution

score.

Maximal correspondence factor. Defined as

Sj
max Aið Þ~ max

X[Rj

Ci,j Ai,Xð Þ
� �

with Rj the set of all residues at position j, it corresponds to the

highest correspondence score obtained for residue Ai when

compared to all residues at position j. Note that

0ƒSj
max Aið Þƒ1. We denote

Rj
max Aið Þ~arg max

X[Rj

Ci,j Ai,Xð Þ
� �

where, by convention, if the maximum of the function is reached

on several residues, then Rj
max Aið Þ is the most frequent residue

among them at position j. The maximal correspondence factor

penalizes the lack of perfect inclusion among MSTs, which can be

due to noise in the data, multi-inclusion or multi-overlapping.

Specificity factor. Defined as

Sj
spec Aið Þ~

Sj
max Aið ÞP

X[Rj

Ci,j Ai,Xð Þ

with Rj the set of residues at position j, it evaluates the specificity of

Ai for the residue Rj
max Aið Þ. Note that 0ƒSj

spec Aið Þƒ1. This

factor penalizes the lack of specificity which is observed in case of

multi-inclusion and multi-overlapping.

Interference factor. Defined as

S
j
inter Aið Þ~1{

X
X[Rj \R

j
max Aið Þ

Ci,j Ai,Xð ÞP
Y[Ri

Ci,j Y ,Xð Þ|vj Xð Þ

0
B@

1
CA

with Ri the set of residues at position i, Rj the set of residues at

position j, vj Xð Þ the frequency of residue X at position j, it

evaluates the overlapping between MST Aið Þ and MST Xj

� �
with

Xj 6¼ Rj
max Aið Þ. Note that 0ƒS

j
inter Aið Þƒ1. This factor penalizes

interference of MSTs at j which are not Rj
max Aið Þ and not

completely excluded in MSTs at i. Interference is observed in cases

of multi-inclusion and multi-overlapping.

Toy examples of 262 correspondence matrices are presented in

Figure 4. For coupling (Figure 4A), factors for residue A at position i

are Sj
max Að Þ~1, Sj

spec Að Þ~1=1~1 and S
j
inter Að Þ~1{ 0=1ð Þ~1,

which give Sj
max Að Þ|Sj

spec Að Þ|S
j
inter Að Þ~1. The perfect mirror-

ing of inner trees ensures the correspondence matrix to be the

identity matrix.

For multi-inclusion (Figure 4B), factors for residue A at position i

are Sj
max Að Þ~0:7, Sj

spec Að Þ~0:7= 0:7z0:3ð Þ~0:7 and S
j
inter Að Þ~

1{ 0:3=0:3ð Þ~0, which give Sj
max Að Þ|Sj

spec Að Þ|S
j
inter Að Þ~0.

No correlation is observed between positions i and j since a residue at j

is associated to two residues at i leading to a correspondence matrix

far away from an identity matrix. The product of subscores equals 0

and penalizes the configuration. In the more general case of a

combination of several residues at i and j displaying overall a good

overlap of their MSTs, local multi-inclusion between pairs of residues

might induce a weak penalizing effect on the final score.

For multi-overlapping (Figure 4C), the factors for residue A at

position i are Sj
max Að Þ~0:7, Sj

spec Að Þ~0:7=(0:7z0:2)~0:77 and

S
j
inter Að Þ~1{ 0:2= 0:2z0:6ð Þð ~0:75, which give Sj

max Að Þ|

Sj
spec Að Þ|S

j
inter Að Þ~0:4. Here the correspondence matrix is

closer to the identity matrix and the score is less penalized than

in the previous case. However the important multi-overlaps of

MST(D) with MST(A), and of MST(D) and MST(A) with MST(C)

and MST(D) lead to a rather low product of the subscores, that is

0.4.

Coevolution score. The coevolution score CoE i,jð Þ sums up

the product of the three factors calculated for each residue in the

pair of positions i,j and weights each product accordingly to the

frequency of the residue at a given position. We define

CoEj ið Þ~
X
X[Ri

Sj
max Xð Þ|Sj

spec Xð Þ|S
j
inter Xð Þ|vi Xð Þ

CoEi jð Þ~
X
Y[Rj

Si
max Yð Þ|Si

spec Yð Þ|Si
inter Yð Þ|vj Yð Þ

and

CoE i,jð Þ~CoEj ið ÞzCoEi jð Þ

with Rj the set of residues at position j, Ri the set of residues at

position i, vi Xð Þ (vj Yð Þ) the frequency of residue X (Y) at position

i (j). Note that 0ƒCoE i,jð Þƒ2 and that CoE i,jð Þ~CoE j,ið Þ.
Notice that pairs of very conserved positions will present a high

overlap of their MSTs and obtain high coevolution scores. In the

extreme case of two completely conserved positions, the unique

MSTs associated to the two positions perfectly mirror each other

and lead to a maximal coevolution score of 2.

A global view of the coevolution analysis
The algorithm is summarised in the flowchart of Figure 7. It

takes two inputs, a sequence alignment and a distance tree for the

aligned sequences. There are two cut-off values used in the

analysis: one concerns sequence variability for checkpoints and

the other is expressed in condition Psw0. The combination of the

two thresholds allows to select seed positions, in the first step of

the algorithm (blue box, Figure 7). The full combinatorial

analysis of seed positions leading to the detection of coevolving

positions does not use any threshold. It is simply based on a

combinatorial understanding of how information is distributed

on the distance tree and no cut-off value is required (green box,

Figure 7).

Networks reconstruction
Domain of variation and relative coevolution score. Each

seed position i is associated to a variation domain defined by the

interval min ið Þ,max ið Þ½ �, where min ið Þ and max ið Þ are the lower

and higher scores obtained at position i, when i is combined with

other seed positions j=i. Variation domains of seed positions always

overlap with each other, and this is because the coevolution score of a

pair i,j is included in the variation domain of i and in the variation

domain of j.

Equal coevolution scores between two pairs of positions do not

have necessarily the same meaning with respect to their variation

domain, as illustrated in Figure 8. Therefore, it becomes crucial to

compare different position pairs only after having normalized their

coevolution scores accordingly to variation domains. This is done

as follows.

Let PCoEi jð Þ be the relative position of the coevolution score

CoE i,jð Þ in the variation domain of position i

PCoEi jð Þ~ CoE i,jð Þ{min ið Þ
max ið Þ{min ið Þ

Coevolved Amino Acids Networks
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with min ið Þ (max ið Þ) the lower (higher) coevolution score obtained

by position i with all other seed positions j, where i=j.
The relative coevolution score of a pair of positions i,j is evaluated

accordingly to the coherence of the positions PCoEi jð Þ and

PCoEj ið Þ and it is defined by

CoErel i,jð Þ~CoE i,jð Þ:
min PCoEi jð Þ,PCoEj ið Þ
� �

max PCoEi jð Þ,PCoEj ið Þ
� �

The coevolution score obtained for i,j is penalized in the relative

coevolution score as much as PCoEi jð Þ,PCoEj ið Þ differ. If

PCoEi jð Þ~PCoEj ið Þ then CoErel i,jð Þ~CoE i,jð Þ.
Clustering algorithm. We developed an optimization

method that clusters together positions displaying similar best

coevolution scores and thus permitting the reconstruction of

coevolving residues networks.

The neighboring set associated to position i, denoted Ei, collects

the 5 seed positions (including i) obtaining the best relative

coevolution scores with i. The relative average behavior of i with

respect to a position j is defined by

RABj ið Þ~ 1

5
:
X
x[Ej

CoErel i,xð Þ

The difference of relative average behavior of i with respect to j is

defined as RABi ið Þ{RABj ið Þ.
We denote P and P, two complementary disjoined sets of seed

positions. Sets P and P will change along the execution of the

algorithm. At the beginning, P is composed of exactly one of the

seed positions involved in the pair of positions obtaining the higher

coevolution score among all possible pairs, and P is composed of all

other seed positions not included in P. P is intended to be an ordered

set of positions, where the order is imposed by the chronological

arrival of a position in the set. The algorithm iteratively selects a

position i[P which minimizes the difference of relative behavior

with the last position j entering the ordered set P, such that

RABi ið Þ{RABj ið Þ~ min
k[P

RABk kð Þ{RABj kð Þ
� �

:

Once selected, position i is removed from P and becomes the

last position of P. This process is repeated until P is empty.

The result of the algorithm is a jPj|jPj symmetric matrix

indexed by seed positions ordered as P. Each entry of the matrix,

corresponds to a relative coevolution score. The matrix can be

Figure 7. Flowchart of the analysis. The main algorithmic steps of
the analysis are represented by three colored boxes. Blue: selection of
seed positions; the index s runs over all alignment positions. Green:
estimation of coevolution between pairs of seed positions; indices i,j
run over seed positions only. Cyan: clustering algorithm; details of the
algorithm are presented in Figure 9.
doi:10.1371/journal.pcbi.1000488.g007

Figure 8. Coevolution score and variation domain. Plot of
variation domains for coevolution scores at positions w, x, y and z on a
toy example. The dotted line shows equal coevolution for pairs of
positions w,x, x,y and y,z. The score of coevolution is low for positions
w and x, but high for positions y and z with respect to their variation
domains. To capture this difference, a normalized score of coevolution
is used.
doi:10.1371/journal.pcbi.1000488.g008
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easily represented using a color code corresponding to the interval

0,2½ �, going gradually from red (high scores) to blue (low scores)

passing through orange, yellow and green. One can observe large

red clusters to appear in the matrix. Their boundaries are

identified manually and seed positions characterizing them are

claimed to be coevolved residues. A flowchart of the algorithm is

given in Figure 9.

The only threshold used in the clustering algorithm is the size of

a neighbouring set which is fixed to 5. This value could be

parameterized but, based on the examples discussed in this paper,

we evaluated the constant 5 be a good compromise between the

size of coevolving networks and the minimal number of

neighbouring residues necessary to estimate coevolution of two

positions i and j belonging to the same network. In the ideal case, if

i and j belong to the same network, their neighbours will present

strong coevolution scores and the algorithm will detect the

proximity of i and j by testing the differences between coevolution

scores among respective neighbours. If i and j belong to a ‘‘small’’

coevolving network of ,5 residues, then considering $5 positions

in the neighbouring set would involve in the selection of j residues

which do not belong to the network and noise coming from those

outlier positions would disturb the selection of j. On the other

hand, a neighbouring set which is too small in size would not

provide enough information to test the stability of the coevolution

signal between i and j.

The clustering algorithm has been applied to the relative

coevolution score matrices of four protein families: the haemoglo-

bin, the serine protease, the leucine dehydrogenase and PDZ

domain families. The full list of residues belonging to the networks

detected manually after clustering, is given in Text S1.

Sequence alignments and distance trees
We considered 4 protein families: the haemoglobin, the serine

protease, the leucine dehydrogenase and the PDZ domain

families. We downloaded the sequence alignments used for the

SCA analysis of the haemoglobin and the serine protease families

from http://www.hhmi.swmed.edu/Labs/rr/SCA.html and used

the same alignments here. The b1 subunit of the haemoglobin

family corresponds to a set of 880 aligned sequences with 161

alignment positions. The serine protease family has 616 aligned

sequences with 351 alignment positions. The distance trees for

these two families have been constructed from the set of aligned

sequences with PHYML (using default parameters) [26].

The leucine dehydrogenase family has been analyzed with a set

of 571 sequences selected by PSI-BLAST (run with the leucine

dehydrogenase of Bacillus sphaericus as reference sequence, pdb

1LEH chain B; PSI-BLAST sequence selection parameters: E-

value v10{5 after 3 iterations). Among the 571 selected

sequences, 400 display 20–30% sequence identity with the

reference sequence, 140 display 40–60% and 31 more than

60%. Multiple alignment and distance tree have been realized

with ClustalW (using default parameters).

The PDZ domain family has been analyzed in the same way as

the leucine dehydrogenase family. A set of 1384 sequences was

selected by PSI-BLAST, that was run with the third PDZ domain

(PDZ3) from the synaptic protein PSD-95 of Rattus Norvegicus as

reference sequence, pdb 1BE9 chain A. Among the 1384 selected

sequences, 1263 display 20–40% sequence identity with the

reference sequence, 67 display 40–60% and 53 more than 60%.

Software availability
The program for the coevolution analysis and the clusterisation

procedure can be found at http://www.ihes.fr/,carbone/data7/

MaxSubTree.tgz. Relative coevolution matrices have been

vizualised with a specialized viewer provided with VidaExpert

and downloadable at http://www.ihes.fr/,materials.

Results

The combinatorial method is validated by identifying coevolved

residues networks of four protein families. The haemoglobin and

serine protease families have been previously analyzed in [5] using

the SCA method. The leucine dehydrogenase and PDZ domain

families have been analyzed using sets of sequences which were not

optimized to satisfy statistical analysis constraints. While the SCA

approach decided to only consider sets of sufficiently divergent

sequences and detect only very clear coevolved residues explicitly

excluding highly conserved residues, we preferred to work with

sets of homologous sequences retrieved by PSI-BLAST search and

with automatic alignment, and deal with noisy signal. Using these

data, the MST method is able to detect a body of conserved

positions and it is sensitive enough to meaningfully cluster such

conserved positions in smaller subsets in some fine manner

depending on the divergence among the sequences. This point is

illustrated by the leucine dehydrogenase and the PDZ domain case

studies.

For all four protein families, the method detects about 20–30%

of residues as involved in networks. Here below, numbers naming

residues in predicted networks refer to residue positions in the

three-dimensional structure.

Haemoglobin family
Haemoglobins are tetramers formed by two a subunits (a1, a2)

and two b subunits (b1, b2), and they exist under two

conformations: a T form of low affinity for oxygen and a R form

of high affinity for oxygen [27]. The T form, which presents a non

optimal positioning of residues in the oxygen binding site, is

stabilized by an interaction network of residues at the interface

Figure 9. Schema of the clustering algorithm. The set of seed
positions P is recursively ordered into a set P and the iteration ends
when P is empty. The parameter k in the right box associated to the
unordered set P, runs over all positions in P. Each position k[P (right
box) is tested with the last position j entering P (left box).
doi:10.1371/journal.pcbi.1000488.g009
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between a1b2 and a2b1 subunits [27,28]. The binding of an

oxygen molecule on one of the subunits involves a local

modification of the structure which is propagated at the interface

allowing a relaxation of the structure to a R form [27,29] and the

binding of oxygen molecules on the other subunits.

Among the 161 alignment positions of the haemoglobin family,

57 (35% of aligned positions) have been selected as seed positions.

Our combinatorial method applied to this family lead to the

identification of five networks (Figure 10A) covering the 29% of

the residues of the 1HDB chain B structure.

Network associated to the Haem binding site. The first

network (Figure 10A, first square from the bottom left) detected for

the b1 subunit, is constituted by 16 positions that are structurally

closely located and that form the haem binding site where the

oxygen is fixed near the a2 subunit interaction site (Figure 10B).

Two of the most conserved positions are not linked to the others

and are located behind the haem binding site. This network is not

predicted by SCA since the method does not consider highly

conserved positions.

Network associated to the allosteric function. The

second network (Figure 10A, second square from the bottom

left) shows two different intensities in the coevolution signal. They

correspond to the two different networks detected by the SCA

method applied to this family (dotted lines in Figure 10A delimit

them). We detected a strong signal linking all these positions,

suggesting a common evolutionary pressure, and supporting the

idea that residues form one single network. The network detected

by the MST method is composed of 15 positions. The first 10

positions from the bottom left in Figure 10A (97, 98, 95, 94 91,

136, 93, 84, 101 and 74) correspond to one of the two SCA

networks and the remaining 5 positions (7, 119, 132, 61 and 86)

correspond to the other. The second SCA network contains two

more positions (112 and 118). Position 118 is alternatively mutated

in serine and threonine, residues which are known to be highly

interchangeable. The corresponding dispersed distribution of this

residue in the distance tree forbids the detection of the position as

a persistently conserved seed position. Note that position 112 is

also not detected as a seed position by the SCA approach.

Interestingly, position 98 detected in this network has been

previously predicted to be determinant in protein interconnectivity

[18].

Positions of this network are physically connected and induce a

pathway between the haem binding site and the a2 subunit

interaction site, with the exception of three isolated positions

(Figure 10C). Connected positions agree with the ones experi-

mentally verified to be involved in the structural modification from

the T form to the R form of the structure [29]. The close location

of blue and brown positions and the fact that blue positions are not

connected to each other but rather to blue ones support the idea of

a unique network and justify the high coevolution scores observed

for these positions.

Notice that this network presents high coevolution scores with

the network associated to the Haem binding site. In fact, all

positions of these two networks are very conserved and hence,

their MSTs highly overlap. However, the method is able to sharply

differentiate the evolution signal associated to the two different

functional networks.

Networks associated to subunits binding sites. The third

and fourth networks (Figure 10A, third and fourth squares from

the bottom left) correspond to physically connected positions

which are either close to or involved in the interaction site between

the b1 and a2 subunits (Figure 10D) and they are isolated from the

haem binding site. The fifth network (Figure 10A, last square from

the bottom left) corresponds to three physically connected

Figure 10. Haemoglobins. A: Matrix of relative coevolution scores
CoErel . Five coevolved residues networks are detected by the MST
method and manually selected (boxes limit the boundaries). Dotted
lines in the second square from the bottom left distinguish two
subnetworks detected by the SCA method. BCD: Coevolved residues
networks in the structure of the human haemoglobin b1 subunit (two
faces of the 1HDB chain B). Residues in the networks are indicated using
the Van der Walls representation, haem in orange, a2 subunit in green
and a1 in black; B: network associated to the haem binding site (red); C:
network associated to the allosteric function; residues are colored in
brown and blue according to which SCA network they belong to.
Brown positions are located between the haem and the a2 subunit
binding site, and blue positions are in contact with brown positions
close to the haem; D: networks associated to the a2 and a1 subunit
binding sites; they correspond to the third (deep violet), forth (light
violet) and fifth (yellow) networks in A. E: Global view of the coevolved
residues networks.
doi:10.1371/journal.pcbi.1000488.g010
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positions which are close to the binding site between the b1 and a1
subunits (Figures 10D and 10E). These three networks are

associated to the interaction sites of the chains forming the

tetramer.

These three networks are not detected by SCA due to a

statistical threshold intrinsic to the approach that rules them out:

for this set of sequences, SCA does not consider seed positions with

less than 600 sequences conserving the same residue, while all

residues in these networks are conserved in at most 530 sequences.

A global overview of the networks. The mapping of all

detected positions (Figure 10E and Text S1) provides a global view

of the networks predicted for the haemoglobin family. The red

positions surround the haem and seem to be involved in the

binding of the haem to the b1 subunit. The blue and brown

positions are close to the haem and a2 subunit bindind sites, and

they seem to be involved in the allosteric function of the

haemoglobin regulating the affinity of the protein for the

oxygen. Violet positions are located at the a2 subunit binding

site, far from the haem binding site. They might be used for the

recognition and the binding of the two subunits. Finally, the three

yellow positions, located at the opposite site of the a1 subunit

binding site, might play a functional role in the interaction of the

two subunits.

On this global view, all isolated positions detected in different

networks are connected and they are all directly or indirectly

linked to the yellow positions. All detected residues seem to form a

pathway across the structure linking the a1 subunit binding site to

the interaction residues networks associated to the haem and a2
binding sites on the opposite of the structure. This observation

leads to think about a functional mechanism signaling the

interaction of the four chains of the haemoglobin. However such

a pathway, involving interactions between residues of different

networks, would require a very complex evolutionary mechanism

to be conserved.

Serine Protease Family
Serine protease are enzymes with a catalytic triad performing

the cleavage of peptidic liaison. Different serine proteases exist

according to their ligand specificity. For instance, trypsins are

specific to liaison involving a lysin or an arginin whereas

chymotrypsins are specific to liaison involving hydrophobic or

aromatic residues (preferentially phenylalanine) [30,31]. A major

determinant in the ligand specificity is the S1 pocket which

interacts with the specific residue of the ligand. A negative charge

(Asp189) in the bottom of the S1 pocket of trypsin suggests a local

electrostatic mechanism for the specific ligand recognition of

positively charged residues. However the modification of a serine

protease from a trypsin to a chymotrypsin specificity requires the

mutation of several positions in the S1 pocket and on the surface

loops L1, L2 and L3 close to the S1 pocket [30] (indicated in

Figure 11B, left). This implies that a group of residues

cooperatively acts for the ligand specificity of serine proteases.

Among the 351 alignment positions of the 616 sequences of the

serine protease family, MST selected 103 seed positions (29% of

aligned positions). Three coevolving residues networks have been

detected for this family through a manual selection (Figure 11A).

These selected positions cover the 23% of the residues in the

structure 1AUJ chain A.

Network associated to the catalytic function. The first

network (Figure 11A, first square from the bottom left)

corresponds to very conserved positions: 31 positions on the

structure are essentially grouped around the ligand and they

include the catalytic triad (Figure 11B). Most of these positions

form a network of connected residues located on the S1 pocket

Figure 11. Serine proteases. A: Matrix of relative coevolution scores
CoErel for the serine protease family. Three coevolved residues
networks have been manually selected from the matrix and are
indicated by black boxes. BCD: Coevolved residues network detected
for the serine protease family are indicated using the Van der Walls
representation in the bovine trypsin structure (two faces of the 1AUJ
chain A). The catalytic triad is represented by a yellow wireframe. L1 and
L2 loops supporting the S1 site are indicated. Position 172 on the L3
loop in orange and position 189 on the L1 loop in yellow are indicated
using the Van der Walls representation. A substrate analog (inhibitor) of
the ligand is in green; B: network associated to the catalytic site (red)
except for the catalytic triad that belongs to this network; C: network
with potential structural role (blue); D: network associated to the ligand
specificity (brown). E: Global view of the coevolved residues networks.
doi:10.1371/journal.pcbi.1000488.g011
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and on the extremities of the L1 and L2 loops. Four positions are

isolated and located at the opposite of the S1 pocket. This network

is not predicted by SCA since the method does not consider highly

conserved positions.

Network behind the catalytic site: a structural role. The

second network is composed of 9 positions (Figure 11A, second

square from the bottom left) and 7 of them agree to form the

network detected by SCA (they are 184, 105, 52, 46, 201, 136, 124

and the two extra positions are 108 and 123). SCA detects one

more position (81), which is not detected as seed position by MST.

In fact, this position is mutated back and forth in glutamic acid

and glutamin residues, that is residues which are known to be

highly interchangeable. The dispersed distribution of these

residues in the tree forbids the detection of the position as a

persistently conserved seed position.

Most of the positions of this network are structurally close but not

in contact and they are located across the structure from the L1 loop

to a b strand behind the catalytic triad (Figure 11C). The strong

connectivity in the matrix of relative coevolution scores between this

network and the first one (see Figure 11A) indicates conservation of

the network and hence, a potential role for the protein. The special

location of the residues, their hydrophobic nature and the presence

of one proline and two cysteines suggest the structural role of this

network to maintain both the catalytic site and the position of the L1

loop. It was proposed that coevolved residues behind the catalytic

site may make precise positioning of the catalytic residues possible

[5]. The two extra positions 108 and 123 are structurally close to

other positions of the network and this supports the existence of an

evolutionary constraint on these two positions.

Network associated to ligand specificity. The third

network (Figure 11A, third square from the bottom left) is

composed of 9 positions among which 7 correspond to a network

detected by SCA (positions 209, 215, 189, 180, 183, 228, 51, and

the two supplementary positions are 186 and 231). The

coevolution signal for this network is weak for both the MST

and the SCA methods.

Most of the residues of this network are physically connected

and located on the L1 and L2 loops supporting the S1 pocket

(Figure 11D). This is in agreement with experimental observations

showing the importance of the two loops in the ligand specificity.

Some coevolved residues are isolated, as position 51 for instance,

which is located behind the catalytic site. Position 189, crucial for

ligand specificity, belongs to the network. Position 186 is not in

contact with other coevolved residues but its location in the S1

pocket, in the middle of the L1 loop and close to the L2 loop,

suggests a possible functional role for ligand specificity. Position

172 of the L3 loop, which has been experimentally observed to be

involved in the ligand specificity [32], is not detected by the MST

method and corresponds to a weak signal detected by the SCA

method. This suggests that another kind of evolutionary pressure,

possibly independent or conjugated to coevolution, might

maintain the role of position 172 in the ligand specificity of serine

protease.

A global overview of the networks. Coevolved positions in

the three detected networks are structurally close (Figure 11E and

Text S1) but essentially organized in different regions: residues

that are involved in the catalytic site (red) are around the catalytic

triad and on the S1 site, residues involved in the ligand specificity

(brown) are mainly sitting on the S1 site located on the L1 and L2

loops, and residues involved in the structural maintaining of the

functional sites (blue) surround residues belonging to the other

networks from the L1 loop to the catalytic site.

Notice that positions 194 and 141 detected in the catalytic site

network, position 189 detected in the ligand specificity network

and position 46 detected in the network located behind the

catalytic site are identified as centrally conserved positions (that is,

determinant in protein interconnectivity) in [18]. Also position

172, which is not detected by MST and which presents a weak

signal by SCA, is not centrally conserved but is in contact with a

centrally conserved position.

Leucine dehydrogenase family
Amino acid dehydrogenase enzymes catalyze the oxidative

deamination of specific L-amino acids. Leucine and valine

dehydrogenases (LeuDH and ValDH) catalyze oxidation of short

aliphatic amino acids [33], glutamate dehydrogenases (GluDH)

preferentially recognize glutamate [34], and phenylanine dehy-

drogenases (PheDH) preferentially recognize aromatic amino

acids. Amino acid dehydrogenase enzymes are formed by two

domains separated by a deep cleft accommodating the catalytic

site. A domain supports the NAD+binding site, while the other

supports the substrate binding site. Once the NAD+and the

substrate are fixed, a structural modification takes place from an

open to a closed conformation and locates the NAD+near to the

substrate for its catalysis.

A mechanism for the basis of the differential amino acid

specificity between these enzymes involves point mutations in the

amino acid side-chain specificity pocket and subtle changes in the

shape of this pocket caused by the differences in quaternary

structure [35]. Experimental observations show that L40, A113,

V291, and V294 of LeuDH are involved in the substrate specificity

but different combinations of residues appear according to the

enzyme specificity [36]. Positions 113 and 291 are conserved for

LeuDH and GluDH but are mutated in PheDH where they play a

crucial role for the substrate specificity [36]. Positions 40 and 294

are crucial for GluDH specificity but are mutated in LeuDH [37].

However, the only mutation of positions 40 and 294 in the GluDH

is not sufficient to reverse the specificity of the enzyme into a

LeuDH specificity and abolish its catalytic activity [37]. Besides

the physico-chemical nature of the residues, a structural

modification allowing for an adapted positioning of the residues

in the active site is also necessary for the substrate specificity [37].

A cooperative evolution of residues involved in the structural

modification from the open to the closed conformation is

expected. Finally, the amino acid dehydrogenase enzymes are

oligomers whose number of chains is different between the

different enzymes. The complexity of the evolutionary pressures

affecting the different amino acid dehydrogenases, with ligand

specificity determined by a combination of constraints coming

from sequence and structure, motivated us to explore this family.

Among the 580 alignment positions of the 571 sequences of the

amino acid dehydrogenase family, 169 (29% of the alignment

positions) have been selected as seed positions. The MST method

applied to this family lead to the (manual) identification of 5

networks on the relative coevolution score matrix (Figure 12A).

Positions identified in the networks represent 22% of the residues

in the structure 1LEH chain B. Notice that a noisy interference is

observed between the different networks (this corresponds to red

dots appearing in the strip just below the squares delimiting the

networks).

Network associated to the catalytic function. The first

network (Figure 12A, first square from the bottom left) detected for

the LeuDH is constituted by very conserved positions. Its 28

positions form groups of physically connected residues located in

the catalytic pocket. The location of these residues on the

NAD+binding site (that is, the inner pocket surface of the upper

domain on Figure 12B), on the substrate binding site (that is, the

inner pocket surface of the lower domain on Figure 12B) and on
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the bottom of the catalytic pocket (where catalytic residues are

located) underlines the role of these residues for the catalytic

function of the enzyme. Namely, positions 80, 68 and 115 known

to be involved in the catalytic function [35,38,39], the five glycines

41, 42, 77, 78 and 290 predicted to be involved in the shape of the

active site [35], and position 150 known to play an active role in

the NAD+binding site [35] are detected in this network.

Network associated to substrate specificity. The second

network (Figure 12A, second square from the bottom left) presents

several contact points with the first one and it is formed by very

conserved positions. Also, these two networks overlap each other and

it is hard to distinguish them, even manually. The 22 positions of the

second network surround residues of the catalytic pocket. The

majority of them are located under the substrate binding site and in

the bottom of the catalytic pocket close to the catalytic site (Figure 12B

and Text S1). No residue is observed behind the NAD+binding site,

and this agrees with the idea of a substrate specificity role of this

network. Positions 40 and 294 differentiating substrate specificity in

LeuDH and GluDH belong to this network. Position 291, which is

conserved in LeuDH and GluDH and is involved in substrate

specificity for PheDH, is also detected in this network. Only position

113 involved in specificity is detected in the first network. Notice that

it has been reported that, in LeuDH, important determinants of the

differential substrate specificity come not only from the substitutions

of Lys89 and Ser380 in GluDH by Leu40 and Val294 in LeuDH to

change the chemical nature of the substrate binding pocket, but also

from the subtle changes in the pocket shape that arise from the

difference in quaternary structure [35].

Isolated positions are also observed but their location at the

periphery of the catalytic site suggests a structural role possibly

required to create contacts in the closed conformation.

The overlap and the several contact points between the first and

second network as well as the presence of position 113 in the first

network and the noise observed on the relative coevolution score

matrix, suggest that more sequence divergence would be necessary

to make the signal clearer. Despite this lack of divergence among

sequences, it is interesting to observe that the MST approach

identifies and distinguishes pertinent functional positions which are

known to be involved in the catalytic function and in substrate

specificity.

Other networks. Three other ‘‘networks’’ are identified in

the relative coevolution score matrix and they are composed of

residues which turns out to be sparsely located on the structure,

hence not showing a coherent behavior explainable by functional

purposes (Figure 12C). These networks might be due to a

phylogenetic signal rather than to a functional coevolution

signal. The noise associated to the networks (characterized by

red signals lying on the columns and rows of the positions defining

the network) is most likely due to insufficient sequence divergence

and it may be used to discriminate phylogenetic from functional

signals. Indeed the idea is that the ‘‘noise’’ associated to the

networks could be used to evaluate the accuracy of the observed

networks on the relative coevolution score matrix and be exploited

for an automatic selection of pertinent networks. This will be done

elsewhere.

Notice that amino acid enzymes are oligomers and that no

interaction site is detected by the method. The fact that not all

amino acid dehydrogenases share the same number of monomers

and interacting sites can explain the absence of a signal.

PDZ Domain Family
PDZ domains are small globular interaction modules whose

function is to mediate protein-protein interaction by binding to the

C-terminus of the target protein in a sequence-specific fashion.

PDZ domains are often found in combination with other

interaction modules and they play diverse role in cells such as in

organizing diverse cell signaling assemblies, in establishing cell

polarity, in directing protein trafficking and in coordinating

synaptic signaling [40–42].

Figure 12. Leucine dehydrogenases. A: Matrix of relative coevo-
lution scores CoErel for the leucine dehydrogenase family. The 5
identified networks have been manually selected on the matrix. Signals
for detection are noisy and errors in clustering positions are likely; due
to red scores, the last position of the matrix, for instance, seem
misplaced and better clustered with positions appeared before in the
matrix. Despite the intrinsic difficulty in detection, the strong difference
in signals among networks, globally justifies all five. The first and third
networks display similar signals (see red scores along the associated
columns and rows) but each of them shares different signals with the
second network. The same is observed for the fourth and the fifth
networks with respect to the third one. BC: Coevolved residues
networks on the Bacillus sphaericus leucine dehydrogenase structure
1LEH (chain B). The catalytic site is illustrated on the front (left) and on
the side (right); B: network associated to the catalytic function (red, first
in A) and network associated to ligand specificity (blue, second in A); C:
third (green), fourth (orange) and fifth (yellow) networks detected in A.
doi:10.1371/journal.pcbi.1000488.g012
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The PDZ domain family is divided into distinct classes on the

basis of target sequence specificity: class I domains bind to peptide

ligands of the form -SER/THR-X-VAL/ILE-COO{, and class II

domains bind to sequences of the form -PHE/TYR-X-VAL/

ALA-COO{ [43,44]. In class I PDZ family, the key residue

responsible for ligand specificity is H372 [45] and it forms

hydrogen bonds with the Ser or Thr hydroxyl group of the ligand

recognition motif [46]. From covariance data, H372 appears to be

coupled strongly to F325 located within the core of the protein,

and to position L353 on the opposite site of the binding pocket.

Together, these residues map out a potential signaling pathway

whose functional importance has been largely confirmed by

experimental mutagenesis.

Among the 186 alignment positions of the 1384 sequences of the

amino acid PDZ domain family, 63 (34% of the alignment

positions) have been selected as seed positions. The MST method

applied to this family leads to the (manual) identification of four

networks on the relative coevolution score matrix (Figure 13A).

Positions identified in the networks represent 21% of the residues

in the structure 1BE9 chain A.

The position numbering used here follows the reference

structure 1BE9, the corresponding numbering used in ATD and

SCA is His76 (position 372), A80 (position 376), K84 (position

380), G33 (position 329), G34 (position 330), F29 (position 325),

G26 (position 322), A51 (position 347), L57 (position 353), V66

(position 362), V90 (position 386), I31 (position 327) and I45

(position 341).

Network associated to conserved positions. The first

network (Figure 13A, first square from the bottom left) detected for

the PDZ domain is constituted by 6 very conserved positions (324,

356, 357, 363, 347 and 351). These positions are not physically

connected to each other and appear sparsely located on the

structure (Figure 13B). Contrary to haemoglobin which recognizes

a specific molecule (haem) and to enzymes exhibiting a specific

catalytic site, both requiring strong residue conservation, no

conserved residues are observed in the proximity of the binding

site for the PDZ domain. This might be expected for proteins that

recognize different sequence specific binding sites. Notice that

most positions detected in this network are key structural positions

located at the extremities of regular secondary structures initiating

variations in the direction of the backbone.

Network associated to ligand specificity. This network

(Figure 13A, second square from the bottom left) is composed of 12

positions. Ligand specificity networks have been predicted by SCA

(statistical) and ATD (molecular dynamics) which share four common

positions. Except for position 347 which is found in our conserved

network, all other three positions (372, 325 and 353) are common to

our prediction for the ligand specificity network. Together, these

three residues map out a potential signaling pathway whose

functional importance has been largely confirmed by experimental

mutagenesis. Differences also appeared between the ATD and SCA

approaches. Among the two positions which are found by ATD but

not by SCA (327 and 341), position 327 belongs to our network.

Among the seven positions which are found by SCA but not by ATD

(376, 380, 329, 330, 322, 362 and 386), positions 329, 330 and 362

belongs to our network. Finally, positions 336, 323, 379, 344 and 375

are found in our network but not by SCA nor ATD. Notice that

position 379 has been previously predicted to be determinant in

protein interconnectivity in [18] as well as position 325 above. Except

for positions 344 and 353 which are isolated on the structure, all other

positions detected by MST are physically connected and form the

binding site (Figure 13C).

Other networks. Residues detected in the two other

networks (Figure 13A, third and forth squares from the bottom

Figure 13. PDZ domains. A: Matrix of relative coevolution scores
CoErel for the PDZ domain family. The 4 identified networks have been
manually selected on the matrix. Signals for detection are noisy and
errors in clustering positions are likely; due to red scores, the last
position of the matrix, for instance, seem misplaced and better
clustered with positions appeared before in the matrix. BCD: Coevolved
residues networks on the third PDZ domain of PSD-95 1BE9 (chain A).
The binding site is illustrated on the front (left) and on the side (right)
bound to a peptide indicated in green. Residues in the networks are
indicated using the Van der Walls representation. B: network associated
to highly conserved structural positions (red, first in A); C: network
associated to peptide specificity (blue, second in A.); D: third (orange,
third in A) and fourth (violet, fourth in A) networks surrounding the
network associated to ligand specificity. E: Global overview of the four
networks.
doi:10.1371/journal.pcbi.1000488.g013
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left) are not physically connected together but are connected to

residues involved in the ligand specificity network (Figure 13D and

13E). The third network is composed of 3 positions (322, 388 and

390) and the fourth one by four positions (376, 359, 316 and 345).

Positions 322 and 376, which are detected in the two networks, are

detected by SCA in the ligand specificity network but not by ATD.

Their MST detection in other than the ligand specificity network

and their absence in ATD prediction suggest that these positions

might be not directly involved in ligand specificity as proposed in

[5]. However their high conservation and their location around

the ligand specificity network hint for another role they might play

within the PDZ domain, maybe structural for maintaining the

binding site.

Notice that mutations on positions 362 found in the ligand

specificity networks predicted by SCA and MST, 386 found in the

ligand specificity network predicted by SCA only, and 316 found

in the fourth MST network have been shown to have effect on the

rate constant for the PDZ2-peptide binding reaction (where PDZ2

is the second PDZ domain of the protein) but little effect for the

PDZ3-peptide binding reaction [47]. Thus the detection of these

positions by approaches like SCA and MST which use

evolutionary signals, can be due either to a reminiscent

evolutionary signal present in homologous sequences or to a

weakening of the functional role in the binding.

Discussion

Conservation and coevolution
The notions of conservation and mutual conservation might

appear at first to be distinguished concepts but our combinatorial

approach exploits the idea that along time evolution, conservation

comes before coevolution and that conservation occupies a specific

position within the continuum spectrum where to measure

different degrees of coevolution. The intended model that we

use identifies a protein sequence as an object that evolves through

mutations which are driven by the potential key functional or

structural role of the positions. If two or more residues cooperate,

they will coevolve together. Depending on the evolutionary

constraints due to folding, maintenance of allosteric properties,

degree of specificity of the interaction with other molecules, signals

of coevolution will be more or less strong. Notice that two positions

which are fully conserved are treated by the method as ‘‘perfectly

coevolving’’ (in this sense, conservation can be mathematically

treated as an extreme case of coevolution).

The serine protease family is a reference example, discussed

here and in [48], that underlies the idea of ‘‘continuity’’ in proteic

sequence evolution. Residues involved in protein folding, catalytic

triad and ligand specificity are conserved within sequences of the

trypsin and chymotrypsin families but their degree of conservation

is different depending on their role. Residues involved in protein

folding and catalytic triad are essentially the same for all serine

protease. Residues involved in ligand specificity have a strong

family specificity, resulting in two different sets of residues

distinguishing trypsin from chymotrypsin. These latter are driven

by different evolutionary pressures and can be revealed by a

coevolution analysis.

The sharply separated signal on the relative coevolution score

matrix that makes easy network detection for the serine protease

family, reflects the strong sequence divergence of this family. In

contrast, the leucine dehydrogenase family, which displays a

moderate sequence divergence, exhibits the ‘‘overlapping’’ of two

networks of very well conserved residues within the relative

coevolution score matrix. This overlapping seems to support the

idea of ‘‘continuity’’ of the evolutionary process transforming

conserved residues into coevolved ones. In fact, despite strong

residue conservation, the signal allows to distinguish the network

associated to the catalytic site from the substrate specific one.

In the MST based combinatorial model, the distance tree

organizing the pool of existing homologous sequences traces the

evolutionary process. The distinction between conserved and

coevolved positions depend on the number of MSTs associated to

the position. Conserved positions are associated to few (in the ideal

case just one) MSTs and they turn out to have a high score of

coevolution with all other conserved positions due to a strong

overlapping of MSTs. This means that if we try to match the

MSTs of a conserved position against a random combination of

few MSTs covering the same tree, the expected coevolution score

is high. In this sense, the high score of coevolution for conserved

positions is representative of an independent evolutionary

pressure. The notion of ‘‘few’’ above depends on the family of

sequences that we look at. Very divergent sequences will associate

many trees to most positions and little divergent sequences will

associate few trees to most positions.

Networks detection and variable sequence divergence
A thorough analysis of correlated changes of amino acids

becomes of crucial relevance for the understanding of biological

functions and mechanical properties of proteins. A high sequence

divergence and an appropriate size of the alignment appeared to

be critical in obtaining statistical significant correlations between

residues in a protein family [5,13]. These constraints limit the

analysis of well represented protein families. For instance, data

used here for the haemoglobin and the serine protease families

analysis were optimized in terms of sequence divergence and

alignment size [5] for a statistical analysis with SCA. The MST

approach used on this data was able to detect a very clear signal of

coevolution for interacting amino acids involved in the function of

the proteins and has detected all networks previously revealed by

SCA. However, MST has allowed the analysis of a larger number

of seed positions compared to SCA which is limited by statistical

constraints and new networks of functional interest have been

identified. Three small networks of connected amino acids located

on the structure close to the interaction sites have been detected by

MST for the haemoglobin family, while no other network has

been detected for the serine protease family, compared to what has

been found by SCA already.

For the leucine dehydrogenase and the PDZ domain family, the

set of sequences and the alignments used for the analysis have not

been optimized (it results from a simple PSI-BLAST detection and

alignment with ClustalW). These sequences might be limited in

number and their divergence might be not very high. We

demonstrated that the lack of high divergence of these sequences,

compared to the set of sequences used by SCA, still allows MST to

identify networks associated to positions known to be involved in

protein function and therefore to catch a pertinent coevolution

signal. Constraints on sequence divergence imposed by statistical

approaches like SCA do not allow for the analysis of the leucine

dehydrogenase family even though insights into functional

mechanisms are actually revealed by MST. Also, good agreement

obtained for the PDZ domain family with different approaches like

SCA (statistical) and ATD (molecular dynamics), and with

centrally conserved positions (structural information) supports

the pertinency of the networks detected by MST using sequences

of variable divergence.

In general, it is difficult to evaluate predictions of a method by

referring to another prediction method. The experimental

predictions of highly correlated residues reported in the literature

allowed to validate residues detected by MST, SCA and ATD.

Coevolved Amino Acids Networks
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However experimental results on coevolved residues are few and

new ones would be highly desired. Evaluations obtained by

comparing different methodologies, like SCA, ATD, and detection

of centrally conserved positions, on several protein structures,

show that these methods do not fully agree in their predictions,

and novel hypothesis on non-tested detected positions might

inspire new biological experiments. We see this as an important

point for these methods to be appreciated.

In conclusion, a high sequence divergence appears to be

necessary for a fine analysis and a more accurate selection of

functional networks. Under these conditions, MST detects

pertinent signals of coevolution. In general, MST can detect a

larger set of potential positions compared to statistical approaches

like SCA since the constraint on sequence divergence is dropped.

Under moderate sequence divergence, a noisy signal might be

observed but pertinent functional information may be revealed

anyway. In this sense, MST becomes a tool for biologists to detect

a number of potentially functional and structural positions in

protein families based on possibly loose conditions that are

satisfied by the set of homologous sequences. This enlarges the

spectrum of applicability of MST compared to approaches like

SCA.

On the mathematics used to study coevolution
The method introduced in this paper provides a mathematical

framework where the concept of coevolution can be ‘‘structured’’.

The combinatorial notions help to bring out the interaction

between coevolving information within the subtrees of a tree of

sequences. At first sight, the method might look complicate, as

often do combinatorial approaches, but the advantage, compared

to more implicit approaches of algebraic or statistical nature, is

that combinatorial methods are based on a direct understanding of

the building blocks involved in a construction. On the contrary,

implicit approaches bring little intuition on these building blocks.

A main purpose for future investigation is to highlight different

signals of coevolution within a protein family by suggesting formal

properties that will distinguish different groups of coevolving

‘‘motifs’’ within a protein sequence. Some of these properties

might be of structural nature and correspond to non obvious

overlapping of coevolving motifs. This kind of ‘‘structures’’

organising groups of coevolving residues are not studied by

available approaches. We expect combinatorics to help to bring

new insights into evolutionary signals in protein sequences.

Supporting Information

Figure S1 Comparison between ranks based on different

definitions of a gap for the hemoglobin family. Rank distributions

where gaps are considered to be different residues (red) or the

same residue (green) for positions with R(T,s).500 computed for

the set of aligned sequences and associated distance tree of the

hemoglobin family.

Found at: doi:10.1371/journal.pcbi.1000488.s001 (0.09 MB TIF)

Text S1 Amino acids positions in detected networks for the four

protein families analyzed in the paper.

Found at: doi:10.1371/journal.pcbi.1000488.s002 (0.02 MB PDF)
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