
Education

Chapter 15: Disease Gene Prioritization
Yana Bromberg*

Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey, United States of America

Abstract: Disease-causing aberra-
tions in the normal function of a
gene define that gene as a disease
gene. Proving a causal link be-
tween a gene and a disease exper-
imentally is expensive and time-
consuming. Comprehensive priori-
tization of candidate genes prior to
experimental testing drastically re-
duces the associated costs. Com-
putational gene prioritization is
based on various pieces of correl-
ative evidence that associate each
gene with the given disease and
suggest possible causal links. A fair
amount of this evidence comes
from high-throughput experimen-
tation. Thus, well-developed meth-
ods are necessary to reliably deal
with the quantity of information at
hand. Existing gene prioritization
techniques already significantly im-
prove the outcomes of targeted
experimental studies. Faster and
more reliable techniques that ac-
count for novel data types are
necessary for the development of
new diagnostics, treatments, and
cure for many diseases.

This article is part of the ‘‘Transla-

tional Bioinformatics’’ collection for

PLOS Computational Biology.

1. Introduction

In 1904 Dr. James Herrick reported [1]

the findings of ‘‘peculiar elongated and

sickle shaped’’ red blood cells discovered

by Dr. Ernest Irons in a hospital patient

afflicted with shortness of breath, heart

palpitations, and various other aches and

pains. This was the first documented case

of sickle cell disease in the United States.

Forty years later, in 1949, sickle cell

anemia became the first disease to be

characterized on a molecular level [2,3].

Thus, implicitly, the first disease-associat-

ed gene, coding for beta-globin chain of

hemoglobin A, was discovered.

It took another thirty years before in

1983 a study of the DNA of families

afflicted with Huntington’s disease has

revealed its association with a gene on

chromosome 4 called huntigtin (HTT)

[4]. Huntington’s became the first genetic

disease mapped using polymorphism

information (G8 DNA probe/genetic

marker), closely followed by the same

year discovery of phenylketonuria associ-

ation with polymorphisms in a hepatic

enzyme phenylalanine hydroxylase [5].

These advances provided a route for

predicting the likelihood of disease devel-

opment and even stirred some worries

regarding the possibility of the rise of

‘‘medical eugenics’’ [6]. Interestingly, it

took another ten years for HTT’s se-

quence to be identified and for the

precise nature of the Huntigton’s-associ-

ated mutation to be determined [7].

The recent explosion in high-through-

put experimental techniques has contrib-

uted significantly to the identification of

disease-associated genes and mutations.

For instance, the latest release of SwissVar

[8], a variation centered view of the Swiss-

Prot database of genes and proteins [9,10],

reports nearly 20 thousand mutations in

35 hundred genes associated with over

three thousand broad disease classes.

Unfortunately, the improved efficiency in

production of association data (e.g. ge-

nome-wide association studies, GWAS)

has not been matched by its similarly

improving accuracy. Thus, the sheer

quantity of existing but yet unvalidated

data resulted in information overflow.

While association and linkage studies

provide a lot of information, incorporation

of other sources of evidence is necessary to

narrow down the candidate search space.

Computational methods - gene prioritiza-

tion techniques, are therefore necessary to

effectively translate the experimental data

into legible disease-gene associations [11].

2. Background

The Merriam-Webster dictionary de-

fines the word ‘‘disease’’ as a ‘‘a condition

of the living animal or plant body or of one

of its parts that impairs normal functioning

and is typically manifested by distinguishing

signs and symptoms.’’ Thus, disease is

defined with respect to normal function of said

body or body part. Note, that this definition

also describes the malfunction of individual

cells or cell groups. In fact, many diseases

can and should be defined on a cellular

level. Understanding a disease, and poten-

tially finding curative or preventive mea-

sures, requires answering three questions:

(1) What is the affected function? (2) What

functional activity levels are considered

normal given the environmental contexts?

(3) What is the direction and amount of

change in this activity necessary to cause

the observed phenotype?

Contrary to the view that historically

prevailed in classical genetics it is rarely

the case that one gene is responsible for

one function. Rather, an assembly of genes

constitutes a functional module or a

molecular pathway. By definition, a mo-

lecular pathway leads to some specific end

point in cellular functionality via a series of

interactions between molecules in the cell.

Alterations in any of the normally occur-

ring processes, molecular interactions, and

pathways lead to disease. For example,

folate metabolism is an important molec-

ular pathway, the disruptions in which

have been associated with many disorders

including colorectal cancer [12] and

coronary heart disease [13]. Because this

pathway involves 19 proteins interacting

via numerous cycles and feedback loops

[14], it is not surprising that there are a
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number of different ways in which it can be

broken. The changes in concentrations

and/or activity levels of any of the pathway

members directly affect the pathway end-

products (e.g. pyrimidine and/or methylat-

ed DNA). The specifics of a given change

define the severity and the type of the

resulting disease; see Box 1 for discussion

on disease types. Moreover, since the view

of a single pathway as a discrete and

independent entity (with no overlap with

other pathways) is an oversimplification, it

is increasingly evident that different diseas-

es are also interdependent.

3. Interpreting What We Know

Identifying the genetic underpinnings of

the observed disease is a major challenge

in human genetics. Since disease results

from the alteration of normal function,

identifying disease genes requires defining

molecular pathways whose disrupted func-

tionality is necessary and sufficient to

cause the observed disease. The pathway

function changes due to the (1) changes in

gene expression (i.e. quantity and concen-

tration of product), (2) changes in structure

of the gene-product (e.g. conformational

change, binding site obstruction, loss of

ligand affinity, etc.), (3) introduction

of new pathway members (e.g. activation

of previously silent genes), and (4) envi-

ronmental disruptions (e.g. increased tem-

peratures due to inflammation or de-

creased ligand concentrations due to

malnutrition). While all members of the

affected pathways can be construed as

disease genes, the identification of a subset

of the true causative culprits is difficult.

Obscuring such identification are individ-

ual genome variation (i.e. the reference

definition of ‘‘normal’’ is person-specific),

multigenic nature and complex pheno-

types of most diseases, varied influence of

environmental factors, as well as experi-

mental data heterogeneity and constraints.

Disease genes are most often identified

using: (1) genome wide association or

linkage analysis studies, (2) similarity or

linkage to and co-regulation/co-expres-

sion/co-localization with known disease

genes, and (3) participation in known

disease-associated pathways or compart-

ments. In bioinformatics, these are repre-

sented by multiple sources of evidence,

both direct, i.e. evidence coming from own

experimental work and from literature,

and indirect, i.e. ‘‘guilt-by-association’’

data. The latter means that genes that

are in any way related to already estab-

lished disease-associated genes are pro-

moted in the suspect list. Additionally,

implied gene-disease links, such as func-

tional deleteriousness of mutations affect-

ing candidate genes, contributes to estab-

lishing associations. The manner in which

each guilty association is derived varies

from tool to tool and all of them deserve

consideration. Very broadly, gene-disease

associations are inferred from (Figure 1):

1. Functional Evidence – the suspect gene is

a member of the same molecular

pathways as other disease-genes; in-

ferred from: direct molecular interac-

tions, transcriptional co-(regulation/

expression/localization), genetic link-

age, sequence/structure similarity,

and paralogy (in-species homology

resulting from a gene duplication

event)

2. Cross-species Evidence – the suspect gene

has homologues implicated in generat-

ing similar phenotypes in other organ-

isms

3. Same-compartment Evidence – the suspect

gene is active in disease-associated

pathways (e.g. ion channels), cellular

compartments (e.g. cell membrane),

and tissues (e.g. liver).

4. Mutation Evidence – suspect genes are

affected by functionally deleterious

What to Learn in This Chapter

N Identification of specific disease genes is complicated by gene pleiotropy,
polygenic nature of many diseases, varied influence of environmental factors,
and overlying genome variation.

N Gene prioritization is the process of assigning likelihood of gene involvement in
generating a disease phenotype. This approach narrows down, and arranges in
the order of likelihood in disease involvement, the set of genes to be tested
experimentally.

N The gene ‘‘priority’’ in disease is assigned by considering a set of relevant
features such as gene expression and function, pathway involvement, and
mutation effects.

N In general, disease genes tend to 1) interact with other disease genes, 2) harbor
functionally deleterious mutations, 3) code for proteins localizing to the
affected biological compartment (pathway, cellular space, or tissue), 4) have
distinct sequence properties such as longer length and a higher number of
exons, 5) have more orthologues and fewer paralogues.

N Data sources (directly experimental, extracted from knowledge-bases, or text-
mining based) and mathematical/computational models used for gene
prioritization vary widely.

Box 1. Genetic similarities of different disease types.

Diseases can be very generally classified by their associated causes: pathogenic
(caused by an infection), environmentally determined (caused by ‘‘inanimate’’
environmental stressors and deficiencies, such as physical trauma, nutrient
deficiency, radiation exposure and sleep deprivation), and genetically hereditary or
spontaneous (defined by germline mutations and spontaneous errors in DNA
transcription, respectively). Moreover, certain genotypes are more susceptible to
the effects of pathogens and environmental stress, contributing to a deadly
interplay between disease causes. Regardless of the cause of disease, its
manifestations are defined by the changes in the affected function. For example,
cancer is the result of DNA damage occurring in a normal cell and leading toward
a growth and survival advantage. The initial damage is generally limited to a fairly
small number of mutations in key genes, such as proto-oncogenes and tumor
suppressor genes [135]. The method of accumulation of these mutants is not very
important. A viral infection may cause cancer by enhancing proto-oncogene
function [136] or by inserting viral oncogenes into host cell genome. An inherited
genetic variant may disrupt or silence a single allele of a mismatch-repair gene as
in Lynch syndrome [137]. Spontaneous transcription errors and influence of
environmental factors, e.g. continued exposure to high levels of ionizing
radiation, may result in oncogene and tumor suppressor-gene mutations leading
to the development of cancer [138]. Thus, the same broad types of disease can be
caused by the disruption of the same mechanisms or pathways resulting from any
of the three types of causes.
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mutations in genomes of diseased

individuals

5. Text Evidence – there is ample co-

occurrence of gene and disease terms

in scientific texts. Note that textual co-

occurrence represents some form of

biological evidence, which does not yet

lend itself to explicit documentation.

3.1 Functional Evidence
3.1.1 Molecular interactions. Gene

prioritization tools, from the earliest field

pioneers like G2D [15,16,17] to the more

recent ENDEAVOUR [18,19] and

GeneWanderer [20,21], among many

others, have used gene-gene (protein-

protein) interaction and/or pathway

information to prioritize candidate genes.

Biologically this makes sense, because if

diseases result from pathway breakdown

then disabling any of the pathway

components can produce similar pheno-

types; i.e. genes responsible for similar

diseases often participate in the same

interaction networks [22,23]. To illustrate

this point, consider the interaction

partners of the melanocortin 4 receptor

(MC4R) in STRING [24,25] server

generated Figure 2. Note, not all known

interactions are shown – the inclusion

parameter is STRING server likelihood

.0.9.

MC4R is a hypothalamic receptor with

a primary function of energy homeostasis

and food intake regulation. Functionally

deleterious polymorphisms in this receptor

are known to be associated with severe

obesity [26,27,28]. Here, MC1R, MC3R,

and MC5R are membrane bound mela-

nocortin (1,3,5) receptors that interact

with MC4R via shared binding partners.

Syndecan-3 (SDC3), agouti signaling pro-

tein precursor (ASIP), agouti related

protein precursor (AgRP), pro-opiomela-

nocortin (POMC) and/or their processed

derivatives directly bind MC4R for varied

purposes of the MC4R signaling pathway.

Finally, the reported interactions with

Neuropeptide Y-precursor (NPY) and the

growth hormone releasing protein

(GHRL) are literature derived and may

reflect indirect, but tight connectivity. By

the token of ‘‘same pathway’’ evidence,

MC4R interactors, whether agonists or

antagonists, may be predicted to be linked

to obesity. In fact, mutations that nega-

tively affect normal POMC production or

processing have been shown to be obesity-

associated [29,30] and gene association

studies have linked AgRP with anorexia

and bulimia nervosa behavioral traits [31],

representative of food intake abnormali-

ties. Other pathway participants have also

been marked and extensively studied for

obesity association.

Figure 1. Overview of gene prioritization data flow. In order to prioritize disease-gene candidates various pieces of information about the
disease and the candidate genetic interval are collected (green layer). These describe the biological relationships and concepts (blue layer) relating
the disease to the possible causal genes. Note, the blue layer (representing the biological meaning) should ideally be blind to the content green layer
(information collection); i.e. any resource that describes the needed concepts may be used by a gene prioritization method.
doi:10.1371/journal.pcbi.1002902.g001
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3.1.2 Regulatory and genetic

linkage. Co-regulation of genes has

traditionally been thought to point to

their involvement in same molecular

pathways [32] and, by that token, to

similar disease phenotypes; e.g. [33,34].

For example, GPR30 a novel G-protein

coupled estrogen receptor is co-expressed

with the classical estrogen receptor ERb
[33]. The former (GPR30) has been linked

to endometrial carcinoma [35] so it is no

surprise that the latter (ERb) is also

associated with this type of cancer [33].

However, co-regulation doesn’t always

have to mean the same pathway – studies

have shown that consistently co-expressed

genes, while possibly genetically linked

[36,37], may also reside in distinct path-

ways [38]. Additionally, co-expressed non-

paralogous genes, independent of com-

mon pathway involvement, often cluster

together in different species and fall into

chromosomal regions with low recombi-

nation rates [39,40], suggesting genetic

linkage [39,40]. These finding suggests

that clusters of co-expressed genes are

selectively advantageous [36]. Possibly,

these clusters are groups of genes that

despite the apparent functional heteroge-

neity may be jointly involved in orches-

trating complicated cellular functionality

[41]. Evolutionary pressure works on

maintaining co-expression of these genes

and on keeping recombination rates with-

in the clusters low. Thus, the fine-tuned

cooperation of alleles is not broken by

recombination, but rather transmitted as

one entity to the next generation. De-

regulation of these clusters is therefore

likely to be deleterious to the organism and

develop into disease.

Genes co-expressed with or genetically

linked to other disease genes are also likely

to be disease-associated. However, while

genetic linkage and co-regulation are

valuable markers of disease association,

they also pose a specificity problem; i.e. a

given disease-associated gene may be co-

regulated with or linked to another

disease-associated gene, where the two

diseases are not identical. Genetic linkage

similarly poses a problem for GWAS

where it is difficult to distinguish between

‘‘driver’’ mutations, the actual causes of

disease, and ‘‘passenger’’ mutations, co-

occurring with the disease-mutations due

to genetic linkage.

3.1.3 Similar sequence/structure/

function. Reduced or absent phenotypic

effect in response to gene knockout/

inactivation is a common occurrence

[42,43], largely explained by functional

compensation, i.e. partial interchangeability

of paralogous genes. In humans, genes with

at least one paralogue, approximated by

90% sequence identity, are about three

times less likely to be associated with disease

as compared to genes with more remote

homologs [44]. However, in the cases where

paralogous functional compensation is

insufficient to restore normal function,

inactivation of any of the paralogues leads

to same or similar disease. Prioritization

tools thus often use functional similarity as

an input feature. For example, one

GeneOntology (GO, [45]) defined MC4R

function, is ‘‘melanocyte-stimulating horm-

one receptor activity’’ (GO:0004980). There

are two other human gene products sharing

this function: MSHR (MC1R, 52%

sequence identity) and MC3R (61%).

Predictors relying on functional similarity

to annotate disease association would

inevitably link both of these with obesity.

These findings are confirmed by the recent

studies for MC3R [46], but the jury still

remains out for MC1R involvement.

Quantifying functional similarity is of

utmost importance for the above approach.

Using ontology-defined functions (e.g. Gen-

eOntology) this problem reduces to finding

a distance between two ontology nodes/

subtrees (e.g. [47,48,49,50]). For un-anno-

tated genes, however, sequence and struc-

ture homology is often used to transfer

functional annotations from studied genes

and proteins [51,52]. Since functionally

similar genes are likely to produce similar

disease phenotypes, sequence/structure

similarities are good indicators of similar

disease involvement. Additionally, disease

genes are often associated with specific gene

and protein features such as higher exon

number and longer gene length, protein

length, presence of signal peptides, higher

distance to a neighboring gene and 39 UTR

length, and lower sequence divergence

from their orthologues [53,54]. Moreover,

disordered proteins are often implicated in

cancer [55].

3.2 Cross-species Evidence
Animal models exist for a broad range

of human diseases in a number of well-

studied laboratory organisms, i.e. mouse,

zebrafish, fruit fly, etc. However, straight-

forward cross-species comparisons of

orthologues and their associated pheno-

typic traits are also very useful. A high

number of orthologues (consistent pres-

ence in multiple species) generally high-

lights essential genes that are prone to

disease involvement. Orthologues general-

ly participate in similar molecular path-

ways although different levels of function

are necessary for different organisms (e.g.

human MC4R is more functional then its

polar bear orthologue [56]). Thus, cross-

species tissue-specific phenotypic differen-

tiation due to slightly varied sequences

may be useful for gene prioritization. For

example, the human MC4R and almost

Figure 2. MC4R-centered protein-protein interaction network. The figure illustrates
protein-protein interaction neighborhood of the human melanocortin 4 receptor (MC4R) as
illustrated by the confidence view of the STRING 8.3 server. The nodes of the graph represent
human proteins and the connections illustrate their known or predicted, direct and indirect
interactions. The connection between any two protein-nodes is based on the available
information mined from relevant databases and literature. The network includes all protein
interactions that have .0.9 estimated probability.
doi:10.1371/journal.pcbi.1002902.g002
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all of its close orthologues (e.g. in mouse,

rat, pig, and cow) contain a conserved

valine residue in the 95th position of the

amino acid sequence. In the polar bear

orthologue, however, this position is fre-

quently occupied by an isoleucine residue

[56]. When considering MC4R involve-

ment in generating an obesity phenotype,

it is useful to note that polar bears have a

need for increased body fat content for

thermal insulation, water buoyancy, and

energy storage requirements [56] as com-

pared to humans and to other organisms

that share a conserved V95. Thus, one can

imagine that the V95I mutation, while

deleterious to the function of the receptor,

is a polar bear specific adaptation to its

environment, and may have a similar

(increased body fat) effect in humans. In

fact, V95I does inactivate the human

receptor [57,58] and associates with obesity.

Comparing human and animal pheno-

types is not always straightforward. Wash-

ington et al [59] have shown that pheno-

type ontologies facilitate genotype-

phenotype comparisons across species.

Disease phenotypes recorded in their

ontology (OBD, ontology based database)

can be compared to the similarly built

cross-species phenotype ontologies using a

set of proposed similarity metrics. Finding

related phenotypes across species suggests

orthologous human candidate genes. For

instance, phenotypic similarities of eye

abnormalities recorded in human and fly

suggest that PAX6, a human orthologue of

the phenotype-associated fly gene ey, is a

possible disease-gene candidate. Further

investigation shows that mutations in

PAX6 may result in aniridia (absence of

iris), corneal opacity (aniridia-related ker-

atopathy), cataract (lens clouding), glauco-

ma, and long-term retinal degeneration

(Figure 3) [59].

A correlation of gene co-expression

across species is also useful for annotating

disease genes [60,61]. Genes that are part

of the same functional module are gener-

ally co-expressed. Also, there is evidence

for co-expression of visibly functionally

unrelated genes [37,62,63]. The explana-

tion of these co-expression clusters having

an evolutionary advantage only holds true

for otherwise unjustified conservation of

these clusters throughout different species;

i.e. cross-species comparison of protein co-

expression may be used for validation of

disease-gene co-expression inference. Us-

ing this assumption, Ala et al [61] had

narrowed down the initial list of 1,762

genes in the loci mapped via genetic

linkage to 850 OMIM (Online Mendelian

Inheritance in Man) [64] phenotypes to

twenty times fewer (81) possible disease-

causing genes. For example, in their

analysis a cluster of functionally unrelated

genes co-expressed in human and mouse

contained a bona fide disease-gene KCNIP4

(partial epilepsy with pericentral spikes).

3.3 Compartment Evidence
Changes in gene expression in disease-

affected tissues are associated with many

complex diseases [65]. Tissue specificity is

also important for choosing correct

protein-protein interaction networks, as

some proteins interact in some tissues,

but rarely in others [66]. Disease-associat-

ed cellular pathways (e.g. ion channels or

endocytic membrane transport) and com-

partments (e.g. membrane or nucleus)

implicate pathway/compartment-specific

gene-products in disease as well. For

example, autosomal recessive generalized

myotonia (Becker’s disease) (GM) and

autosomal dominant myotoniacongenita

(Thomsen’s disease, MC) are character-

ized by skeletal muscle stiffness [67]. This

phenotype is the result of muscle mem-

brane hyperexcitability and, in conjunc-

tion with observed alterations in muscle

chloride and sodium currents, points to

possible involvement of deficiencies of the

muscle chloride channel. In fact, studies

point to the mutations in the transmem-

brane region of CLC-1, the muscle

chloride channel coding gene, as the

culprit [67]. Another example is that of

the multiple storage diseases, such as Tay-

Sachs, Gaucher, Niemann-Pick and

Pompe disease, which are caused by the

impairment of the degradation pathways

of the intracellular vesicular transport. In

fact, many of the genes implicated in these

diseases encode for proteins localized to

endosomes (e.g. NPC1 in Neimann-Pick

[68]) or lysosomes (e.g. GBA [69] in

Gaucher, GAA in Pompe [70] and HEXA

in Tay Sachs [71]).

3.4 Mutant Evidence
By definition, every genetic disease is

associated with some sort of mutation that

alters normal functionality. In fact, prima-

ry selection of candidates for further

analysis is often largely based on observa-

tions of polymorphisms in diseased indi-

viduals, which are absent in healthy

controls (e.g. GWAS). However, not all

observed polymorphisms are associated

with deleterious effects. Note, that on

average gain and loss of function muta-

tions are considered to alter normal

functionality equally deleteriously. Most

of the observed variation does not at all

manifest phenotypically, some is weakly

deleterious with respect to normal func-

tion, and less still is weakly beneficial. In

nature strongly beneficial mutations are

very rare; they spread rapidly in the

population and cannot be considered

disease-associated. On the other hand,

strongly deleterious or inactivating muta-

tions are often incompatible with life. A

small percentage of mutations of this type,

affecting genes whose function is not life-

essential, are often associated with mono-

genic Mendelian disorders. Strongly dele-

Figure 3. Correlating cross-species phenotypes. Phenotypes of wild-type (top) and PAX6
ortholog mutations (bottom) in human, mouse, zebrafish, and fly can be described with the EQ
method suggested by Washington et al [59]. Once phenotypic descriptions are standardized
across species, genotypic variations can be assessed as well.
doi:10.1371/journal.pcbi.1002902.g003
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terious mutations in the genes whose

function may somehow be compensated

(e.g. via paralogue activity) are associated

with complex disorders, where the level of

compensation affects the observed pheno-

type. Complex disorders may also accu-

mulate weakly deleterious mutations to

generate a strongly negative phenotype.

Intuitively it is clear that a selected

candidate gene, carrying a deleterious

mutation in an affected individual is more

likely to be disease-associated than one

which contains functionally neutral mu-

tants or no variation at all.

3.4.1 Structural variation. Structural

variation (SV) is the least studied of all types

of mutations. It has long been assumed that

less than 10% of human genetic variation is

in the form of genome structural variants

(insertions and deletions, inversions,

translocations, aneuploidy, and copy

number variations - CNVs). However,

because each of the structural variants is

large (kb-Mb scale), the total number of base

pairs affected by SVs may actually be

comparable to the number of base pairs

affected by the much more common SNPs

(single nucleotide polymorphisms).

Moreover, high throughput detection of

structural variants is notoriously difficult

and is only now becoming possible with

better sequencing techniques and CNV

arrays. Thus, more SVs may be discovered

in the near future. We do not currently know

what proportion of genetic disease is caused

by SVs, but we suspect that it is high.

Due to the above mentioned constraints

on SV identification, there are only ,180

thousand structural variants reported in

one of the most complete mutation

collections – the Database of Genomic

Variants, DGV [72]. Gross changes to

genome sequence are very likely to be

disease associated, but also frequently gene

non-specific. For instance, Down’s syn-

drome, trisomy 21, is an example of a

whole extra chromosome gain and cri du

chat syndrome results from the deletion of

the short arm of chromosome 5 [73]. All

of the genes found in these regions of the

genome are, by default, associated with

the observed disease but neither can be

considered primarily causal. When the

damage is less extensive the genes involved

may be further evaluated for causation.

For instance, several epilepsy-associated

genes are known, but functionally-signifi-

cant mutations in these account for only a

small fraction of observed disease cases.

One study [74] reports that CNV mutants

found in epileptic individuals but not in the

general population account for nearly nine

percent of all cases. Among these are CNVs

resulting from deletions in AUTS2 and

CNTNAP2 genes. Both of these genes have

been implicated in other neurological

disorders [75,76] reaffirming the possible

disease link. Inversions, translocations and

large deletions and insertions have all been

implicated in different forms of disease.

Even very small indels, resulting in an open-

reading frame shift (frameshift mutations),

are often sufficient to cause disease. For

instance, one of the causes of Tay-Sachs is a

deletion of a single cytosine nucleotide in

the coding sequence of a lysosomal enzyme

beta-hexosaminidase [71].

In most cases of diseases that are

associated with SVs the prioritization of

disease-causing genes is reduced to finding

those that are directly affected by the

mutation. Lots of work has been done in

this direction, including development of

the CNVinetta package [77] for mining

and visualizing CNVs, GASV approach

for identifying structural variation bound-

aries more precisely [78], and software

created by Ritz et al for searching for

structural variants in strobe sequencing

data [79]. SV identification is still a new

field, but the advances in methodologies

will have a great impact on our under-

standing and study of many of the known

diseases.

3.4.2 Nucleotide polymorphisms. The

other ,90% of human variation exists in

the form of SNPs (single nucleotide

polymorphisms) and MNPs (multi-

nucleotide polymorphisms; consecutive

nucleotide substitutions, usually of length

two or three). A single human genome is

expected to contain roughly 10–15 million

SNPs per person [80]. As many as 93% of

all human genes contain at least one SNP

and 98% of all genes are in the vicinity

(,5 kb) of a SNP [81]. The latest release of

NCBI dbSNP database [82] (build 137)

contains nearly 43 million validated human

SNPs, 17.5 million of which have been

experimentally mapped to functionally

distinct regions of the genome (i.e. mRNA

UTR, intron, or coding regions). Non-

coding region SNPs (,17.2 million) are

trivially more prevalent than coding SNPs

(,432 thousand) as non-coding DNA

makes up the vast majority of the

genome. Coding SNPs, however, are

over-represented in disease associations;

e.g. OMIM contains 2430 non-coding

SNPs (0.0001% of all) and 5327 coding

ones (0.01% of all – 100-fold enrichment).

Due to the redundancy of the genetic code,

coding SNPs can be further subdivided into

synonymous (no effect on protein sequence)

and non-synonymous (single amino acid

substitution) SNPs. Simple statistics of the

genetic code suggest that synonymous

SNPs should account for 24% of all

coding-region SNPs. dbSNP data suggests

an even larger percentage of synonymity –

,188 thousand (44%), which is possibly

due to evolutionary pressure eliminating

functionally deleterious non-synonymous

SNPs. MNPs are rare as compared to

SNPs, but are over-represented amongst

the protein altering variants, almost always

changing the affected amino acid, or two

neighboring ones, or introducing a

nonsense mutation (stop-codon) [83].

Identifying and annotating functional

effects of SNPs and MNPs is important in

the context of gene prioritization because

genes selected for further disease-associa-

tion studies are more likely to contain a

deleterious mutation or be under the

control of one (e.g. mutations affecting

transcription factor or microRNA binding

sites). In recent years a number of methods

were created for identifying mutations as

functionally deleterious. PromoLign [84],

PupaSNP finder [85], and RAVEN [86]

look for SNPs affecting transcription,

SNPper [87] finds and annotates SNP

locations, conservation, and possible func-

tionalities so that they can be visually

assessed, and SNPselector [88] and

FASTSNP [89] assess various SNP fea-

tures such as whether it alters the binding

site of a transcription factor, affects the

promoter/regulatory region, damages the

39 UTR sequence that may affect post-

transcriptional regulation, or eliminates a

necessary splice site. Coding synonymous

SNPs have recently been shown to have

the same chance of being involved in a

disease mechanism as non-coding SNPs

[90]. This effect may be due to codon

usage bias or to changes in splicing or

miRNA binding sites [91]. However, few

(if any) computational methods are able

make predictions with regard to their

functional effects.

Non-synonymous SNPs are somewhat

more studied. Early termination of the

protein is very often associated with

disease so genes with nonsense mutants

are automatically moved up in the list of

possible suspects. Missense SNPs and

MNPs, which alter the protein sequence

without destroying it, may or may not be

disease associated. In fact, most methods

estimate that only 25–30% of the nsSNPs

negatively affect protein function [92].

Databases like OMIM [93], and more

explicitly, SNPdbe [94], SNPeffect [95],

PolyDoms [96], Mutation@A Glance [97]

and DMDM [98] map SNPs to known

structural/functional effects and diseases.

Computational tools that make predictions

about functional and disease-associated

effects of SNPs include SNAP [99,100],

SIFT [101,102], PolyPhen [103,104],
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PHD-SNP [105], SNPs3D [106], and

many others. Most of these methods are

binary in essence – that is they point to a

deficiency without suggesting specifics of

the disease or molecular mechanisms of

functional failure. Nevertheless, they are

very useful in conjunction with other data

described above. The recent trend in

mutation analysis has seen the develop-

ment of tools, like SNPNexus [107] and

SNPEffectPredictor [108] that are no

longer limited by DNA type and predict

effects for both non-coding and coding

region SNPs.

3.5 Text Evidence
The body of science that addresses gene-

disease associations has been growing in

leaps and bounds since the mapping of a

hemoglobin mutation to sickle cell anemia.

Some researchers have been proactive in

making their data computationally avail-

able from databases like dbSNP, GAD

[109], COSMIC [110], etc. Others have

contributed by depositing knowledge ob-

tained through reading and manual cura-

tion into the likes of PMD [111], GeneRIF

[112] and UniProt [9]. However, huge

amounts of data, which could potentially

improve the performance of any gene

prioritization method, remains hidden in

plain site in natural language text of

scientific publications. Consider, for exam-

ple, a scientist who is interested in priori-

tizing breast cancer genes. A casual search

in PubMed for the term combination breast

cancer generates over two hundred thousand

matches. Limiting the field to genetics of breast

cancer reduces the count to slightly fewer

than fifty thousand. The past thirty days

have brought about 46 new papers. Thus,

someone interested in getting all the genetic

information out of the PubMed collection

would need to dedicate his or her life to

reading. Fortunately, scientific text mining

tools have recently come of age

[113,114,115]. The new tools will allow

for intelligent identification of possible

gene-gene and disease-gene correlations

[116,117,118]. For example, the Informa-

tion Hyperlinked Over Proteins, IHOP

method [119] links gene/protein names in

scientific texts via associated phenotypes

and interaction information. For automat-

ed link extraction, however, the existing

gene prioritization techniques rely mostly

on term co-occurrence statistics (e.g.

PosMed [120] and GeneDistiller [121])

and gene-function annotations (e.g. EN-

DEAVOR [122] and PolySearch [123]),

which can then be related to diseases as

described above.

For a significantly oversimplified exam-

ple of this type of processing consider

searching PubMed for the terms breast

cancer and BRCA1. The initial search

returns 50 articles, as compared to 21 for

breast cancer with BRCA2, 6 with PIK3CA, 1

with TOX3, and 0 for MC4R or CLC1

associations. While the number of publi-

cations reflects many extraneous factors

such as the popularity and ‘‘research age’’

of the protein, it is also very much

reflective of the possibility of gene-disease

association. Thus, BRCA1 and BRCA2

would be the most likely candidates

for cancer association, followed by

PIK3CA and TOX3. MC4R and CLC1

would not make the cut. Note that

PubMed now defaults to a smart search

engine, which identifies all aliases of the

gene and the disease while cutting out

more promiscuous matches; i.e. turning off

the translation of terms would result in

significantly more less accurate matches.

Using specialized tools like PolySearch (or

IHOP) to perform the same queries

produces more refined and quantifiable

results (Figure 4).

4. The Inputs and Outputs

Existing disease-gene prioritization

methods vary based on the types of inputs

that they use to produce their varied

outputs. Functionality of prioritization

methods is defined by previously known

information about the disease and by

candidate search space [124], which may

be either submitted by the user or

automatically selected by the tool. Disease

information is generally limited to lists of

known disease-associated genes, affected

tissues and pathways and relevant key-

words. The candidate search space does

not have to be input at all (i.e. the entire

genome) or be defined by the suspect (for

varied experimental reasons) genomic

region. The prioritization accuracy, in

large part, depends on the accuracy and

specificity of the inputs. Thus, providing a

list of very broad keywords may reduce the

performance specificity, while incorrect

candidate search space automatically de-

creases sensitivity. Prioritization methods

generally output ranked/ordered lists of

genes, oftentimes associated with p-values,

classifier scores, etc.

Overall, input and output requirements

and formats are a very important part of

establishing a tool’s relevance for its users.

As with other bioinformatics methods, the

ease use and the steepness of learning

curve for a given gene prioritization

method often define the user base at least

as strictly as does its performance.

Figure 4. PolySearch gene-disease associations. PolySearch uses PubMed lookup results to
prioritize diseases associated with a given gene. Here, screen shots of the top two results (where
available; sorted by relevancy score metric) from PolySearch are shown. According to these,
BRCA1 and PIK3CA are associated with breast cancer, while MC4R and CLC1 are not. These results
quantitatively confirm intuitive inferences made from simple PubMed searches.
doi:10.1371/journal.pcbi.1002902.g004
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Box 2. Illustrating basic functionality of a standard (on-line fully-interconnected feed-forward
sigmoid-function back-propagating) neural network.

In Figure 5A example network there are three fully interconnected layers of neurons (input, hidden, and output layers); i.e. each
neuron in one layer is connected to every neuron in the next layer. The three input neurons encode biologically relevant pieces
of data relating a given gene G to a given disease D. For each G and D, i_neuron1 is the fraction of articles (out of 1000)
containing in-text co-occurrences of G and D and i_neuron2 represents the presence/absence of a sequence-similar gene G’
associated with D (i_neuron3 = G/G’ sequence identity). The hidden (inference) layer consists of two neurons h_neuron1 and
h_neuron2 with activation thresholds h1 and h2, respectively. The single output, o_neuron (threshold hO) represents the
involvement of G in causing D: 0 = no involvement, 1 = direct causation. The starting weights of the network (wi1-h1, wi1-h2…wh2-o)
are arbitrarily assigned random values between 0 and 1. Intuitively, the function of the network is to convert input neuron values
into output neuron values via a network of weights and hidden neurons. Mathematically, the network is described as follows:

The value (dx) of neuron x is the sum of inputs into x from the previous layer of neurons (Yi = 1Rn in general; in our example: I1R3,
H1R2). Each of the n inputs is a product of value of neuron Yi and weight of connection between Yi and x (wYiRx).

dx~
Xn

i~1

YiwYi?x

The value of the output (zx) of a neuron x based on its dx and its threshold hx is:

zx~f (dxzhx)

In our case, the function (f) is a sigmoid, where a is a real number constant (optimized for any given network, but generally
initially chosen to be between 0.5 and 2).

f (x)~
1

1ze{ax

Thus, to compute the output of every neuron in the network we need to use the formula:

zx~
1

1ze{a(dxzhx)

Note, that to compute the output of the o_neuron (zO; the prediction made by the network) we first have to compute the
outputs of all h_neurons (zHi = 1Rn).

In a supervised learning paradigm, experimentally established pairs of inputs and outputs are given to the network during
training (Figure 5C). After each input, the network output (zO) is compared to the observed result (R). If the network makes a
classification error its weights are adjusted to reflect that error. Establishing the best way to update weights and thresholds in
response to error is of the major challenges of neural networks. Many techniques use some form of the delta rule – a gradient
descent-based optimization algorithm that makes changes to function variables proportionate to the negative of the
approximate gradient of the function at the given point. [It’s OK if you didn’t understand that sentence – the basic idea is to
change the weights and thresholds in the direction opposite of the direction of the error]. In our example, we use the delta rule
with back-propagation. This means that to compute the error of the hidden layer, the threshold of the output layer (hO) and the
weights connecting the hidden layer to the output layer (wh1RO, wh2RO) need to be changed first.

The steps are as follows:

1. Compute the error (eO) of zO as compared to result R. Note, that the difference between the expected and the observed values
defines the gradient (g) at the output neuron.

eO~zO(1{zO)(R{zO)

2. Compute the change in the threshold of the output layer (DhO), using a variable l, the learning rate constant - a real number,
often initialized to 0.1–0.2 and optimized for each network)

DhO~leO
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5. The Processing

Gene prioritization methods use differ-

ent algorithms to make sense of all the

data they extract, including mathemati-

cal/statistical models/methods (e.g. Gene-

Prospector [125]), fuzzy logic (e.g. Topp-

Gene [126,127]), and artificial learning

devices (e.g. PROSPECTR [54]), among

others. Some methods use combinations of

the above. Objectively, there is no one

methodology that is better than the others

for all data inputs. For more details on

computational methods used in the vari-

ous approaches please refer to relevant

tool publications and method-specific

computer science/mathematics literature,

e.g. [128,129,130,131,132,133,134].

To illustrate the general concepts of

relying on the various computational tech-

niques for gene prioritization we will

consider the use of an artificial neural

network (ANN). Keep in mind that while

methods and their requirements differ, the

notion of identifying patterns in the data

that may be indicative disease-gene in-

volvement remains the same throughout.

In simplest terms, a neural network is

essentially a mathematical model that

defines a function f: XRY, where a

distribution over X (the inputs to the

network) is mapped to a distribution over

Y (the outputs/classifications). The word

‘‘network’’ in the name ‘‘artificial neural

network’’ refers to the set of connections

between the ‘‘neurons’’ (Figure 5). The

functionality of the network is defined by

the transmission of signal from activated

neurons in one layer to the neurons in

another layer via established (and weighed)

connections. Besides the choice and num-

ber of inputs and outputs, the parameters

defining a given ANN are (1) interconnec-

tion patterns, (2) the process by which the

weights of connections are selected/updat-

ed (learning function), and (3) the activation

thresholds (functions) of any one given

neuron. ‘‘Training’’ a network means

optimizing these parameters using an

existing set of inputs (and, possibly, out-

puts). Ultimately, a trained network could

then relatively accurately recognize learned

patterns in previously unseen data. For

more details regarding the possible types

and parameters of neural networks see

[132,134]. For an illustration of network

application see Box 2 and Figure 5.

6. Summary

The development of high throughput

technologies has augmented our abilities to

identify genetic deficiencies and inconsis-

tencies that lead to the development of

diseases. However, a large portion of

information in the heaps of data that these

methods produce is incomprehensible to

the naked eye. Moreover, inferences that

could potentially be made from combining

3. Compute the change in the weights connecting the hidden layer to the output, wHiRO.

DWHi?O~DhOHi

4. Compute the gradient (gi) at hidden neurons

gi~eOwHi?O

Note, from here all steps are the same as above

5. Compute the error at zHi

eHi
~zHi

(1{zHi
)gi

6. Compute the change in hHi

DhHi
~leHi

7. Compute the change in wIjRHi

DWIj?Hi
~DhHi

Ij

In on-line updating mode of our example, weights and thresholds are altered after each set of input transmissions. Once the
network has ‘‘seen’’ the full set of input/output pairs (one epoch/iteration), training continues re-using the same set until the
performance is satisfactory. Note that neural networks are sensitive to dataset imbalance. I.e. it is preferable to ‘‘balance’’ the
training data, such that the number of instances of each class is presented a roughly equal number of times.

In testing, updating of the weights no longer takes place; i.e. the zO for any given set of inputs is constant over time. See
Exercise 8 for an experience with testing. Note, there are many variations on the type and parameters of network learning
(propagation mode and direction, weight update rules, thresholds for stopping, etc.) Please consult the necessary literature for
more information, e.g. [134].
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different studies and existing research

results are beyond reach for anyone of

human (not cyborg) descent. Gene priori-

tization methods (Table 1) have been

developed to make sense of this data by

extracting and combining the various

pieces necessary to link genes to diseases.

These methods rely on experimental work

such as disease gene linkage analysis and

genome wide studies to establish the search

space of candidate genes that may possibly

be involved in generating the observed

phenotype. Further, they utilize mathemat-

ical and computational models of disease to

filter the original set of genes based on gene

and protein sequence, structure, function,

interaction, expression, and tissue and

cellular localization information. Data re-

positories that contain the necessary infor-

mation are diverse in both content and

format and require deep knowledge of the

stored information to be properly inter-

preted. Moreover, the models utilizing the

various sources assign different weights to

the information they extract based on

perceived quality and importance of each

piece of data available in the context of the

entire set of descriptors – a function

unlikely to be reproduced in manual data

interpretation. Thus, computational gene

prioritization techniques serve as interpret-

ers of both of newly retrieved data and of

information contained in previous studies.

They also are the bridge that connects

seemingly unrelated inferences creating an

easily comprehensible outlook on an im-

portant problem of disease gene annota-

tion.

7. Exercises

1. Search the GAD (http://geneticassociationdb.

nih.gov/) database for all genes report-

ed to be associated with diabetes. Refine

this set to find only the positively

associated genes. How many are there?

Why was the total data set reduced?

Count the number of unique diabetes

associated genes or explain why this is

not feasible. How many SNPs associate

these genes with diabetes? Is it realisti-

cally possible to experimentally evaluate

individual effects of each SNP in this

set?

2. Using STRING (http://string-db.org/),

find all genes (hint: use limit of 50)

interacting with insulin (confidence

.0.99). Note, this confidence limit is extremely

high – computational techniques would normally

deal with lower limits and thus larger data sets.

What is the insulin gene name used by

STRING? How many interaction part-

ners does your query return? Switch to

STRING evidence view. Pick three

genes connected to insulin via text

mining, but without ‘‘insulin’’ in their

full name, and find one reference for

each in PubMed (http://www.ncbi.nlm.

nih.gov/pubmed/) suggesting that these

genes are involved with diabetes. Report

Gene IDs (e.g. MC4R), PubMed IDs and

publication citations. Use PolySearch

Figure 5. Predicting gene-disease involvement using artificial neural networks (ANNs). In a supervised learning paradigm, the neural
networks are trained using experimental data correlating inputs (descriptive features relating genes to diseases) to outputs (likelihood of gene-
disease involvement). The training and testing procedures for the generalized network (Panel A) are described in text. In our example, the WEKA
[129,130,131,139] ANN (Panel B; a = 0.5, l= 0.2) is trained using the training set (Panel C) repeated 500 times (epochs). The network ‘‘memorizes’’
(Predictions in Panel C) the patterns in the training set and is capable of making accurate predictions for four out of seven instances it has not seen
before (test set, Panel D). It is important to note here that the erroneously assigned instances (yellow highlight) in the test set are, for the most part,
unlike the training. The first one has very little literature correlation (0.01), while sequence similarity to another disease-involved gene is fairly high
0.55). The second maps an unlikely candidate gene (very low literature, no homology) to disease, and the third has barely enough literature mapping
and borderline homology. Representation of neither of these instances was consistently present in the training set. This example highlights the
importance of training using a representative training set, while testing on a set that is not equivalent to training.
doi:10.1371/journal.pcbi.1002902.g005
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(http://wishart.biology.ualberta.ca/

polysearch) gene to disease mapping

with your gene IDs to do the same. Does

your experience confirm that the func-

tional ‘‘molecular interaction’’ evidence

works? Why?

3. In AmiGO (GO term browser, http://

www.geneontology.org), find the hu-

man insulin record (hint: use the insulin

ID obtained above). What is the Swiss-

Prot ID for insulin? Go to the term

view. How many GO term associations

does insulin have? Reduce the view to

‘‘molecular function’’ terms. How

many terms are left? Create a tree

view of these terms (hint: use the

‘‘Perform an action’’ dropdown).

Which of the terms is the most exact

in defining the likely molecular function

of insulin (lowest term in a tree

hierarchy)? Display gene products in

‘‘GO:0005158: insulin receptor bind-

ing’’, reduce the set to human proteins,

and look at the inferred tree. How many

gene products are in this term? Pick a set

of three gene products (report IDs) and

use them to search PolySearch for

diabetes associations. In question 3 we

used the ‘‘common pathway’’ evidence

to show the relationship of genes to

diabetes. What type of predictive evi-

dence is used here?

4. Search the Mammalian Phenotype

Ontology for keyword ‘‘diabetes’’ and

select increased susceptibility (MPO,

http://www.informatics. jax.org/

searches/MP_form.shtml). How many

genotypes are returned? Display

the genotypes and click on the

Airetm1Mand/Aire+ genotype for fur-

ther exploration. What is the affected

gene? Click on gene title (Gene link in

Nomenclature section) to display fur-

ther information. What is an ortholo-

gue? What is the human orthologue of

your mouse gene? Look up this gene in

OMIM (http://www.ncbi.nlm.nih.

gov/omim) for association with diabe-

tes. Copy/paste the citation from

OMIM, describing the gene relation-

ship to diabetes in humans. Do your

Table 1. The available data sources and gene prioritization tools.

Data Type Data Content Possible Sources Tools

Experiment, observation Linkage, association, pedigree, relevant
texts and other data

User provided CAESAR [140], CANDID [141],
ENDEAVOR [122], G2D [15,16,17],
Gentrepid [142], GeneDistiller [121],
PGMapper [143], PRINCE [144],
Prioritizer [145], SUSPECTS [146],
ToppGene [126,127]

Sequence, structure, meta-data Sequence conservation, exon number,
coding region length, known structural
domains and sequence motifs, chromosomal
location, protein localization, and other
gene-centered information and predictions

SCOP [147], PFam [148,149],
ProSite [150], UniProt,
Entrez Gene [151], ENSEMBL
[152], InterPro [153], LocDB
[154], GeneCards [155],
PredictProtein [156]

CAESAR, CANDID, ENDEAVOR, G2D,
Gentrepid, GeneDistiller,
GeneProspector [125], MedSim [157],
MimMiner [158], PGMapper,
PhenoPred [159], Prioritizer,
PROSPECTR [54], SNPs3D [106],
SUSPECTS, ToppGene

Pathway, protein-protein
interaction, genetic linkage,
expression

Disease-gene associations, pathways and
gene-gene/protein-protein interactions/
interaction predictions, and gene expression
data

KEGG [160,161], STRING,
Reactome [162,163], DIP [164],
BioGRID [165], GEO [166,167],
ArrayExpress [168], ReLiance
[169]

CAESAR, CANDID, DiseaseNet [170],
ENDEAVOR, G2D, Gentrepid,
GeneDistiller, GeneWanderer [20],
MaxLink [171], MedSim, PGMapper,
PhenoPred, PRINCE, Prioritizer,
SNPs3D, SUSPECTS, ToppGene

Non-human data Information about related genes and
phenotypes in other species

OrthoDisease [172], OrthoMCL
[173], MGD [174],
Pathbase [175]

CAESAR, CANDID, ENDEAVOR,
GeneDistiller, GeneProspector,
GeneWanderer, MedSim, Prioritizer,
PROSPECTR, SNPs3D, SUSPECTS,
ToppGene

Ontologies Gene, disease, phenotype, and anatomic
ontologies

GO, DO [176], MPO
[177,178], HPO [179],
eVOC [180]

CAESAR, ENDEAVOR, G2D,
GeneDistiller, MedSim, PhenoPred,
Prioritizer, SNPs3D, ToppGene

Mutation associations and effects Information about existing mutations, their
functional and structural effects and their
association with diseases, predictions of
functional or structural effects for the
mutations in the gene in question

dbSNP, PMD [111], GAD,
DMDM, SNAP, PolyDoms,
SNPdbe, SNPselector, RAVEN,
SNPeffect, PHD-SNP,
Mutation@A Glance,
PromoLign, SIFT, PolyPhen,
PupaSNP finder, FASTSNP

CAESAR, CANDID, GeneProspector,
GeneWanderer, PROSPECTR, SNPs3D,
SUSPECTS

Literature Mixed information of all types extracted
from literature references (e.g. disease-gene
correlation and non-ontology based
gene-function assignment)

PubMed, PubMed Central,
HGMD [181], GeneRIF, OMIM

CAESAR, CANDID, DiseaseNet,
ENDEAVOR, G2D, Gentrepid,
GeneDistiller, GeneProspector,
GeneWanderer, MedSim, MimMiner,
PGMapper, PolySearch [123], PRINCE,
Prioritizer, PROSPECTR, SNPs3D,
SUSPECTS, ToppGene

There is a wide range of data sources that can be used to infer the above-described pieces of evidence. The existing tools try to take advantage of many (if not all) of
them. This table summarizes the collections and methodologies that make current state of the art in gene prioritization possible. Note, not all resources mentioned here
are utilized by all gene prioritization tools nor are all data sources available listed. Moreover, some resources may be classified as more than one data-type. Many of the
resources reported here are available electronically through the gene prioritization portal [124].
doi:10.1371/journal.pcbi.1002902.t001
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results confirm the ‘‘cross-species’’

evidence?

5. Search GeneCards (http://www.

genecards.org, utilize advanced search)

for genes expressing in the pancreas

(hint: pancreatic tissue is often affected

in diabetes). How many are there?

Explore the GeneCard for CCKBR for

diabetes association. Do you find that

this gene confirms the ‘‘disease com-

partment’’ evidence? What database,

referenced in GeneCards, contains the

CCKBR-diabetes association? Now

look at the GeneCard of PLEKHG4.

Is there evidence for this gene being

associated with diabetes (whether in the

GeneCards record or otherwise)? Ex-

plain your ideas in detail, paying

special attention to the ‘‘disease com-

partment’’ line of evidence.

6. Search UniProt (http://www.uniprot.

org) for all reviewed [reviewed:yes]

human [organism:‘‘Homo sapiens

[9606]’’] protein entries that contain

natural variants with reference to

diabetes [annotation:(type:natural_var-

iations diabetes)]. Use advanced search

with specific limits (i.e. sequence anno-

tation, natural_variations, term diabe-

tes). How many proteins fit this de-

scription? Locate the entry for insulin

(identifier from question 3) and find the

total number of known coding variants

of this sequence. How many are

annotated as associated with any form

of diabetes? (hint: read the general

annotation section for correspondence

of abbreviations to types of diabetes).

Run SNAP (http://www.rostlab.org/

services/snap/) to predict functional

effects of all variants. (hint: use comma

separated batch submit). How many

are predicted to be functionally non-

neutral? Do SNAP predictions of

functional effect correlate with anno-

tated disease associations? Does this

result confirm the ‘‘mutant implica-

tion’’ for nsSNPs?

7. Search PolySearch for all genes associ-

ated with diabetes. How many results

are returned? Look at the PubMed

articles that associate ‘‘hemoglobin’’

with diabetes (follow the link from

PolySearch). How many are there?

Do you find this number large enough

to convince you of hemoglobin-diabe-

tes association and why? From reading

article titles/extracted sentences, can

you identify a biological reason for

connecting hemoglobin to diabetes? If

one looks especially convincing, cite

that article (hint: its OK to not find

one). For the first three articles, can

you identify a biological reason for

connecting hemoglobin to diabetes?

Go back to the list of diabetes related

genes and look at TCF7L2 articles. Are

the biological reasons for matching

TCF7L2 to diabetes clearly defined?

Cite the most convincing article. Why

do you think TCF7L2 is ranked lower

in association than hemoglobin? Is

there significant evidence for calcium

channel (CACNA1E) involvement in

diabetes? Consider the PubMed cita-

tions. Do you agree with PolySearch

classification of this gene-disease asso-

ciation? Does your experience with

PolySearch confirm the ‘‘text evi-

dence’’ function of gene prioritization

methods?

8. WEKA exercises (choose one).

8. Download and install WEKA ( http://

www.cs.waikato.ac.nz/,ml/weka/).

Using a text-editor (or Microsoft Excel)

create comma delimited values (CSV)

files identical to the ones described in

Figure 5C–D (i.e. copy over the train-

ing and testing files and replace spaces

with commas). Save the files and open

the training file in WEKA’s Explorer

GUI. Open the training file in

WEKA’s Explorer GUI. You should

have four columns of data (Text,

Homology, ID, Disease) corresponding

to four attributes of each data instance.

8.1. Defined Questions: Run the Mul-

tiLayer Perceptron with parame-

ters (momentum = 0.5, learn-

ing = 0.2, trained using the

training set, Figure 5C, repeated

500 times/epochs). Test with the

test set (Figure 5D) and output

predictions for each test entry

(make a screenshot). Assuming that

everything predicted below 0 is 0,

and everything above is 1. What is

your performance (number of true/

false positives/negatives, positive/

negative accuracy/coverage, over-

all accuracy)? Try using the Deci-

sion Stump classifier with default

parameters (take screenshot of out-

put). If everything below 0.5 is 0,

and everything above is 1, what is

your performance? Is it better or

worse than the neural net?

8.2. Open ended: Experiment with dif-

ferent tools available from WEKA’s

Classify section setting the testing set

to your test-file’s location. First, run

the MultiLayer Perceptron with

parameters as descr ibed in

Figure 5, then try to alter the

parameters (momentum term,

learning rate, and number of ep-

ochs). Try using Linear Regression,

Decision Table, or Decision Stump

classifiers with default parameters.

Is your performance on the test set

better or worse? Close the WEKA

Explorer, reformat your train/test

files in the text editor to replace

Disease column values by Booleans

(True/False) values, and re-open

the training file. Use BayesianNet

and RandomForest classifiers to test

on the testing file. Does you perfor-

mance improve? Note, that without

further understanding of each of the

tools, it is nearly impossible to

determine which method is applica-

ble to your data.

Answers to the Exercises can be found

in Text S1.

Supporting Information

Text S1 Answers to Exercises.

(DOCX)
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N Piro RM, Di Cunto F (2007) Computational approaches to disease-gene prediction: rationale, classification and successes. FEBS
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Glossary

N Annotation – any additional information about a genetic sequence. Annotation types are extremely varied, including
functional, structural, regulatory, location-related, organism-specific, experimentally derived, predicted, etc.

N CNV, copy number variation – an alteration of the genome, which results in an individual having a non-standard number of
copies of one or more DNA sections.

N Gene prioritization – the process of arranging possible disease causing genes in order of their likelihood in disease
involvement.

N GWAS, genome wide association studies – the examination of all genes in the genome to correlate their variation to
phenotypic trait variation across individuals in a given population.

N Genetic linkage – tendency of certain genetic regions on the same chromosome to be inherited together more often than
expected due to limited recombination between them.

N Genetic marker – a DNA sequence variant with a known location that can be used to identify specific subsets of individuals
(cells, species, individual organisms, etc.).

N Homologue – a gene derived from a common ancestor with the reference gene. Generally, gene A is a homologue of gene B
if both are derived from a common ancestor.

N Linkage disequilibrium – tendency of certain genetic regions (not necessarily on the same chromosome) to be inherited
together more often that expected from considering their population frequencies. In reference to gene prioritization, this
phenomenon may complicate establishment of causal genes due to their consistent inheritance in complex with non-causal
genetic regions.

N Orthologues – homologous genes separated by a speciation event. Generally, gene A is an orthologue of gene B if A and B
are homologous, but reside in different species. Orthologues often perform the same general function in different organisms.

N Paralogues – homologous genes separated by a duplication event (often followed by copy differentiation). Generally, gene
A is a paralogue of gene B if A and B are homologous and reside in the same species. A and B can be functionally identical or,
on contraire, very different, but are often only slightly dissimilar.

N Pleiotropy – the influence of a single gene on a number of phenotypic traits.
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