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Abstract

Extracellular cues affect signaling, metabolic, and regulatory processes to elicit cellular responses. Although intracellular
signaling, metabolic, and regulatory networks are highly integrated, previous analyses have largely focused on independent
processes (e.g., metabolism) without considering the interplay that exists among them. However, there is evidence that
many diseases arise from multifunctional components with roles throughout signaling, metabolic, and regulatory networks.
Therefore, in this study, we propose a flux balance analysis (FBA)–based strategy, referred to as integrated dynamic FBA
(idFBA), that dynamically simulates cellular phenotypes arising from integrated networks. The idFBA framework requires an
integrated stoichiometric reconstruction of signaling, metabolic, and regulatory processes. It assumes quasi-steady-state
conditions for ‘‘fast’’ reactions and incorporates ‘‘slow’’ reactions into the stoichiometric formalism in a time-delayed
manner. To assess the efficacy of idFBA, we developed a prototypic integrated system comprising signaling, metabolic, and
regulatory processes with network features characteristic of actual systems and incorporating kinetic parameters based on
typical time scales observed in literature. idFBA was applied to the prototypic system, which was evaluated for different
environments and gene regulatory rules. In addition, we applied the idFBA framework in a similar manner to a
representative module of the single-cell eukaryotic organism Saccharomyces cerevisiae. Ultimately, idFBA facilitated
quantitative, dynamic analysis of systemic effects of extracellular cues on cellular phenotypes and generated comparable
time-course predictions when contrasted with an equivalent kinetic model. Since idFBA solves a linear programming
problem and does not require an exhaustive list of detailed kinetic parameters, it may be efficiently scaled to integrated
intracellular systems that incorporate signaling, metabolic, and regulatory processes at the genome scale, such as the S.
cerevisiae system presented here.
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Introduction

Intracellular biochemical networks are comprised of signaling,

metabolic, and regulatory processes. (Note that here we use

‘‘regulation’’ to refer specifically to transcriptional regulatory and

protein synthesis networks, and ‘‘signaling’’ to describe intracel-

lular reactions that drive responses to the extracellular environ-

ment.) Until recently, computational analyses focused indepen-

dently on signaling, metabolic, and regulatory networks. However,

high-throughput experimental data coupled with computational

systems analysis techniques have elucidated multifunctional

components involved in fundamental disease processes [1–4].

For example, signaling cascades are triggered by the presence of

extracellular stimuli and often result in activation of transcription

factors. These transcription factors function in regulatory

networks, regulating the transcription of associated genes and

the synthesis of various proteins used in signal transduction and

metabolism. Cellular metabolism is responsible for the production

of energy in the form of adenosine triphosphate (ATP) and the

synthesis of amino acids among other biomass precursors, all of

which are used elsewhere in the cell. Consequently, a key

challenge in the post-genomic era is to consider the interconnec-

tedness of biochemical networks and how extracellular cues affect

highly integrated intracellular processes to elicit cellular responses

such as growth or differentiation.

Dynamic [5,6] and structural analyses [7] have been employed

to quantitatively analyze large-scale biochemical network modules.

Typically, in dynamic analyses, a set of ordinary differential

equations (ODEs) describing the mass (balance) of each species in

the system is constructed. Despite its generality, the application of

this type of mechanistic model at a genome-scale is largely

considered impractical because it necessitates the consideration of

many pathways for which detailed reactions and their kinetic

parameters are not yet known. Structural analyses like flux balance

analysis (FBA) can calculate phenotypic properties of a biological

network like a steady-state flux (i.e., reaction rate) distribution

without detailed kinetic information. FBA requires a physiologi-

cally relevant objective function (e.g., in the case of metabolism,

maximizing the growth rate or maximizing ATP production),

mass-balance constraints (i.e., the stoichiometry of the reactions),

and constraints on reaction directions and thermodynamics. Since

the physicochemical constraints are readily defined (e.g., from the
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annotated genome sequence and measured enzymatic capacities),

FBA has been used effectively to study large-scale biochemical

networks, particularly metabolic networks [8]. However, in

general, the steady-state assumption of FBA prevents it from

generating dynamic concentration profiles of intracellular species.

An additional challenge to the modeling of integrated systems is

that time scales of intracellular biochemical networks generally

span multiple orders of magnitude. Signaling and metabolic

reactions typically occur rapidly. For example, kinase/phosphatase

reactions, protein conformational changes, and most metabolic

reactions occur on the order of fractions of a second to seconds [9].

By contrast, receptor internalization [10] and regulatory events

[11,12], as well as end-stage phenotypic properties such as cellular

growth or differentiation [13] can take several minutes to hours.

These multiple time-scales pose computational challenges for the

quantitative analysis of integrated systems. For instance, kinetic

model-based strategies suffer from a scarcity of values for kinetic

parameters as well as poor accuracy of known kinetic parameters

[14]. In addition, models of integrated systems are inherently

‘‘stiff,’’ i.e., they must include ‘‘fast’’ and ‘‘slow’’ reaction dynamics

simultaneously [15], and they are consequently difficult to simulate

and extremely sensitive to modeling errors [16]. Indeed, it is

challenging to apply FBA to models of integrated systems because

of the steady-state assumption intrinsic to FBA and the ‘‘fast’’ and

‘‘slow’’ reaction dynamics that coexist intracellularly. Due to these

complexities, previous models and analyses have focused primarily

on network modules rather than integrated systems. These include

kinetic, stoichiometric, and causality analyses of modular signaling

systems [17–20], metabolism [21–25], and regulation [26,27].

Some preliminary dynamic analyses of integrated systems have

been completed. Integrated analyses of regulatory and metabolic

networks revealed novel mechanisms in Saccharomyces cerevisiae and

Escherichia coli [28–30]. Metabolic reactions were represented

stoichiometrically, and regulatory reactions were captured by

representing gene regulatory rules using a Boolean formalism.

FBA was implemented assuming quasi-steady-state conditions, i.e.,

the typical time constant of metabolic transients was relatively

faster than the simulation time step for temporal integration of

phenotypic variables (e.g., biomass as a measure of cellular

growth). Recently, a kinetic model accounting for signal

transduction, metabolism, and regulation was constructed to

describe the response of S. cerevisiae to osmotic shock [31]. This

model connected specific outputs of one network (e.g., signaling) with

the inputs of another network (e.g., metabolism) in a ‘‘sequential’’

fashion. The complete set of interactions among the biochemical

networks, such as feedback and feed-forward of proteins expressed as

a function of the regulatory network to signaling and metabolism,

was not considered. Additionally, it required an exhaustive list of

kinetic parameters (e.g., rate constants) for the reactions, and time-

courses of individual modules (or collections of reactions) were

evaluated separately. As reconstructions of large-scale signaling and

metabolic networks are emerging, there is a growing need for the

development of a framework to study these networks from an

integrated perspective [9].

The purpose of this study was to develop a FBA-based

computational framework, termed integrated dynamic Flux

Balance Analysis (idFBA), for the quantitative, dynamic analysis

of cellular behaviors arising from signaling, metabolic, and

regulatory networks at the genome-scale. The idFBA framework

requires an integrated stoichiometric reconstruction of signaling,

metabolic, and regulatory processes. It assumes quasi-steady-state

conditions for ‘‘fast’’ reactions and incorporates ‘‘slow’’ reactions

in a time-delayed manner. To assess the efficacy of idFBA, we

developed a prototypic integrated system with topological features

characteristic of those observed in existing signaling, metabolic,

and regulatory network reconstructions as well as kinetic

parameters reported in literature. Additionally, we applied in a

similar manner the idFBA framework to a representative module

in S. cerevisiae as a validation of our approach. idFBA allowed for

quantitative, dynamic analysis of systemic effects of extracellular

cues on phenotypes of these systems and generated comparable

time-course predictions when contrasted with kinetic models.

Ultimately, we demonstrate how idFBA enables genome-scale

quantitative, dynamic analysis of integrated systems.

Methods

The idFBA framework facilitates the dynamic analysis of

cellular phenotypes on the genome scale arising from extracellular

cues. The systems evaluated as part of this study, including an

integrated prototype spanning signaling, metabolism, and regula-

tion, and a representative module from yeast are described here.

The implementation details of the framework are also delineated.

Biological Systems Evaluated: Prototypic Integrated
System

In order to assess the efficacy of idFBA, a prototypic integrated

system was constructed with characteristics typical of those observed

in published reconstructions of signaling, metabolic, and regulatory

networks (see Figures 1 and 2). Specifically, we generated

representative reactions with stoichiometric relationships and

estimated their associated rate constants from literature. Here we

briefly describe the reactions that are considered in each network

and their typical time scales. Detailed information on these reactions

and associated kinetic parameters is provided in Text S1.

Signal transduction. Signal transduction pathways govern a

cell’s response to extracellular stimuli, including, e.g., how a cell

adapts its transcriptional regulatory program in response to

Author Summary

Cellular systems comprise many diverse components and
component interactions spanning signal transduction,
transcriptional regulation, and metabolism. Although
signaling, metabolic, and regulatory activities are often
investigated independently of one another, there is
growing evidence that considerable interplay occurs
among them, and that the malfunctioning of this interplay
is associated with disease. The computational analysis of
integrated networks has been challenging because of the
varying time scales involved as well as the sheer
magnitude of such systems (e.g., the numbers of rate
constants involved). To this end, we developed a novel
computational framework called integrated dynamic flux
balance analysis (idFBA) that generates quantitative,
dynamic predictions of species concentrations spanning
signaling, regulatory, and metabolic processes. idFBA
extends an existing approach called flux balance analysis
(FBA) in that it couples ‘‘fast’’ and ‘‘slow’’ reactions, thereby
facilitating the study of whole-cell phenotypes and not just
sub-cellular network properties. We applied this frame-
work to a prototypic integrated system derived from
literature as well as a representative integrated yeast
module (the high-osmolarity glycerol [HOG] pathway) and
generated time-course predictions that matched with
available experimental data. By extending this framework
to larger-scale systems, phenotypic profiles of whole-cell
systems could be attained expeditiously.

Integrated Dynamic Flux Balance Analysis (idFBA)
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specific environmental cues. The prototypic signaling network is

comprised of a set of reactions that attempts to mimic what is

typical of biological signaling pathways such as phosphorelay and

kinase cascade modules. As shown in Figure 1 (top left), ligands

(L1, L2, and L3) bind to receptors (R1, R2, and R3) to form ligand-

receptor complexes (L1R1, L2R2, and L3R3). These complexes are

subsequently either internalized or involved in phosphorylation

events. Phosphorylation of signaling components takes place

through a series of reactions involving ATP and other activated

components. Any one signaling component can also activate

multiple other signaling components; this activity represents the

type of multi-functionality (e.g., crosstalk) that is often found in

biological systems [32]. Ultimately, activated transcription factors

(T1p, T2p, and T3p), that are representative of phosphorylated

proteins are the downstream effector molecules that result from

the signaling pathways.

The model of signal transduction consists of a total of 45 reactions.

As previously described, the rate constants for these reactions are

based on values observed for similar signaling reactions in literature

[10,18,31]. Most of the reactions in the prototypic signaling network

are ‘‘fast’’ relative to transcriptional regulation; steady-state

concentrations are achieved on the order of seconds. However,

there are some ‘‘slow’’ reactions that take on the order of several

minutes to hours to reach steady state. These include the

internalization of ligand-receptor complexes and inhibition and

hydrolysis of activated components (see Text S1). The typical order

of magnitude of the concentrations of signaling components in this

prototypic integrated system is micro-molar (mM) [18,31].

Metabolism. Metabolic pathways produce energy, amino

acids, and other precursors required for the growth and

maintenance of a cell. The metabolic reactions in the prototypic

system comprise pathways representative of glycolysis and amino

acid synthesis (see Figure 1, top right). The model contains 13

reactions, and the associated kinetic parameters were adapted

from previous work [21,22,31]. The biosynthetic requirements for

cellular growth (i.e., biomass production) were defined based on

the prototypic metabolic reactions defined in [29] (see Equation 1),

where H1 and H2 are representative of amino acids and F and G

are representative of metabolites.

vgrowth : 1:5Fz10Gz2H1z2H2z5ATP?Biomass ð1Þ

The maximum carbon utilization rate, Su
max, was set to

10.5 mmol/(g(dry weight)Nh) as in [24].

Figure 1. The prototypic integrated system. The prototypic integrated system, comprised of integrated signaling, metabolism, and regulation,
is illustrated. Solid boundary lines indicate the three functional network modules: signal transduction (upper left), metabolism (upper right), and
transcriptional regulation (bottom). Dashed lines between the modules represent interactions spanning multiple modules, arising from compounds
that simultaneously participate in reactions of different functional modules. The components and reactions within these networks are based on
published network reconstructions of actual biological systems. Primary roles of network components are shaded by color: blue for signaling, red for
metabolism, and green for regulation. Detailed reactions are presented in Text S1.
doi:10.1371/journal.pcbi.1000086.g001

Integrated Dynamic Flux Balance Analysis (idFBA)
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Most of the metabolic reactions in the model are ‘‘fast’’ and

achieve steady states in several seconds. The growth of biomass is

on the order of hours. The typical order of magnitude of

metabolite concentrations is milli-molar (mM) [22].

Regulation. Transcriptional regulatory networks control the

transcription state of a genome. In general, they describe the

connections between environmental cues and transcriptional

responses [1]. Inputs to regulatory networks are environmental

cues, including the presence and absence of extracellular

metabolites, reaction fluxes, and specific conditions such as pH

values. The internal reactions, often not known in chemical detail,

are represented by regulatory rules that describe the activation or

inhibition of gene transcription in response to these environmental

cues. The outputs are the synthesized protein products that result

through a combination of the signaling inputs acting upon the

regulatory rules as well as consequent transcription and

translation.

These networks have been mathematically described using a

Boolean formalism, in which the state of a gene is represented as

either transcribed or not transcribed in response to regulatory

signals [1]. This formalism employs Boolean operators such as

AND, OR, and NOT to describe the dependence of gene

transcription upon extracellular metabolites and transcription

factors as in [29]. Recently, a formalism that represents such

regulatory rules in matrix form was developed, allowing for the

systemic characterization of the properties of a transcriptional

regulatory network and facilitating the computation of the

transcriptional state of the genome under any given set of

environmental conditions [1]. Furthermore, this ‘‘quasi-stoichio-

metric’’ matrix formalism enables regulatory networks to be

represented alongside stoichiometric representations of signaling

and metabolic networks: if a gene is repressed, fluxes of reactions

involving the corresponding protein product are constrained to

zero.

Studies on the dynamic behavior of regulation have involved

constructing mass-balanced models of messenger RNA (mRNA)

transcripts, ribosomes, and proteasomes in order to quantitatively

predict protein synthesis [26,31]. However, these approaches

require estimation of rate constants that are difficult to measure

experimentally. Furthermore, these descriptions of regulation are

not complete because they do not account for the amino acids

produced from metabolism and required for protein synthesis. In

order to effectively couple regulation with other functional cellular

modules, a more complete representation of the dynamic behavior

of protein synthesis that facilitates balancing of input/output

relationships across network modules is required.

The goal of the idFBA approach presented here, therefore, is to

quantitatively account for the production and use of proteins

throughout the cell. The transcriptional regulatory network is

comprised of transcription factors that associate with specific

genes, leading to the activation or inactivation of gene transcrip-

tion. Activated genes yield proteins that participate in various

intracellular signaling, metabolic, and regulatory reactions.

Additionally, we considered amino acid requirements for protein

synthesis: typically 30–80 moles of amino acids were required for

every mole of protein, as shown in Table 1 [33]. Kinetics of

protein synthesis were modeled as a second-order reaction

between two amino acids H1 and H2 (kpoly[H1][H2]), and the

kinetic parameter kpoly was estimated by considering a typical time

constant for protein production based on [28]. The concentrations

of mRNA transcripts, ribosomes, and proteasomes were assumed

to be constant, and their effects on protein synthesis were captured

by kpoly (for the purposes of our model, we assumed that only

amino acids could contribute mass to protein production).

Figure 2. The degree of interconnectivity across signaling, metabolism, and regulation in the prototypic integrated system. Network
components with overlapping functions across the three functional network modules of signal transduction, metabolism, and transcriptional
regulation are illustrated. Primary roles of the network components are shaded by color: blue for signaling, red for metabolism, and green for
regulation. (See Table 3 for a listing of the input/output relationships within the prototype.)
doi:10.1371/journal.pcbi.1000086.g002

Integrated Dynamic Flux Balance Analysis (idFBA)
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The prototypic transcriptional regulatory network presented

here is comprised of 18 genes (see Figure 1, bottom). Three

transcription factors are inputs to the system, and 18 protein

products with functions in metabolism and signaling are outputs of

the network. Of the 18 genes, six are regulated by the presence or

absence of the transcription factors. The remaining genes are

defined to be constitutively active. The transcriptional regulatory

rules for the six regulated genes are described using a Boolean

formalism, as in [1] and [29]. For example, the regulatory rule in

Equation 2 implies that Gene ER3 is expressed only if both T1p

and T2p are present.

Gene ER3~IF T1p AND T2pð Þ ð2Þ

The complete set of transcriptional regulatory rules for the

prototypic integrated system is defined in Table 2. For simplicity,

the amino acid requirements for protein synthesis are only

considered for the proteins indicated in Table 1; however, similar

requirements could be implemented as desired.

Interactions and mixed-time scale model. As previously

described, a cellular phenotype ultimately arises from complex

interactions of network components across signaling, metabolism,

and regulation. The prototypic integrated system described

above was designed to exhibit the interconnectedness seen in

actual cellular systems, as illustrated by the input/output

relationships between the three functional modules of

signaling, metabolism, and regulation (see Figure 2 as well as

Table 3). Furthermore, kinetic rate constants for the prototypic

system were collected from representative reactions in literature

(as reported in Text S1), and consequently the prototypic

system exhibits dynamics across multiple time scales as seen

in vivo.

Biological Systems Evaluated: Representative Module in
S. cerevisiae

To assess the applicability of idFBA to actual biological systems, a

representative integrated module in S. cerevisiae, the prototypic single-

cell eukaryote, was investigated. This module was comprised of key

aspects of yeast osmoregulation, i.e., the active processes with which

yeast cells monitor and adjust pressure and control their shape,

turgor, and water content in response to extracellular conditions

[34]. The signaling, metabolic, and regulatory activities included in

this module are illustrated in Figure 3.

Specifically, we reconstructed a portion of the high-osmolarity

glycerol response (HOG) pathway, one of four major mitogen-

activated protein (MAP) kinase cascades in S. cerevisiae, from

existing literature. The HOG MAP kinase pathway plays a pivotal

role in the adaptation of S. cerevisiae to conditions of high external

osmolarity [35]. For example, yeast cells deficient in this pathway

cannot proliferate on media containing high levels of osmotically

active molecules [34–36]. Extensive genetic analysis has previously

been performed, leading to experimental identification of many

activating and inhibiting components of the HOG signaling

pathway [37]. In general, yeast cells use the HOG pathway to

accumulate glycerol under hyperosmotic conditions, to balance

the osmotic pressure with the extracellular environment. Osmotic

stress signals are communicated via the HOG signaling pathway,

leading to the activation of Hot1 and other transcription factors.

These transcription factors subsequently promote the expression of

glycolytic enzymes, such as Stl1, Gpd1, and Gpp2, thereby

catalyzing metabolic reactions leading to increased glycerol

production.

Table 2. Regulatory rules for the transcriptional regulatory
network of the prototypic integrated system.

Expression of a gene Regulation

EH2
If (T1p)

ER1
If (T2p)

ER2
If (T3p)

ER3
If ((T1p) AND (T2p))

ES1
If ((T1p) AND (T2p) AND
(T3p))

ES2
If ((T1p) AND (T3p))

A total of six genes are regulated by three transcription factors in the prototypic
regulatory system. The Boolean regulatory rules for these six genes over these
three transcription factors are presented.
doi:10.1371/journal.pcbi.1000086.t002

Table 1. Amino acid requirements (H1 and H2) for synthesis
of protein (aiH1+biH2 R Proteini).

Proteini ai bi Proteini ai bi

EH2
10 20 ER1

15 15

ER2
10 25 ER3

20 10

ES1
13 18 ES2

18 13

R1 20 40 S1 30 30

T1 25 35 IS1 35 35

R2 25 45 S2 30 40

T2 25 55 IS2 35 45

R3 15 55 S3 15 25

T3 20 20 IS3 10 30

The variables EH2
, ER1

, ER3
, ES1

, and ES2
represent the enzymes for the

reactions synthesizing H2, R1, R3, S1, and S2, respectively, within the metabolic
network. The other proteins can be found in Figure 1 and participate in
signaling functions.
doi:10.1371/journal.pcbi.1000086.t001

Table 3. Input/output relationships in the prototypic
integrated system.

Input Output Time scale

Signal
transduction

Ligands
Energy
Proteins

Activated
transcription factors

Fast & Slow

Metabolism Carbon
Proteins

Energy
Amino acids
Biomass
Proteins

Fast & Slow

Transcriptional
regulation

Activated
transcription factors
Amino acids

Slow

The degree of interconnectivity across signaling, metabolism, and regulation in
the prototypic integrated system is summarized (see Figure 2 for a graphical
depiction). Inputs to and outputs from each of the three biochemical networks
contained within the prototypic integrated system are noted. Ultimately, the
prototype considers feedback and feed-forward across signaling, metabolism,
and regulation.
doi:10.1371/journal.pcbi.1000086.t003

Integrated Dynamic Flux Balance Analysis (idFBA)
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As this model serves an illustrative purpose here, the HOG

pathway was restricted to the key set of reactions necessary for its

phenotypic function. Specifically, 26 reactions spanning 48

components were assimilated in stoichiometric matrix form,

including 16 reactions across 33 components in signaling; a single

transcription factor activating three regulated genes; and seven

reactions across 12 components in metabolism. Inputs of this

module included osmotic shock (signaling) and glucose (metab-

olism), and outputs included glycerol (metabolism). Key reactions

connecting the underlying signaling, metabolic, and regulatory

processes were the translocation of the kinase Hog1 into the

nucleus for the activation of transcription factor Hot1 (signal

transduction and metabolism), and the synthesis of metabolic

enzymes Stl1, Gpd1, and Gpp2 for reactions involved in the

conversion of glucose to glycerol (transcriptional regulation and

metabolism). Other reactions in the HOG pathway as

previously experimentally characterized (e.g., inhibition of

Hog1 by phosphatases Ptp2, Ptp3, and Ptc1, thereby allowing

the cell to keep the HOG pathway in check and maintain

osmotic balance) were excluded from the reconstruction used

here for simplicity.

As with the prototypic system, the representative integrated

yeast module was implemented using the idFBA framework as well

as a kinetic model similar to the one in [31], and the two

approaches were contrasted for validation purposes. Rate

constants describing the kinetics of the system were culled from

available experimental data, notably [31]. For complete details of

the reconstructed yeast HOG pathway, including listings of

reactions, rate constants, and kinetic equations, see Text S2.

Flux Balance Analysis
One modeling technique for evaluating cellular phenotypes is

called flux balance analysis (FBA). FBA is a constraints-based

approach that attempts to derive a phenotype in the form of a

steady-state flux distribution for the reactions in a given biological

system. FBA is based on the principle that all expressed

phenotypes of a given biological system must satisfy basic

constraints that are imposed on the functions of all cells

[8,38,39]. These constraints are physico-chemical (i.e., physical

laws like conservation of mass and energy); topological (i.e., spatial

restrictions on metabolites within cellular compartments); and

environmental (i.e., nutrient availability, pH, and temperature, all

Figure 3. A representative integrated module in S. cerevisiae. A representative integrated module in S. cerevisiae, the high osmolarity glycerol
(HOG) pathway, is illustrated. Signaling reactions appear in the upper left of the figure, metabolic reactions in the upper right, and regulatory
reactions in the bottom. The components and reactions within these networks are based on published literature on the S. cerevisiae HOG pathway.
Detailed components and reactions are presented in Text S2.
doi:10.1371/journal.pcbi.1000086.g003

Integrated Dynamic Flux Balance Analysis (idFBA)
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of which vary over time and space) [8,20,38]. Because FBA yields

fluxes rather than concentrations, limited kinetic information is

required for its implementation.

FBA requires a stoichiometric reconstruction of the biochemical

network of interest. An annotated genome cataloging which

reactions specific enzymes catalyze is the basis for a detailed

description of a network’s components and interactions [40]. This

biochemical network reconstruction can be represented in matrix

form, S, where S is of size m components6n reactions and is

comprised of stoichiometric coefficients that capture the underly-

ing reactions of the biochemical network.

After the network is reconstructed, fluxes are calculated by

deriving a dynamic mass balance for all the components within the

system [7,38]. Specifically, at steady state, the change in the

amount of a component C over time t across all reactions within

the system must be zero. Consequently, mass balance is defined in

terms of the flux through each reaction and the stoichiometry of

that reaction, and a set of coupled ordinary differential equations

relating the roles of reactions with components may be written in

the form of Equation 3.

dC

dt
~S:v~0 ð3Þ

Here, S denotes the m6n matrix of stoichiometric coefficients and

v denotes the vector of n reaction fluxes, with each element (row)

of the n-row vector v corresponding to the flux in the associated

reaction (column) in S. The vector C is a m-row vector defining the

concentrations of the m components within the system. This mass

balance represents the principal constraint in FBA and defines a

feasible solution space for the set of fluxes. Additional constraints

such as thermodynamics can be incorporated into FBA as well,

further narrowing the possible distribution of fluxes [24,41].

Equation 3 generally leads to an under-determined system

because the number of components tends to be far fewer than the

number of reactions. Even with additional constraints, FBA usually

requires performing an optimization with linear programming (LP)

to identify a particular flux distribution. In other words, FBA

involves optimizing the set of fluxes such that the flux through a

particular cellular reaction is maximized (or minimized). A cellular

objective represents what a given biological system has optimized

toward through evolutionary pressures [42]. It is defined as a linear

equation (Equation 4), where c is the vector that defines the

coefficients, or weights, for each of the fluxes in v [41].

Z~cT:v ð4Þ

This general representation of Z, wherein the elements of c can be

easily manipulated, enables the formulation of many diverse

objectives. Common choices for cellular objective functions in

models of metabolic networks include biomass production [24,43],

energy [44], and byproduct production [45].

Ultimately, FBA attempts to solve the LP problem in Equation 5

to find a physiologically-relevant cellular phenotype in the form of

a flux distribution v that optimizes Z while lying in the bounded

solution space defined by a set of physio-chemical, topological, and

environmental constraints.

max
v

cT:v

subject to :
dC
dt

~S:v~0

vlbƒvƒvlb

ð5Þ

Note that vlb and vub are the lower and upper bounds on the

reaction fluxes, respectively. For example, thermodynamic con-

straints or reaction directionalities can be incorporated by setting a

given vlb = 0.

Though the steady-state assumption of FBA precludes the

calculation of dynamic concentrations of the network components,

dynamic profiles of cellular phenotypes (e.g., cellular growth or

differentiation) have been successfully predicted with a quasi-

steady-state assumption [24,25,29]. This assumption involves

discretizing the time domain into intervals, and (1) solving the

LP problem contained within FBA at the beginning of each

interval, and (2) based on the resultant flux data, solving a system

of ODEs for concentrations over time within each interval.

Applications of FBA to dynamic simulations have focused on

metabolic networks because time constants of metabolic transients

are typically very rapid when contrasted with time constants

characterizing whole-cell phenotypic changes. Exceptions include

the incorporation of gene regulatory events, which are much

slower than metabolic reactions, into FBA for time-course

simulation of metabolic reactions [28,29]. In these cases, the

regulatory constraints were described as Boolean operators and

imposed in a time-delayed manner. However, these examples are

limited to metabolic and regulatory processes and do not consider

changes in the mass balance (e.g., protein synthesis) arising from

the interactions between metabolic and regulatory processes and

signaling systems. Consequently, quantitative, dynamic analyses of

integrated cellular systems have not been explored in detail,

limiting the characterization of whole-cell function.

idFBA: An FBA-Based Approach for the Dynamic
Simulation of Integrated Systems

As previously described, the stoichiometric reconstruction

enforces explicit, chemically-consistent accounting of the compo-

nents and reactions underlying a biochemical network, and

facilitates the systematic analysis of fundamental network proper-

ties with FBA and associated analysis techniques [32]. The

stoichiometric reconstruction and FBA are particularly applicable

to large-scale networks, for which a lack of kinetic data (e.g., rate

constants) makes kinetic-based approaches impractical. Indeed,

stoichiometric reconstruction and FBA have been applied

successfully to large-scale metabolic and signaling networks,

elucidating characteristics of these networks [8,9].

Therefore, integrating signaling reactions with metabolic and

regulatory reactions using FBA can facilitate the dynamic analysis

of cellular phenotypes arising from environmental cues and

provide a complete snapshot of cellular sysems. However, as

previously described, applying FBA directly to integrated networks

is challenging. First, unlike metabolic systems in which objectives

for the FBA formulation are often experimentally characterized

(e.g., the production of biomass), objectives of signaling and

regulatory systems are not well-defined. Second, integrated

networks are comprised of reactions with mixed time scales (e.g.,

signaling reactions are generally much faster than regulatory

reactions), and FBA has previously been applied only to fast

reactions for which steady-state assumptions hold.

Here we describe the idFBA framework, including how we

address these challenges. We use the prototypic integrated system

as the basis for this discussion.

FBA-based representation of signaling networks. As

previously described, we represent signaling networks using a

stoichiometric formalism, and we calculate a flux distribution with

FBA (see Equation 5). Transcription factors activate transcrip-

tional regulatory programs in response to extracellular cues.

Consequently, one choice for the objective of a signaling network

Integrated Dynamic Flux Balance Analysis (idFBA)

PLoS Computational Biology | www.ploscompbiol.org 7 May 2008 | Volume 4 | Issue 5 | e1000086



is maximizing the activation of transcription factors. However, as

illustrated for the prototypic signaling network depicted in Figure 4,

this objective by itself fails to generalize to a feasible flux distribution.

Instead, maximizing the activation of the transcription factor T1p

consistently yields zero fluxes for the key pathway reactions denoted

by dashed lines, including receptor internalization, pathway

inhibition, and transcription factor degradation.

To address this challenge, we model the objective of a signaling

network by introducing a binary parameter, represented as the

matrix I(Ri, t). I(Ri, t) indicates whether reaction Ri is to be

included in the system at time t, given an underlying network

objective. It is constructed on the basis of a set of rules and other

parameters (e.g., the time that is required for receptor internal-

ization or protein synthesis and degradation, etc.) that a user

specifies as consistent with data about the given system. For a

given reaction Ri at time t, I(Ri, t) is multiplied by the upper bound

of the associated reaction flux vi. If a particular reaction is included

in the network at time t based on the user-defined rules and

parameters (i.e., it has a non-zero flux at that time), the binary

parameters I(Ri, t) for the reactions sharing components with the

included reaction are set to zero at that time point and/or at future

time points, depending on the specified time delays, indicating that

they are not included in the network. Multiplying these zero-values

by the upper bounds of the associated reaction fluxes nets a new

upper bound of zero. As a consequence, fluxes through the

reactions sharing components with an included reaction are set to

zero at specific times in order to drive all the flux through the

included reaction. In this way, the hypothesized network objective

is maximized, all the while ensuring that flux is driven through all

‘‘active’’ reactions. For example, in Figure 4, including the

receptor internalization reaction (L1R1 R L1R1,int) implies that the

binary variables for the reactions (L1R1+S1 R L1R1 ? S1) and

(L1R1 R L1+R1) are set to zero. In this manner, a feasible flux

distribution for a signaling network is obtained by maximizing for

the activation of transcription factors. Importantly, the binary

parameter I(Ri, t) can take into account time delays associated with

‘‘slow’’ reactions, as described below.
Incorporation of slow reactions into FBA. In addition, to

characterize mixed time-scale phenomena using FBA, we

implement idFBA by assuming quasi-steady-state conditions for

‘‘fast’’ reactions and incorporating ‘‘slow’’ reactions into the

stoichiometric matrix in a time-delayed manner as in [29]. In

other words, we approximate continuous phenomena occurring

over long time as instantaneous events at particular time points.

Two parameters are used to implement this approach: time-delay

(tdelay), indicating after what time a ‘‘slow’’ reaction is considered

an ‘‘active’’ steady-state constraint in the stoichiometric matrix;

and reaction duration (tduration), indicating how long the ‘‘slow’’

reaction remains as the effective constraint once it is activated. In

the prototypic integrated system, ‘‘slow’’ reactions include protein

degradation, pathway inhibition, and receptor internalization in

the signaling network; the uptake of a carbon source and

production of biomass in the metabolic network; and the

synthesis of proteins in the transcriptional regulatory network.
Dynamic simulation of integrated systems. The

optimized flux distribution that results from FBA is used to

predict the time-course of phenotypic variables. The time-scale

separation between ‘‘slow’’ and ‘‘fast’’ reactions is determined by

the discretization of the time domain. Specifically, a reaction that

reaches steady state or that produces a product at a specified

threshold concentration within a single time step is considered

‘‘fast.’’ ‘‘Slow’’ reactions are those that take longer than the unit

time interval to attain steady state.

Ultimately, the implementation of the idFBA framework can be

described as a seven-step process (see Figure 5):

1. Discretize the time window into small steps, Dt. For example, in

the case of the prototypic integrated system, the time step was

specified as 0.1 h as described in ‘‘Results’’ below.

2. Initialize a Rs6tN incidence matrix (I) denoting which reactions

participate during which time steps (Equation 6). Here Rs

represents the number of reactions within the system and tN the

number of time intervals (see Equation 6).

I~

0 1 � � � 0

1 0 � � � 1

..

. ..
.

P
..
.

1 1 � � � 0

2
66664

3
77775 ð6Þ

Each row of I(Ri, t) denotes a reaction Ri, and each column

denotes a time step Dt. The coefficients of I, at the intersection

of reactions and time steps, are binary parameters indicating

whether a given reaction participates during a given time step.

A ‘‘0’’ denotes that a given reaction does not participate in the

system at the specified time step, whereas a ‘‘1’’ denotes that

the reaction does participate in the system at that time step.

Although I is difficult to generate for an actual biological

system given the limitations of available experimental technol-

ogies, it facilitates a best-guess of the system dynamics based on

available literature. For example, for any given system, I can be

derived from experimental data and assumptions inputted into

the idFBA framework.

3. For each reaction in the system Ri, multiply the corresponding

coefficient I(Ri, t) by the flux bounds of the reaction. By

specifying I(Ri, t) = 0 for excluded reactions, the fluxes of these

reactions are set to zero when a ‘‘slow’’ reaction is included.

For example, consider the signaling network shown in Figure 4.

If the internalization reaction [L1R1] R [L1R1,int] is included

Figure 4. A representative signaling pathway in the prototypic
integrated system. One of the pathways of the prototypic signaling
network is illustrated. Here, solid black lines represent reactions that
have non-zero fluxes, while dotted red lines represent reactions that
have zero fluxes when the production of the activated transcription
factor T1p is maximized as the pathway objective.
doi:10.1371/journal.pcbi.1000086.g004
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and ‘‘active’’ and the objective of the network is maximizing

the production of the activated transcription factor T1p, fluxes

of the excluded reactions [L1R1]+[S1] R [L1R1 ? S1] and

[L1R1] R [L1]+[R1] are set to zero at the associated time steps.

4. Solve Equation 5 for the optimized flux vector, v, with the

updated constraints, for the start of the current time step, tcurrent.

5. Given the optimized flux vector for tcurrent, integrate the

phenotype variable, Xp, over the time step Dt (Equation 7).

Xp tzDtð Þ~Xp tð Þz
ðtzDt

t

dXp t; vð Þ
dt

dt ð7Þ

Here we consider two phenotype variables, namely cell density

(X) and substrate concentration (Sc). These terms are given by

Equations 8 and 9, where m is a specific growth rate, and Su is

the uptake rate for the carbon source.

dX

dt
~m:X ð8Þ

dSc

dt
~{Su

:X ð9Þ

6. Update I based on v at the current time step tcurrent given the

time-delay and reaction duration parameters (tdelay and tduration,

respectively) (Equation 10).

I Ri,tð Þ~
0, tvtcurrentztdelay

1, tcurrentztdelayƒtƒtcurrentztdelayztduration

�
ð10Þ

Specifically, as previously described, the dynamic parameters

tdelay and tduration approximate the progression of ‘‘slow’’ reactions

as steady-state constraints in the idFBA framework. The

parameter tdelay describes when a particular ‘‘slow’’ reaction

appears as a steady-state constraint in the stoichiometric matrix

and instantaneously becomes an ‘‘active’’ reaction. The param-

eter tduration indicates how long the ‘‘slow’’ reaction is kept as a

constraint in the stoichiometric matrix and maintained active.

For example, in the transcriptional regulatory network, if the

reaction flux of a transcription factor exceeds a specified

threshold, the transcription of its target gene is incorporated into

the matrix after a defined time (tdelay) (here tdelay mimics the delay

for protein synthesis, including transcription and translation), and

the protein is assumed to remain in the system until it degrades (a

period of time captured by tduration).

7. Repeat steps 3 through 6. The optimized flux vector, v, at the

current time step tcurrent imposes new constraints on the internal

fluxes of the next time step. These constraints include ligand

binding rates, carbon uptake rate, and protein production rates.

As described above, implementing the idFBA framework in this

manner dynamically simulates cellular phenotypes arising from

Figure 5. The idFBA framework. The key steps in the idFBA framework are summarized. Specifically, the time window is discretized into small
steps, Dt. FBA is used to calculate a flux distribution through the network (1), phenotypic variables such as cell density at timepoint tcurrent are
evaluated by integrating the resultant flux values over the time step Dt (2), and the fluxes and phenotypic variables are used to update constraints for
the next time step (3). Part of step 3 involves updating an incidence matrix (I) denoting which reactions participate during which time steps of the
simulation.
doi:10.1371/journal.pcbi.1000086.g005
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integrated biochemical networks. We describe the results for a

prototypic integrated system as well as a representative yeast

module below.

Technical implementation details. idFBA was implemented on

the prototypic and yeast integrated systems in MATLAB v. 7.5

(part of the MathWorks R2007b release package).

Kinetic Modeling
To validate the results of the idFBA framework, we developed

kinetic models of the prototypic integrated system and the

representative integrated yeast module. As previously stated,

kinetic models describe the temporal changes of compound

concentrations due to production, degradation, modification, or

transport [46]. In other words, the rate of change of the

concentration Ci of the ith compound within a system may be

described as in Equation 11 below [46]. Here Sij is the

stoichiometric coefficient, vj is the rate of the jth reaction, and n

is the total number of reactions in the network. Reactions that

produce or consume the ith compound have non-zero stoichio-

metric coefficients and are therefore included in the ith differential

equation.

dCi

dt
~
Xn

j~1

Sijvj ð11Þ

The reaction rates for the network, v, are functions of component

concentrations, such as the concentrations of enzymes (e.g., kinases

and phosphatases within a signaling network), as well as

parameters including kinetic constants. These rates are described

by different types of kinetic laws. For example, Michaelis-Menten

expressions can be used to model enzyme kinetics [47,48].

Our ODE models of the prototypic integrated system and

representative integrated yeast module were constructed from the

underlying reaction network, with rate constants (i.e., kinetic

parameters) obtained from literature. The systems of ODEs were

continuously solved over the time window of interest (equivalent to

that of the corresponding idFBA implementations). Details of these

models, including the kinetic equations, kinetic constants, and

ordinary differential equations, are presented in Text S1 and S2.

It is important to note that idFBA and kinetic modeling

constitute two independent approaches. The idFBA framework

involves performing an optimization, over multiple discretized

time steps, to approximate the dynamics of a system with time-

delay information from strictly stoichiometric constraints. By

contrast, a kinetic model requires all of the kinetic parameters and,

by continuously solving a set of ordinary differential equations,

yields a more detailed portrait of the system dynamics. We attempt

to illustrate here how the idFBA framework, with significantly

fewer parameters, approximates the system dynamics observed

through much more detailed ODE models.

Technical implementation details. The kinetic models of the

integrated prototypic system and representative integrated yeast

module were implemented using the ode23tb ODE solver in

MATLAB v. 7.5 (part of the MathWorks R2007b release

package). The ode23tb solver is an implementation of an implicit

Runge-Kutta formula, comprised of a trapezoidal rule followed by

a backward differentiation formula of order two. The solver

compromises efficiency for crude tolerances [49].

Results

Using the prototypic integrated system shown in Figure 1,

predictions of the dynamic characteristics of phenotypic variables

(i.e., cellular growth and substrate consumption) were made for

different conditions. We demonstrate how ligand availability and

changes in regulatory rules affect the phenotype behavior. We also

assess the suitability of our approach by comparing the idFBA

results with a corresponding kinetic model of the same system.

Furthermore, we summarize results for a representative integrated

yeast module.

Prototypic Integrated System
Implementation details. The specific implementation of the

idFBA framework on the prototypic integrated system is detailed

below.

1. The sample time, Dt, was set to 0.1 h as in [24]. This time step

was chosen to account for typical reaction kinetics across

different cellular processes.

2. The maximum carbon uptake rate, Smax
u , was set to

0:003 mmol
gDCW :s as is observed in E. coli [24].

3. Constraints on the uptake of substrates from the extracellular

environment were required in order to identify an optimal flux

distribution through the metabolic network. These constraints

are detailed in Text S1. Similarly, ligand binding rates were

necessary to calculate a flux distribution (facilitating the

evaluation of ‘‘active’’ and ‘‘inactive’’ species) through the

signaling network. We assumed rate constants for the ligand

binding reactions (kS1

1 , kS2

1 , and kS3

1 ) as well as ligand and

receptor concentrations that were similar to published

parameters [10,18,31]. Thus, ligand binding rates were

evaluated (e.g., vS1

1 ~kS1

1 L1½ � R1½ �).
4. Temporal parameters (namely tdelay and tduration) were specified

to account for ‘‘slow’’ reactions. The ‘‘slow’’ reactions were

allowed to participate in the reaction network after a delay tdelay

and with duration tduration. The following rules were applied at

time t:

a. The binary variable I(Ri, t) corresponding to the reaction Ri

describing the synthesis of a particular protein was set to 1

(indicating the reaction was ‘‘active’’) if the flux of the

activated transcription factor exceeded a specified threshold

(0:01 mM
s

as in [29]). Because FBA does not directly compute

intracellular concentrations, we used specific flux values as

thresholds here. There exists precedent in the literature for

this approach [29,50]. For example, if the stability of a given

transcription factor is low, the flux corresponding to the

activation of that transcription factor would have to be very

high in order for transcriptional effects to occur. Furthermore,

experimental data recently demonstrated that, for any gene,

the amount of protein synthesized correlates well with the

transcription rate up to about one-third of the maximal

transcription rate for that gene [51,52]. Beyond that point,

much greater noise in protein production was observed as a

function of gene transcription rate. Consequently, an

experimentally-measured gene transcription rate (or a rate-

based threshold) may serve as an appropriate quantitative

predictor of whether a reaction catalyzed by the correspond-

ing protein product should be allowed to occur at a given time

step within the idFBA framework. Similarly, specific meta-

bolic reaction fluxes have been experimentally measured

under multiple conditions and used to characterize flux

thresholds that must be attained in order for cell growth (and

other phenotypes) to occur (see [53] for an example of how

this was recently completed in Trypanosoma brucei). All these

data support the use of flux thresholds in idFBA, and these

Integrated Dynamic Flux Balance Analysis (idFBA)
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types of measurements would serve as inputs to the idFBA

framework in future implementations.

b. If the flux of a phosphorylated component was not zero (i.e., if

the component was considered to be in an ‘‘active state’’),

elements of I for inhibition and degradation of the component

were set to 1 (indicating these reactions were ‘‘active’’) after

specified time delays (tdelay) and with durations (tduration) of one

sample time. This particular tduration was chosen since the

steady-state constraints of these reactions impose complete

depletion of available reactants within the current sample time

tcurrent. Similarly, elements of I for the internalization of ligand-

receptor complexes were set to 0 (indicating these reactions

were ‘‘inactive’’) after a time delay accounting for the time it

takes for the complexes to become internalized.

5. The objective functions of the resultant FBA formulations

included maximizing the production of: (1) activated transcrip-

tion factors in the signaling network; (2) the set of metabolites

that produce biomass in the metabolic network; and (3) the

amino acids, in relative ratios, that are necessary for the

synthesis of proteins by the transcriptional regulatory network.

The fluxes for the activation of transcription factors are

vS1

9 , vS2

9 , and vS3

9 (see Text S1). Biomass production

(Equation 12, top) and protein synthesis (Equation 12, bottom)

were approximated as the single reaction in Equation 13,

where ai and bi are specified in Table 1.

1:5Fz10Gz2H1z2H2z5ATP?Biomassz5ADP

aiH1zbiH2?Proteini

�
ð12Þ

1:5Fz10Gz 2z
X

i

ai

 !
H1z 2z

X
i

bi

 !
H2z

5ATP?Biomassz5ADPzProteini

ð13Þ

Hence the objective function for the prototypic integrated

system corresponded to Equation 14.

max vS1

9 zvS2

9 zvS3

9 zvm
80

� �
ð14Þ

The optimized fluxes for the production of activated transcrip-

tion factors (vS1

9 , vS2

9 , and vS3

9 ) were indicative of the activation of

associated genes and vm
80 was used for calculating cell growth and

carbon uptake according to Equations (8) and (9) with m~vm
80 . The

flux vm
80 at a single time step further constrained the protein

synthesis reaction fluxes during the subsequent time step.

As we describe subsequently (see ‘‘Discussion’’), a method called

Biological Objective Solution Search (BOSS) was recently

developed for the inference of an objective function for a

biological system from its underlying network stoichiometry as

well as experimentally-measured flux distribution [54]. Therefore,

aside from approximating the objective function in the manner

described above, utilizing BOSS to identify objectives for the

signaling, regulatory, and metabolic networks would facilitate the

identification of an in silico flux distribution for the integrated

system, a key step in the idFBA framework.

Evaluating effects of environmental cues. To evaluate the

utility of the idFBA framework, the phenotypic characteristics of

the prototypic integrated system were evaluated under a variety of

different conditions. First, the dependence of cellular growth on

different combinations of input ligands L1, L2, and L3 was

assessed. Table 4 shows the parameters tdelay and tduration

representing the typical temporal characteristics of ‘‘slow’’

reactions [10,18,28].

We first simulated the case in which the concentration of all

three ligands was 2.0 mM. The results are shown in Figure 6A

(blue solid lines). The carbon source was completely depleted by

t = 8.7 h from an initial concentration (or ‘‘dose’’) of 10.5 mM.

The production of the amino acid H2 was catalyzed by the enzyme

EH2
with an initial delay of tdelay = 40 min, and consequently,

cellular growth was sluggish during this initial period. Two periods

of no growth (i.e., at approximately t = 7 h and t = 8.25 h)

corresponded to times when enzymes that catalyze metabolic

reactions and protein synthesis were unavailable. For example, the

first phase of no growth at t = 7 h was due to the degradation (and

therefore inactivity) of transcription factors regulating key factors

involved in biomass production, and the second at t = 8.25 h was

caused by the degradation of phosphorylated proteins (e.g., S1p)

that activate transcription factors leading to protein synthesis.

Although these types of on/off descriptions are not precise, they

serve as useful approximations of the phenotypic behavior over an

entire time course.

We subsequently simulated the case in which the ligands were

temporarily unavailable for cellular uptake during the evaluated

time-course (see Figure 6(A), red dotted lines). Specifically, no

ligand was available for cellular uptake at 6.0 h#t#6.5 h.

Consequently, a no-growth period was observed at about 7 h.

All transcription factors generated before t = 6 h were degraded by

this time, preventing the amino acid H2 from being synthesized for

a period of 0.5 h (i.e., until the ligand supply was restored). The

cell also stopped growing at about t = 8.2 h. The transcription

factor T3p, which activates the synthesis of enzyme ES2
in the

prototypic integrated system, was not produced, leading to a lack

of synthesis of the protein S1. Additionally, the simultaneous

absence of all ligands led to the inactivation of S1p (S1) and the

consequent lack of phosphorylation of T3 as illustrated in

Figure 6(B). Note that, by contrast, both T1p and T2p have

additional activation pathways (vS1S2

1 , vS1S2

2 , vS2S3

1 , and vS2S3

2 ), and

the genes whose expression is dependent upon these transcription

factors were still transcribed.

We also tested the effects of individual ligands or groups of ligands

on cell growth by evaluating the phenotypic characteristics for the

Table 4. ‘‘Slow’’ reactions in the prototypic integrated system.

Description Reactions
Excluded
reactions

tdel

(min)
tdur

(min)

Degradation of phosphorylated
compounds

vS1

10 ,vS2

10 ,vS3

10
— — 40

Degradation of transcription factors vS1

11 ,vS2

11 ,vS3

11
— — 40

Production and degradation of
additional proteins

vR — 40 40

Internalization of ligand receptor
complexes

vS1

3 ,vS2

3 ,vS3

3 vS1

4 ,vS2

4 ,vS3

4 ,

vS1

2 ,vS2

2 ,vS3

2

40 6

Inhibitory reactions vS1

13 ,vS2

13 ,vS3

13 vS1

7 ,vS2

7 ,vS3

7 ,

vS1

10 ,vS2

10 ,vS3

10

40 6

The superscript S denotes signaling reactions. For example, S1 represents the
set of reactions associated with the ligand L1 (See Figure 1). The fluxes of
excluded reactions in a given optimization instance are set to zero when the
corresponding reactions participate in the network.
doi:10.1371/journal.pcbi.1000086.t004
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Figure 6. Dynamic profiles of the prototypic integrated system. In (A), the concentration of carbon and amount of biomass within the
cellular system over a simulation time of 10 h is illustrated. The decreasing lines represent the concentration of carbon (as indicated by the left y-axis),
which is being consumed, in the system. The increasing lines represent the amount of biomass, which is being synthesized, in the system (as
indicated by the right y-axis). The blue solid lines correspond to the case in which the ligand concentrations are set to [L1] = [L2] = [L3] = 2 mM during
the simulation. By contrast, the red dotted lines correspond to the case in which no ligand is present during the time 6.0 h#t#6.5 h. In (B), the fluxes
through the system at t = 6.7 h for this second scenario in which none of the ligands is present during the time 6.0 h,t,6.5 h are presented. Here
the solid lines represent non-zero flux values and the dotted lines represent zero flux values. Additionally, components that do not participate in this
scenario are shaded lightly.
doi:10.1371/journal.pcbi.1000086.g006
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input cases described in Equation 15. For example, we considered

the effect of ligand L1 by itself by restricting the availability of ligands

L2 and L3 beyond t = 2 h. Similarly, we further assessed the effect of

ligand L1 by restricting its availability while maintaining the

concentrations of ligands L2 and L3 beyond t = 2 h.

0ƒtv2 : L1½ �~2, L2½ �~2, L3½ �~2

t§2, Case 1 : L1½ �~2, L2½ �~0, L3½ �~0

t§2, Case 2 : L1½ �~0, L2½ �~2, L3½ �~2

8><
>: ð15Þ

As illustrated in Figure 1, the transcription factor T1p activates

the gene corresponding to the enzyme EH2
, which catalyzes the

production of H2, an essential amino acid for protein synthesis

and, consequently, cellular growth. T1p is produced through a

series of reactions in the prototypic integrated system. Specifically,

the ligand L1 initiates a series of reactions leading to the

production of T1 and its eventual phosphorylation (T1p). The

inactive T1 can also be phosphorylated via a series of reactions

initiated by ligand L2 if T1 is present in the system. Figure 7(A)

illustrates that, when L1 is present, approximately 15 percent more

biomass is produced (case 1, blue solid line). This result makes

sense since L1 initiates greater production of T1 than L2, which is

involved in the synthesis of both T1 and T2. Eventually, both cases

failed to produce biomass or uptake carbon after t = 4 h: in case 1,

the absence of T2p and T3p meant that key receptors for the

uptake of carbon were not expressed; and in case 2 (red dotted

lines), the absence of T1p meant that the enzyme synthesizing the

key amino acid H2 was no longer expressed. These types of

dynamic characteristics of complex ligand availabilities are as

expected yet are difficult to analyze without considering all the

interactions in an integrated, quantitative manner such as the one

implemented by idFBA.

Effects of regulatory rule modifications. Changes to the

regulatory program were evaluated as well. A new set of Boolean

regulatory rules was implemented, as shown in Table 5. Specifically,

an additional rule specifying that both T1p and T2p together, and

not T1p or T2p individually, are required for the production of the

protein F was incorporated into the regulatory network. Again, two

scenarios were simulated. In the first one, no ligand was available to

the cell at 5#t#7 h. In the second one, the transcription factor T3p

was not synthesized at 5#t#7 h. With these exceptions, the

concentration of all ligands was maintained at 2 mM. Figure 7B

illustrates that, when both T1p and T2p are available, the carbon

supply is exhausted and maximum biomass is attained at t = 6.7 h,

down from t = 8.7 h under the original regulatory program (blue

solid line). By contrast, when no ligand is present during the two

hours, the cellular machinery is unable to consume all of the carbon

supply and instead the amount of biomass it synthesizes is reduced by

over 33% (Figure 7B, red dotted line).

Comparison to a kinetic-based model. The idFBA

framework, as applied to the prototypic integrated system, was

compared to a kinetic model that represented the reactions as

ordinary differential equations. For the kinetic model,

representative kinetic parameters were obtained from literature,

as detailed in Text S1. As previously described, these two

approaches are completely independent: the idFBA framework

requires only stoichiometric constraints and approximates the

dynamics of the system with time-delay information, whereas the

kinetic model requires all of the kinetic parameters and yields a

more detailed portrait of the system dynamics. For both

implementations, we assumed an initial ligand concentration,

2.0 mM, for all three ligands. We note that the following dynamic

parameters for slow reactions were identified from the kinetic

model and implemented as tdelay and tduration in idFBA: the

degradation of transcription factors, 5 h, the delay in protein

synthesis, 40 min, the degradation of proteins, 4 h, internalization,

5 h, and inhibition, 5 h. One striking result is shown in Figure 7C.

The growth times calculated by both approaches are comparable

(computed as 4.9 h for idFBA (blue solid line) and 5.1 h for the

kinetic model (red dotted line)), with a difference of just two time

steps over a 51-time-step simulation. The discrepancy in the

amount of biomass synthesized is a consequence of the kinetic-

based model itself. Unlike in idFBA which accounts for

transcriptional regulation, all of the reactions in the metabolic

network of the kinetic model are constitutively active. As a result,

resources such as amino acids are used in other pathways, e.g., for

the synthesis of surplus proteins, and consequently the amount of

biomass produced is less than the value estimated by idFBA which

simply maximizes for biomass production. One way to overcome

this challenge is to further discretize the time domain in the idFBA

implementation. In other words, as the level of discretization is

increased (i.e., the length of each time step is decreased), the

predictive precision of the idFBA framework improves, and vice-

versa. At the same time, this increase in predictive precision must

be balanced by an increase in computational complexity due to the

additional calculations that are necessitated. Nevertheless, as

illustrated with the prototypic system (and the representative

integrated yeast module below), idFBA effectively approximates

the dynamics of a system using purely the underlying network

stoichiometry, efficaciously offering novel hypotheses that can

serve as the basis for further experimental and computational

study.

Robustness to parameter values. To further assess the

practicality of the idFBA framework at a large scale, we

systematically evaluated how robust the framework was with

respect to each of several parameters for the prototypic integrated

system. Specifically, we considered the maximum carbon uptake

rate, Smax
u , as well as the different time delays imposed on the

system. In the case of the prototypic system, these delays included

the degradation time of the transcription factors, the time delay

due to transcription and translation, the degradation time of the

proteins, and the time delay due to receptor-ligand internalization

as well as lysosomal activity. For each of these five parameters, we

varied the initial value used for the simulations described above by

10%, 50%, and 90% in each direction (up and down) and

observed the resultant phenotypic variables, i.e., the

concentrations of carbon and biomass, over time. The results of

this robustness analysis for biomass synthesis are illustrated in

Figure 8 (carbon consumption data not shown). The system was

robust to changes in the degradation time of transcription factors

and the delays associated with receptor-ligand internalization and

lysosomal processing (Figure 8B and 8D, respectively). The change

in the total amount of biomass synthesized was less than 12% for

up to 90% change (up or down) in the values of these parameters.

By contrast, changes to the maximum carbon uptake rate, the

transcriptional delay, and the protein degradation time altered the

time course of biomass synthesis more noticeably (Figure 8A, 8C,

and 8D, respectively), suggesting that increasing accuracy in these

parameters corresponds to increasing confidence in the idFBA-

based results. Similar observations were noted with the amount of

carbon consumed under these varying conditions (results not

shown). Interestingly, these results matched well with our

expectations. For example, when the length of the

transcriptional delay is decreased significantly (by 50% or 90%

of the original value), the time it takes to attain maximal biomass

falls as well (Figure 8C, blue and red lines, respectively, versus black
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line). This finding further strengthens our confidence in the idFBA-

based implementation of the prototypic integrated system. Note that

we performed our robustness analysis on the prototypic integrated

system with modified regulatory rules described above (see Table 5

for the modified regulatory rules and Figure 7B for the results of this

system when the original parameter values were specified).

In general, robustness analyses facilitate an understanding of

which parameters are most critical in determining overall system

behavior. Parameters for which the system is particularly sensitive

should be accurately inputted into the idFBA framework. Experi-

mental protocols for measuring parameter values are improving. For

example, substrate uptake rate can be determined by monitoring the

depletion of the substrate source in filtered media samples over time

using enzymatic assays or liquid chromatography. [55]. Likewise, the

temporal details of a metabolic transcription program were recently

evaluated [56]. Furthermore, on a still larger scale, several methods

have been proposed recently for parameter estimation in biochem-

ical pathways [57–62].

Additionally, robustness analyses can systematically establish a

priori which model variables are reliably predicted by the idFBA

framework for a given implementation. For example, those

variables whose values change the least in response to perturba-

tions in all of the model parameters are robust to the idFBA-based

implementation. In the case of the prototypic integrated system,

both biomass and carbon source do not fluctuate significantly in

response to smaller variations in the parameter values, whereas the

profiles of other species’ concentrations are altered more

significantly (results not shown).

Representative Yeast Module
Implementation details. The implementation of the idFBA

framework on the S. cerevisiae HOG pathway was similar to that of

the prototypic integrated system described above. Key aspects of

this implementation are detailed below.

1. The sample time, Dt, was set to 0.1 h as in [24] to account for

typical reaction kinetics across different cellular processes.

2. The maximum carbon uptake rate, Smax
u , was set to

0:004 mmol
gDCW :s as previously observed in S. cerevisiae [63].

3. To obtain optimal flux distributions in metabolism and

signaling (facilitating the evaluation of ‘‘active’’ and ‘‘inactive’’

species), rates for the uptake of carbon and signal transduction

of osmotic stress were chosen based on known experimental

values [31]. The associated constraints are detailed in Text S2.

4. Temporal parameters (namely tdelay and tduration) were specified

to account for ‘‘slow’’ reactions as in the idFBA implementa-

tion of the prototype. Briefly, ‘‘slow’’ reactions were allowed to

participate in the reaction network after a delay tdelay and with

duration tduration. At any given time t, the binary variable I(Ri, t)

governed whether a particular protein was present based on

the flux of activated transcription factor Hot1 [29].

5. The objective functions of the FBA formulations for the yeast

system included maximizing the production of: (1) the activated

transcription factor in the signaling network; (2) the metabolite

that produces biomass (for the purposes of this reconstruction

and analysis, glycerol) in the metabolic network; and (3) the

amino acids (assumed to be derived from glycerol in relative

ratios) that are necessary for the synthesis of the three proteins

Stl1, Gpd2, and Gpp1 by the transcriptional regulatory

network. The flux for the activation of the single transcription

factor Hot1 is vs
14, and the flux for the synthesis of biomass

(glycerol) is vm
7 . Consequently, Equation 16 constitutes the

single composite objective function for the representative

integrated yeast module.

max vs
14zvm

7

� �
ð16Þ

The optimized flux for the activation of transcription factor

Hot1 (vs
14) was indicative of the activation of the target genes Stl1,

Gpd1, and Gpp2, and vm
7 was used for calculating cell growth and

determining glycerol accumulation in response to osmotic stress

according to Equations 8 and 9 with m~vm
7 . The flux vm

7 at a single

time step further constrained the protein synthesis reaction fluxes

during the subsequent time step. As mentioned above and further

described below, a recently-developed framework called BOSS

may be used in future analyses to more precisely identify objectives

for the signaling, regulatory, and metabolic networks [54].

Observations and comparison to a kinetic-based

model. To evaluate the representative integrated yeast module

using the idFBA framework, the phenotypic characteristics of the

system were investigated under two conditions, i.e., the presence

and absence of osmotic stress due to the cell-environment

interaction. The idFBA results are shown in Figure 9 (blue solid

lines). In the case of osmotic stress, the in silico yeast cell responded

by synthesizing metabolic proteins essential for the conversion of

glucose to glycerol. Additional glycerol accumulated within the cell

Table 5. Modified regulatory rules.

Expression of a gene Regulation

IS1 If (T1p)

IS2 If (T2p)

IS3 If (T3p)

EF If NOT ((T1p) AND (T2p))

EINT If ((T1p) AND (T2p) AND (T3p))

To evaluate how the idFBA framework performs under different sets of
regulatory rules, a new set of Boolean rules for the transcriptional regulatory
network was defined. These rules are summarized here.
doi:10.1371/journal.pcbi.1000086.t005

Figure 7. Dynamic profiles of the prototypic integrated system under different conditions, and a comparison to the kinetic-based
model. The concentration of carbon and amount of biomass within the cellular system over a simulation time of 10 h is illustrated. The decreasing
lines represent the concentration of carbon (as indicated by the left y-axis), which is being consumed, in the system. The increasing lines represent
the amount of biomass, which is being synthesized, in the system (as indicated by the right y-axis). (A) depicts the idFBA results when the system is
subjected to two different sets of ligand availabilities. The blue solid lines correspond to case 1, i.e., [L2] = [L3] = 0 mM for t$2 h, and the red dotted
lines correspond to case 2, i.e., [L1] = 0 mM for t$2 h. In (B), the behavior of the prototypic integrated system under the modified regulatory rules
shown in Table 5 is presented. The blue solid lines correspond to ligand concentrations of [L1] = [L2] = 2 mM and [L3] = 0 mM, and the red dotted lines
correspond to ligand concentrations of [L1] = [L2] = [L3] = 0 mM for 5.0 h,t,7.0 h. In (C), the dynamics of cellular growth generated by the idFBA
framework are contrasted by those specified by an equivalent detailed kinetic-based model over a simulation time of 10 h. Here the blue solid line
corresponds to the amount of synthesized biomass specified by the idFBA framework, and the red dotted line corresponds to the amount of
synthesized biomass specified by the detailed kinetic-based model.
doi:10.1371/journal.pcbi.1000086.g007
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between 1.5 and 2 h post-stimulation by osmotic stress (see

Figure 9A), an observation consistent with published experimental

findings [37]. By contrast, when osmotic stress was not present, the

Hog1 signaling pathway did not activate Hot1, metabolic genes

Stl1, Gpd2, and Gpp1 were not expressed, and no additional

glycerol was synthesized (see Figure 9B).

Additionally, as illustrated in Figure 9, the dynamics of the yeast

system described by the idFBA framework (blue solid lines) were in

reasonable accord with those described by the equivalent kinetic-

based model (red dashed lines). For example, in Figure 9A, both

simulations suggested an initial delay in protein synthesis, likely

due to transcriptional delays, followed by a rapid increase in

glycerol concentration at between 1.5 and 2 h post-stimulation by

osmotic stress. As stated above for prototypic system, differences in

specific values of the different network components is a

consequence of the kinetic-based model itself in which, unlike

idFBA, reactions are constitutively active as implemented herein.

For instance, in Figure 9(B), the kinetic-based model suggests that

an initial intracellular concentration of glycerol (5 mM) is exported

out of the cell via the glycerol exchange reaction (vm
7 ); however,

Figure 8. Robustness of parameter values in the prototypic integrated system. We evaluated the sensitivity of the idFBA-based
implementation of the prototypic integrated system to specific parameter values. (A–E) illustrate the sensitivity of the amount of biomass synthesized
and amount of carbon consumed to the maximum carbon uptake rate, the degradation time of the transcription factors, the time delay due to
transcription and translation, the degradation time of the proteins, and the time delay due to receptor-ligand internalization as well as lysosomal
effects, respectively. Note that each graph includes plots for the original parameter value as well as 10%, 50%, and 90% variation in both directions
(up and down), as described in the legend.
doi:10.1371/journal.pcbi.1000086.g008
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Figure 9. Dynamics of key species in the representative integrated yeast module as calculated by the idFBA framework and
contrasted with a detailed kinetic-based model. The idFBA and kinetic-based model dynamics of glucose, glycerol, the activated transcription
factor Hot1, and cytosolic ATP are contrasted over a simulation time of 10 h. Here, the blue solid line corresponds to the idFBA framework and the
red dashed line corresponds to the detailed kinetic-based model. (A) and (B) correspond to situations of osmotic stress and no osmotic stress,
respectively.
doi:10.1371/journal.pcbi.1000086.g009
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idFBA does not illustrate this result because all metabolic fluxes

are constrained to zero at each time step since no glucose is taken

up by the cell. As described previously in the context of the

prototypic integrated system, increasing the level of discretization

of the time window (i.e., decreasing the length of each time step)

for the representative yeast integrated module yields improves the

accuracy of the concentration values generated by the idFBA

framework (results not shown).

Ultimately, this validation of the idFBA-based implementation

of the representative integrated yeast module implies that it may

be used to further probe the S. cerevisiae HOG pathway. Additional

work may include (1) a sensitivity analysis of the model parameters

and (2) an evaluation of the effects of network perturbations, such

as single- or double-gene (reaction) knockouts. This type of analysis

at the whole-cell level bridges the gap in knowledge of how

systemic phenotypes arise in response to extracellular conditions.

Discussion

The integrated dynamic Flux Balance Analysis (idFBA)

framework presented here couples stoichiometric reconstructions

of signaling, metabolic, and transcriptional regulatory networks

with Flux Balance Analysis (FBA) to predict dynamic profiles of

cellular phenotypes as a function of extracellular stimuli.

Instantaneous inclusion of ‘‘slow’’ reactions in a time-delayed

fashion accounted for network interactions occurring over a wide

range of time scales. Previous approaches based on FBA have only

addressed the coupling of regulatory structure with metabolic

systems [29], which do not account for the effects of extracellular

signaling cues on cellular phenotype.

The key features and results described here include: (1) an

explicit accounting of the protein synthesis demands of a

transcriptional regulatory network in the context of signaling

and metabolic functions; (2) a quasi-steady-state description of

cellular signaling events, readily interfaced with metabolic and

regulatory networks; (3) similar dynamic profiles of phenotypic

variables (e.g., biomass production) between the idFBA framework

presented here and an explicit kinetic model; and (4) applicability

of the idFBA framework to actual biological systems through an

illustrative example using yeast osmoregulation and agreement

with published values. To implement idFBA, the objective

function for the underlying optimization problem included, for

signaling networks, the reactions associated with the activation of

transcription factors. The subsequent analysis resulted in ‘‘exclud-

ed reaction fluxes’’ (e.g., receptor internalization and protein

degradation). These reactions were specified as ‘‘active’’ to denote

their participation in the reaction network by imposing simple

constraints (v = 0) on their counterparts, as described in ‘‘Concep-

tual Methods and Framework.’’

Comparison with the detailed kinetic model validates the idFBA

approach. Specifically, approximating the temporal progression of

‘‘slow’’ reactions in signaling, metabolic, and regulatory networks

as steady-state constraints with time-delay and duration param-

eters provides acceptable predictions of the dynamic trends of a

cell’s phenotypic behavior. The primary motivation for comparing

idFBA with a detailed kinetic model was to determine whether

idFBA would yield comparable temporal behavior in spite of the

inherent approximation it contained. Optimization-based ap-

proaches have provided accurate quantitative predictions of

cellular growth [24]. However, signaling networks have not

previously been modeled at a scale comparable to that of

metabolic and regulatory networks [9]. Databases are increasingly

available for signaling networks and efforts are ongoing to

reconstruct larger, genome-scale signaling systems [32]. As this

information becomes available, the idFBA framework can be

applied to cellular systems and be coupled with experimental

assays to generate quantitative hypotheses and assist in an iterative

model-building process for deriving emergent properties of these

systems.

The idFBA framework optimizes the system at the current time

step, tcurrent, according to the linear programming formulation of

FBA (Equation 17).

max
v tð Þ

X
i

civi tð Þ ð17Þ

Altering this framework to impose a multi-horizon formulation

may facilitate the evaluation of different objective functions

because the formulation naturally accounts for long-term effects

of the calculated flux distribution at the current time step [25].

The multi-horizon formulation is shown in Equation 18, where wj

is the weight associated with the objective after Tj sample times.

max
v tð Þ

X
j

X
j

wjcivi tzTj

� �
ð18Þ

The main assumption of a multi-horizon formulation is that the

flux distribution at tcurrent is determined such that it maximizes a

cellular objective within a certain future time period of interest.

The resulting optimization problem, including a Boolean repre-

sentation of the transcriptional regulatory network, becomes a

multi-horizon, mixed-integer linear programming problem.

Though the solution of such a problem needs further development

for its scalability to large-scale systems [64], it may shed light on

whether signal transduction at the current time step is optimally

driven by a long-term objective. Currently, multi-stage optimiza-

tion problems have been solved only for metabolic systems [25].

Recently, a method called Biological Objective Solution Search

(BOSS) was developed for the inference of an objective function

for a biological system from its underlying network stoichiometry

as well as experimentally-measured flux distributions [54]. This

method identifies objectives from experimental fluxes by defining a

putative stoichiometric objective reaction, adding this reaction to

the existing set of stoichiometric constraints, and maximizing it via

linear programming. This new approach is capable of inferring the

objective functions of metabolic networks, as well as metabolic and

regulatory networks for which the objective is not well-character-

ized experimentally. Therefore, utilizing BOSS to identify

objectives for the signaling, regulatory, and metabolic networks

would facilitate the identification of an in silico flux distribution for

the integrated system, a key step in the idFBA framework.

The fact that different reactions occur on different time scales

(e.g., signaling reactions are usually fast whereas regulatory

reactions are usually slow) is readily handled within the idFBA

framework. Reactions with time constants of more than a unit

time step are considered ‘‘slow’’. However, identifying the optimal

discretization of the time domain would facilitate a more accurate

simulation for systems with multiple time-scales. Given typical rate

constants, model reduction [15] and Monte Carlo sampling [65]

techniques may help characterize representative time-scales of a

given system as well.

As illustrated by the idFBA results for the prototypic integrated

system and particularly the representative yeast module, the

methodology and analyses afforded by this framework can provide

insight into fundamental characteristics of biological systems,

including network components and interactions. Evaluating how

whole-cell systems respond to different perturbations, including

Integrated Dynamic Flux Balance Analysis (idFBA)
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modifications to environmental cues as well as intracellular

reactions, can offer insights into disease mechanisms and possible

therapeutic avenues. For example, assessing how genetic pertur-

bations of signaling proteins affect the transcriptional program and

metabolism of a cell is essential to fully appreciating the end-stage

phenotypic effects of the perturbations on the whole cell.

Furthermore, evaluating how modifications to an existing

transcriptional regulatory program (e.g., altering the Boolean

rules governing transcription of one or more genes) affect whole-

cell behavior is essential in the design and engineering of metabolic

systems. Such a complete picture of cellular response can drive

accurate predictions of disease and drug discovery.

Additionally, unlike kinetic-based models and other similar

approaches, the idFBA framework requires significantly fewer

parameters and can facilitate an approximation of the dynamics of

large-scale systems quickly and efficiently, given a stoichiometric

network reconstruction. As has been hypothesized in the literature

recently, our idFBA results support the theory that the structure of

a network, rather than the detailed kinetic values that describe it,

can drive the dynamics of its phenotype [66].

In conclusion, a novel technique called integrated dynamic Flux

Balance Analysis (idFBA) has been developed to analyze integrated

systems, and specifically to account for the interactions between

signaling, metabolic, and transcriptional regulatory networks

across many time scales. This approach facilitates the study of

systemic effects of extracellular cues on cellular behavior in a

quantitative manner. Additionally, the success of idFBA on a

prototypic integrated system as well as a representative integrated

yeast module serves as a benchmark for future analyses of

integrated biochemical systems.
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