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Computational methods for predicting evolutionarily conserved rather than thermodynamic RNA structures have
recently attracted increased interest. These methods are indispensable not only for elucidating the regulatory roles of
known RNA transcripts, but also for predicting RNA genes. It has been notoriously difficult to devise them to make the
best use of the available data and to predict high-quality RNA structures that may also contain pseudoknots. We
introduce a novel theoretical framework for co-estimating an RNA secondary structure including pseudoknots, a
multiple sequence alignment, and an evolutionary tree, given several RNA input sequences. We also present an
implementation of the framework in a new computer program, called SimulFold, which employs a Bayesian Markov
chain Monte Carlo method to sample from the joint posterior distribution of RNA structures, alignments, and trees. We
use the new framework to predict RNA structures, and comprehensively evaluate the quality of our predictions by
comparing our results to those of several other programs. We also present preliminary data that show SimulFold’s
potential as an alignment and phylogeny prediction method. SimulFold overcomes many conceptual limitations that
current RNA structure prediction methods face, introduces several new theoretical techniques, and generates high-
quality predictions of conserved RNA structures that may include pseudoknots. It is thus likely to have a strong impact,
both on the field of RNA structure prediction and on a wide range of data analyses.
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Introduction

Many RNA genes function by assuming a distinct three-
dimensional structure in which the molecule folds back onto
itself. Contacts are formed by hydrogen bonds between non-
consecutive nucleotides that are complementary to each
other. These hydrogen bonds are weak compared with
covalent bonds. The three possible consensus pairs of
complementary nucleotides are fA, Ug, fG, Cg, and fG, Ug.
It turns out that many properties of the three-dimensional
RNA molecule can already be studied even if we know only
the positions in the RNA sequence that form base-pairs. This
is the level of abstraction that is predominantly chosen for
studying RNA structure. For our purposes, an RNA structure
is unambiguously defined by the set of base-pairing positions
in the RNA sequence. This set of base-pairing sequence
positions defines the RNA secondary structure. We count
pseudoknotted structures, i.e., structures that contain non-
nested base-pairs (e.g., two pairs i–j and i 9–j9 whose sequence
positions are in order i , i9 , j , j9) as secondary structures.
The RNA structure allows us to draw conclusions about the
molecule’s potential function and often even the mechanism
by which it acts. It is therefore of fundamental importance to
be able to predict an RNA’s structure from its sequence alone.

Most RNA structure prediction programs investigate only
secondary structures that do not contain pseudoknots. In
addition, most of the structure prediction programs aim to
predict the pseudoknot-free secondary structure that mini-
mizes the free energy of the entire RNA molecule. The first
empirical and theoretical investigations of the free energies

of RNA secondary structures were conducted by Tinoco and
his colleges in the early 1970s [1,2]. Because the number of
possible secondary structures grows exponentially with the
length of the RNA sequence, algorithmic tricks have to be
employed to render the calculation of the minimum free
energy (MFE) secondary structure tractable. The first fast
algorithm—based on a primitive scoring scheme—for finding
the pseudoknot-free MFE secondary structure was proposed
by Nussinov and Jacobson [3]. A few years later, Zuker and
Sankoff [4] showed how similar ideas can be used to define an
algorithm that calculates the pseudoknot-free MFE secondary
structure using the Tinoco energy model. This algorithm still
forms the basis of several of today’s best MFE secondary
structure prediction programs, e.g., Mfold [5–7] and the
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programs RNAfold and RNAalifold of the Vienna package [7–
11].

The MFE approach has, however, a number of limitations.
One conceptual limitation is the underlying assumption that
a given RNA sequence will assume its MFE structure in the
cell, i.e., its thermodynamic RNA structure. This assumption
is not well supported in the general case. Theoretical,
comparative studies of RNA molecules [12] show that the
thermodynamic structure of even moderately long RNA
molecules need not correspond to the ‘‘functional RNA
structure,’’ i.e., the RNA structure that confers the observed
functionality to the molecule and that is conserved during
evolution. This may, for example, be due to co-transcrip-
tional folding [13–15], i.e., the folding of the RNA molecule as
it is being transcribed. During co-transcriptional folding, a
succession of kinetic RNA structures forms along a folding
pathway. None of these kinetic RNA structures needs to
correspond to the MFE structure. The observed discrepancies
between the observed functional structure and the predicted
MFE structure may also be due to other molecules binding
the RNA molecule, which can obviously influence the
structure formation process. The functional secondary
structure may also differ from the MFE structure by having
unstructured regions that do not comprise any base-pairs. As
we are interested in investigating the functional roles of RNA
molecules in the cell, we therefore focus on predicting the
evolutionarily conserved RNA structure rather than the
thermodynamic one.

There exist several programs that aim to simulate the
dynamic folding process of an RNA molecule in the cell to
predict RNA structures that may contain pseudoknots [16–
19]. However, these programs study only a single RNA
sequence at a time, and their predictive power decreases
with increasing sequence length because the error is multi-
plicative.

Another conceptual limitation of the MFE approach is that
the Zuker–Sankoff algorithm cannot handle pseudoknotted
secondary structures, i.e., structures with non-nesting base-
pairs. However, pseudoknotted RNA structures are known to
fulfill diverse and important functional roles in the cell [20].
We should thus aim to include them in RNA structure
predictions. The prediction of pseudoknots has received

more attention in the last few years, but remains very
difficult. Pseudoknot prediction is, in the most general case,
NP-hard even for binary strings [21,22]. For special classes of
pseudoknots, structure predictions can be made more
efficient from O(L4) to O(L6) for an RNA sequence of length
L [23–30]. However, these algorithms are still too slow for
practical purposes.
The best information for predicting the functional RNA

structure can be derived from functionally equivalent RNA
sequences of evolutionarily related organisms. This is due to
the fact that evolutionarily related RNA sequences that serve
the same purpose in the cell are likely to employ the same
mechanism for exerting this function. In particular, if the
function of these RNA sequences depends on their structure,
this RNA structure (but not necessarily the RNA sequences
themselves) should be highly conserved. If we therefore align
the RNA sequences such that structurally equivalent parts are
grouped together, we can detect pairs of columns in the
sequence alignment where the primary sequence conserva-
tion may be low, but the functional conservation in terms of
base-pairs is high. These base-pairing columns in the align-
ment where compensatory mutations occur in a correlated
way are called co-varying or co-evolving columns. They
provide the main sequence signal that many comparative
structure prediction programs detect to predict the base-
pairs of evolutionarily conserved RNA secondary structures.
RNAalifold [10] of the Vienna package combines this type of
information with a traditional MFE structure prediction,
whereas Pfold [31,32] incorporates it in a score-based
approach that also takes the known evolutionary relationship
of the sequences in the input alignment explicitly into
account. RNA-Decoder [33,34] uses an approach similar to
Pfold’s, but allows for extra evolutionary constraints due to
known protein-coding regions in the input alignment and is
the only one of the three programs capable of explicitly
modeling unstructured regions. However, none of these three
programs can predict pseudoknotted secondary structures.
There already exist comparative programs that attempt

pseudoknot prediction. These programs use the maximum
weighted matching algorithm (MWM algorithm) [35,36] to
extract an RNA secondary structure that may contain
pseudoknots from a given set of base-pairs with different
weights. Tabaska et al. [37] use a non-comparative approach
to obtain these weighted base-pairs, whereas Witwer [38]
analyzes a fixed input alignment with the comparative RNA
structure prediction program RNAalifold [10] (which cannot
predict pseudoknotted secondary structures) to obtain
weighted base-pairs. The MWM algorithm requires O(L3)
time to analyze an RNA sequence of length L, but requires a
post-processing step to extract a bi-secondary structure [39].
Both programs have the same problems as the underlying
algorithms and often have a low prediction accuracy [37].
Ruan et al. [40] developed a program that can utilize
thermodynamic or comparative information or both. The
overall accuracy is 80% for identifying base-pairs. However,
this performance is achieved only with input alignments of
very high quality that cannot be established without already
knowing the conserved RNA secondary structure.
The fundamental conceptual problem that all of these

comparative programs face is that they require an input
alignment of high quality to be able to predict the conserved
RNA secondary structure. However, such an alignment can
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Author Summary

Not only is the prediction of evolutionarily conserved RNA structures
important for elucidating the potential functions of RNA sequences
and the mechanisms by which these functions are exerted, but it
also lies at the core of RNA gene prediction. To get an accurate
prediction of the conserved RNA structure, we need a high-quality
sequence alignment and an evolutionary tree relating several
evolutionarily related sequences. These are two strong requirements
that are typically difficult to fulfill unless the encoded RNA structure
is already known. We present what is to our knowledge the first
method that solves this chicken-and-egg problem by co-estimating
all three quantities simultaneously. We show that our novel method,
called SimulFold, can be successfully applied over a wide range of
sequence similarities to detect conserved RNA structures, including
those with pseudoknots. We also show its potential as an alignment
and phylogeny prediction method. Our method overcomes several
significant limitations of existing methods and has the potential to
be used for a very diverse range of tasks.
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often only be established if we already know the conserved
RNA secondary structure. These comparative structure
prediction programs thus face a major chicken-and-egg
problem. If the sequences are very well conserved and easy
to align based on primary sequence similarity, the resulting
alignment may contain no or few co-varying columns. If, at
the other extreme, the sequences are only distantly related, a
trustworthy sequence alignment that would exhibit many co-
varying columns is impossible to establish based on primary
sequence similarity alone. Comparative RNA structure
prediction methods that take a fixed alignment as input can
therefore analyze only a very limited range of available data
successfully.

This chicken-and-egg problem has been addressed by
several comparative structure prediction programs that do
not require a fixed input alignment, Dynalign [41,42],
Foldalign [43,44], CARNAC [45,46], ComRNA [47], Stemloc
[48], and CONSAN [49]. However, these programs find only
very conserved local structures and do not model the
evolutionary relationship between the sequences. ComRNA,
CARNAC, and Stemloc can analyze several input sequences
(Stemloc achieves this by calculating progressive pairwise
alignments), whereas Dynalign, Foldalign, and CONSAN are
limited to only two input sequences. ComRNA is the only one
of these programs that can predict pseudoknotted secondary
structures. The predictions of ComRNA rely on the calcu-
lation of maximal cliques, a problem that is known to be NP-
complete. In the general case, it thus requires exponential
time to run analyses, but it may be fast enough to analyze
short sequences.

To summarize, all of the existing RNA structure prediction
programs face at least one of the following challenges: (1) the
MFE structure rather than the evolutionarily conserved
structure that is likely to correspond to the functional
structure is predicted, (2) unstructured regions of the RNA
are not explicitly modeled, (3) input alignments are fixed and
cannot be altered and improved, (4) pseudoknotted struc-
tures are either completely ignored or computationally too
expensive to predict, (5) only two evolutionarily related RNA
sequences are used as input, or (6) the evolutionary relation-
ship between the RNA sequences is not explicitly modeled.

There are several good reasons to convince ourselves that
many of these problems can be best solved simultaneously.
For example, a good structure prediction should improve the
prediction of a good alignment, and vice versa. Likewise, the
prediction of a good alignment should improve the pre-
diction of the correct evolutionary relationship of the RNA
sequences, and vice versa.

The idea of co-estimating RNA secondary structures,
multiple sequence alignments, and evolutionary trees was
first suggested in a theory paper by David Sankoff in 1985
[50]. As the proposed strategy is computationally very
demanding, this approach did not receive much attention
until the mid-1990s, when Eddy and Durbin [51] and
Sakakibara et al. [52] introduced covariance models (CMs).
CMs employ stochastic context-free grammars (SCFGs) [52] to
align a given RNA sequence to a fixed multiple sequence
alignment via a consensus RNA secondary structure that may
not contain pseudoknots. CMs do not explicitly model the
evolution of the sequences in the alignment, but only
consider different nucleic acids. Such a model can also be
used for pseudoknot-free secondary structure prediction

[32,34]. Modeling the insertion–deletion process with con-
straints on a pseudoknot-free consensus RNA secondary
structure is a much harder problem, and, so far, only a few
studies [53,54] have tried to address the problem. By
considering both alignment and secondary structure, other
studies extended the pioneering work of Sankoff without
explicitly considering an evolutionary model [55,56]. As
pseudoknots are context-dependent structures that cannot
be modeled with SCFGs, CMs cannot be used to model
pseudoknotted RNA structures.
We here propose a novel theoretical framework for solving

the problem of co-estimating RNA secondary structures
including pseudoknots, multiple sequence alignments, and
evolutionary trees. We introduce a joint distribution of RNA
structures, alignments, and trees in a Bayesian framework. As
it is not feasible to analytically calculate any interesting
statistics in this model in reasonable computational time, we
propose a Markov chain Monte Carlo (MCMC) method with
which we can sample from the posterior distribution.

Methods

Bayesian Considerations
According to elementary probability theory, the following

equation holds:

PðS;A;TjDÞ ¼ 1
Z
PðDjS;A;TÞPðS;A;TÞ ð1Þ

where D stands for data, i.e., the individual, un-aligned RNA
sequences, Z :¼ P(D) denotes the so-called partition function,
S is a consensus RNA secondary structure that may contain
pseudoknots, A is a multiple sequence alignment, and T is an
evolutionary tree relating the sequences. Equation 1 is also
called Bayes’ theorem. The aim of the MCMC algorithm is to
sample from the posterior probability distribution, i.e., from
P(S, A, TjD), using the terms on the right hand side of
Equation 1. For the sampling, we need to know only the ratio
of the probabilities, P(S1, A1, T1jD)/P(S2, A2, T2jD). We thus
have to be able to calculate P(S, A, TjD) and P(S, A, T) only up
to a constant factor and can, for example, omit the
calculation of Z.

Decomposing the Posterior
We now explain how we calculate the different terms on

the right hand side of Equation 1. We also introduce models
and explain how to employ them to calculate the terms on the
right hand side of the equation. The definitions that we
propose for the prior probabilities merit a detailed discussion
as there is currently no widely accepted consensus on how to
define these prior distributions. Concerning the calculation
of the likelihood, we make a conscious decision to use the
widely known Felsenstein likelihood.
The likelihood. The likelihood, P(DjS, A, T), is the

probability of observing the individual sequences, namely D,
as the leaves of the evolutionary tree T in multiple sequence
alignment A and with the consensus RNA secondary structure
S. We calculate the likelihood in a computationally efficient
way using the Felsenstein algorithm [57], whose time require-
ment scales linearly with the number of sequences in the
alignment and the length of the alignment. The main idea of
the Felsenstein algorithm is to model the evolution of
nucleotides in the alignment along the evolutionary tree T.
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For this, we partition the alignment into single, unpaired
columns and pairs of base-paired columns according to the
RNA secondary structure S. We then model the evolution
along the tree with two reversible, time-continuous Markov
chain models. One chain models the substitution process in
every unpaired column of nucleotides involving four charac-
ters. The other chain models the substitution process of base-
paired nucleotides in every pair of columns involving 16
characters [31]. For both chains, we use the same rate
matrices and equilibrium distributions as the program Pfold
[32]. Each of the two rate matrices, Q, is in diagonalized
format. Transition probabilities for arbitrary evolutionary
times t can thus be easily calculated using

eQt ¼ VeKtV�1

where K is a diagonal matrix containing the eigenvalues of Q,
and V is the matrix containing the normalized eigenvectors of
Q. We adhere to the computationally convenient custom
[31,34,58] of treating gaps as missing information.

The prior. We write the prior, P(S, A, T), as the product of
the following terms:

PðS;A;TÞ ¼ 1
C
� F1ðTÞ � F2ðS;AÞ � F3ðAÞ

where C denotes an unknown normalization constant that
does not depend on S, A, or T. The decomposition into the
three functions F1, F2, and F3 is, to a certain extent, arbitrary
and reflects our understanding of the underlying biological
problem. We now explain in detail our reasons for choosing
this decomposition. The consensus secondary structure, S,
clearly depends on the alignment, A, e.g., its length. We
cannot, for example, have a hairpin spanning 40 bases if the
alignment itself is shorter than this. The alignment, A, is the
result of an evolutionary process of insertions and deletions
(indels). We describe the prior as the product of the three
functions F1, F2, and F3, which we now introduce in detail.

The tree prior, F1(T). The likelihood function, P(DjS, A, T),
does not converge to zero for increasing branch lengths in
the tree, i.e., for evolutionarily independent sequences. The
integral of the likelihood function over all possible trees
would therefore be infinite without a properly chosen prior
for trees. We thus set F1(T) equal to P(T), i.e., to the prior
probability for trees. One straightforward choice for the tree
prior would have been Kingman’s coalescent [59]; however, it
assumes a molecular clock. Instead, we chose the standard
exponential distribution on edge lengths as a less informative
prior, F1ðTÞ ¼

Q
i e
�ti , where each ti corresponds to the length

of edge i in the tree.
The structure prior, F2(S, A). The consensus secondary

structure, S, clearly depends at least on the length of the
alignment, A. In addition, we penalize indels occurring
asymmetrically in helices. Such gaps indicate bulges in some
sequences, and each bulge gets a penalty of one per
nucleotide. We set F2(S, A) equal to the prior probability of
the RNA structure, S. By definition, the structure prior does
not depend on the nucleotides in the sequences. Rather, it is
the probability of observing the structure independent of
the sequence itself. We use a free-energy-based model that
scores the RNA structure S according to purely entropy-
based free energies, i.e., dG(S) ¼ dS(S) � t, where dS is the en-
tropy, which depends only on the topology of the RNA

structure S [60], and t is the temperature in degrees Kelvin.
F2(S, A) is given by

F2ðS;AÞ ¼ e�
dG
Rt ¼ e�

dSðSÞt
Rt ¼ e�

dSðSÞ
R

where R is the universal gas constant.
The entropy of a pseudoknot-free secondary structure can

be calculated by decomposing it into loops [4], where the
entropy contribution for each loop of length L is

dSðSÞ ¼ 1:75 � R � lnðLÞ

For pseudoknotted secondary structures, the calculation of
the structure’s entropy becomes more complicated. We use a
simple model where each stretch of unpaired nucleotides of
length L~ (which is neither a loop nor a stretch of sequence
outside base-pairs) in a pseudoknot gets an entropy contri-
bution of

dSðSÞ ¼ 1:75 � R � lnð~LÞ:

The structure prior, F2(S, A), therefore does not depend on
the ambient temperature of the investigated RNA structures.
Other structure priors for pseudoknotted structures have,

for example, been developed by Isambert and Siggia [18] and
Rivas and Eddy [23,24]. While developing and testing
SimulFold, we also implemented a structure prior that is
equivalent to the one proposed by Rivas and Eddy, but found
no improvement with respect to the prior described here
(unpublished data).
The alignment prior, F3(A). The alignment, A, is a result of

an evolutionary indel process along the tree, T. We define
F3(A) to model the gap contribution to the likelihood. We are
not aware of any stochastic evolutionary model for indels that
can handle an additional constraint on RNA secondary
structure and that allows computationally efficient likelihood
computations. We therefore use prior probabilities on
alignments to incorporate indel events into our model. We
choose F3(A) as the exponentiated penalty scores of gaps in
the alignment, A. We decompose the alignment into
homogeneous groups as shown in Figure 1. This decom-
position considers only the location of gaps in the alignment
and does not take the RNA secondary structure, the tree, or
the different types of nucleotides in the alignment explicitly
into account. Log(F3(A)) is the sum of terms for each column
in the alignment. The contribution by each column is the sum
of one or more of the following terms (which are not mutually
exclusive): gap opening penalty if at least one new gap is
opened in the column, gap closing penalty if at least one gap

Figure 1. Alignment Prior

For calculating the gap contribution to the prior, F3(A), we decompose
the alignment into homogeneous groups based only on the pattern of
the gaps in the alignment. Each asterisk represents a nucleotide in the
alignment, and each dash denotes a gap in the alignment.
doi:10.1371/journal.pcbi.0030149.g001
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is closed in the column, and gap penalty if there is at least one
gap in the column. A gap opening gets a penalty of six, a gap
closing gets a penalty of six, and a gap extension gets a
penalty of three. Gap opening penalties are reduced by two if
there are sequences where gaps have already been opened in
other alignment columns. These penalty scores are similar to
the standard gap penalties commonly used in alignment
programs, e.g., Clustal-X [61]. Gap opening and closing
penalties are omitted at the beginning and the end of the
alignment.

Sampling from the Posterior Distribution
The analytical calculation of the posterior distribution is

computationally too expensive. Instead, we employ a Baye-
sian MCMC method [62,63] to sample from the posterior
distribution. This corresponds to a random walk on the
possible states (S, A, T ), whose stationary distribution is the
posterior distribution, P(S, A, T jD). The random walk is
constructed in two steps. In the first step, a new state, Xnew :¼
(S, A, T)new in our case, is drawn from a proposal distribution,
P, and in the second step, the discrepancy between the
proposal and the target distribution, p, is corrected by
accepting the proposal with probability

Paccept :¼ min 1;
PðXjXnewÞpðXnewÞ
PðXnewjXÞpðXÞ

� �

where X¼ (S, A, T ) is the actual state of the chain. The chain
remains in state X with probability 1 � Paccept [62,64].

The mixing of the Markov chain depends on how closely
the proposal distribution resembles the target distribution.
Gibbs sampling is a special case of MCMC sampling, where
each state X can be described as a multidimensional vector X
¼ (x1, x2,...xn) and where it is possible to draw a new random
coordinate xi from the conditional distribution P(xijX[�i]) for
any state X and any coordinate i. X[�i] denotes the vector of
coordinates without coordinate i. As the newly drawn
coordinate is always accepted, the Gibbs sampler is an MCMC
method with an acceptance probability of one.

As it is generally not possible to sample from an arbitrary
conditional distribution, the Gibbs sampling strategy can only
rarely be used. However, it is possible to mimic the condi-
tional distribution with an auxiliary distribution. This
strategy is employed in partial importance sampling; see
MacKay [65] for an overview of different sampling strategies.
Importance sampling has been successfully used to model
different distributions that occur in the context of bioinfor-
matics [66,67], and we employ it for proposing alignments
and RNA secondary structures. We define a Markov chain
that converges to the desired distribution and then use this
chain to sample from the posterior. As we have seen in the
section before, the posterior distribution is a joint distribu-
tion on RNA structures, multiple sequence alignments, and
trees. The challenge is to define moves on this joint
distribution that are reversible and ergodic, and that satisfy
detailed balance [63].

It is possible to define tree moves that are independent
from the actual alignment and RNA structure. However, it is
generally impossible to alter the alignment without disturb-
ing the RNA structure. We therefore use the following three
types of moves: changing the length of an edge in the tree,
changing the tree topology, and using a complex move that
alters both the RNA structure and the alignment.

Tree moves and tree sampling. We use the Metropolis-
Hastings algorithm [64] for sampling tree moves. The tree
sampling is divided into two steps, one to change the length
of an edge and one to change the tree’s topology. We use
standard moves for changing the edge lengths [68], and
nearest neighbour interchange [69,70] for changing the tree
topology. For sampling the edge length, we first pick an edge
of the tree at random and then choose a new edge length,
Lnew, from the interval [maxf0, L � d, L þ dg] where L is the
old edge length and d :¼ 0.1, the fixed span for sampling edge
lengths. Using the Felsenstein algorithm [57], we then
calculate the loglikelihood of the alignment given the old
tree, log(P(DjS, A, T)), and the loglikelihood of the alignment
given the new tree with the new edge length, log(P(DjS, A,
Tnew)). We accept the new edge length if a random number r 2
[0, 1] is smaller than the following Metropolis-Hastings ratio,
i.e., if

r, eðlogðPðDjS;A;TnewÞÞ�logðPðDjS;A;TÞÞÞ�dLnew=dL

where dLnew is the length of interval [max f0, Lnew�dg, Lnewþ
d] and dL is the length of interval [max f0, L� dg, Lþ d], and
we reject the new edge length otherwise.
For changing the topology of the tree, we pick a tree node at

random and swap this node and its aunt node to alter its
topology (see Figure 2). These moves have been shown [68,71]
to be ergodic, i.e., any tree topology can be transformed into
any other tree topology using these moves. We then calculate
the loglikelihood of the alignment given the old tree,
log(P(DjS, A, T)), and the loglikelihood of the alignment given
the new tree with the new tree topology, log(P(DjS, A, Tnew)).
We accept the new tree topology if a random number r 2 [0, 1]
is smaller than the following Metropolis-Hastings ratio, i.e., if

r,
PðDjS;A;TnewÞ
PðDjS;A;TÞ ;

and reject the new tree topology otherwise.
Structure and alignment moves and sampling. Simulta-

neously changing the structure and alignment is more
sophisticated and merits a detailed discussion. The challenge
is to define moves that can significantly change the actual
state, that can be calculated efficiently, and that have a high
probability of being accepted. Figure 3 gives a symbolic
description of our sampling strategy.
The alignment is sampled in the following way while

keeping the RNA structure and tree fixed. We first find
intervals in the alignment that do not contain any base-

Figure 2. Sampling of Tree Topologies

The topology of the tree on the left gets modified into the tree on the
right by swapping an aunt (A) and its niece (B). Nice–aunt swapping has
been shown to be ergodic.
doi:10.1371/journal.pcbi.0030149.g002
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paired positions and that cannot be further extended. We
then choose one of these intervals at random and propose a
new alignment for this interval. This alignment is created
using a stochastic version of iterative alignment along the
fixed tree [67], where two alignments are merged at each
internal tree node into a new one by forward–backward
sampling from the posterior of a pair hidden Markov model
[72]. The resulting new overall alignment is the proposal
alignment. We accept it if the following Metropolis-Hastings
ratio is larger than a random number r 2 [0, 1]:

r,
PðDjS;Anew;TÞ � Pbackproposal

PðDjS;A;TÞ � Pproposal
;

and reject it otherwise. P(DjS, Anew, T) denotes the likelihood
given the new alignment and P(DjS, A, T) the likelihood given
the old alignment, calculated as described above. Pproposal and
Pbackproposal denote the proposal and backproposal proba-
bilities, respectively. The backproposal probability is defined
as the probability of choosing the old state from the proposal
distribution given that we are in the new state of the Markov
chain.

Once the alignment has been sampled, we sample the RNA
structure while keeping the alignment and the tree fixed. The
challenge is to devise a unique way of proposing a new
structure; otherwise we cannot easily calculate the proposal
and backproposal probabilities. We propose a new structure
in the following way. We first decide on the number of helices
to be removed from the given set of helices by drawing a
random number from the truncated Poisson distribution
with parameter k¼ 3. We then remove this number of helices
from a weighted distribution, where the weight of each helix
is the log-odds ratio of its Felsenstein likelihoods (i.e., the
likelihood of the RNA without any base-pairs and the
likelihood of the RNA with the helix). The set of removed
helices is denoted R. We then propose a new set of helices, N.
Before starting the MCMC, we calculate two matrices for each
RNA sequence in D, denoted H and E, which remain
unchanged during the MCMC run. H is a two-dimensional
matrix where matrix element H(i, j) is the score of the best
helix whose outer base-pair is at sequence positions fi, jg. The
elements in the matrix are calculated using dynamic
programming. E is a one-dimensional vector where entry
E(i) ¼ Rj H(i, j) is the score for starting a helix at sequence
position i on the 59 side. Each new helix in set N is sampled in
the following way. We scan the alignment from left to right

and make a random decision where to start the helix. We
choose the 59 start of the new helix proportional to the sum
of E values in that column of the alignment, i.e., we use
importance sampling. Once the 59 start of the new helix has
been fixed, we choose the 39 end of the helix proportional to
the sum of H values in the corresponding column of the
alignment. Now that both ends of the new helix are fixed, we
choose the number of consecutive base-pairs in the helix
based on the quality of the resulting helix. The quality of a
helix is defined as the log-odds ratio of its Felsenstein
likelihoods (i.e., the likelihood of the RNA without the helix
and the likelihood of the RNA with the helix). Using this
procedure, we can sample a reasonable new helix in a
computationally very efficient way that requires only linear
rather than cubic time. We accept the new RNA structure
that differs from the old RNA structure by the set of removed
helices, N, if the following Metropolis-Hastings ratio is larger
than a random number r 2 [0, 1]:

r,
PðSnew;A;TjDÞ � Pbackproposal

PðS;A;TjDÞ � Pproposal

where P(Snew, A, TjD) is the posterior probability given the
new RNA structure and Pproposal and Pbackproposal are the
proposal and backproposal probabilities, respectively.

Analyzing the MCMC Results
The primary result of an MCMC run is a large set of

simulated (S, T, A) triples that are distributed according to the
posterior distribution. This data needs post-processing to
characterize and visualize the posterior distribution. As we
are interested in deriving the RNA structure that is best
supported by the posterior distribution, we therefore margin-
alize with respect to the RNA structure.
We project the RNA structure, S, of each sampled (S, T, A)

triple onto the RNA sequences in D and thereby obtain a set
of RNA structures for each individual RNA sequence. The
challenge is to combine these structures into a single RNA
structure that captures the prominent features of the set of
structures.
There already exist a number of programs that determine a

consensus structure for a given set of RNA structures, e.g.,
RNAdistance of the Vienna package [7,73] and RNA-Forester
[74,75]. RNA-Forester computes a global structural alignment
for several unaligned sequences with known secondary
structures using a dynamic programming procedure that

Figure 3. Sampling Alignment and Structure

We sample a new alignment by choosing a random window of the alignment that is devoid of base-pairs and by realigning it (step 1). We then sample a
new RNA structure by removing a random set of helices from the given structure (step 2) and by adding a set of new helices (step 3).
doi:10.1371/journal.pcbi.0030149.g003
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depends on scores with combined information on structure
and sequence similarity. However, RNA-Forester and RNA-
distance both require the input RNA structures to be
secondary structures and cannot handle pseudoknots.

Deriving a consensus RNA structure including pseudo-
knots. We use the following procedure for deriving a
consensus bi-secondary structure for each individual se-
quence. For each simulated (S, T, A) triple, we project the
RNA structure, S, onto the individual sequences in D. For
each RNA sequence, we then transform the set of its
structures into a table of base-pairing probabilities by
converting the relative frequency of base-pairs in the RNA
structures into estimates of base-pairing probabilities. The
set of base-pairs with pairing probabilities larger than zero is
then used as input to the MWM algorithm [35,36]. We use the
algorithm in its implementation by Rothberg [76], which
requires O(L3) time and O(L2) memory to analyze a sequence
in which L positions can be base-paired. The MWM algorithm
operates on an undirected, weighted graph where each node
represents a sequence position and each edge between two
nodes represents a base-pair between the two corresponding
sequence positions. We set the weight of each edge to the
weight of the helix to which this base-pair belongs, and define
the weight of a helix as the sum of the probabilities of its
base-pairs. The MWM algorithm determines the highest-
scoring subset of mutually compatible base-pairs that, in
mathematical terms, corresponds to a maximum weighted
matching in the graph. Two base-pairs are defined as
compatible if they do not share a sequence position. In the
general case, the base-pairs of the maximum weighted
matching need not correspond to a bi-secondary structure.
Bi-secondary structures [39] are planar structures that can be
visualized as the superposition of at most two disjoint
secondary structures. The class of bi-secondary structures
comprises secondary structures and a wide variety of
pseudoknots, but excludes true knots. The a-operon mRNA
structure is one of the very few examples that is not a bi-
secondary structure; refer to Condon et al. [77] for an
overview of the different classes of pseudoknots and their
relationships to each other. As there is yet no variant of the
MWM algorithm with a constraint on bi-secondary struc-
tures, we need a post-processing step to extract a high-

scoring bi-secondary structure from the base-pairs of the
maximum weighted matching. We do this in the following
way. We order the helices by decreasing weight and assign
colour 1 to the first and highest-scoring helix. The next
uncoloured helix in the list gets the same colour as the first
set of already coloured helices with which it can form a
secondary structure (the sets of already coloured helices are
ordered by increasing colour-number). If the uncoloured
helix cannot form a valid secondary structure with any set of
already coloured helices, it is assigned to the next available
new colour. Once all helices have been coloured, the helices
of colours 1 and 2 (if any helices of colour 2 exist) form the
final bi-secondary structure. This RNA structure is the RNA
structure that is predicted by SimulFold for that individual
RNA sequence. We implemented the structure post-process-
ing step in a dedicated program, called bp2bistruc, which
takes an upper-triangle matrix of base-pairing probabilities
as input and calculates a high-scoring bi-secondary RNA
structure. This predicted structure is accompanied by
posterior probabilities, which are useful to highlight the
more and the less reliably estimated parts of the predicted
structure (see Figure 4).

Results

Features of Available Secondary Structure Prediction
Programs
SimulFold is to our knowledge the first program that

predicts an RNA structure including pseudoknots while
simultaneously estimating an alignment as well as an evolu-
tionary tree for several, evolutionarily related input RNA
sequences. It was therefore not possible to present a
comparison to a truly equivalent program. Instead, we
compare the RNA structures predicted by SimulFold to those
predicted by RNAalifold [10], Hxmatch [78], Pfold [31,32],
and CARNAC [45,46].
RNAalifold takes a fixed alignment as input and predicts a

consensus RNA secondary structure without pseudoknots. It
extends the MFE algorithm employed by the non-compara-
tive MFE methods Mfold and RNAfold by interpreting the
fixed input alignment as a hyper-sequence and by simulta-
neously minimizing the overall free energy while taking the

Figure 4. RNA Structure with Pseudoknot Predicted by SimulFold for the HDV Sequence of Organism AJ309880 Using the MCMC Results Generated

with Parallel Tempering

The pairing probabilities estimated by SimulFold are colour-coded and range from bright green (high probability) to bright red (low probability). The
pairing probabilities for this structure range from 0.62 for the pair at sequence positions f4, 38g to one for most of the base-pairs, e.g., the one at
sequence positions f6, 36g. For this figure, we have adopted a nonlinear colouring scheme; otherwise, all base-pairs would simply come in slightly
different shades of green.
doi:10.1371/journal.pcbi.0030149.g004
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primary sequence conservation and co-varying columns in
the fixed alignment into account. The optimization is
implemented in a dynamic programming procedure that
combines free energy parameters with conservation scores.

Hxmatch is an extension of RNAalifold. Like RNAalifold, it
takes a fixed alignment as the only input and predicts a
consensus RNA secondary structure. However, unlike RNAa-
lifold, it is capable of predicting secondary structures with
pseudoknots. Hxmatch employs a two-step procedure. In the
first step, the fixed input alignment is analyzed with
RNAalifold [10] of the Vienna package, which calculates the
base-pairing probability for each possible pair of columns in
the alignment by considering all possible secondary struc-
tures without pseudoknots. In the second step, these weighted
base-pairs are used as input to the MWM algorithm. The
MWM algorithm derives the highest-scoring subset of
mutually compatible base-pairs, requiring O(L3) time and
O(L2) memory to analyze an input alignment of length L. As
these base-pairs need not correspond to a bi-secondary
structure, a heuristic, greedy algorithm is then employed to
extract a bi-secondary structure. The MWM algorithm and
the greedy algorithm are repeatedly used until the resulting
bi-secondary structure remains unchanged or 30 iterations
have been completed. Hxmatch does not take the evolu-
tionary relationship of the input RNA sequences explicitly
into account.

Pfold takes as input not only a fixed alignment, but also an
evolutionary tree relating the sequences, and predicts a
consensus secondary structure which does not contain
pseudoknots, as Pfold cannot handle pseudoknots. Pfold
employs an SCFG, i.e., a probabilistic rather than an MFE
model, to derive the consensus secondary structure. Similar
to RNAalifold, it takes the primary sequence conservation
and co-varying columns in the fixed input alignment into
account. Unlike RNAalifold, Pfold also takes the known
evolutionary relationship of the input sequences, i.e., the
input tree, explicitly into account. Both, Pfold, and RNAali-
fold require O(L3) time and O(L2) memory to analyze an input
alignment of length L.

CARNAC is also a comparative RNA structure prediction
method. It takes several unaligned RNA sequences as input
and predicts an RNA structure for each individual RNA
sequence which does not contain pseudoknots, as CARNAC
cannot handle pseudoknots. Similarly to Hxmatch and
RNAalifold, it does not take the evolutionary relationship
of the input sequences explicitly into account. CARNAC
employs a multi-step procedure for generating predictions.
In the first step, potential helices are predicted for each RNA
sequence separately. In the second step, an optimal consensus
secondary structure is extracted from these helices for every
possible pair of RNA sequences. In the third and last step, the
different secondary structures that were predicted in a
pairwise fashion for each individual RNA sequence are
combined into one secondary structure using graph theoret-
ical techniques. This is the final RNA structure reported by
CARNAC for that RNA sequence. In the most general case,
the algorithms underlying CARNAC would require O(L6) time
and O(L4) memory to analyze input sequences of length L [45].
These requirements can be reduced by a number of
computational tricks. For the data investigated by Perriquet
et al. [45], the empirically observed requirements were
approximately O(L2) time and memory.

Dataset
We compiled a large and diverse dataset from previously

published data [78–80] to thoroughly investigate SimulFold’s
ability to correctly predict RNA structures. Our dataset
consists of 16 sets of evolutionarily related sequences that
cover a wide range of average pairwise sequence identities
(pids) and sequence lengths. Half of the sets contain a
pseudoknotted reference structure; the other half contain a
reference structure without pseudoknots. The number of
sequences in each set ranges from five to 15 sequences. We
automatically generated Clustal-W alignments for all 16 sets
to serve as input alignment for those programs that take a
fixed input alignment. The resulting alignments are 74–1,601
nucleotides long, and their average pid ranges from 40% to
91%. Table 1 summarizes the main characteristics of each set
(see the columns ‘‘Structure’’ and ‘‘Alignment’’ and the
caption of the table).

Performance Evaluation
Table 1 shows the performance values for the RNA

structures predicted by SimulFold, RNAalifold, Hxmatch,
Pfold, and CARNAC for all 16 sets. We used the Clustal-W
alignments as fixed input alignments for Hxmatch and Pfold.
The same alignments were also used as initial alignments for
SimulFold.
To evaluate the structure prediction performance, we

compared the known RNA structure of the reference
organism in each set with the corresponding predicted
RNA structure. We measured the quality of the structure
predictions in terms of the number of correctly predicted
base-pairs (true positive base-pairs, or TP, see Table 1), the
number of incorrectly predicted base-pairs (false positives, or
FP), and the number of known base-pairs that have not been
correctly predicted (false negatives, or FN). We also calculated
Mathews’s correlation coefficient (MCC) (see Table 1), which
is defined as

MCC ¼ TP � TN� FP � FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþ FPÞðTPþ FNÞðTNþ FPÞðTNþ FNÞ

p :

CARNAC generally shows a high specificity, i.e., a low
number of incorrectly predicted base-pairs, often in combi-
nation with a low sensitivity, i.e., a low number of true
positive base-pairs. This low sensitivity can even be found for
sets whose average pid is fairly high, e.g., set U5 (high) with an
average pid of 88%. CARNAC’s performance is naturally
limited by the fact that it cannot predict pseudoknotted
structures.
Besides SimulFold, Hxmatch is the only other investigated

program that is capable of predicting pseudoknotted
secondary structures. Hxmatch has the tendency to over-
predict base-pairs, as indicated by the high number of false
positive base-pairs. This happens for low average pids (e.g.,
set tRNA [low]) and for high pids (e.g., set SSU [high]). It is
interesting to note that RNAalifold often does better than
Hxmatch at predicting the base-pairs of pseudoknotted
reference structures, e.g., the results for RNaseP (medium),
RNase P8, SSU (medium), and SSU (high). However, there are
also examples, see the corona set, where the reverse holds.
Like RNAalifold and Hxmatch, Pfold is a program that

takes a fixed alignment as input. Its performance tends to be
low for the low average pid range, e.g., the U5 (low), tRNA
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Table 1. Performance of CARNAC, Hxmatch, RNAalifold, Pfold, and SimulFold for Predicting RNA Structures

Sequence Set Structure Alignment Performance Measure Program

CARNAC Hxmatch RNAalifold Pfold SimulFold SimulFold PT

U5 (low) 30 bp, no pk 60%, 123, 5 TP 19 8 18 10 25 —

FP 1 16 7 5 1 —

FN 11 7 8 11 5 —

MCC 0.68 0.23 0.55 0.44 0.84 —

U5 (high) 30 bp, no pk 88%, 116, 5 TP 0 28 30 30 29 —

FP 0 2 3 0 0 —

FN 30 0 0 0 1 —

MCC 0.00 0.95 0.93 1.00 0.97 —

Group II intron (low) 19 bp, no pk 73%, 144, 5 TP 0 8 8 8 12 —

FP 0 27 28 8 0 —

FN 19 2 1 5 7 —

MCC 0.00 0.31 0.34 0.49 0.77 —

Group II intron (high) 18 bp, no pk 75%, 80, 5 TP 11 11 12 13 19 —

FP 7 13 12 10 1 —

FN 6 0 0 0 0 —

MCC 0.42 0.55 0.58 0.64 0.96 —

tRNA (low) 20 bp, no pk 40%, 89, 5 TP 9 0 11 8 18 —

FP 0 15 4 4 3 —

FN 11 3 4 6 2 —

MCC 0.61 �0.11 0.66 0.53 0.82 —

tRNA (high) 21 bp, no pk 75%, 74, 5 TP 12 21 21 21 20 —

FP 3 2 0 0 1 —

FN 8 0 0 0 0 —

MCC 0.53 0.92 1.00 1.00 0.96 —

rRNA (low) 32 bp, no pk 49%, 124, 5 TP 13 9 9 9 22 —

FP 1 4 6 3 1 —

FN 19 20 18 21 11 —

MCC 0.50 0.31 0.27 0.33 0.71 —

rRNA (high) 34 bp, no pk 76%, 119, 5 TP 12 25 27 24 23 —

FP 1 11 9 7 1 —

FN 22 5 4 8 11 —

MCC 0.45 0.59 0.67 0.60 0.71 —

RNaseP (medium) 122 bp, pk 66%, 436, 11 TP 53 9 37 58 29 —

FP 13 46 28 19 26 —

FN 60 59 54 45 55 —

MCC 0.42 �0.11 0.24 0.47 0.23 —

RNase P (high) 110 bp, no pk 81%, 385, 9 TP 26 41 40 48 20 —

FP 8 49 57 18 84 —

FN 74 36 28 50 17 —

MCC 0.31 0.24 0.25 0.42 0.11 —

SSU (medium) 478 bp, no pk 80%, 1601, 11 TP 213 157 366 0 82 —

FP 27 131 69 0 106 —

FN 244 177 67 478 277 —

MCC 0.59 0.43 0.81 0 0.24 —

SSU (high) 478 bp, no pk 91%, 1551, 11 TP 173 139 274 322 50 —

FP 27 201 202 53 163 —

FN 281 122 51 111 235 —

MCC 0.52 0.39 0.64 0.76 0.11 —

Corona 18 bp, pk 95%, 66, 9 TP SF 16 0 9 14 —

FP SF 4 14 0 7 —

FN SF 1 2 9 2 —

MCC SF 0.70 �0.19 0.57 0.41 —

Entero 38 bp, pk 88%, 104, 12 TP 12 25 23 19 32 —

FP 0 4 4 1 5 —

FN 26 10 9 18 2 —

MCC 0.35 0.47 0.55 0.44 0.71 —

HDV 27 bp, pk 91%, 91, 15 TP 13 11 15 15 16 23

FP 2 10 14 4 14 15

FN 13 4 3 8 1 0

MCC 0.47 0.45 0.37 0.54 0.50 0.68

RNase P8 124 bp, pk 57%, 472, 8 TP SF 0 55 66 64 80

FP SF 16 10 12 62 36

FN SF 108 61 52 10 20

MCC SF �0.43 0.27 0.27 0.16 0.20

We analyze 16 sets of sequences whose features are described in the columns ‘‘Structure’’ and ‘‘Alignment.’’ ‘‘Structure’’ gives the number of base-pairs in the known structure and
indicates whether the structure contains a pseudoknot (‘‘pk’’) or not (‘‘no pk’’). ‘‘Alignment’’ gives more information on the Clustal-W alignment: the average percent identity, the length
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(low), and rRNA (low) sets, which all have average pids below
50%. For the high pid range, its performance can be limited
because of the fact that Pfold cannot model pseudoknots, e.g.,
in the corona, entero, and hepatitis delta virus (HDV) sets. Its
performance for the RNaseP (medium) set constitutes a
notable exception to this trend.

SimulFold is the only program that simultaneously co-
estimates alignments, structures, and trees. It clearly outper-
forms all other programs in terms of overall performance for
eight out of 16 sets: U5 (low), group II intron (low and high),
tRNA (low), rRNA (low and high), entero, and HDV. It also
shows a competitive performance for the sets U5 (high) and
tRNA (high). These sets cover a wide range of average pids,
from 40% to 91%. The results for the two SSU sets show that
SimulFold has problems analyzing these two sets, whose
reference alignments span more than 1,500 nucleotides.
However, the results for the RNase P8 set show that
SimulFold can successfully predict structures with high
sensitivity even for comparatively long sequences (the
reference alignment of the RNase P8 set has a length of 472
nucleotides). The results for the RNase P8 and the HDV sets
show the benefits of parallel tempering. When investigating
the predictions for the HDV set, we concluded from the
loglikelihood plot (see Figure 5) that the MCMC chain got
stuck in local minima. We therefore implemented a more
sophisticated version of SimulFold that employs the MCMC
technique of parallel tempering [81] to address the problem.
As the grey line in Figure 5 shows, parallel tempering solves
the mixing problem for the HDV set and significantly
improved the sensitivity, while at the same time reducing
the number of incorrectly predicted base-pairs.

Potential of SimulFold as an Alignment and Phylogeny
Prediction Program

Our initial motivation for devising a novel method that
simultaneously co-estimates RNA structures, alignments, and

evolutionary trees was to improve the prediction of RNA
structures, in particular those with pseudoknots. A very
interesting additional benefit of our approach is that
SimulFold can also be used as an alignment and phylogeny
prediction program.
We here present preliminary results for sequences from the

HDV set that show SimulFold’s potential as an alignment and
phylogeny prediction program. By the same argument that
we made above for RNA structure prediction, we should also
be able to derive better alignments and trees if we co-estimate
all three, interdependent quantities together rather than in
isolation.
The HDV dataset contains 15 sequences of HDV ribozymes

from several strains (their NCBI accession numbers are shown
on the figures showing the alignments and the consensus
networks). The ribozyme contains one pseudoknot and a
variable helix. We calculated posterior probabilities of
alignment columns from the multiple alignments that the
MCMC method sampled, i.e., the probability of seeing a
particular alignment column in a sampled multiple align-
ment.
We calculated the maximum posterior decoding (MPD)

alignment using a dynamic programming procedure [72]. It
has been shown [67] that MPD yields better estimates than
maximum a posteriori alignment estimation from an MCMC
sample.
The MPD alignment is shown in Figure 6, together with the

estimated posterior probabilities for each column as well as
the reference secondary structure that includes a pseudoknot.
The figure clearly highlights three regions in the alignment
where lower posterior probabilities are due to an ambiguity
in the estimation. The first region overlaps a hairpin loop.
Even though the MPD alignment contains no gaps in this
region, the sequences vary a lot and there exist several
plausible explanations that relate the sequences in this region
in terms of evolutionary indel events. The remaining two
regions overlap the two base-paired sides of a variable helix.
The low posterior probabilities indicate that several plausible
alignments exist for these regions. These observations are in
line with our difficulty to correctly predict these parts of this
helix. We conjecture that this helix may be shorter or contain
bulges in some of the sequences of the HDV set.
If we compare our MPD alignment to the alignment

generated by Clustal-X [61] shown in Figure 7, we observe two
main differences. First, Clustal-X does not take secondary
structure into account when predicting the alignment. This
yields several nonsense base-pairs with respect to the known
reference structure (highlighted in green in Figure 7). Second,
Clustal-X does not evaluate the reliability of the different
regions in the predicted alignment. We thus do not know
which parts of the predicted alignment are particularly well
or poorly supported by the data.
We calculated consensus networks based on the evolu-

tionary trees sampled from the posterior distribution by the
MCMC using the method of Holland and Moulton [82]

Figure 5. Loglikelihood as a Function of the Steps in the MCMC Chain for

the HDV set with and without Parallel Tempering

With parallel tempering (grey) and without parallel tempering (black).
Without parallel tempering, the MCMC chain gets stuck in local minima.
doi:10.1371/journal.pcbi.0030149.g005

of the alignment in nucleotides, and the number of sequences in the alignment. We measure performance in terms of the number of correctly predicted base-pairs (true positive base-
pairs, or TP), the number of incorrectly predicted base-pairs (false positives, or FP), and the number of known base-pairs that have not been correctly predicted (false negatives, or FN). We
also measure the structure performance in terms of the MCC (values in bold in the ‘‘Program’’ columns indicate the best MCC value for each set). Some job runs of CARNAC resulted in a
segmentation fault, denoted ‘‘SF.’’ The HDV and the RNase P8 sets were analyzed twice with SimulFold: once with the default version and once using parallel tempering, denoted
‘‘SimulFold PT.’’
doi:10.1371/journal.pcbi.0030149.t001
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implemented in the SplitsTree4 program [83]. We set the
threshold for splits to 0.1, i.e., we retained only splits that
were present in at least 10% of the sampled trees, and
generated the two networks shown in Figure 8. The two
networks have the same topology, but differ in the lengths of
their edges, which represent different kinds of information.
In the left network, the length of each edge is proportional to
the probability of the split that is represented by the edge in
the posterior distribution (the unit in the top left corner
shows 1,000 occurrences in 2,000 sampled trees). In the right
network, the length of each edge is equal to the average
length of the edge in the sampled trees that contain that edge.

There are five groups of strains: the lone strain AJ309873; a
group containing U81988, M28267, X77627, and M92448;
another group containing U81989, AF104263, AF104264, and
X85253; and finally two relatively close groups containing
AB088679, AF018077, and AF309420, and L22063, AB03748,
and AJ309880. There is not enough phylogenetic signal to
infer the relationship between the union of the two last
groups and the other three groups. As Figure 8 indicates,
there are several plausible explanations for how strains in the
first two groups could have evolved.
These preliminary results show that SimulFold not only

allows us to derive consensus multiple alignments and

Figure 6. MPD Alignment for the HDV Dataset Consisting of 15 Sequences of HDV Ribozymes

The name of each sequence indicates the NCBI accession number of the strain. The ribozyme contains one pseudoknot and a variable helix as shown in
the line above the alignment, which denotes the known reference structure in dot-bracket, or Vienna, notation. The posterior probabilities for each
alignment column were derived from the multiple sequence alignments that the MCMC method sampled and are indicated at the top of the figure.
doi:10.1371/journal.pcbi.0030149.g006

Figure 7. Clustal-X Alignment for the HDV Dataset Consisting of 15 Sequences of HDV Ribozymes

Some parts of the AB037948 and L22063 sequences are misaligned (red characters), which causes nonsense base-pairs (highlighted in green) when
mapping the known reference structure onto these sequences.
doi:10.1371/journal.pcbi.0030149.g007
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evolutionary trees, but even enables us to highlight partic-
ularly well or poorly estimated parts of these alignments and
trees.

It is easy to think of situations where one does not want to
simultaneously co-estimate RNA structures, alignments, and
trees, e.g., because a high-confidence RNA structure (or
alignment or tree) has already been established. It is
straightforward to employ SimulFold in these situations, as
the program can be easily told to keep the input RNA
structure or alignment or tree (or any combination thereof)
fixed.

Evaluation of the MCMC’s Efficiency
An MCMC can suffer from a low efficiency for three main

reasons: (1) the acceptance ratio is low, (2) the Markov chain
gets stuck in local optima, or (3) the computational time to
perform each step is large. We introduced partial Metropolis
importance sampling to quickly propose moves that replace

only part of the data and to keep the rejection probability
and autocorrelation low. For the HDV set, the initial
loglikelihood plot shows poor mixing (see Figure 5). We
therefore implemented the more sophisticated MCMC
technique of parallel tempering in SimulFold. This option
can be switched on whenever the mixing properties need to
be improved. Figure 5 shows, for the HDV set, how parallel
tempering can considerably improve the mixing properties.
The parallel tempering run took 1.5 d and used 50 MB of
memory on an Intel Xeon dual 3 GHz machine for the HDV
set, involving seven parallel chains, 10,000 steps for burn-in,
and 2,000 samples, and making 100 steps between two
samplings. Shorter sequences, multiple alignments with fewer
sequences, and MCMC runs without parallel chains took
proportionally less time. In terms of computational complex-
ity, SimulFold takes O(N � L) time to propose a change in
phylogeny for N sequences and an alignment of length L.
Changing the alignment takes O(N � W2) time, where W is the
length of the window that is re-sampled. Changing the
structure takes O(K � N � L) time, where K is the number of
changed helices. In its current implementation, SimulFold
uses the same number of moves to update trees, alignments,
and structures. The mixing of the chain decreases with the
length and number of sequences. We did not investigate this
behaviour in detail, but know that for multiple sequence
alignments, the mixing time is proportional to N � L.

Discussion

We propose here a novel theoretical framework for co-
estimating an RNA structure including pseudoknots, S, a
multiple-sequence alignment, A, and an evolutionary tree, T,
given several evolutionarily related RNA sequences, D, as
input. We also present an implementation of this framework
in a new computer program, called SimulFold, and evaluate
the quality of the predicted RNA structures relative to those
predicted by existing programs.
Our novel theoretical framework allows us to sample (S, T,

A) triples from the posterior distribution, P(S, A, TjD), in a
computationally very efficient way using a Bayesian MCMC.
For every RNA sequence in D, we then extract the RNA
structure that is best supported by the posterior distribution
using the MWM algorithm and a post-processing step
implemented in an auxiliary program called bp2bistruc.
Our work is significant in a number of ways. SimulFold

overcomes several limitations of existing RNA structure
prediction methods, in particular the conceptual limitations
of SCFG-based methods. SimulFold does not rely on a fixed
input alignment or tree, it can predict pseudoknotted RNA
structures, it can take any number of related RNA sequences
as input, it aims to predict the evolutionarily conserved RNA
structure rather than the thermodynamic or MFE structure, it
explicitly models the evolutionary relationship between the
RNA sequences, it is a fully probabilistic method that is
capable of quantifying the reliability of its predictions, and,
most important for the majority of users, it works in a
computationally efficient way and can be used on any
standard desktop computer. Furthermore, SimulFold derives
the RNA structure that is best supported by the posterior
distribution, rather than the RNA structure that maximizes
the likelihood, which is what SCFG-based structure predic-
tion methods do.

Figure 8. Two Consensus Networks for the HDV Dataset Consisting of 15

Sequences of HDV Ribozymes

The name of each sequence indicates the NCBI accession number of the
strain (see also Figure 6). The edge lengths in the left network
correspond to the probability of the corresponding split in the posterior
distribution, whereas the edge lengths in the right network correspond
to the average length of the edge in the sampled trees.
doi:10.1371/journal.pcbi.0030149.g008
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We use a number of novel theoretical and computational
tricks to achieve the above. We devised a new expression for
the prior P(S, A, T), in particular a function that models the
contribution of trees, a function that incorporates informa-
tion on structures and alignments, and a function that
quantifies the contribution of gaps in the alignment. For
sampling from the posterior distribution, we propose a new
way of sampling trees and a fairly sophisticated new way of
jointly sampling structures and alignments in a computation-
ally very efficient way. After O(N � L2) pre-processing time, we
do an MCMC step modifying the base-pairs that requires O(N
� L) time, where N is the number of sequences and L is the
average length of the sequences. We also introduce a new type
of MCMC sampler that we call a partial Metropolis
importance sampler. We implemented the sophisticated
MCMC technique of parallel tempering into SimulFold,
which can be switched on whenever the loglikelihood plot
indicates poor mixing properties. Finally, we introduce a new
program, bp2bistruc, that derives an RNA structure that may
include pseudoknots (a bi-secondary structure, to be precise)
from an input table of base-pairing probabilities.

The performance of SimulFold in predicting RNA secon-
dary structures with and without pseudoknots compares very
well to the performance of RNAalifold, Hxmatch, Pfold, and
CARNAC across a wide range of average pids and sequence
lengths. We also present encouraging preliminary results that
show SimulFold’s potential as an alignment and phylogeny
prediction program. It is not only possible to derive a
consensus alignment and tree, but also to highlight those
parts of the alignment and tree that can be particularly well
or poorly estimated. This information is very valuable for
interpreting the results in great detail.

It is easy to think of situations where one does not want to
simultaneously co-estimate RNA structures, alignments, and
trees, e.g., because a high-confidence RNA structure (or
alignment or tree) has already been established. We therefore
implemented special flags in SimulFold that allow the user to
keep the input RNA structure or alignment or tree (or any

combination thereof) fixed. We hope that this feature will
make SimulFold a useful program for a wide range of
interesting tasks and data analyses.
In the future, we intend to investigate different models and

priors for use in SimulFold, e.g., a co-transcriptional folding
prior. We also hope to further improve the properties of the
sampling, e.g., partial importance sampling of tree or an even
better structure sampler, to improve the performance for
very long sequences.
SimulFold opens up a large number of possibilities for

exciting data analysis. Most importantly, we can now start
analyzing data whose low primary sequence conservation has
so far prevented their analysis with methods that require a
high-quality input alignment. We hope that our work inspires
other researchers to also develop methods that predict or
investigate the functional structure of RNA sequences so that
we learn more about how RNA sequences play their diverse
functional roles in the cell.
SimulFold as well as information on the input and output

files of this analysis can be found at http://www.cs.ubc.ca/
;irmtraud/simulfold/.
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