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Abstract

Neural networks consisting of globally coupled excitatory and inhibitory nonidentical neurons may exhibit a complex
dynamic behavior including synchronization, multiclustered solutions in phase space, and oscillator death. We investigate
the conditions under which these behaviors occur in a multidimensional parametric space defined by the connectivity
strengths and dispersion of the neuronal membrane excitability. Using mode decomposition techniques, we further derive
analytically a low dimensional description of the neural population dynamics and show that the various dynamic behaviors
of the entire network can be well reproduced by this reduced system. Examples of networks of FitzHugh-Nagumo and
Hindmarsh-Rose neurons are discussed in detail.
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Introduction

Information processing associated with higher brain functions is

believed to be carried out by large scale neural networks [1–4].

Significant theoretical and computational efforts have been

devoted over the years to understand the dynamical behavior of

such networks. While any modeling attempt aspires to preserve the

most relevant physical and dynamical characteristics of these

networks, certain simplifying hypothesis are usually employed in

order to decrease the overwhelming complexity of the problem. In

particular, computational models of large scale networks make use

of the implicit assumption of ‘‘neurocomputational unit’’. Such a

unit designates a population of thousands of neurons which exhibit

a similar behavior. A large scale network is then defined by these

units and their interconnections. In order to describe the dynamics

of the unit, further assumptions are employed. For instance, the

neurons may be regarded as identical entities, the nature and

strength of their connections may be neglected and the temporal

details of their spiking activity considered irrelevant for the

dynamics of the large network. Consequently, a small neural

network with these properties will show a very well synchronized

dynamics which can be easily captured by a conventional neural

mass model (for a comprehensive review see [5] and [6]).

A remarkable amount of scientific work has been devoted to the

understanding of the behavior of neural networks when some of

these assumptions are dismissed. Many of these studies consider

either the inhomogeneities in the network connectivity, or

heterogeneous inputs and give a special attention to the

synchronized state of the network. Among the first attempts, one

may consider the studies on coupled oscillators by Kuramoto [7]

who introduced an order parameter capturing the degree of

synchronization as a function of the coupling strength or frequency

distribution (see [8] and [9] for a comprehensive review). More

generally, Pecora et al. [10] (see also Belykh et al. [11]) have

derived the master stability equation, serving as a stability

condition for the synchronized state of an arbitrary network.

Recently, Hennig et al. [12] derive similar conditions considering

the connectivity as well as heterogeneous inputs. Another direction

for describing the dynamical behavior of such networks involves

the derivation of the equations for the synchronized state

(described by the mean field or by a synchronization manifold)

along with the equations describing the deviations from synchrony

[13,14]. These approaches are suitable only when the deviation

from the synchronized state is not very strong. On the other hand,

there exists another class of approaches based on mean field theory

([15]; see also [6] for a review). The traditional mean field

approaches are incapable of addressing synchronized neural

activity, since their basic assumption is that the incoming spike-

train to a given neuron in the network is Poissonian and hence

uncorrelated. Other dynamical behaviors far from synchrony,

such as multi-clustering in the phase for instance, also require

expansions of the current approaches. First attempts to do so

include the consideration of higher orders in the mean field

expansion [16] or mode decompositions of the network dynamics

in the phase space [17]. The latter approach by Assisi et al. [17]

successfully identified network modes of characteristic behavior,

but has been limited to biologically unrealistic situations such as

purely excitatory or inhibitory networks and simplistic neuron

models. While it is true that strong reductionist assumptions are
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common (sacrificing dramatically on the biological realism of a

network node’s dynamics) in large-scale network modeling [18–

25], these assumptions on the network node’s dynamics are usually

made adhoc and limit the network dynamics to a small range.

Evidently a reduced small scale network model is desirable to

serve as a node in a large scale network simulation whereby

displaying a sufficiently rich dynamic repertoire. Here it is of less

importance to find a quantitatively precise reduced description of

a neural population; rather more importantly, we seek a

computationally inexpensive population model (this means

typically low-dimensional) which is able to display the major

qualitative dynamic behaviors (synchronization, rest state, multi-

clustering, etc.) for realistic parameter ranges as observed in the

total population of neurons. Here it is also desirable to include

biologically more realistic neuron dynamics such as bursting

behavior, since novel phenomena on the small scale network level

may occur, which need to be captured by the reduced population

model.

In this paper we extend the approach by Assisi et al. [17]

towards biologically more realistic network architectures including

mixed excitatory and inhibitory networks, as well as more realistic

neuron models capable of displaying spiking and bursting

behavior. Our reduced neural population models not only account

for a correct reproduction of the mean field amplitude of the

original networks but also capture the most important temporal

features of its dynamics. In this way, complex dynamical

phenomena such as multi-clustered oscillations, multi-time scale

synchronization and oscillation death become available for

simulations of large scale neural networks at a low computational

cost. We start by investigating first, the main features of the

dynamic behavior of a globally coupled heterogeneous neural

population comprising both excitatory and inhibitory connections.

Then, using mode decomposition techniques, we derive analyti-

cally a low dimensional representation of the network dynamics

and we show that the main features of the neural population’s

collective behavior can be captured well by the dynamics of a few

modes. Two different neuronal models, a network of FitzHugh-

Nagumo neurons and a network of Hindmarsh-Rose neurons are

discussed in detail.

Results

The Dynamic Behavior of the FitzHugh-Nagumo Neural
Population

We begin our investigations by considering a mixed population

of globally coupled N1 excitatory and N2 inhibitory FitzHugh-

Nagumo neurons (see Materials and Methods for more details

regarding the architecture of the network). The neurons are not

identical and differ in the degree of membrane excitability Ii. In

normal physiological conditions, this variability may reflect

different levels of expression of certain types of receptors [26,27]

or differences in regulatory effects induced by internal [28,29] or

external [30,31] neuromodulatory processes. Some pathological

conditions elicited by specific genetic mutations or by drug abuse

are also known to be related to significant modifications of the

level of neural membrane excitability [32,33]. In the framework of

theoretical and computational neural modelling, this parameter is

usually instantiated by an external current, constant in time, which

affects directly the dynamics of the variable describing the neural

membrane potential. In general, excitatory or inhibitory subpop-

ulations may be characterized by different parameter distributions.

For the purpose of this paper the parameter distribution is called

g(I) and is Gaussian, unless specified differently. The standard

deviation of the distribution quantifies the degree of dispersion.

The values of the coupling strengths, the dispersion and the mean

of the membrane excitability for each subpopulation constitute a

parametric space in which the dynamics of the entire population

may exhibit various significant characteristics. Because of the

multidimensional nature of this parametric space, a complete

treatment of the system’s dynamics is difficult and some

simplifications shall be considered to lower the complexity of the

analysis (see the section ‘‘Materials and Methods: The architecture

of the network’’ for more details). First, we neglect the coupling

within the inhibitory subpopulation (K22.0), which is motivated

by the small number of inhibitory neurons, second, the coupling

strength describing the interactions between the neurons within

the excitatory subpopulation K11 is comparable with the coupling

strength K21 between the excitatory neurons and the neurons in

the inhibitory subpopulation; third, rather than allowing arbitrary

values for the connectivity strengths K11 and K12, we pick a

reference value K12 and manipulate the ratio n~
K12

K11
. In

particular, two parametric regimes may be distinguished: one for

which the excitatory coupling is stronger then the inhibitory one

(n,1), and the opposite situation corresponding to n.1. Lastly, we

assume that the distributions of the membrane excitability levels in

the excitatory and inhibitory subpopulations have the same mean

and dispersion parameters. Given the small cortical volume

occupied by the neural network considered here, this simplification

will be precise, if the concentration changes of neuromodulatory

factors influencing the degree of membrane excitability will have

identical effects on the two neural subpopulations. Motivated by

the simple intrinsic dynamics of the FitzHugh-Nagumo neuron

(see Figure 1A), where the stability of the rest state is lost via a

Hopf bifurcation, we allow a zero mean for these distributions

(m = 0) and different degrees of dispersion.

Considering these approximations we proceed by investigating

how the collective behavior of a population of 200 neurons (150

excitatory and 50 inhibitory neurons) depends on the system’s

parameters. For small values of the inhibition/excitation ratio

(n#0.5) the entire population behaves similar to a purely

excitatory population as studied in [17] and summarized in the

following. In the parametric space of connectivity strengths K11,

K12 and dispersion s, three distinct regions can be identified in

Author Summary

Nowadays we know that most cognitive functions are not
represented in the brain by the activation of a single area
but rather by a complex and rich behavior of brain
networks distributed over various cortical and subcortical
areas. The communication between brain areas is not
instantaneous but also undergoes significant signal
transmission delays of up to 100 ms, which increase the
computation time for brain network models enormously.
In order to allow the efficient investigation of brain
network models and their associated cognitive capabilities,
we report here a novel, computationally parsimonious,
mathematical representation of clusters of neurons. Such
reduced clusters are called ‘‘neural masses’’ and serve as
nodes in the brain networks. Traditional neural mass
descriptions so far allowed only for a very limited
repertoire of behaviors, which ultimately rendered their
description biologically unrealistic. The neural mass model
presented here overcomes this limitation and captures a
wide range of dynamic behaviors, but in a computationally
efficient reduced form. The integration of novel neural
mass models into brain networks represents a step closer
toward a computational and biologically realistic realiza-
tion of brain function.

Heterogeneous Neural Network Dynamics
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which the amplitude of the mean field as well as the oscillatory

status of the population differs significantly (see Figure 2). The

regions are characterized by more than 90% of all neurons

showing a behavior particular for a region. In the first region (low

values for connectivity strength) the population groups in two

clusters, one that will perform large oscillations on the limit cycle

and a ‘‘quiescent’’ cluster that performs small oscillations around

the fixed point. By increasing the connectivity strength, more and

more neurons from the quiescent group will be recruited by the

oscillatory cluster, while the oscillations of these neurons become

x

x

x

x

x

x

Figure 1. FitzHugh-Nagumo and Hindmarsh-Rose neural models. (A) The intrinsic dynamics of a neuron according to FitzHugh-Nagumo
model. Two trajectories in the phase space (left) and their corresponding time series (right) are represented. (B) Hindmarsh-Rose model: the constant
parameters used are: (a = 1; b = 3; c = 1; d = 5; s = 4; r = 0.006; x0 = 21.6). Different dynamic behavior is obtained for different values of the parameter I.
doi:10.1371/journal.pcbi.1000219.g001
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more synchronized. Consequently, the amplitude of the mean field of

the population increases. The maximum value is reached in the

second region in which all neurons oscillate synchronously. Finally, a

third region can be identified for relatively large values of the

connectivity strength and small to medium values of dispersion. Here,

all the neurons will rest at the stable fixed point hence the mean field

amplitude is zero. In Figure 3 we present the amplitude color coded

time series for all the neurons calculated for specific parameter values

that fall in each of these regions. The neurons in each subpopulation

are ordered according to the value of their membrane excitability I.

Adjacently, we show the time series of the entire population mean

field (X(t)) defined by the equation (6) in Materials and Methods

section. Transitions from one region to another can be realized by

appropriate changes in the values of parameters. For instance, for

large values of the coupling strength a decrease in the value of

dispersion parameter may induce the sudden transition from region

II (where all neurons are oscillating synchronously) to region III

(where all neurons are quiescent) which is sometimes called oscillation

death of the neural population [34,35].

When the ratio of coupling strengths favors a more inhibitory

regime, that is for increasing n, we observe a significant change in the

mean field amplitude landscape (see Figure 4). Once again several

regions characterized by different values of the mean field amplitude

and qualitatively different oscillatory behavior may be identified.

Regions I and III, corresponding to dynamics of bi-clustering and

oscillation death, have been identified and discussed in the previous

case as well. In addition we can indicate an interesting region IV that

corresponds to values of the mean field amplitude between 0.8 and

1.2. In spite of these lower values, for this regime, all neurons are

actually oscillating on limit cycles but clustered in several groups

performing, most of the time, antiphase oscillations (Figure 5). While

most of the neurons within clusters are synchronized for the entire

time, we find also neurons which are exchanging the clusters at

various moments. In other words, while the cluster dynamics persists

and is invariant, single neurons perform cluster hopping by residing

within a given cluster for a longer time duration (& then the

oscillation period of a cluster) followed by a quick change from one

cluster to the other. This complex multi-clustered network dynamics

and cluster hopping can not be observed in a purely excitatory

population [17]. A final observation regards region II which

corresponds to a maximum value of the mean field amplitude. This

region is much smaller than the one observed in a mainly excitatory

population and is obtained for different values of coupling strengths

and dispersion parameters. More than this, the neurons oscillate

synchronously only for certain periods of time, while for other periods

the dynamics develops in a two cluster regime similar with the one

found in region I. The increased complexity of the network dynamics

can be observed even for lower values of inhibiton/excitation ratio. In

Figure 6, we show amplitude color coded time series for all neurons

calculated for a ratio n = 1.3, a dispersion s = 0.3 and values for

coupling strengths that correspond to different regimes of behavior.

The abundant dynamic behavior obtained for a mainly

inhibitory population may suggest that inhibition does not only

play a role in decreasing the firing rate of a certain group of

neurons but it may also enrich the global dynamics of the network.

The additional dynamical features may be further exploited to

x

x

x

R I

R IIR III

Figure 2. Dynamical regimes of a dominantly excitatory neural population. Contour map of the mean field amplitude calculated for the
ratio n = 0.3 and mean m = 0 are displayed as function of connectivity strengths K11, K12 and strength of dispersion s. Three different regions with
specific oscillatory behavior are identified. Examples of time series for neurons with low (black) and high (red) value of the I parameter are given.
doi:10.1371/journal.pcbi.1000219.g002
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accommodate for more complex neural functions. The diverse

dynamical features of the network in the extreme situations of

mainly excitatory or mainly inhibitory connectivity motivates a

further, more systematic analysis for the intermediate regimes.

Contour maps of the mean field amplitude have been calculated

for increasing values of the inhibition/excitation ratio n and

different values of coupling strengths and dispersion parameters

(Figure 7). Several important features can be identified. Starting

with a mainly excitatory network and increasing the strength of the

inhibitory coupling relative to the excitatory one, we can observe a

reduction of the region III in favor of the extension of region II,

leading to it’s complete disappearance for values of n closer to 1

(see Figure 7A–C). When the inhibition strength becomes grater

then the excitation (n.1), the landscape of the mean field

amplitude contour becomes more irregular due to an enlarged

sensitivity to the initial conditions. A lower amplitude region starts

to emerge at first only for large values of both dispersion and

coupling strength (see Figure 7D). Increasing further the value of

the ratio n, this region extends towards all the values of the

dispersion parameter and smaller values of the coupling strength

(see Figure 7E). As discussed above, the mechanism responsible for

a lower value of the mean field amplitude is not the decreasing

number of oscillatory neurons but the emergence of a multiple

cluster dynamics. For even larger values of the inhibition/

excitation ratio (n.1.5), a new region of zero amplitude of the

mean field appears for large coupling strengths (see Figure 7F–H).

This region is extended towards smaller values of the connectivity

strength leading eventually (for n.8) to the shut down of the entire

population for any arbitrary values of the other parameters.

The Reduced System
Proceeding with the mode decomposition technique discussed

in detail in Materials and Methods we arrive at a reduced

representation of the network dynamics instantiated by the

following set of equations:

Figure 3. Temporal dynamics of a dominantly excitatory neural population. Left: amplitude color coded time series for all neurons
calculated for the following parameter values (starting from bottom to top): K11 = 0.5 (Region I); K11 = 0.9 (Region I); K11 = 2.1 (Region II); K11 = 3.5
(Region III); for all subfigures n = 0.3, m = 0 and s = 0.3. Right: the time series of the mean field of the entire population calculated for the same
parameters.
doi:10.1371/journal.pcbi.1000219.g003
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where i = 1,2,3 and the quantitative expressions for the coefficients

are given in Text S1. Here the variables ji,gi (and ai,bi) describe

the dynamics of a given type i for the excitatory (and inhibitory)

subpopulation of neurons. Using this reduced system we

reconstruct in Figure 8 the mean field amplitude for a few

parameter scenarios explored in Figure 7. The absolute error of

reconstruction (AE), presented in the bottom panels, has been

evaluated at every point in the parametric space as the absolute

difference between the mean field amplitude (M) generated with

equations (5) described in Materials and Methods section and the

mean field (Mr) reconstructed using equations (1).

AE~ M{Mrj j; MAE~
1

pq

Xp

i~1

Xq

j~1

AEij ;

NMAE~
MAE

Mmax{Mmin
ð2Þ

Further, we quantify the overall error for a certain scenario using

the normalized mean absolute error (NMAE) defined in equation

(2), where p and q stands for the maximum dimensions of the

parametric space investigated. Inspecting Figure 8 we note a good

reproduction of the main characteristics of the mean field

amplitude landscape across all connectivity conditions as judged

by visual inspection. The topology of the landscape is captured

and all qualitatively different network behaviors are represented.

For a more quantitative evaluation, we compute the normalized

mean absolute error (NMAE) which ranges from 9.76% to a

maximum of 18.72%. Most of the significant errors occurs at the

borders between regions characterized by different dynamical

features (see Regions I to IV identified in Figure 2 and Figure 4).

Besides a good approximation of the mean field amplitude of the

entire population, one may ask how well is the reduced system

capturing the cluster behavior of the full system. In order to

address this question we make a comparison between the time

R I

R IV

R III

R II

x x

x

x

Figure 4. Dynamical regimes of a dominantly inhibitory neural population. Contour map of the mean field amplitude calculated for ratio
n = 2.5 and mean m = 0 are displayed as function of connectivity strengths K11, K12 and strength of dispersion s. Four different regions with specific
oscillatory behavior are identified. Examples of time series for neurons with low (black) and high (red) value of the I parameter are given.
doi:10.1371/journal.pcbi.1000219.g004
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series generated by the equations (1) and the ones obtained by

direct projection of the time series of the full system on the chosen

modes. Examples are given in Figure 9 and in more detail in

Figure S1 from the supporting material (Text S1). The modes

capture well the amplitude of the corresponding set of neurons,

though the phase seems to drift indicative of (potentially nonlinear)

frequency contributions compared to the complete network.

Simulations consistently show that although the amplitude is

correctly reproduced even for a more complicated dynamics (see

Figure S1), this might not be always the case with the frequency of

the oscillations. In general, one may see periods in which the two

time series (stemming from the full and the reduced network

simulations) are synchronized followed by periods of less degree in

the phase synchronization. This observation may be relevant when

transient aspects of phase synchrony play a role in large scale

network simulations, but else may not be significant.

Hindmarsh-Rose Neural Population Model
To reinforce our approach we will consider in the following the

case of a mixed population of Hindmarsh-Rose neurons which are

known to show spike-burst behavior (see Materials and Methods

for more details). As in the previous case analyzed, each neuron is

distinguishable from all others due to the value of parameter I

which may be interpreted as the degree of membrane excitability

or an external input.

The bifurcation diagram corresponding to an uncoupled

Hindmarsh-Rose neuron (see Figure 1B) suggests that the behavior

of the globally coupled mixed population may depend significantly

on the mean value (m) of the membrane excitability distribution

g(I). Hence, in our attempt to derive a reduced representation of

the network dynamics that will capture well the main features of

the entire system behavior, we must consider all the possible

situations. We start by allowing the mean value for the membrane

excitability distribution to be m = 1.1. In this case, if uncoupled,

part of the neurons will move to the fixed point and part of them

will oscillate in a spike-burst manner. The simulations of the

globally coupled neural population show indeed a clustering

behavior (Figure 10) for low values of the coupling strength

(n = 0.5; K11 = 0.5) and large values of the dispersion parameter

(s = 0.5). This regime is rapidly left with the increase of coupling

strength in favor of a more synchronized dynamics. Unlike the

case of the previous model discussed, this two-cluster phenomenon

can not be found for other configurations of parameters. An

interesting behavior is revealed considering a mean value of m = 3.2

and a low value for dispersion s = 0.15. In this condition, if

uncoupled, most of the neurons will oscillate chaotically. As a

function of the inhibition/excitation ratio, the globally coupled

mixed population shows different behaviors. For small values of this

ratio (e.g. n = 0.5), increase in the excitatory coupling synchronizes

the population with a loss of chaotic behavior (see Figure 11A). By

contrast, for a large value of this ratio (e.g. n = 1.5), an increase in the

excitatory coupling will induce small amplitude oscillations in the

inhibitory neurons while the excitatory subpopulation exhibits a

chaotic regime (see Figure 11B). Simulations show that across all

mean values considered, in a mainly excitatory configuration an

increase in the connectivity strength will result in a larger degree of

burst-spike synchronization within and between subpopulations, and

consequently in a larger value of the mean field amplitude. By

contrast, in a mainly inhibitory configuration, the increase of

coupling strength induces a disorder in the spiking train of

oscillation. This dynamics has also been observed in purely

excitatory/inhibitory spiking networks with global coupling [13].

The Reduced System
As in the previous case, we turn now our attention towards the

derivation of a reduced system that can capture the dynamics

analyzed above. Applying the mode decomposition technique

discussed in Materials and Methods, we find the equations of the

reduced representation to be the following:

_jji~gi{aij
3
i zbij

2
i {tizK11

X3

k~1

Aikjk{ji

" #

{K12

X3

k~1
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" #
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_ggi~ci{dij
2
i {gi

_tti~rsji{rti{mi
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2
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Figure 5. Example of multi-cluster dynamics. Multi-cluster dynamics in phase space with neural cluster exchange obtained for the following
parameters: n = 1.3; K11 = 3; m = 0; s = 0.3.
doi:10.1371/journal.pcbi.1000219.g005
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where the analytical expression for the coefficients can be found in

Text S1. Here again the index i = 1,2,3 codes for the dynamics of

type i. Using the reduced system we reconstruct in Figure 12 the

mean field amplitude contours for different parameter configura-

tions and show the corresponding absolute error (AE) surfaces. As

in the case of the previous model analyzed, one may observe a

good reproduction of the amplitude landscape for a mainly

excitatory population while the mean of the input distribution (m)

takes various values. The normalized mean absolute error

(NMAE) evaluated according to equation (2) takes values between

12.89% and 19.63%. For the case of a mainly inhibitory network

the approximation still captures well the amplitude obtained for

low coupling strengths but fails for stronger values

(NMAE = 42.63%). This situation occurs because the excitatory

subpopulation oscillates chaotically for this parametric configura-

tion. Projections of the full system’s time series (calculated with

equations 8) on the modes considered have been compared with

the time series of the reduced system (equations 3). The results

generated for different parametric scenarios (see Figure 13 as well

as in Figure S2 from the Supporting Information (Text S1)) show a

very good reproduction of different dynamical features of the

system including clustering and spike-burst behavior.

Discussion

One of the most common assumption employed in computa-

tional simulations of large neural networks is the idea that neurons

from a small ensemble (sometimes called a ‘‘neurocomputational

unit’’) exhibit a sufficiently similar dynamical behavior. Conse-

quently, the network that instantiates this ensemble, consisting of

thousands of excitatory and inhibitory neurons, it is considered to

display a synchronized behavior with no other significant temporal

features for the dynamics of the large scale network. The main

reason for this assumption, is the impractical large computational

time arising from too many details considered in the network

architecture.

Figure 6. Temporal dynamics of a dominantly inhibitory neural population. Left: Amplitude color coded time series for all neurons
calculated for the following parameter values (starting from bottom to top): K11 = 0.5 (Region I); K11 = 0.9 (Region I); K11 = 2.1 (Region II); K11 = 3.0
(Region III); for all subfigures n = 1.3, m = 0 and s = 0.3. Right: the time series of the mean field of the entire population calculated for the same
parameters.
doi:10.1371/journal.pcbi.1000219.g006

Heterogeneous Neural Network Dynamics
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In this paper, we have analyzed the behavior of a neural

network that serves as a good example of such a unit, namely a

mixed heterogeneous neural population with global coupling,

using two neuron models widely employed in theoretical and

computational neuroscience. We found that the dynamical

features of the network are far more complex then the ones

corresponding to synchronized or rest state behavior. The network

dynamics depends significantly on the ratio of excitation and

inhibition; in fact, the synchronized state can be found only for a

mainly excitatory coupling and for a specific range of parameters

typically involving a large value for the connectivity strength. On

the other hand, a mainly inhibitory neural population may exhibit

distinct dynamical features such as multi-clustered behavior (in the

case of FitzHugh-Nagumo network) or a chaotic regime (in the

case of a Hindmarsh-Rose network). This result suggests that in

the real neural networks, inhibition is not only responsible for

shutting down the neural activity but may also make alternative

dynamic behaviors available to the network, which are unacces-

sible in a mainly excitatory connectivity. Such dynamical behavior

may have a significant contribution to the dynamics of a large

scale neural network and consequently, it should be implemented

in the computational models. In order to address the problem of

the high computational cost of such an implementation, we have

further developed a self-consistent low-dimensional neural popu-

lation model following [17], but incorporating a higher degree of

realism. Rather than finding the most appropriate type and

number of modes that could minimize a certain error function, we

have focussed our attention on constructing a reduced model

system which captures the most important network dynamics. First

exploratory calculations suggested that a reduction based on the

first two modes for the excitatory and inhibitory subpopulation will

be insufficient. Significant better results are obtained however, by

retaining the first three modes for every subpopulation.

Our detailed analyses demonstrated that the reduced represen-

tation manages to recreate correctly the topology of the mean field

amplitudes of the original system for various parameter scenarios.

To be more specific, more then 80% of the mean field amplitude

distributions have been well reproduced across most of the

parameter configurations investigated (NMAE,20%). In addition,

the low dimensional population model is also able to emulate well

the main features of the temporal dynamics of the neural network.

Certainly the overall performance of the reduced system can be

improved quantitatively by considering additional modes in the

decomposition. Obviously the choice of modes is an important

factor in the development and the efficiency of the representation.

Guidance for the particular choice of modes can be taken from

cluster analysis in the phase space, in which the minimal number

of modes corresponds to the number of clustered neurons in the

phase space for a particular parameter configuration. When the

modes are chosen to be orthogonal, then the reduced equations

decouple linearly. For non-orthogonal modes, the use of a bi-

orthogonal mode system will have the same effect. Certain

dynamical regimes observed in mixed neural populations, can not

be accounted for by a low dimensional system. We have pointed

out an example, obtained for the Hindmarsh-Rose neural

population in the condition of a mainly inhibitory coupling (see

Figure 7. Effects of connectivity on the mean field amplitude. Contour maps of the mean field amplitude of 150 excitatory and 50 inhibitory
neurons calculated for different values of the inhibition/excitation ratio ((A) n = 0.2, (B) n = 0.6, (C) n = 0.9, (D) n = 1, (E) n = 1.5, (F) n = 2, (G) n = 2.5, (H)
n = 5). Every map is displayed as a function of the coupling strengths K11, K12 and dispersion of membrane excitability distribution s. The mean of the
membrane excitability distribution used is m = 0.
doi:10.1371/journal.pcbi.1000219.g007
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Figure 12D), when for larger coupling strengths, the reduced

model fails to reproduce the mean field amplitude of the network.

Another example is the situation of cluster hopping of individual

neurons. This phenomenon corresponds to a traveling wave in the

space spanned by the individual modes, in which a particular

neuron shows intermittently the characteristic dynamics of a given

mode. To decrease the complexity of analysis of the neural

network dynamical behavior in the multidimensional parameter

space, we have employed certain assumptions. For instance, we

have ignored the connectivity between the neurons within the

inhibitory subpopulation and we have assumed similar values for

the mean of the membrane excitability distributions for both

excitatory and inhibitory subpopulations. Following the method

outlined in the paper, we can derive reduced representation for the

original system even when these assumptions are removed, in fact

ensuring a convenient generality of the procedure.

From a more general perspective, despite its limitations, our

approach may offer a viable alternative to the neural mass models

currently used in the literature. We emphasize here that because of

the ‘‘near to synchrony’’ assumption, neural mass models can not

capture complex dynamical features such as multi-clustering,

oscillator death or multi-time scale synchronization. By compar-

ison, our model offers the possibility to account for such features at

a very low computational cost. Therefore, the reduced represen-

tation discussed in this paper qualifies as a good candidate for a

‘‘neural unit’’ in computational simulations of large scale neural

networks.

Materials and Methods

The Architecture of the Network
To reflect biophysically realistic architectures, we model the

connectivity in the mixed population as follows: every neuron from

the excitatory subpopulation is linearly coupled with any other

neuron; each inhibitory neuron is driven only by the coupling with

its excitatory partners [36] (for a schematic cartoon see Figure 14).

AE AE AE AE

A B C D

Figure 8. Mean field amplitude landscapes of complete and reduced populations of FitzHugh-Nagumo neurons. Comparison between
contour maps of the mean field amplitude obtained using the entire population (upper row) and the reduced system (middle row) for different
values of the inhibition/excitation ratio n and mean of membrane excitability distribution m = 0. Every map is displayed as a function of the
connectivity strengths K11, K12 and the magnitude of dispersion s. The corresponding surfaces of absolute error (AE) are presented on the bottom
row. The values of the normalized mean error (NMAE) calculated for every scenario are: (A) 9.76%, (B) 15.4%, (C) 18.72%, (D) 18.58%.
doi:10.1371/journal.pcbi.1000219.g008
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This architecture is motivated by the presence of roughly 90%

excitatory and 10% inhibitory neurons in a typical volume

element of cortex [37]. The linear coupling captures precisely

electric coupling through gap junctions and approximatively

synaptic coupling when the average population activity is

constrained to a small signal range. We wish to emphasize that

the connectivity is instantaneous, hence our network cannot

account for any phenomena related to synaptic transmission delay.

The latter become relevant when considering large scale networks.

For small networks as considered here, the transmission delays are

negligible. In the brain, the communication between any two

neurons in the cortex is achieved typically via monosynaptic

couplings. The position on the dendritic tree, the dimension of the

synaptic terminal and the distribution and type of synaptic

receptors are just a few factors that can determine the efficacy of

every synapse. Here we consider averages of all these properties

over each neural subpopulation and we absorb them in our models

by the connectivity strength parameters Kij with i, j = 1,2.

Regarding anatomical constraints, we make the following

considerations: The strength of connectivity between neurons

within the excitatory subpopulation (K11) may differ from the

connectivity strength between excitatory and inhibitory neurons

(K12). We capture their interdependence by the ratio n~
K12

K11
. The

excitatory-inhibitory couplings may not be necessarily bidirection-
al hence another value of the connectivity between inhibitory and
excitatory neurons (K21) is considered separately. Finally, we

neglect any possible couplings within the inhibitory subpopulation

(K22.0), reflecting the small probability of interneuron-interneu-

ron connections due to the characteristic sparseness of these

neurons in a small cortex volume (see [38] for a comprehensive

review).

Neural Network of FitzHugh-Nagumo Neurons
FitzHugh-Nagumo model [39,40] provides one of the simplest

and most widely used representation of an excitable neural system.

The dynamics is governed by two differential equations:

_xx~c x{
x3

3
{y

� �
zcI ; _yy~

1

c
x{byzað Þ: ð4Þ

where the variables x and y evolves on a fast and respectively slow

time scale. According to the value of the parameter I which may

be considered either an external input or the neural membrane

excitability, the system may oscillate (on a limit cycle) or reach an

equilibrium state (a stable fixed point) (see Figure 1A). This

parameter determines the position of the cubic nullcline and

through such, the fixed points and their nature.

Employing this model for the network following the architecture

described above, and considering as well the average activity Xi of

the ith subpopulation, we can describe the dynamics of the system

by the following set of equations:

Figure 9. Time series of complete and reduced populations of FitzHugh-Nagumo neurons. Comparison between the temporal series
calculated according to the reduced system (black line) and the ones obtained by projecting the time series of the entire system on the modes (red
line). The parameters used are the following: n = 0.3; K11 = 0.9; m = 0; s = 0.3.
doi:10.1371/journal.pcbi.1000219.g009
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Figure 11. Effects of changing coupling strength in populations of Hindmarsh-Rose neurons. Left: Mainly excitatory coupling: an increase
in the coupling strength leads to synchronization within and between the neurons in the excitatory (red) and inhibitory (black) subpopulations. Right:
Mainly inhibitory coupling: an increase in the coupling strength induces small amplitude oscillations in the inhibitory subpopulation (black) and a
chaotic regime in the excitatory neurons (red).
doi:10.1371/journal.pcbi.1000219.g011

Figure 10. Clustering behavior in a population of Hindmarsh-Rose neurons. Left: Amplitude of the variables x,y,z in time for all neurons
ordered according to the value of the parameter I. The values of the other parameters are: n = 0.5; K11 = 0.5; m = 1.1; s = 0.5; Right: Time series for each
variable of the first ten (in black) and the last ten excitatory neurons (in red) calculated for the same parameters as in the left figure.
doi:10.1371/journal.pcbi.1000219.g010
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_xxi1~c xi1{
x3

i1

3
{yi1

� �
z K11 X1{xi1ð Þ{K12 X2{xi1ð Þ½ �zcIi1

_yyi1~
1

c
xi1{byi1zað Þ i1~1,::,N1

_xxj2~c xj2{
x3

j2

3
{yj2

 !
zK21 X1{xj2

� �
zcIj2

_yyj2~
1

c
xj2{byj2za
� �

j2~N1z1,::,N

ð5Þ

where N = N1+N2 is the total number of neurons, a = 0.45, b = 0.9,

c = 3 are constants and

X1~
1

N1

XN1

i1~1

xi1 , X2~
1

N2

XN

j2~N1z1

xj2 , X~
1

N

XN

k~1

xk ð6Þ

are the mean fields of the excitatory and inhibitory subpopula-

tions, respectively the mean field of the entire neural population.

The first two equations describe the time dependence of the fast

and slow variables for every excitatory neuron while the last two

equations specify the dynamics of the same variables correspond-

ing to every inhibitory neuron.

Neural Network of Hindmarsh-Rose Neurons
The Hindmarsh-Rose model [41,42] is another example of

excitable system often employed to account for a more complex

phenomenon, namely neuronal bursting oscillations. The model

consists of a set of three differential equations:

_xx~y{ax3zbx2{zzI ; _yy~c{dx2{y; _zz~r s x{x0ð Þ{z½ �; ð7Þ

where the variables x and y are evolving on a fast time

AE
AE AE AE

A B C D

Figure 12. Mean field amplitude landscapes of complete and reduced populations of Hindmarsh-Rose neurons.Comparison between
contour maps of the mean field amplitude obtained using the entire population (upper row) and the reduced system (middle row) for different
values of the inhibition/excitation ratio n and the mean m of membrane excitability distribution. Every map is displayed as a function of the
connectivity strengths K11, K12 and the magnitude of dispersion s. The corresponding surfaces of absolute error (AE) are presented on the bottom
row. The values of the normalized mean error (NMAE) calculated for every scenario are: (A) 12.89%, (B) 19.63%, (C) 13.44%, (D) 42.63%.
doi:10.1371/journal.pcbi.1000219.g012
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scale while z is a slow variable. As a function of the parameter

I, the system may exhibit a fixed point dynamics (I,1.32), a spike

burst behavior (I.1.32) with a chaotic regime for 2.92,I,3.40

and a simple oscillatory dynamics for I.3.4 (see Figure 1B).

This model has often been considered in studies

regarding neural systems showing transitions from rest state

to a firing state consisting in a burst of several spikes [13,43,

44].

Figure 13. Time series of complete and reduced populations of Hindmarsh-Rose neurons. Comparison between the time series evaluated
with the reduced system (red line) and the ones obtained by projecting the time series of the entire system on the chosen modes (black).
doi:10.1371/journal.pcbi.1000219.g013

Figure 14. Schematic of the network architecture. In red we represent the excitatory neurons and in black the inhibitory ones. The mean field
X1 of the excitatory subpopulation (pink) is driving every neuron, while the mean field X2 of the inhibitory subpopulation (gray) affects only the
excitatory neurons.
doi:10.1371/journal.pcbi.1000219.g014
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Employing the same connectivity model as the one described in

the first section, we can describe the dynamics of the population

with the following set of equations:

_xxi1~yi1{ax3
i1zbx2

i1{zi1z K11 X1{xi1ð Þ{K12 X2{xi1ð Þ½ �zIi1

_yyi1~c{dx2
i1{yi1

_zzi1~r s xi1{xi0ð Þ{zi1½ � i1~1,::,N1

_xxj2~yj2{ax3
j2zbx2

j2{zj2zK21 X1{xj2

� �
zIj2,

_yyj2~c{dx2
j2{yj2

_zzj2~r s xj2{xj0

� �
{zj2

� �
j2~N1z1,::,N

ð8Þ

where N = N1+N2 is the total number of neurons, a = 1; b = 3; c = 1;

d = 5; s = 4; r = 0.006; x0 = 21.6 are constants and

X1~
1

N1

XN1

i1~1

xi1 , X2~
1

N2

XN

j2~N1z1

xj2 , X~
1

N

XN

k~1

xk ð9Þ

are the mean fields of the excitatory and inhibitory subpopula-

tions, respectively the mean field of the entire neural population.

The first three equations describe the time evolution for every

neuron in the excitatory subpopulation while the remaining

equations account for the dynamics of the neurons in the

inhibitory subpopulation.

The Reduced System of the Neural Population
We start by recalling that the distinction between the neurons in

the same subpopulation is due solely to the value of the Ii

parameter. Thus, we can consider an ordering of the neurons

according to the magnitude of this parameter such that Ii+1.Ii.

The state vector for the ith and jth neuron in the excitatory

respectively inhibitory subpopulation may be reformulated in

terms of this parametric dependence as follows:

xi1(t)

yi1(t)

..

.

0
BB@

1
CCA?

q1(t,Ii1)

q2(t,Ii1)

..

.

0
BB@

1
CCA;

xj2(t)

yj2(t)

..

.

0
BB@

1
CCA?

qN1z1(t,Ij2)

qN1z2(t,Ij2)

..

.

0
BB@

1
CCA ð10Þ

For a large enough system, the sets {Ii1} and {Ij2} can be treated as

a continuous variable I[R and each subnetwork state vector as a

continuous vector field:

q1(t,I1)

q2(t,I1)

..

.

qN1
(t,I1)

0
BBBBBB@

1
CCCCCCA
?

q1(t,I)

q2(t,I)

..

.

qN1
(t,I)

0
BBBBBB@

1
CCCCCCA
:Q1(t,I);

qN1z1(t,I2)

qN1z2(t,I2)

..

.

qN1zN2
(t,I2)

0
BBBBBB@

1
CCCCCCA
?

qN1z1(t,I)

qN1z2(t,I)

..

.

qN1zN2
(t,I)

0
BBBBBB@

1
CCCCCCA
:Q2 t,Ið Þ;

ð11Þ

Considering the fact that for a Gaussian distribution the first

moment is equal with its mean, we can reformulate the mean field

amplitude for the excitatory and inhibitory subpopulation as

follows:

X1~

ð?
{?

g1 Ið Þq1 t,Ið ÞdI X2~

ð?
{?

g2 Ið Þq3 t,Ið ÞdI : ð12Þ

where g1(I) and g2(I) are the excitatory respectively inhibitory

parametric distributions.

This reformulation of the network state vector in a continuous

parametric space allows as to use mode decomposition techniques

to find the dominant patterns of the behavior of the entire

population. We begin by expressing the state vector of each

subpopulation as a superposition of a finite number of modes.

Given the fact that the initial distribution of the I parameter for

each subpopulation may lie in a different range of values, the

significant modes for each subpopulation may differ. Hence, we

will consider the set of modes vi for the excitatory subpopulation

and the set uj for the inhibitory one with their corresponding time

dependent coefficients. In this framework, the state vectors can be

written as:

Q1 t,Ið Þ~
Xm

i~1

ji(t)

gi(t)

..

.

0
BBB@

1
CCCAvi Ið ÞzR1 t,Ið Þ;

Q2 t,Ið Þ~
Xm

j~1

aj(t)

bj(t)

..

.

0
BBB@

1
CCCAuj Ið ÞzR2 t,Ið Þ

ð13Þ

where R1(t,I) and R2(t,I) represents the residuals of the decompo-

sition accounting for the spatiotemporal dynamics not captured by

the first m modes.

In general, the modes considered above are not orthogonal.

However, an appropriate adjoint basis vz
i

� �
, uz

i

� �� �
may be

constructed to insure the biorthogonality condition.

ð?
{?

vz
k Ið Þvl Ið ÞdI~dkl ;ð?

{?
uz

k Ið Þul Ið ÞdI~dkl ; k,l~1,::,m

ð14Þ

Commonly, arbitrary mode decomposition techniques may be

chosen, which have the property to minimize an error function.

However to allow for a functional interpretation of the modes it is

desirable, if the modes correspond to characteristic clusters in

phase space as shown in Figure 5. Simply put, neurons with a

higher firing threshold will be less likely to be found in the strongly

firing (i.e. oscillatory) cluster and more likely to be a member of the

quiescent cluster. For this reason, the partitioning of the I axis into

disjunct, non-overlapping modes is a promising first approach.

In the following we utilize three modes per population type, in

which we distinguish regimes of parameter I corresponding to

small, medium and high I-values. In this particular case, the modes

have been chosen to be approximatively non-overlapping

rectangular functions (see Figure S3 from the supporting material

(Text S1) for more details).

Introducing equations (12) and (13) into (5) and (8), multiplying

with the adjoint of each mode and integrating over the entire

space we obtain the equations (1) and (3) (see Results section) that

describes the temporal evolution of the mode coefficients
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corresponding to the FitzHugh-Nagumo neural population,

respectively the Hindmarsh-Rose network. We emphasize here,

that the cross terms resulting from the nonlinearities in equations

(5) and (8) disappear because of the bi-orthogonality condition

instantiated by equation (12).

Supporting Information

Figure S1 Time series of complete and reduced populations of

FitzHugh-Nagumo neurons evaluated for different parametric

regimes. Comparison between the temporal series calculated

according to the reduced system described by equations (1) (red

line) and the ones obtained by projecting the time series of the

entire system (equations (5)) on the modes (black line). The

following parametric regimes are considered: (A) n = 0.3;

K11 = 1.2; s = 0.3; (B) n = 0.6; K11 = 2; s = 0.25; (C) n = 1.5;

K11 = 1.5; s = 0.3.

Found at: doi:10.1371/journal.pcbi.1000219.s001 (5.00 MB EPS)

Figure S2 Time series of complete and reduced populations of

Hindmarsh-Rose neurons evaluated for different parametric

regimes. Comparison between the temporal series calculated

according to the reduced system described by equations (3) (red

line) and the ones obtained by projecting the time series of the

entire system (equations (8)) on the modes (black line). The

following parametric regimes are considered: (A) m = 1.2; n = 0.8;

K11 = 0.8; s = 0.35; (B) m = 2.2; n = 1.3; K11 = 0.6; s = 0.25; (C)

m = 3.2; n = 0.4; K11 = 1.5; s = 0.4; (D) m = 3.8; n = 0.5; K11 = 2.3;

s = 0.3.

Found at: doi:10.1371/journal.pcbi.1000219.s002 (4.68 MB EPS)

Figure S3 Example of modes of decomposition and membrane

excitability parametric distribution used for the excitatory

subpopulation. (A) Values of the I parameter for every neuron

versus initial neural index. (B) Ordered values of the I parameter

for every neuron versus reassigned neural index. The three modes

used in decomposition analysis: v1(I)(blue), v2(I)(green), v3(I)(red)

are superimposed on the ordered I parametric distribution. (C)

Histogram of the Gaussian distribution of membrane excitability.

(D) The modes used in the decomposition ananlysis are

superimposed on the integrable form of the Gaussian parametric

distribution.

Found at: doi:10.1371/journal.pcbi.1000219.s003 (1.07 MB EPS)

Text S1 Supporting information

Found at: doi:10.1371/journal.pcbi.1000219.s004 (0.06 MB PDF)
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