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Abstract

Gene expression controls how the brain develops and functions. Understanding control processes in the brain is particularly
hard since they involve numerous types of neurons and glia, and very little is known about which genes are expressed in
which cells and brain layers. Here we describe an approach to detect genes whose expression is primarily localized to a
specific brain layer and apply it to the mouse cerebellum. We learn typical spatial patterns of expression from a few markers
that are known to be localized to specific layers, and use these patterns to predict localization for new genes. We analyze
images of in-situ hybridization (ISH) experiments, which we represent using histograms of local binary patterns (LBP) and
train image classifiers and gene classifiers for four layers of the cerebellum: the Purkinje, granular, molecular and white
matter layer. On held-out data, the layer classifiers achieve accuracy above 94% (AUC) by representing each image at
multiple scales and by combining multiple image scores into a single gene-level decision. When applied to the full mouse
genome, the classifiers predict specific layer localization for hundreds of new genes in the Purkinje and granular layers.
Many genes localized to the Purkinje layer are likely to be expressed in astrocytes, and many others are involved in lipid
metabolism, possibly due to the unusual size of Purkinje cells.
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Introduction

A key problem in current neuroscience is to characterize how

the transcriptome governs the structure and function of the brain

[1]. The challenge is particularly hard in the mammalian central

nervous system because every brain region contains numerous

types of neurons, astrocytes, and other non brain-specific cells such

as blood vessels and immune cells. Each of these cell types have

their own molecular profile, and typically exhibit unique patterns

of gene expression [1,2]. These patterns may depend not only on

the individual cells, but also on their interaction with neighboring

cells. Cell-specific expression patterns determine the formation of

both the microcircuitry and the long-range neuronal connections

through specific molecules [3]. These patterns also shape the

functional properties of neurons and glia. Understanding the

molecular basis of brain function therefore requires dissecting gene

expression patterns into their cell-specific and layer-specific

components.

Unfortunately, measuring layer-specific expression is costly and

time consuming, and as a result, only a few such datasets have ever

been collected [4–8]. Cell-type specific data can be collected by

growing cell cultures in vitro, which may differ from natural

growth conditions, or by sorting cells using known markers [6–8].

It is also possible to collect cells from specific cortical layers using

laser microdissection [5]. Alternatively, in some cases it is possible

to profile the transcriptome of strains that lack a specific type of

cells, and compare them to normal developing animals [9].

Here we propose another approach, based on machine vision,

to identify layer-specific genes. The method is based on modeling

the spatial expression patterns observed in in-situ hybridization (ISH)

images of a few genes that are known to be expressed exclusively in

specific layers (cell-type markers). Using the learned patterns, we

then automatically scan the genome-wide ISH database and detect

all other layer-specific genes.

The current paper focuses on the cerebellum, which has been

extensively studied due to its highly organized laminar structure.

The cerebellum contains three cortical layers and a white matter

layer (Figure 1). The innermost cortical layer is the granular layer, a

densely packed layer containing mossy fibers, the cell bodies of

granule cells, uni-polar brush cells, and Golgi cells. The middle

cerebellar layer is the Purkinje layer, containing the cell bodies of the

Purkinje cells, Candelabrum interneurons and Bergmann glia.

The third, outermost, cortical layer is the molecular layer, containing

the dendritic arbors of the Purkinje cells and the inhibitory Stellate

and basket interneurons. These three cerebellar cortical layers and

cell types are illustrated in Figure 1 A. Finally, the white matter

layer resides within the inner most part of the cerebellum. For a

more detailed review of cerebellar cell types see [10].

We use the large-scale collection of in-situ-hybridization images

of the cerebellum collected by the Allen Institute [11], together

with a small list of genetic markers of cell types that are known to

reside in specific cerebellar layers. To achieve high classification

accuracy, we combine multiple images of each gene. Each ISH

image is represented using histograms of local binary patterns (LBP)

[12] that are collected at multiple resolutions. This representation
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captures characteristic spatial structures at multiple scales and

improves accuracy significantly over a single-resolution represen-

tation.

When the trained classifiers are evaluated on a held-out data of

similar markers, they correctly classify each of the four main

cerebellum structures with more than 94% accuracy (AUC).

Furthermore, when applied to the full mouse genome, manual

inspection of the 250 top predictions of each class shows that the

classifiers successfully identify localized genes. Overall, we identify

454 genes localized primarily to the Purkinje layer, 233 genes in

the granular layer, and several new layer specific markers for the

white matter and the molecular layer. Some of these genes were

previously proposed as layer-specific markers, but hundreds of the

genes detected have never been associated with these layers.

Results

This paper is organized as follows. We start by describing the

ISH image dataset and discuss our machine vision approach for

classification. Next, we describe cross-validation experiments that

evaluate the accuracy of the trained classifiers. We then analyze

the properties of new layer-specific predictions, also during brain

development. Finally, we compare the predicted layer-specific

genes to previous literature, and discuss in details two new

examples of such genes, Fam107b and Map2k6.

Expression patterns measured using in situ hybridization
Our approach is based on learning spatial gene expression

patterns measured using non-isotopic ISH. ISH is used to localize

RNA expression of a target gene in a tissue. We used ISH data

collected by the Allen Brain Atlas (ABA) [11] available at http://

mouse.brain-map.org. ISH measurements were gathered for the

adult mouse full genome, covering 20,382 genes. For each gene,

mice brains were dissected into slices in sagittal and coronal

sections, and the slices were fluorescently labeled and imaged to

reveal places where the gene is expressed. The outcome of this

process is a set of images showing the gene expression pattern

across the whole mouse brain in high spatial resolution.

This paper focuses on four distinct layers of the mouse

cerebellum, each layer contains a different set of neurons and glia

cells. Figure 2 A–D shows examples of sections from the mouse

cerebellum, stained with four different markers. The leftmost

panel depicts the expression of Calbindin1 (Calb1), a well known

marker of Purkinje cell bodies, Figure 2A. Purkinje cells are

known to be organized in the thin Purkinje layer, and indeed, the

Calb1 expression forms a distinct spatial pattern in the form of a

thin stripe. Other layers of the cerebellum can also be observed:

Figure 2B shows the expression of Neurod1, a known marker of

granular cells that reside in the granular layer; Figure 2C shows

the expression of Plp1, a myelin proteolipid protein marking cells

which reside in the underlying cerebellum white matter; Figure 2

D shows the expression of Gad1, which is expressed in the

molecular layer and also in the Purkinje layer. The molecular

layer contains the dendritic arbors of the Purkinje cells, whose

bodies lie in the Purkinje layer (Figure 1A). As a result, most

genes expressed in the molecular layer are also expressed in the

Purkinje layer. We therefore defined a class that contains genes

which show expression in the molecular layer and also in the

Purkinje layer.

While a few dozen genes are already known to be specifically

expressed in particular cell types and cerebellar layers, such

Figure 1. Cerebellum layers and cell types. (A) Cell types and their location across the cerebellar cortical layers. (B) Cerebellum ISH image of
Calb1. The different layers can be easily discriminated. P - the Purkinje layer; G - the granular layer; M - the molecular layer; W - the white matter.
doi:10.1371/journal.pcbi.1002790.g001

Author Summary

The way gene expression is spatially distributed across the
brain reflects the function and micro-structure of neural
tissues. Measuring these patterns is hard because brain
tissues are composed of many types of neurons and glia
cells, and average gene expression across a region mixes
transcripts from many different cells. We present here an
approach to identify genes that are primarily expressed in
specific brain layers or cell types, based on analyzing high
resolution in-situ hybridization images. By learning the
spatial patterns of a few known cell markers, we annotate
the expression patterns of hundreds of new genes, and
predict the layers and cell types they are expressed in.

Localizing Genes to Cerebellar Layers Using Images
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location information is still unknown for most of the mouse

genome. Here we use these few genes that are known to mark a

specific cerebellar layer, learn their spatial expression pattern and

predict new localization information for many genes. We train a

separate binary classifier for each of the four classes: Purkinje,

granular, molecular and white-matter. The molecular class

includes genes that are expressed both in the molecular and in

the Pukinje layer, but we name this class molecular for simplicity.

The next section discusses the representation of the ISH images

used as input to these classifiers.

Representing ISH images
For natural images, there has been extensive research on

extracting features that are useful for object recognition and

detection [12–16]. However, for ISH images of complex tissues,

only little work has been done on developing such discriminative

features. ISH should not be confused with single-cell FISH image

analysis, which aims to identify subcellular structures. Most

existing work on detection and classification of ISH tissue

expression images focused on gross anatomy, where the global

shape plays a prominent role. [17–21]. These methods, which

employ advanced machine vision techniques and achieve state of

the art results, depend on a pre-processing stage in which the

images are normalized and registered. For example, [17] used

pyramid kernels to identify expression patterns in fly embryos and

[20] have tested a series of techniques with images that were

transformed to a standard shape size and orientation. Such

standardization is feasible with fly embryos whose shape is largely

regular, but for brain layer recognition such standardization poses

new challenges as shown below in Figure 3. As a result, the

question of selecting a good representation for analyzing ISH

expression images of brains is still open.

Since images of different genes were taken from different mouse

brains, and brains differ considerably in their detailed anatomy,

spatial expression patterns of the same layer vary considerably

across brains. Figure 3 shows four genes expressed in the granular

layer, illustrating the variability in size and shape across

individuals. As a result of these differences, naive approaches that

use voxel-to-voxel spatial correlations between images [22] often

fail to match images of the same layer. This problem is particularly

difficult with the cerebellum with its elongated structures that are

sensitive to small shifts of the images. A good representation of an

expression image should therefore be invariant to the types of

distortion found across brains.

An important aspect of layer-specific expression patterns, is

that they exhibit structures at multiple scales. At the coarse scale,

the gross structure of the cerebellum contains ‘‘finger-like’’

structures, each having a width of a few millimeters (Figure 4 A).

At the same time, genes expressed in different layers may also

lead to different ‘‘textures’’ that can be observed at a more

refined resolution (Figure 4 B). The texture is determined by the

particular spatial distribution of the cells in which the genes are

expressed. To take advantage of all these sources of information,

here we analyze each image at multiple scales, by down-sampling

each image before extracting features. Analysis at multiple scales

has been used in many other applications, such as texture

classification [23], and we show below that combining multiple

resolutions improves classification accuracy in the current

problem as well.

At every scale, we represented an image using a histogram of

local binary patterns (LBP, [12]), together with the mean intensity

of the image. We then combine the feature vectors from the

different scales into a single representation. This representation

captures both fine texture and coarser structures. For example,

applying LBP to a coarsely sampled image as in Figure 4 A

captures large structures, while applying LBP to a high resolution

version of the same image can capture refined texture statistics as

shown in Figure 4B. All four cerebellar layers contain recurring

patterns at multiple scales.

Two-level classification: image and gene classifiers
In our data, each gene is associated with multiple ISH images,

collected from different brain slices and possibly multiple brains

(typically 2–8 images per gene). Our task is to assign a cerebellar

layer to each gene, rather than to classify individual images.

Therefore, we need to combine classification of images into a

single unified decision at the level of a single gene. Common

approaches to combine scores from multiple patches, include max-

pooling and average pooling [24]. Here we take a discriminative

approache to solve this task. First, we train a classifier operating on

Figure 2. Masked ISH images of the mouse cerebellum from the Allen Brain Atlas. Each image shows expression of a different gene,
highlighting cells located at a different layer. Images are based on ISH measurements from ABA, but shown using our own color map for better
visualization in print. (A) Calb1, expressed in the Purkinje layer. (B) Neurod1, expressed in the granular layer. (C) Plp1, expressed in the white matter.
(D) Gad1, expressed in the molecular and Purkinje layers.
doi:10.1371/journal.pcbi.1002790.g002

Localizing Genes to Cerebellar Layers Using Images
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labeled images, and then classify each gene by combining the

scores provided by the image classifier.

We compared three different ways to combine image scores into

a decision over genes (Mean image score, Mean LBP features and Two-

level classifier). We also tested a fourth approach as a baseline,

treating each image independently, and making a prediction at the

level of single images.

Figure 5 shows evaluations of the precision of these four

approaches, computed on held-out data. Each panel shows the

ROC curve for a different layer, where the classifiers were trained

to detect each cerebellar layer from a randomly selected set of

genes. All classifiers achieve a very high area under the ROC

curve (AUC w0:94 for all four categories). This shows that the

two-level approach succeeds to combine information from

multiple images.

We further trained classifiers to discriminate between every two

classes (‘‘one vs. one’’). Table 1 shows that most classes can be

easily discriminated, except the pair molecular vs. granular, which

are confused 0:09 of the time.

To further evaluate the effect of image scale on classification

accuracy, we compared the accuracy obtained using model trained

at different scales (Figure 6). We also tested a model that uses

multiple scales. Using a multi-scale representation consistently

achieves higher (or similar) AUC than using any single scale.

Overall, coarse resolutions perform better. Surprisingly, the

granular layer and also the molecular layer can be discriminated

accurately using high resolution images (Figure 6B,C). The high

accuracy obtained when using fine-resolution features suggests that

the granular and molecular layers contains texture patterns that

are useful for discrimination from other layers even if their coarse

expression patterns are similar.

We compared our detection results with results obtained using

the ABA NeuroBlast [22] http://mouse.brain-map.org/. Neuro-

Blast ranks genes according to their spatial correlation to a target

gene. First, every in-situ image is registered to a reference

template and then the spatial correlation between the registered

and normalized images is computed. NeuroBlast provided a good

AUC for the Purkinje layer (0.82) and the granular layer (0.73).

However, NeuroBlast was less successful in detecting genes

expressed in the molecular layer (0.34). For the white matter, a

high AUC is obtained (0.98) and this is possibly due to the way

we manually constructed labeled set of genes. Since we could not

find many markers that are primarily expressed in the white

matter, we used NeuroBlast to find genes that have white matter

expression. NeuroBlast suggested genes which have a close

expression pattern to the few known literature white matter

markers. We then manually validated these suggestions. More

information on the way the dataset was constructed is found in

the Methods section.

Registration based approaches, such as ABA NeuroBlast, can be

sensitive to small shifts and such shifts are prevalent when aligning

images of different brains. For example, a shift of a few microns

can cause the thin line of the Purkinje layer to misalign with the

target image, leading to a low correlation. Our registration free

approach is less sensitive to such misalignments.

Genome-wide predictions
The above results showed that the trained classifiers achieve

high accuracy on held out data of known markers. We further

applied the trained layer predictors to the full mouse genome

(20,382 genes in the ABA database). All predictions, including lists

of genes that are localized to specific layers are available online at

http://chechiklab.biu.ac.il/,lior/cerebellum.html. Out of 13361
genes that are expressed in the cerebellum, 454 genes are

predicted to be primarily expressed in the Purkinje layer, 233 in

Figure 3. Examples of the variability within a single layer. Shown are four genes which exhibit a high expression in the granular layer but not
in the other layers. Notice the difference in texture, size, position, expression level (color) and structure shape. (A) Fxr2h. (B) Calb2. (C) Kcnj3. (D)
Kcnk1.
doi:10.1371/journal.pcbi.1002790.g003

Figure 4. Structure and texture are captured using different
spatial resolutions. (A) A low resolution ISH image of a granular layer
gene from Figure 2 B. The 363 LBP grid capture the gross finger-like
structure. (B) A high resolution version (zoomed to scale) of the same
image. The 363 LBP grid captures texture patterns.
doi:10.1371/journal.pcbi.1002790.g004

Localizing Genes to Cerebellar Layers Using Images
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the granular layer, 14 in molecular layer and 16 in the white

matter.

We validated the predictions by manually scanning the top

predicted genes (and the bottom predicted genes - Table 2),

visualizing their measured expression patterns, and comparing

them to the patterns expected at that layer. Out of the top 250

genes predicted to be localized to the Purkinje layer we

correctly classified 98:4%. Similarly, 98:1% of the top 250

granular layer prediction were accurate. The precision was

worse for localization of the molecular layer: All 14 prediction

had a molecular expression, but 10 out of the 14 also had a

granular expression. Finally, 10 out of 16 predicted white

matter were positive. It should be clarified however, that many

of the genes that exhibited localized expression in one

cerebellar layer, are also expressed in other regions of the

brain, sometimes very widely. Also, despite the fact that most

of the training images in the molecular class show expression in

the molecular layer and also in the Purkinje layer, our classifier

was able to identify genes that show expression only in the

molecular layer.

Figure 5. Classifier results for each cerebellar layer. ROC curves comparing classifiers for the four layer classification tasks. For each layer,
results are shown for four classifiers. Shown are results for Single image classifier (dotted purple line), Mean image score uses average pooling (dash-
dotted blue line); Two levels classifier learns weights over pooling statistics using SVM (solid red line); Mean LBP features (dashed yellow line), uses the
average LBP vector for each gene. Error bars denote the standard deviation across five cross-validation folds. Results for the two layers classifier: (A)
Purkinje vs random set. AUC = 0.949+0.02. (B) Granular vs random set. AUC = 0.96+0.017. (C) Molecular vs random set. AUC = 0.987+0.011. (D)
White matter vs random set. AUC = 0.983+0.013.
doi:10.1371/journal.pcbi.1002790.g005

Localizing Genes to Cerebellar Layers Using Images
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Applying the white-matter classifier and the molecular layer

classifier to the full genome yielded very few positively scored

genes. This could be attributed to the small number of positive

samples in the training set for these classes. Indeed, when we

manually examined one thousand of the genes in the database we

only found one gene that was exclusively localized to the white

matter (and one gene localized to the molecular layer). In

comparison, there were many more genes localized to the

granular or the Purkinje layers.

To find out if our classifiers can be generalized, and can

detect genes on images that are different in their spatial

expression organization. We applied the four classifiers that

were previously trained on the sagittal sections to all the images

available in coronal sections, covering 4000 genes. Unlike

sagittal section images, many coronal images contain parts of

the brain from outside the cerebellum and their layer

organization is quite different from the sagittal images. Despite

these large differences between the training set and the test set,

the Purkinje layer classifier generalized well and detected genes

that are primarily expressed in the Purkinje layer in 95% of the

top 100. The other layer detectors did not generalized as well.

Results are available at http://chechiklab.biu.ac.il/,lior/

cerebellum.html

Characterizing layer-specific genes
The above results show that at least 450 genes, which are more

than 3.4% of genes that are expressed in the cerebellum, are

primarily expressed in one layer (mostly the Purkinje and

granular layers). There could be many reasons for this highly

structured expression pattern. For example, localized genes may

reflect unique cell-type dependent biological processes, like

shaping the cell morphology or controlling the connectivity

between specific neuron types. Alternatively, localized expression

may also reflect properties that are not necessarily cell-type

specific, like processes that depend on cell size, since Purkinje

cells are exceptionally large. We therefore turned to characterize

the properties of localized genes, by testing their functional

annotations and comparing them with the transcriptome of

Purkinje-deficient mice.

Comparison with Purkinje deficient mice. To better

characterize the properties of genes localized to the Purkinje

layer, we aimed to separate genes whose expression is related

to Purkinje cells from genes whose expression is related to

non-Purkinje cells. We compared our study with a study by

Rong and colleagues [9] who aimed to identify Purkinje-cell

specific genes. Rong et al compared the cerebellar gene

expression of two strains of mice: wild-type mice and PSD3J

mice which have a mutation in the gene Nna1 causing them to

lose their Purkinje cells by adulthood. Genes with reduced

expression in the PSD3J mice presumably reflect the loss of

Purkinje cells.

We compared the list of genes that we predicted to localize to

the Purkinje-layer with a list of 203 PSD3J genes whose

expression decayed by more than 50% as provided by [9]. We

sorted the predicted genes by the classifier margin, treated the

PSD3J list as positives, and computed the precision at the k top-

ranked genes. Figure 7 A shows that the top ranked predicted

genes have high overlap with the PSD3J list, reaching 33% at the

top 10.

The cross-comparison between the two sets reveals genes that

are localized to the Purkinje-layer, but are not Purkinje-cell related

Figure 7A. This may include genes that are expressed in non-

Purkinje cells such as Bergmann glia. The cross-comparison also

reveals genes whose expression is affected by the deficient Purkinje

cells, but are not localized to the Purkinje layer. These may include

genes that are expressed in the dendritic arbors of Purkinje cells, or

other genes that are not layer- specific but were affected by the

deficiency of the Purkinje cells. Finally, for those genes that are

detected to be both Purkinje-layer related and Purkinje- cell

related, the cross-comparison strengthens their link to Purkinje

cells.

Functional annotation. As the next step, we studied known

functions of the genes that were localized to the four classified

layers. We used Gene Ontology (GO) annotations to find the

biological processes that are over-represented in the resulting gene

sets for each layer.

As expected, genes localized to the white matter layer showed

enrichment for myelination. More interesting was the enrichment

for neurogenesis, which is also known to take place in the white

matter [25]. The Purkinje layer was enriched for lipid metabolic

processes and more general processes, such as oxidation/reduction.

Full lists of enriched categories are provided in Tables 3, 4, 5, and

6.

The cerebellar cortical layers are comprised of distinct types

of neurons and glia. We asked whether the genes expressed in

the different layers are associated with specific cell types. To

answer this question, we used lists of genes that were found to

be enriched in three major cell types; neurons, astrocytes and

glia [7]. Enrichment was determined by isolating these cell

populations using Fluorescence-Activated Cell Sorting (FACS) and

quantifying their expression using microarrays. Genes with a

20-fold and up over-expression levels were defined as cell-type

specific markers. The lists of cell type markers include 2036
genes for neurons, 2618 for astrocytes and 2228 for oligoden-

drocytes. We tested for enrichment of these markers in our

results, using the entire genome as background. Results are

presented in Figure 7B. As expected, genes that were found to

be expressed in the cerebellar white matter show a strong

enrichment signal for oligodendrocytes. The granular layer,

Table 1. All-to-all class confusion matrix (1-AUC).

Error (1-AUC) Purkinje Granular Molecular White matter Negative set

Purkinje - 0:02+0:02 0+0 0:01+0:01 0:051+0:02

Granular - 0:09+0:07 0:01+0:01 0:04+0:017

Molecular - 0:01+0:01 0:013+0:011

White matter - 0:017+0:013

Classification errors (1-AUC) for classifiers trained for one class against another class. All pairs can be discriminated with high confidence except granular and molecular
layer genes which are confused 9% of the time.
doi:10.1371/journal.pcbi.1002790.t001

Localizing Genes to Cerebellar Layers Using Images
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which contains large amounts of densely packed granule cells,

indeed shows enrichment for neuron-related genes. The

Purkinje cell layer, which is defined by the cell bodies of

Purkinje neurons shows, interestingly, a strong enrichment

signal for glia cells, notably astrocytes. This could be explained

by the specialized astrocytes that occupy this layer, the

Bergmann glia, and also by the astrocyte processes derived

from cells located in the upper granular layer, covering the

Purkinje cell bodies [26]. Oligodendrocytes are also known to

be localized close to the Purkinje cells [26]. This fact can

account for the enrichment of this cell type in the Purkinje cell

layer.

Finally, we used the localization predictions to identify novel

genetic markers for the different cerebellar layers. Out of the

hundreds of new markers, here we describe two examples of genes

that were top-ranked by our classifier in two layers. The first,

Mitogen-activated protein kinase kinase 6 (Map2k6), was the first-

ranked gene in the white matter. Its cerebellar expression pattern,

depicted in Figure 8A, shows it is indeed clearly localized to the

white matter. Map2k6 is a member of the Map kinase signal

transduction pathways, and is thus involved in cell proliferation

and growth. It has been shown that the human ortholog of

Map2k6 is activated in the cerebellum in response to calcium,

triggering a signaling pathway which results in the expression of

Figure 6. The effect of image resolution on classification accuracy. We scaled images by a factor of 1,5,10,20,40,80, where a value of 10
means that all pixels in a 10610 patch (10:7mm by 10:7mm) were averaged into one pixel. Four classifiers are compared, one for each layer, as in
Figure 5, but this time plotting the AUC for various downsampling factor levels. Using multiple resolutions (rightmost value) consistently improves
over using a single resolution. (A) Purkinje vs random set. (B) Granular vs random set. (C) Molecular vs random set. (D) White matter vs random set.
doi:10.1371/journal.pcbi.1002790.g006

Localizing Genes to Cerebellar Layers Using Images
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genes responsible for the survival of newly differentiated neurons

[27]. Therefore, it is not surprising to find it in the white matter of

the cerebellum, and yet this expression pattern was never

previously demonstrated. While Map2k6 is a relatively well-

studied gene, the second example we discuss, Fam107b

(3110001A13Rik), ranked 6th by the Purkinje layer detector, has

little to no associated information. This gene shows a strong,

localized expression in the Purkinje layer (Figure 8 B). Moreover,

its expression is also largely specific to the cerebellum (Figure 8 C).

Detecting layers in the developing mouse brain. To

demonstrate the potential of automated classifiers, we further

applied the trained detectors to find genes with localized

expression over development, that could reflect temporal func-

tional specificity. We applied our Purkinje layer detectors to ISH

images from the Allen developing mouse brain atlas http://

developingmouse.brain-map.org/. The images are derived from

brains of mice in several developmental stages. Here we applied

the classifier to postnatal stages: P4 (postnatal day 4), P14, P28 and

P56. Even though our classifiers were trained on adult mice they

were able to find genes expressed in the Purkinje layer with high

accuracy (P28 - 98% out of 69 positives, P14 - 96% out of 56

positives). Using our classifier we found genes that are switched on

and genes that are switched off in cerebellar layers during

postnatal development. For example, the gene Doc2b is highly

expressed in the adult Purkinje layer, but is only ‘‘switched on’’ at

P14. Doc2 proteins act as Ca2z sensors and trigger spontaneous

neurotransmitter release in the adult mice Purkinje cells [28].

Doc2b has also been suggested to be involved in embryonic neural

development [29]. The fact that Doc2b is only switched on during

late postnatal development in the cerebellum is congruent with the

fact that the cerebellum becomes developed and functional only

after birth, and suggests that this gene plays a role in Purkinje layer

development and function. The full ranked results are also

available in our site at http://chechiklab.biu.ac.il/,lior/

cerebellum.html.

Discussion

We described a machine vision approach for localizing genes to

specific layers in the cerebellum. Using a small number of known

cell-type markers, we trained classifiers based on visual features in

ISH images of these genes and used the classifiers to detect other

genes that exhibit similar localization patterns. The area under the

ROC curve (AUC) of all four classifiers, trained for Purkinje,

granular, molecular and white-matter layers, was higher than 0.94

on held-out data. Furthermore, when the predictions are evaluated

on the full genome using human inspection, the Purkinje and

granular classifiers achieved 98% accuracy over their top 250

ranked predicted genes.

Two factors contributed to the high classification accuracy of

this approach. First, we extracted features from ISH images at

multiple resolutions, capturing both texture and coarser structure

in their features. Second, we combine multiple image predictions

to a single gene-level decision. Together, these two factors reduced

the classification error by over 50 percent compared to a naive

classifier.

The fraction of genes whose expression is localized is

surprisingly high: About 3.4% of the genes that are expressed in

the cerebellum exhibit an expression pattern that was strongly

localized to one layer. Functional enrichment suggest that part of

this effect is due to the unusual shape and size of the Purkinje cells,

leading to high expression of lipid metabolism genes. Interestingly,

by comparing the genes localized to the Purkinje layer, with genes

detected in Purkinje deficient mice [9], we find that many
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Purkinje-layer genes are not necessarily expressed in Purkinje cells.

This result, together with the fact that Purkinje-layer genes are

associated with astrocytes, suggests that the transcriptome of

Bergmann astrocytes, which reside in the Purkinje layer, has a

wider range of specifically expressed genes than previously

suspected. The full list of Bergmann glia specific genes is provided

in the Supporting Information. This list could be used to further

understand the unique properties of Bergman Glia cells.

The large fraction of genes which exhibit localized pattern of

expression hints to a high level of functional specialization across

different cell types in the brain. It suggests that the average

transcriptome of a neural tissue is actually a very heterogeneous

mix of genes, some of which are expressed in unique cell types.

This is in agreement with microarray analysis of specific cortical

layers in the Rhesus monkeys [5], where the variability of the

transcriptome across layers is significant.

The approach described in this paper can be used in

conjunction with other approaches to improve our understanding

of how the transcriptome changes between different types of

neurons and glia cells. For instance, the transcriptome of

transgenic mice that lack Purkinje neurons [9] can be used to

further delineate the transcriptome of Bergmann and Purkinje

cells, both a part of the Purkinje layer.

Our approach was applied to the cerebellum where the layers

have a clear and pronounced structure. Other brain regions,

including the dentate gyrus, the CA areas in the hippocampus or

the anterior olfactory nucleus also contain laminar structures and

could be analyzed in a similar way. Furthermore, it will be

interesting to extend this approach to learn more refined

discriminations. For example, in many brain areas astrocytes

and neurons have different spatial distributions and sizes,

suggesting that it may be feasible to train detectors that are

sensitive to these differences. This could help further characterize

the genetic profiles of many specific cell types across the brain.

Methods

Data and labeling procedure
We used gene expression images measured using in situ

hybridization (ISH). The images were collected by the Allen

Figure 7. Comparison with Purkinje-deficient mice and layer enrichment for cell types (A). Comparison with Purkinje-deficient mice
genes from [9]. The overlap of the set of top ranked genes that were localized to the Purkinje layer with PSD3J Precision is the fraction of Purkinje-
localized genes that are found in PSD3J mice. (B) Enrichment for cell type specific markers, taken from Cahoy [7]. For each layers enrichment for cell
type was tested using a hypergeometric test. The dashed red line corresponds to p-value at random. As expected, the white matter was enriched for
oligodendrocyte markers and the granular layer is enriched for neuronal markers. Interestingly, Purkinje layer genes show a strong enrichment for
astrocytes markers.
doi:10.1371/journal.pcbi.1002790.g007

Table 3. Functional enrichment of genes localized to the white matter.

GO.ID term # of annotated genes # of significant FDR q-value

0042552 myelination 21 2 0.00045

0006665 sphingolipid metabolic process 36 2 0.00134

0008654 phospholipid biosynthetic process 49 2 0.00248

0022008 neurogenesis 267 3 0.00703

For each gene ontology category (GO), shown are the GO ID, the name of the category, the number of white-matter genes that are annotated with the GO category, the
number of genes predicted to be in the white matter layer in this category and the FDR q-value computed following the method of Benjamini and Hochberg’s [33].
Enriched categories indeed include white-matter functions (myelination) but also regulation of neurogenesis which was also found to take part in the cerebellum white
matter [25].
doi:10.1371/journal.pcbi.1002790.t003
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Brain Institute and published online as the Allen Brain Atlas (ABA)

[11] available at http://mouse.brain-map.org.

To measure the expression of a target gene, ISH uses

fluorescently labeled DNA sequences that are complementary to

the target gene RNA. These DNA probes are cloned and applied

to each brain slice. The complementary probes hybridize to the

target RNA sequence inside the cells, while the non bound probes

are washed away. This fluorescent labeling captures the spatial

pattern of expression of a target gene across the brain. The quality

of this approach was quantified in [30], showing mostly agreement

with microarray data. ISH measurements were gathered for the

adult mouse full genome, covering 20,382 genes. For each gene,

mice brains were dissected into 100 mm thick slices in sagittal and

coronal sections, and the slices were fluorescently labeled and

imaged. The outcome of this process is a set of images for each

gene showing the gene expression pattern across the whole mouse

brain.

We collected a set of positive samples for four classes: Purkinje

layer, granular layer, white matter and molecular layer classes. The

positive samples were collected from three sources: First, we

included known markers for each of the four layers. For example,

we selected Calb1 as a marker of the Purkinje layer, and Plp1 for

the white matter. The molecular class contained genes that are

expressed in the molecular layer and also possibly in the Purkinje

layers. Second, we sifted through images of 1000 random genes

(ordered by gene name) and manually selected images with spatial

patterns that fit the four classes. Finally, since the white matter and

the molecular class had only few genes, we computed the spatial

correlation of expression between the positive samples selected

from the first two sources and the rest of the genome using ABA

NeuroBlast [22]. We added genes whose expression in the

hindbrain was highly correlated (p-valuev0:01) with the positive

samples. Overall, the number of positive genes in each of our

classes was 27, 42, 16 and 21 for Purkinje, granular, molecular and

white matter. We also collected a set of 300 randomly selected

genes (632 images) to act as a negative set for each class. For each

gene we then collected all its ISH images covering the area of 600–

1200 microns medial to the most lateral cut. The number of

images per gene varied considerably: 4:6+8:3 in Purkinje genes,

2:8+0:8 in granular, 6:3+9:0 in molecular, and 4:3+5:9 in

white matter.

All together, a total of 433 genes and 1112 images were used in

the labeled training set. Also, 13361 genes and 31321 unlabeled

images were used in genome-wide analysis.

Preprocessing and feature extraction
We used masked gene expression images available from ABA as

RGB images. We transformed the RGB triplet at every pixel into a

scalar intensity value using the heat color scale. Images that were

completely black (no expression detected) were excluded. This

happens, for example, when the sampled gene is not active in the

cerebellum or when gene activity was too low to be detected by

ISH. We downsampled every image at multiple resolution to

capture structures at multiple scales. We used downsampling

factors of 1,5,10,20,40,60,80.

As feature vector we used local binary patterns (LBP, [12]). At

every scale the LBP representation computes an 8-bits signature at

every pixel of the image (Figure 9B), by comparing the pixel

intensity to the intensities of its 8 circular neighbors (Figure 9D),

yielding a value of 0 for a lower intensity neighbor and 1 otherwise

(Figure 9E). LBP signatures are then collected across the full image

and their histogram is computed, yielding a 256-features vector

(Figure 9F). The feature vectors of each resolution are then

concatenated into a single feature vector (Figure 9G) representing

the image in different scales.

In LBP, the distance from the center to the surrounding

pixels could be tuned. Here we used a circle of radius 2
centered at each pixel (known as LBP(8,2)) which achieved

superior performance in early experiments. A common variant

of LBP, called uniform LBP [12], avoids collecting all 28

possible binary patterns separately. Instead, it merges bins that

correspond to sequences (going around the center) with more

Table 4. Functional enrichment of genes localized to the Purkinje layer.

GO.ID term # of annotated genes # of significant FDR q-value

0006816 calcium ion transport 86 12 9.5e-05

0006937 regulation of muscle contraction 22 5 0.0012

0030900 forebrain development 73 9 0.0018

0006629 lipid metabolic process 407 28 0.0018

0055114 oxidation reduction 375 26 0.0023

0007264 small GTPase mediated signal transduction 263 19 0.0057

0050767 regulation of neurogenesis 61 7 0.0083

Columns as in table 3. To support their large cell body and vast dendritic tree, the Purkinje cells have rapid metabolic processes, in agreement with the enrichment of
lipid metabolic process.
doi:10.1371/journal.pcbi.1002790.t004

Table 5. Functional enrichment of genes localized to the granular layer.

GO.ID term # of annotated genes # of significant FDR q-value

0016192 vesicle-mediated transport 279 14 0.00036

0009966 regulation of signal transduction 317 12 0.00952

Columns as in table 3.
doi:10.1371/journal.pcbi.1002790.t005
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than two bit flips. While in some applications uniform LBP may

improve runtime and classification accuracy [12], this was not

the case in our experiments, probably because ISH images have

very different statistics than real world images. The total

number of features per image at a specific resolution was

therefore 257 (28 LBP features and the mean image intensity).

Features were scaled to the range [0,1] by dividing by the

maximal value in the histogram.

We also tested classifiers that uses SIFT features [13]. The

Purkinje layer detector showed lower performance, the gran-

ular layer detector and the white matter detector performance

did not change much and molecular layer detector was

improved. We chose to use LBP for their ease of implemen-

tation and interpretation (Results using SIFT as features are not

shown).

Classification
For image classifiers, we trained a support vector machine

(SVM) to discriminate images of each layer from images of other

layers. Given a new (test) image that is not used in training, each

classifier can provide a ‘‘soft’’ decision score (Figure 10 C), based

on the distance of the sample from the separating hyperplane (the

margin).

To classify images, we trained an SVM using libSVM [31] with

a radial basis function (RBF) kernel. We choose SVM because its

inherent regularization handles well learning with a relatively

small number of samples per class. We used two layers of five-fold

cross-validation, one to tune the classifier parameters and the

second to tune the hyper parameters. When splitting images into

the train and test sets, all images of a gene were either in the train

or the test set, but never in both, to avoid overfitting. We used grid

search to select the best regularization hyper parameter

c[½2{2,2{1,1,2,22,23�, and best RBF hyper parameter

c[½2{4,2{3,2{2,2{1,1,2�. Optimal AUC was usually found to

be near the middle of the regularization range and near 2{4 for

the RBF hyper parameter.

Our dataset is highly imbalanced with many more negatives than

positives for each class. To take this bias into account, we assigned

different costs to false positive and false negative errors during

training. This was done by setting the c+ and c2 parameters in

SVM, based on the relative sizes of the positive and negative sets.

Also, we evaluate performance using the area under the ROC curve

(AUC) a measure that is invariant to this bias.

Pooling image information to make a single decision
about a gene

Combining image scores into a single gene score is a special case

of what is known as multi-instance learning (MIL). In general,

MIL deals with the case were labels are assigned to a ‘‘bag’’ of

samples, which in our case are all the images of a common gene.

MIL also commonly appears in tasks like visual object recognition,

where features are collected over multiple patches in a single

image. The features of the instances are then pooled together using

a summary statistic like the mean or maximal.

We tested three different ways to combine image scores into a

decision over genes. First, we used the mean scores of all images

that correspond to a certain gene. We call this approach Mean

image score. Second, we collected the LBP features of all images that

correspond to a gene, computed their average histogram, and

trained a classifier using this single histogram as a feature vector.

We call this approach Mean LBP features. Third, instead of using

only a single order statistic (max, median or mean), we combined

multiple order statistics of the images scores. Using the soft

decision scores from all images, we trained a second classifier. This

approach is referred as Two level classifier. We also tested a fourth

approach as a baseline, treating each image independently, and

making a prediction at the level of single images. This can also be

viewed as classification when each gene has a single image only.

Table 6. Functional enrichment of genes localized to the molecular layer.

GO.ID term # of annotated genes # of significant FDR q-value

0050804 regulation of synaptic
transmission

49 2 0.0024

0006457 protein folding 76 2 0.0059

Columns as in table 3.
doi:10.1371/journal.pcbi.1002790.t006

Figure 8. Examples of novel genetic markers. Non masked ISH images showing cerebellar expression of Map2k6 (A) and Fam107b (B). These
are the raw images before the application of the expression mask. The expression of actual labeled mRNA target transcripts is marked with dark
spots. (C) Whole-brain ISH image for Fam107b. Fam107b shows strong, highly localized expression in the Purkinje layer of the cerebellum.
doi:10.1371/journal.pcbi.1002790.g008
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For the gene-level classifier we trained a linear SVM which

receives as inputs the confidence scores (Figure 10C) of all

corresponding images (their distance from the separating hyper-

plane). Since each gene has a different number of corresponding

images, image scores were pooled using order and moment

statistics (Figure 10D). Specifically, we used the mean, the median

and the k-top images scores (total of 5 features). We found that best

performance was achieved for k~3. Whenever a gene had less

than 3 corresponding images the lowest available value was

duplicated to fill the missing values. We used again two layers of 5-

fold cross-validation for tuning the SVM regularization hyper-

parameter C.

Comparison with NeuroBlast
NeuroBlast [22] - http://mouse.brain-map.org/ ranks in-

situ images according to their spatial correlation to an image of

a specific gene (the seed). We focused on correlation in the

cerebellum region. For seeds we used a layer known marker

(Plp1, Calb1, Neurond1 and Pvalb for the white matter,

Purkinje, granular, molecular layers respectively). For each

gene from our manual labeled list we collected the correlation

scores of its images and computed their mean correlation

score. These gene scores were used to calculate the AUC for

each layer.

Functional enrichment
GO enrichment was tested using elim [32], which takes into

account local dependencies in the hierarchical structure of the

Gene Ontology trees, and then by applying the fisher exact test to

determine statistical significance of the results (compared to

hypergeometric distribution). P-values were corrected for multiple

comparisons using FDR [33].

Figure 9. Representing expression images using LBP features. (A–B) The masked gene expression image is downsampled at multiple
resolutions yielding several sampled images. The color marks the expression intensity of the gene at that point (C). The numerical level of expression
at the 8 neighbors (D) is compared to the expression at the center, yielding an 8-bit binary word (E). All binary patterns from each image are
collected, and their histogram is computed (F). All histograms are then concatenated into one - the image feature vector (G).
doi:10.1371/journal.pcbi.1002790.g009

Figure 10. The two layered classifier. (A) All available images of gene Gap43 are processed (taken from different cuts or different experiments).
(B) For each image an LBP feature vector is produced and used as input for the image level SVM. (C) Each image receives a confidence score from the
image level SVM. (D) The gene’s images scores are collected and a using their mean, median, first, second and third max, a gene feature vector is
computed. (E) The gene is classified using the gene level SVM.
doi:10.1371/journal.pcbi.1002790.g010
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Supporting Information

Table S1 Purkinje layer detector results. The full list of

genes predicted to reside in the Purkinje layer - ordered by

confidence score.

(CSV)

Table S2 Purkinje layer astrocytes. List of genes in the

Purkinje layer that are also enriched for astrocytes (Cahoy

[7]).

(CSV)

Table S3 Purkinje layer but not Purkinje cells. List of

genes in the Purkinje layer that not Purkinje cells. These genes are

expressed in the Pukinje layer but do not appear in the list of

Purkinje cell related genes from Rong et al [9].

(CSV)

Table S4 Bergmann glia. List of genes in the Purkinje layer

that show enrichment for astrocytes [7] and also do not appear to

be related to Purkinje cells [9].

(CSV)

Table S5 Purkinje cells (Rong). List of Purkinje cell related

genes from [9].

(CSV)
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