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Abstract

Neurons communicate primarily with spikes, but most theories of neural computation are based on firing rates. Yet, many
experimental observations suggest that the temporal coordination of spikes plays a role in sensory processing. Among
potential spike-based codes, synchrony appears as a good candidate because neural firing and plasticity are sensitive to fine
input correlations. However, it is unclear what role synchrony may play in neural computation, and what functional
advantage it may provide. With a theoretical approach, I show that the computational interest of neural synchrony appears
when neurons have heterogeneous properties. In this context, the relationship between stimuli and neural synchrony is
captured by the concept of synchrony receptive field, the set of stimuli which induce synchronous responses in a group of
neurons. In a heterogeneous neural population, it appears that synchrony patterns represent structure or sensory invariants
in stimuli, which can then be detected by postsynaptic neurons. The required neural circuitry can spontaneously emerge
with spike-timing-dependent plasticity. Using examples in different sensory modalities, I show that this allows simple neural
circuits to extract relevant information from realistic sensory stimuli, for example to identify a fluctuating odor in the
presence of distractors. This theory of synchrony-based computation shows that relative spike timing may indeed have
computational relevance, and suggests new types of neural network models for sensory processing with appealing
computational properties.
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Introduction

Neuronal synchronization is ubiquitous in the nervous system

[1,2]. In the retina, neighboring cells are often synchronized at a

fine timescale [3,4], and relative spike timing carries information

about visual stimuli [5]. Visual and somatosensory stimulation also

elicits synchronized activity in the thalamus [6–8], which impacts

target cortical neurons [9–12]. In olfaction, fine odor discrimina-

tion relies on transient synchronization between specific neurons

[13]. In the auditory system, phase locking in brainstem neurons

[14] produces fine stimulus-driven correlations in spike timing

which are determinant for sound localization [15]. At cellular

level, modeling and experimental studies show that correlated

inputs are more likely to make neurons fire [16–19], and synaptic

plasticity mechanisms favor correlated synaptic inputs [20,21], so

that developed neural circuits should be very sensitive to

correlations. These findings suggest that neural synchronization

is functionally important in early sensory pathways, but it is not

clear what it implies in terms of computation.

In many theoretical studies of spiking neural networks, spike

timing and neural heterogeneity are treated as noise to be

averaged out in the activity of ‘‘neural masses’’ [22]. One theory,

reservoir computing, assigns a computational role to neural

heterogeneity, that of representing sensory stimuli in a high-

dimensional space where decoding is easier [23], but it does not

assign a specific role to spike timing or synchrony. Thus, although

many authors have advocated the idea that the brain may use

precise spike timing to process sensory information [24,25], there

are few general theories of spike-based computation. One such

theory postulates that the rank order of spikes carries information

[26]. This is supported by experimental evidence in the retina [5],

but physiologically decoding this information is not entirely

straightforward, as it would involve rather specific circuits of

inhibition and excitation. In addition, although it seems to be a

metabolically efficient way of processing information, the advan-

tages in terms of computational power are not obvious. On the

other hand, synchrony can be easily decoded by neurons, by

means of coincidence detection [27], and is compatible with

Hebbian learning theories, in which correlated inputs tend to be

strengthened [20].

In this article, I focus on synchrony induced by the stimulus

(rather than by coupling between neurons [28–31]) and I address

the two following questions: what does synchrony mean? how and

what can neurons compute with synchrony? It appears that neural

heterogeneity, which is considerable in the nervous system [32], is

the key ingredient that makes synchrony computationally inter-

esting, because synchrony then reveals sensory invariants, which

play a central role in psychological theories of perception.

Results

Synchrony receptive fields
For synchrony to be computationally useful, it must be stimulus-

dependent. To illustrate this idea, let us consider neurons which

spike after being hyperpolarized (‘‘rebound spiking’’), because of

the presence of voltage-activated conductances (Fig. 1; simple

neuron models are used in this and all other figures; see Methods

for details). Neurons with rebound spiking have been found for
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example in the superior paraolivary nucleus of the auditory

brainstem, a structure involved in encoding the temporal structure

of sounds [33]; and in the pyloric network of lobsters, involved in

the generation of rhythmic motor patterns [34]. Fig. 1 shows a

minimal neuron model with this property (but it is only meant as

an illustration). The model includes a slow outward current,

modeling K+ channels, which activates at low voltages (half-

activation voltage 270 mV). This current prevents the neuron

from spontaneously spiking. When the neuron is inhibited for a

few hundred ms (Fig. 1A, top), the K+ channels slowly close (the

conductance decreases, Fig. 1A, bottom). When inhibition is

released, the negative K+ current is smaller than at rest, which

makes the neuron spike. The latency of the rebound spike depends

on the value of the K+ conductance when inhibition is released,

and therefore on the duration of inhibition: if the neuron is

inhibited for a shorter duration, K+ channels are still partially

open when inhibition is released and the neuron spikes later. If

inhibition is very short, the neuron may not spike. Thus, the

timing of the rebound spike is negatively correlated with the

duration of inhibition. Fig. 1B shows this relationship for two

different model neurons A and B, which have the same rebound

spiking property but quantitatively different parameter values

(spike threshold and time constant of K+ channels).

The receptive field of a neuron can be defined as the set of

stimuli which elicit a response in the neuron: in this example,

stimuli are inhibitory pulses with duration varying between 0 and

1000 ms, and the receptive fields of neurons A and B are

inhibitory pulses lasting more than 200 ms. Therefore, the

individual receptive fields of the neurons convey little information

about duration. I now define the synchrony receptive field (SRF) of two

neurons as the set of stimuli which elicit synchronous firing in these

two neurons. For neurons A and B in Fig. 1B, the SRF is found at

the intersection of the duration-latency curves: the two neurons

fire in synchrony when the stimulus lasts about 500 ms. At this

point, I make three remarks. First, the SRF reveals information

about the stimulus that may not be available from individual

receptive fields (here, both neurons fire one spike to all stimuli

lasting more than 200 ms). Second, this additional information

can only be available when neurons have heterogeneous properties

(otherwise, the SRF is the set of all stimuli). Third, the SRF is

specific of a pair (possibly group) of neurons: the duration-latency

curve of neuron A will generally intersect that of another neuron C

at a different point, or may not intersect it at all (and the SRF is

empty). Therefore, in a heterogeneous population of neurons, any

given stimulus will trigger a specific synchrony pattern. How can

this synchrony pattern be decoded?

Figure 1. Synchrony receptive field. A, When neuron A is
hyperpolarized by an inhibitory input (top), its low-voltage-activated
K channels slowly close (bottom), which makes the neuron fire when
inhibition is released (neuron models are used in this and other figures).
B, Spike latency is negatively correlated with the duration of inhibition
(black line). Neuron B has similar properties but different values for the
threshold and K channel parameters (blue line). The synchrony
receptive field of neurons A and B is the stimulus with duration
500 ms. C, A postsynaptic neuron receives inputs from A and B. D, It is
more likely to fire when the stimulus in the synchrony receptive field of
A and B. E, Distribution p(v) of the postsynaptic membrane potential
when the neuron is not stimulated (left, ‘‘background’’) and when it
receives an input of size Dv (right, ‘‘signal’’; e.g. neurons A and B shown
in panel C fire together). The standard deviation of the distribution is s.
The neuron fires when v is greater than the spike threshold h. F,
Receiver-operation characteristic (ROC) for three levels of noise,
obtained by varying the threshold h (black curves). The hit rate is the
probability that the neuron fires within one integration time constant t
when depolarized by Dv, and the false alarm rate is the firing
probability without depolarization. The corresponding theoretical
curves, with sensitivity index d9 =Dv/s, are shown in red. G, When a
neuron receives two synchronous inputs of size w (PSP peak), the peak
potential is 2w plus the background noise (left). When the second input
arrives after a delay d, the peak is w(1ze{d

t) plus the background noise
(right). H, Distinguishing between synchronous inputs and delayed
inputs corresponds to setting a threshold h between two distributions

separated by w(1{e{d
t).

doi:10.1371/journal.pcbi.1002561.g001

Author Summary

How does the brain compute? Traditional theories of
neural computation describe the operating function of
neurons in terms of average firing rates, with the timing of
spikes bearing little information. However, numerous
studies have shown that spike timing can convey
information and that neurons are highly sensitive to
synchrony in their inputs. Here I propose a simple spike-
based computational framework, based on the idea that
stimulus-induced synchrony can be used to extract
sensory invariants (for example, the location of a sound
source), which is a difficult task for classical neural
networks. It relies on the simple remark that a series of
repeated coincidences is in itself an invariant. Many
aspects of perception rely on extracting invariant features,
such as the spatial location of a time-varying sound, the
identity of an odor with fluctuating intensity, the pitch of a
musical note. I demonstrate that simple synchrony-based
neuron models can extract these useful features, by using
spiking models in several sensory modalities.

Computing with Neural Synchrony
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Detecting synchrony
Consider a postsynaptic neuron receiving excitatory inputs from

neurons A and B (Fig. 1C). The neuron also receives inputs from

other sources, which are modeled as background noise. If this

neuron is sensitive to coincidences, then it will fire more when the

two inputs are synchronous, that is, when the stimulus is in the

SRF of A and B. As a result, the firing rate of this neuron will be

tuned to the duration of the stimulus, although its inputs are not

(Fig. 1D). The model used in Fig. 1D is a simple integrate-and-fire

neuron with background noise (time constant t= 5 ms). As shown

in [19] (elaborating on ideas proposed by Abeles [16]), the key

ingredient for the neuron to be sensitive to coincidences is that the

average background input is subthreshold. In this regime, the

neuron is said to be ‘‘fluctuation-driven’’: it fires to large

fluctuations above the mean potential.

This property can be understood in terms of signal detection

theory [35]. In vivo intracellular recordings show that in many

areas, the membrane potential distribution p(v) peaks well below

threshold, indicating that neurons are indeed fluctuation-driven

(e.g. in auditory cortex [36], visual cortex [37], barrel cortex [38],

frontal cortex [39]). This distribution is represented in Fig. 1E

(‘‘background’’), which we consider as noise with standard

deviation s. When coincident spikes depolarize the neuron by

an amount Dv ( = nw for n coincident postsynaptic potentials

(PSPs) of size w), this probability distribution is shifted by Dv

(Fig. 1E, ‘‘signal’’). The neuron spikes when the membrane

potential exceeds the spike threshold h, which implements the

decision threshold to detect these coincidences over the back-

ground. The neuron will respond to coincidences (hits) but also to

background activity (false alarms), with some probability called the

‘‘hit rate’’ (HR) and ‘‘false alarm rate’’ (FR). Both rates decrease

when the threshold increases. For a given value s of the noise, HR

and FR are linked by a curve named the receiver-operating

characteristic (ROC), obtained by varying the threshold. ROC

curves are shown in Fig. 1F for a noisy integrate-and-fire neuron

with exponentially decaying PSPs, with three noise levels (black

curves). The rates are calculated as the probability of firing within

one integration time constant t when the neuron receives a PSP of

size Dv (HR) and when it does not (FR). That is, the FR is the

product Ft, where F is the spontaneous firing rate. Each ROC

curve is calculated (with numerical simulations) by varying the

spike threshold while keeping the same noise level. Higher

thresholds correspond to lower rates.

When the noise is very high, this ROC curve is a diagonal

(dashed), meaning that coincidences cannot be distinguished from

background. As the noise decreases, the ROC curve shifts toward

the upper left corner, meaning that spikes indicate coincidences

more reliably. In signal detection theory, this relationship between

hit rate and false alarm rate is quantified by the sensitivity index d9,

which, for normal distributions, is the spread between the

distributions in units of the noise standard deviation: d
0
~Dv=s.

Red curves in Fig. 1F show the theoretical ROC curves for the

noise values used in the simulations. Thus, d9 quantifies the ability

to detect coincidences while the value of the spike threshold

corresponds to a particular trade-off between hit rate and false

alarm rate.

For example, in the case of two coincident spikes, one simple

choice is h= 2w (relative to the mean membrane potential), which

ensures a HR of 50% when the two input spikes are synchronous,

and a lower FR for background activity (Fig. 1F, horizontal dashed

line). More generally, the ratio between HR and FR increases

when the FR decreases: this implies that, to detect coincidences,

the false alarm rate should be set to a low level. For an integrate-

and-fire neuron with spontaneous firing rate F and integration

time constant t, we have defined the FR as F.t. Some

experimental evidence indicates that this quantity is indeed low

in vivo: the membrane time constant is short in vivo (e.g. around

5 ms in the frontal cortex [39]), because of the large total synaptic

conductance [40]; average firing rates are low, possibly smaller

than 1 Hz [41]. Although the latter point is controversial, the

product F.t remains small even with larger estimates of F. In

addition, we note that the temporal window of integration is in fact

shorter than the membrane time constant, because of spike

threshold adaptation [42,43], and because of coordinated inhibi-

tion [44]. This ensures that the ratio HR/FR is high, even for

small d9 (small depolarization Dv).

Temporal resolution of coincidence detection
Thus, neurons can detect coincidences above background noise,

but an important question is the temporal resolution of

coincidence detection. We can use signal detection theory again

to address this question. Consider two input spikes delayed by a

time d, each one producing an exponential PSP of size w and

decay time t (Fig. 1G). When the spikes are synchronous (Fig. 1G,

left), the membrane potential at peak time is 2w, plus the

background noise. When they are delayed (Fig. 1G, right), the

peak membrane potential is wzwe{d
t, plus the noise. To detect

between these two possibilities, we need to distinguish between two

random variables with means differing by w(1{e{d
t) and standard

deviation s (Fig. 1H). This corresponds to a sensitivity index

d
0
~

w

s
(1{e{d

t)

and for short delays (d%t): d
0
&

w

s
:
d

t
. This can be described as the

product of the signal-to-noise ratio (w/s) with the delay in units of

the time constant.

We can now define the temporal resolution of coincidence

detection using the concept of ‘‘just noticeable difference’’ (JND),

defined as the delay d for which spikes can be correctly

distinguished from synchronous spikes with 75% probability

(assuming 50% correct answers for d~0). This corresponds to a

d9 of 1.35 [35], which gives for short delays:

JND75%&1:35
s

w
t

Thus, the temporal resolution of coincidence detection is

proportional to the integration time constant t, and inversely

proportional to the signal-to-noise ratio w=s. Note that the

approximation d%t corresponds here to s%w, i.e., low noise.

The precise expression using the original formula for d9 is:

JND75%&{t log 1{1:35
s

w

� �

This expression is only defined with relatively low noise, when

sv0:75w: this is because above this value, it is not possible to

correctly distinguish between synchronous and asynchronous

spikes (d~z?) with 75% probability.

Let us come back to the specific example of duration selectivity I

have presented above. The postsynaptic neuron receives input

spikes from neuron A and neuron B, at latencies LA(D) and LB(D),

where D is the duration of the stimulus. The latency curves intersect

at some duration D* (500 ms in Fig. 1B). The timing difference

between the two spikes is D Dð Þ~DLB Dð Þ{LA Dð ÞD. We approxi-

mate it near the intersection point as D Dð Þ&DD
0

D�ð ÞD:DD{D�D, and

we obtain this approximate expression of the JND in duration:

Computing with Neural Synchrony
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JND75% durationð Þ&JND75% timingð Þ: 1

DD
0

D�ð ÞD
&1:35

s

w

t

DD
0

D�ð ÞD

The term DD
0

D�ð ÞD quantifies how different the latency curves are

near the intersection point. This formula indicates that the detection

of duration is more accurate when the properties of the presynaptic

neurons are heterogeneous.

Decoding synchrony patterns
We can now apply these principles to decode synchrony

patterns at the population level. Consider a population of neurons

with rebound spiking properties but heterogeneous parameters.

For example, in Fig. 2A, the membrane time constant varies

randomly across neurons between 10 and 50 ms, and the K+
channel time constant varies between 300 and 500 ms (see Text

S1 for a justification of this choice of parameter values). For a

given stimulus, for example an inhibitory pulse with duration

300 ms, we can look at the synchrony pattern in the neural

population. In Fig. 1E (top left), neurons represented with the

same color produce a rebound spike at the same time (with a 2 ms

precision), that is, the stimulus is in the SRF of neurons with the

same color. Thus, the neuron population can be divided in groups

of synchronous neurons (possibly containing just one neuron). I

call this partition of the neural population the synchrony partition

(mathematically, it is the neural partition defined by synchrony,

which is an equivalence relation). This definition mirrors the

definition of the SRF: the SRF describes the set of stimuli for

which a given group of neurons are synchronous, the synchrony

partition describes the groups of neurons that are synchronous for

a given stimulus. Fig. 2A shows the synchrony partition in a

population of 25 heterogeneous neurons for three stimuli:

inhibitory pulses of 300 ms, 400 ms and 500 ms. Each stimulus

produces a different synchrony partition: for example, the three

neurons colored in green for the 300 ms stimulus are not

synchronous for the 400 ms stimulus.

Decoding synchrony patterns is now straightforward (Fig. 2B).

For each synchrony partition (each stimulus), we assign a

population of postsynaptic neurons, one neuron for each group

in the partition (colored neurons in Fig. 2B). Presynaptic neurons

in the same group (same color) make excitatory synapses onto the

same postsynaptic neuron. In this figure, the peak size of PSPs was

set as the difference between threshold and mean potential divided

by the number of neurons in the presynaptic group: this choice

means that the hit rate should be 50% (only approximately, since

input synchrony is not perfect). Therefore, the postsynaptic neural

assembly maximally fires for a specific synchrony partition, that is,

for a specific stimulus (Fig. 2C). In this way, synchrony partitions

are mapped to patterns of postsynaptic activity, and SRFs are

mapped to standard receptive fields.

We note in Fig. 2C a few deviations from the ideal scenario

described above. First, the maximum firing probability is generally

lower than 0.5. This is because a synchronous group was defined

as a group of neurons that fire within 2 ms of each other, rather

than at the exact same time. With more encoding neurons, groups

could be defined with a better precision (i.e., finer synchrony

partitions). Second, the duration selectivity curves are non-

symmetrical, with more spikes produced at longer durations. This

is because there is more heterogeneity in spike latency at short

durations (where latency curves diverge, see Fig. 1B) than at long

durations (where latency curves are constant). Making the

integration time constant of coincidence detectors shorter would

reduce this phenomenon. As a consequence of these two facts,

selectivity curves do not peak exactly at the expected duration.

The ideal scenario corresponds to the limit case where stimuli are

encoded by many neurons (allowing fine synchrony partitions) and

synchrony patterns are decoded with a fine resolution (short time

constant of coincidence detectors).

Decoding synchrony patterns requires that neurons are sensitive

to coincidences (in the sense that they fire more when their inputs

are coincident), but it does not rely on specific neural properties, as

is shown in Fig. 3. Varying the amount of internal noise

quantitatively changes the neuron sensitivity to coincidences (the

sensitivity index d9 in the signal detection theory perspective) but it

does not change the qualitative properties (Fig. 3A). In Fig. 3B,

inputs to the neurons were modeled as excitatory synaptic

conductances (exponentially decaying with time constant

te = 2 ms). The main difference is that the size of PSPs now

depends on the driving force (synaptic reversal potential minus

membrane potential). However, as argued in [19], for an

excitatory synapse, the driving force is restricted to a rather small

range below spike threshold (50–80 mV), so that it has little impact

on PSP size and on coincidence detection properties. In Fig. 3C,

the coincidence detector neurons are modeled in the same way as

the presynaptic neurons, with rebound spiking (with time constants

t= 10 ms and tKLT = 400 ms, see the Methods for details). That

Figure 2. Decoding synchrony patterns in a heterogeneous
population. Each column corresponds to one stimulus duration. A,
Color represents the latency of the spike produced by each neuron
responding to the stimulus (white if the neuron did not spike). Thus,
neurons with the same color are synchronous for that specific stimulus
(duration). The population can be divided in groups of synchronous
neurons (i.e., with the same color), forming the ‘‘synchrony partition’’.
Circled neurons belong to the synchronous group of neuron A. B, Each
synchronous group projects to a postsynaptic neuron. Each duration is
associated with an assembly of postsynaptic neurons. C, Activation of
the postsynaptic assembly as a function of duration (grey: individual
neurons; black: average).
doi:10.1371/journal.pcbi.1002561.g002
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is, neurons of the same type encode the stimuli and decode the

synchrony patterns. The results are qualitatively unchanged.

Learning synchrony codes
I have shown an explicit construction of the decoding circuit,

but how can this circuit spontaneously emerge?

As explained above, a simple condition for a neuron to be

sensitive to coincidences is to ensure that its firing rate is low. This

can be implemented by a homeostatic principle. Two physiolog-

ically plausible mechanisms are intrinsic plasticity, where excit-

ability (e.g. spike threshold or membrane resistance) changes with

activity [45], and synaptic scaling, where synaptic weights change

with pre- and/or post-synaptic activity [46]. In the context of

signal detection theory (Fig. 1E–H), homeostasis can be seen as the

process of setting the decision threshold so as to maintain a low

false alarm rate. I consider a simple synaptic scaling mechanism in

which synaptic weights continuously increase, independently of

pre- and post-synaptic activity, and each postsynaptic spike

reduces all synaptic weights:

dw

dt
~Rww

w?w(1{dwH ) when the neuron spikes

This multiplicative form corresponds to experimental observations

[47] and it also has theoretical advantages: 1) it is equivalent to a

change in spike threshold, 2) it leaves the relative strengths of the

synapses unchanged and 3) it keeps the weights positive, without

imposing a hard boundary. Weights are stable when Rw~FdwH

(where F is the postsynaptic firing rate), that is, when F~Rw=dwH .

Thus this mechanism maintains a target firing rate F.

Homeostasis acts on the decision threshold but is not synapse-

specific (that is, it does not improve the sensitivity index d9). In the

circuit shown in Fig. 2, the postsynaptic neuron fires when the

presynaptic neurons belong to the same (stimulus-specific)

synchronous group. To develop such circuits requires a synaptic

plasticity mechanism that selectively strengthens synapses that are

co-activated with the postsynaptic neuron, in a short temporal

window corresponding to the precision of the synchrony partition.

This is consistent with the properties of long-term potentiation in

spike-timing-dependent plasticity (STDP) seen at excitatory

synapses onto excitatory neurons [48], and theoretical studies

have shown that STDP favors correlated inputs [20,21,49]. In

addition to homeostasis, I consider an STDP rule in which the

synaptic weight modification dwLTP depends on the difference in

timing tpost-tpre of a pre- and post-synaptic spike (Fig. 4A):

dwLTP~aLTPe{(tpost{tpre)=tLTP if tpostwtpre

The synaptic modifications induced by all pairs of pre and post

spikes are added, but in this context where firing rates are low

(around 1 Hz), the precise way in which pairs interact does not

make a difference. The time constant tLTP is set equal to the

membrane time constant t. I also choose a small value for aLTP, so

that the average firing rate is mainly determined by the

homeostatic mechanism while the relative strengths of synapses

are determined by the correlations between the synaptic inputs

and the neuron output. It is not necessary to impose a boundary

on the synaptic weights, because stability is ensured by the

homeostatic mechanism. In the same way, long term depression

(LTD) is unnecessary here, and it is ignored for simplicity.

I consider a group of presynaptic neurons (100 were simulated)

and postsynaptic neurons as in Fig. 2, connected by random

synapses, with an average of 5 synapses per postsynaptic neuron

(Fig. 4B). The synaptic weights are initially random between 0 and

1 (1 is the spike threshold), and they evolve through homeostasis

and STDP while 5000 stimuli with random duration are

sequentially presented. Fig. 4C shows the selectivity curves of 5

postsynaptic neurons, before (top) and after learning (bottom), as

in Fig. 2C. Initially, neurons tend have high-pass properties, that

is, they fire when the stimulus is longer than a given duration. This

mirrors the properties of the inputs (Fig. 1B). In one case (green

curve), the neuron almost never fired to any stimulus. After

learning, most neurons have a peaked selectivity curve, with a

preferred duration. Fig. 4D shows the evolution of synaptic

weights during learning for the postsynaptic neuron corresponding

to the blue curves in Fig. 4C. It appears that most synaptic weights

decay, except two of them which stabilize at 0.5 (half the distance

to spike threshold) and one weaker synapse. The properties of

these synapses are shown in Fig. 4E. Each curve represents the

spike latency of the presynaptic neurons for the neuron considered

in Fig. 4D (as in Fig. 1B), and are the two strongest synapses are

displayed in red. It appears that these two curves intersect at a

duration of about 430 ms, which is the best duration of the neuron

shown in blue in Fig. 4C. This illustrates the idea that the

postsynaptic neuron fires when the stimulus is in the synchrony

receptive field of its presynaptic neurons. Fig. 4F shows that the

Figure 3. Generality of coincidence detection. A, Activation of
postsynaptic assemblies as a function of duration (as in Fig. 2C) for
three noise levels: sv = 0.07, 0.14, 0.28 (bottom to top curve). B, Same as
A with synaptic conductances and sv = 0.14 (as in Fig. 2C; grey:
individual neurons; black: average). C, Same as B using neurons with
rebound spiking (identical to the presynaptic neurons).
doi:10.1371/journal.pcbi.1002561.g003

Computing with Neural Synchrony
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learning mechanism selects synapses in the same way as I described

in Fig. 2, that is, it selects synapses that are synchronously active for

a specific stimulus duration. Each color corresponds to a

postsynaptic neuron (same color code as in Fig. 4C) and each dot

represents the weight of one synapse vs. the spike latency of the

corresponding presynaptic neuron, at the best duration of the

postsynaptic neuron. For example, for the green neuron, the two

strongest synapses are synchronously active (same spike latency) at

the best duration (about 420 ms, Fig. 4C), while the other synapses

are activated at diverse latencies. Similar observations can be made

for the two other neurons. An interesting point is that the blue and

green neurons have the same best durations (about 420–430 ms,

Fig. 4C) but respond at different latencies (about 25 ms and 55 ms;

strongest synapses in Fig. 4F). This corresponds to two different

groups of the synchrony partition in Fig. 2 (neurons shown with two

different colors in the same column).

Thus, the proposed decoding circuit (Fig. 2) can emerge in an

unsupervised way, through a combination of homeostasis and

STDP.

Stimulus-dependent synchrony in sensory modalities
I introduced the concepts of synchrony receptive fields and

synchrony partition with an elementary example, duration

selectivity, where stimuli are one-dimensional. Real world stimuli,

on the other hand, vary along many dimensions, which makes

computation much more difficult [50]. To understand synchrony

patterns in this more general setting, I describe neuron responses

in the following simplified way (Fig. 5A, top): a stimulus S is

transformed through a linear or non-linear filter N, which

represents the (standard) receptive field of the neuron, then the

filtered stimulus N(S) is mapped to a spike train through a non-

linear spiking transformation (for example, N(S) is the input to a

spiking neuron model). Note that although this description appears

to be feedforward, the computation of the filter N may or may not

rely on a feedforward circuit. Assuming that two neurons A and B

fire in synchrony when they receive the same dynamic input NA(S)

and NB(S), the SRF of A and B is the set of stimuli S such that

NA(S) = NB(S). In mathematical terms, this is a manifold of

stimulus space; if the neural filters are linear, it is a linear subspace

of stimuli. For example, in two dimensions, the SRF is a line

(Fig. 5B, left). In contrast, a neuron fires when the filtered stimulus

exceeds some threshold, N(S).h, that is, in two dimensions, when

the stimulus is on one side of a line (Fig. 5B, right). In higher

dimension, a neuron fires when the stimulus is on one side of a

hyperplane, while two neurons fire in synchrony when the stimulus

is close to a hyperplane (assuming linear filtering). This makes

Figure 4. Learning in the duration model. A, In addition to homeostasis, synaptic weights are modified by dwLTP~f (tpost{tpre) for every pair of
pre and postsynaptic spikes at times tpre and tpost, respectively. B, Presynaptic neurons project to random postsynaptic neurons, with on average 5
synapses per postsynaptic neuron. C, Duration selectivity curves for 5 postsynaptic neurons at the beginning (top) and end (bottom) of the learning
period. D, Temporal evolution of the synaptic weights of the neuron corresponding to the blue curves in C. E, Spike latency as a function of stimulus
duration for all the presynaptic neurons of the postsynaptic neuron selected in D. Red curves correspond to the two strongest synapses. F, For three
postsynaptic neurons (colors as in C), synaptic weights are shown against spike latency of the corresponding presynaptic neurons, at the best
duration of the postsynaptic neuron.
doi:10.1371/journal.pcbi.1002561.g004
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computation with synchrony qualitatively different from rate-

based computation, with interesting computational properties, for

example SRFs are unchanged by linear scaling of the stimulus (i.e.,

intensity change).

I will describe these qualitative differences in more details in the

next section, but first I will comment on the hypothesis that two

neurons fire in synchrony when they receive the same dynamical

input. First, this should not be true if the neurons have different

intrinsic properties (for example, spike threshold or resistance).

Therefore I consider that the heterogeneity in intrinsic properties

is implicitly included in the description of the receptive field (or

filter) N. For example, the membrane resistance can be included as

a gain applied to the filter N (NRR.N) rather than in the spiking

transformation; the membrane time constant can be included as a

low-pass filter. Thus the hypothesis really means that two identical

neurons fire in synchrony in response to identical time-varying

stimuli. In vitro experiments have demonstrated that a single

cortical neuron responds identically (at a millisecond timescale) to

repeated time-varying currents [51]. As for coincidence detection

properties, the main condition is that the neuron is in a

fluctuation-driven regime, with a subthreshold average input

[52,53]. This property is illustrated with neuron models in Fig. 5C–

E, which shows the response of a spiking neuron model to a

fluctuating input (Fig. 5C) over repeated trials, with a subthreshold

mean. The same current is presented in all trials, with an

additional independent noise (red). This noise represents both the

intrinsic noise and the difference in inputs between trials. If the

noise level is low enough, spike timing is reproducible at a fine

timescale, as shown by the shuffled autocorrelogram (SAC, see

[54]) (Fig. 5D, right). A very important property is that the

precision of synchrony between trials, as estimated by the width of

the SAC (Fig. 5E; see Methods), reflects the similarity of the input

signals (measured by the signal to noise ratio), rather than the

intrinsic timescale of the signal fluctuations (seen in the autocor-

relation of the signal in Fig. 5C, right). In particular, when noise

level goes to 0, precision converges to 0 ms rather than to the

Figure 5. Synchrony mechanism with sensory stimuli. A, Schematic representation of stimulus encoding by a neuron: the stimulus S is filtered
through the receptive field N, and the resulting signal N(S) is nonlinearly transformed into spike trains. The synchrony receptive field of two different
neurons A and B is the set of stimuli such that the two filtered signals match: NA(S) = NB(S). B, Schematic representation of a standard receptive field
(N(S).h) and a synchrony receptive field in a two-dimensional world. C, Fluctuating input and independent noise. Right: input autocorrelation (time
constant 5 ms). D, Responses of a noisy integrate-and-fire model in repeated trials. Right: shuffled auto-correlogram (SAC) for different signal-to-noise
ratios (SNR). E, Precision and reliability of spike timing as a function of SNR.
doi:10.1371/journal.pcbi.1002561.g005
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timescale of input fluctuations (Fig. 5E, left). Therefore, when two

identical neurons receive inputs NA(S) and NB(S), their degree of

synchrony reflects the degree of similarity between NA(S) and

NB(S). This is related to the mechanism used by Brody and

Hopfield [55,56] in a previous model of odor recognition based on

spike timing, where constant inputs are added to an external

oscillation, but it is more general. That oscillation-based mecha-

nism works only in a limited input range (see Fig. 1 in [55])

because it relies on 1:1 phase-locking (one spike per period of the

oscillation) in a mean-driven regime (average input above

threshold), which is less robust than the mechanism shown here

[53] (phase locking is also more robust in the fluctuation-driven

regime [57]).

This reproducibility of spike timing has been demonstrated in

vitro [51] and in vivo in early sensory pathways such as the retina [5]

and the auditory brainstem [58], but it could be argued that it is an

unrealistic assumption in other neural structures. However,

synchrony-based computation does not critically rely on repro-

ducible spike timing but rather on reproducible synchrony.

Specifically, network activity may introduce inter-trial variability

that is shared by neurons, as seen in the auditory cortex [59],

degrading the reproducibility of absolute spike timing but not of

relative spike timing. This is shown in Fig. 6, where three model

neurons receive a stimulus-driven input, identical in all trials, and

a shared external input, variable between trials. In addition, each

neuron has a private source of noise. Neurons A and B receive the

same stimulus-driven input, meaning the stimulus is in the SRF of

A and B, and neuron C receives a different input (Fig. 6A). It

appears that spike-timing reproducibility is low for all neurons

(Fig. 6B,C), but that A and B are reliably synchronized in all trials

(Fig. 6D, cross-correlogram). The peak of the cross-correlogram

depends on the signal-to-noise ratio, defined between the shared

and private components of the noise (Fig. 6E,F). This dependence

can be quantified in exactly the same way as in Fig. 5E, where the

signal is the sum of the stimulus and of the shared noise, while the

noise corresponds to the private noise. Therefore, the mechanism

used here does not critically rely on reproducible spike timing, but

rather on reproducible stimulus-dependent synchrony.

Structure and synchrony
In this framework, a random stimulus cannot produce tightly

synchronous responses in neurons with different receptive fields.

Therefore, synchrony must reflect some non-randomness or

‘‘structure’’ in the stimulus. Fig. 7 illustrates the relationship

between synchrony and structure with a few sensory examples.

A classical example is binaural hearing (Fig. 7A). Leaving sound

diffraction aside for the moment (see last section of the Results),

the sound S(t) produced by a source on the left of the animal will

arrive first at the left ear, then at the right ear, with propagation

delays dL and dR, respectively. Therefore the two monaural signals

are SL(t) = S(t2dL) and SR(t) = S(t2dR), respectively. The inter-

aural time difference ITD = dR2dL depends on the azimuth of the

source. The binaural stimulus (SL, SR) has a structure, in that both

SL and SR are transformations of the same signal. That structure is

specific of a particular ITD.

Consider two monaural neurons A and B on opposite sides,

which project to a binaural neuron with axonal delays dL and dR.

From the postsynaptic point of view, the SRF of A and B should

include the axonal conduction delays. It is the set of stimuli (SL,

SR) such that SL(t2dL) = SR(t2dR), that is: SL(t) = SR(t2(dR2dL)).

Therefore, the SRF of A and B is the set of all binaural signals

produced by a single source with ITD dL2dR, and it is

independent of the source signal. Thus, the SRF indicates the

structure of the stimulus, an information that is not present in the

individual responses of the monaural neurons. The binaural

neuron depicted in Fig. 7A fires when the stimulus is the in SRF of

A and B, that is, at a specific source location. This is in essence the

Jeffress model of sound localization [60].

Similar concepts apply to pitch perception (Fig. 7B). Pitch is the

perceptual correlate of the periodicity of sounds, such as vowels or

musical notes (to a first approximation). A periodic sound S(t) can

be described as the repetition of a signal defined on one cycle (red

curve). The repetition rate f0 determines the pitch, while the

original signal determines the timbre. As for the binaural example,

this produces a specific structure in the signal S(t), and the

structural information is associated with the pitch of the sound.

Consider two neurons A and B with the same properties but

different axonal delays dA and dB. The SRF of A and B (again

from the postsynaptic side, including axonal delays) is the set of

Figure 6. Synchrony without trial-to-trial reproducibility. A,
Neurons A and B receive the same stimulus-driven input, neuron C
receives a different one. The stimuli are identical in all trials but all
neurons receive a shared input that varies between trials. Each neuron
also has a private source of noise. B, Responses of neurons A (black), B
(red) and C (blue) in 25 trials, with a signal-to-noise ratio (SNR) of 10 dB
(shared vs. private). C, The shuffled autocorrelogram of neuron A
indicates that spike trains are not reproducible at a fine timescale. D,
Nevertheless, the average cross-correlogram between A and B shows
synchrony at a millisecond timescale, which does not appear between A
and C. E, Same as D with SNR = 5 dB (note the different vertical scale). F,
Same as D with SNR = 15 dB.
doi:10.1371/journal.pcbi.1002561.g006
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signals such that S(t2dA) = S(t2dB). These are all the periodic

signals with repetition rate f0 = 1/|dB2dA|, or a multiple of it.

Again synchrony reflects a structural property of the stimulus. In

essence, this is Licklider’s model of pitch perception [61].

The third example is olfaction (Fig. 7C). There is considerable

heterogeneity in the properties of olfactory sensory neurons: there

are about 1000 receptor types in rats, and neurons which express

the same olfactory receptor type respond to the same odorants but

vary in global sensitivity, up to 100-fold [62]. Odor plumes are

highly turbulent [63], so that their concentration c(t) in the

olfactory epithelium varies very quickly (Fig. 7C, left). The

receptor coverage is defined as the probability that the receptor

is bound to the odorant molecules. It can be expressed as aO.c(t),

where aO the affinity of the receptor type to the presented odor O.

Thus the olfactory stimulus can be represented as 1000 time-

varying signals (receptor coverage for all types), but these signals

have a strong structure since they are all scaled versions of the

same signal (odor concentration c(t)). Olfactory neurons of the

same type differ in their global sensitivity s, so the activation of an

olfactory neuron is essentially determined by the product of

concentration c(t), odor affinity aO (type-specific and odor-specific)

and global sensitivity s (neuron-specific): c(t).aO.s (the transforma-

tion of this signal to spike trains is highly nonlinear). Fig. 7C (right)

schematically represents the value aO.s as a function of odor

identity for three neurons: neurons A and B respond to the same

odors (same receptor type), but A has higher global sensitivity than

B; neuron C responds to different odors (different type). Tuning is

broad, so a given odor elicits responses in many different olfactory

neurons. The SRF of A and C is the set of olfactory stimuli such

that c(t).aA
O.sA = c(t).aC

O.sC: the product of odor affinity and

sensitivity is the same for neurons A and C. Although odor

concentration c(t) varies very quickly, the identity aA
O.sA = aC

O.sC,

which defines the SRF of A and C, does not depend on it. In

Fig. 7C, the SRF of A and C is the single odor at the intersection

of the two tuning curves. Neurons B and C have a different SRF

since their tuning curves intersect at a different odor. I will make

this example more specific in the next sections.

In all these examples, synchrony patterns reflect the structure of

the stimulus. This idea can be formalized by describing a

structured stimulus S as the image of a lower-dimensional object

X through some transformation T: S = T(X) (Fig. 7D). In the

binaural hearing example, X is the source signal, S = (SL,SR) is the

binaural signal, and T is the acoustical transformation:

T(X) = (X(t2dL),X(t2dR)). In the olfactory example, X is the

time-varying concentration c(t), S is the time-varying coverage of

all receptors (a time-varying 1000-dimensional vector), and T is

the transformation c(t)RaO.c(t), where aO is the vector of affinities

of all receptor types to the presented odor. Table 1 describes other

examples in this framework. This structure introduces synchrony

in all neurons whose receptive fields match when combined with

the transformation T: NB + T = NA + T (composition of mappings),

where NA and NB are the receptive fields of the two neurons. In

the olfactory example, this means that the product of odor affinity

and sensitivity is the same for neurons A and B (ai
O.si = aj

O.sj); in

the binaural hearing example, this means that the combination of

acoustical and neural delays match on both sides.

This identity defines a synchrony partition that reflects the

structure of stimuli (induced by the transformation T), indepen-

dently of the source X (e.g. the time-varying concentration). This is

an appealing property from a computational point of view,

because stimulus structure has natural invariances: for example,

binaural structure depends on source location, but not on source

signal; in olfaction, structure is independent of concentration.

These invariances appear in the synchrony partitions, even though

neurons have heterogeneous properties and their individual

responses vary with many aspects of stimuli. We now look at the

computational properties of these structural codes, taking the

example of olfaction.

Computing with synchrony: olfaction
Fig. 8 shows odor-specific synchrony in a simple olfactory

model, corresponding to the situation shown in Fig. 7C, with an

odor in the SRF of neurons B and C. Odor concentration c(t)

varies randomly with turbulences, and receptor coverage depends

on concentration and receptor type: receptor type 2 (neurons A

and B) is more sensitive to the presented odor than receptor type 1

(neuron C). The odor is then transduced into a current, which

produces spikes. The transduction current is modeled as a Hill

function of receptor coverage: I = Imax*Hn(s.c) (Fig. 8, middle),

where Imax is the maximum current, c is the odor coverage, s is the

global sensitivity (inverse of the half-activation coverage) and n is

the Hill coefficient, related to the slope of the curve [64]. The Hill

Figure 7. Structure and synchrony. A, Binaural hearing (simplified).
The sound arrives at the two ears after a propagation delay dL and dR.
Monaural neurons A and B project to a binaural neuron with axonal
conduction delays dL and dR. Synchrony (seen on the postsynaptic side)
occurs when dR2dL = dL2dR, corresponding to a specific interaural time
difference. B, Pitch. Two monaural neurons responding to a sound
project to a postsynaptic neuron with axonal delays dA and dB. From the
postsynaptic point of view, synchrony occurs for a periodic sound with
period 1/f0 matching the delay difference: 1/f0 = dB2dA. C, Olfaction.
Left, Odor concentration fluctuates rapidly because of turbulences, and
odorant molecules bind to different types of receptors. Each receptor
has an odor-specific affinity, so that its coverage by the odor is the
product of concentration and affinity. Right, Olfactory neurons A and B
have the same receptor type but different global sensitivities, neuron C
has a different receptor type. Colored curves schematically represent
the sensitivity to different odors, defined as the product of odor affinity
and global sensitivity. Synchrony occurs at intersection points, for
specific odors. D, More generally, a structured stimulus is described as
the image of a lower-dimensional stimulus X through some transfor-
mation T. Synchrony occurs in two different neurons when their
receptive fields match when combined with the transformation T.
doi:10.1371/journal.pcbi.1002561.g007
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coefficient is not very variable, but s can vary 100-fold among

olfactory sensory neurons expressing the same olfactory receptor:

here, neuron B has a higher sensitivity than neuron A. Thus, the

transduction current is essentially determined by the quantity a.s,

where a is the affinity of the receptor type to the presented odor.

Here, neuron B has a higher affinity to the odor than neuron C,

but its global sensitivity is lower, so that the transduction current is

the same. As a result, the neurons fire in synchrony (black traces in

Fig. 8, bottom; neurons were modeled as integrate-and-fire

models). On the other hand, neuron A has the same global

sensitivity as C but different affinity and thus does not fire in

synchrony (red dashed trace). Synchrony is independent of odor

concentration.

Let us now consider a population of olfactory neurons (Fig. 9).

Each odor is represented by a random vector of affinities and odor

concentration is modeled as a half-wave rectified low-pass filtered

noise. Receptors and postsynaptic neurons are noisy integrate-

and-fire models with random global sensitivity (see Methods). Each

odor induces a specific synchrony partition in receptors (Fig. 9A,

top). The color represents the product of their odor affinity and

global sensitivity, therefore as in Fig. 2, two receptor neurons with

the same color fire in synchrony to the presented odor. These

patterns can be decoded by postsynaptic neurons, which receive

inputs from neurons in the same synchrony group (Fig. 9A,

bottom). When odor A is presented (Fig. 9B, first column),

postsynaptic neurons wired to the specific synchrony pattern of

odor A fire. When odor B is presented, the corresponding

postsynaptic neurons fire (Fig. 9B, second column), but neurons

tuned to A do not fire, because they do not see synchronous inputs.

On the other hand, most receptor neurons fire in both cases,

because of their broad tuning.

One interesting aspect of mammalian olfaction is that mammals

can recognize odors at concentrations that they were not

previously exposed to [65]. This invariance to odor intensity is

also a natural property of synchrony-based computation, because

synchrony receptive fields are invariant to intensity (Fig. 9B, third

column), that is, the synchrony partitions (Fig. 9A, top) do not

change when intensity varies, even though individual neural

responses may change. This simply reflects the fact that the

structure of the stimulus (constant ratios of time-varying coverage

of different receptor types, as shown in Fig. 7F and 8), which is

encoded by synchrony partitions, is intrinsically concentration-

invariant.

Another interesting computational property is noise tolerance.

When a distracting odor is presented at the same intensity as the

target odor, postsynaptic responses are reduced but still odor-

specific (Fig. 9B, fourth column). The firing rate is reduced

because noise reduces the probability of coincidences, but noise

does not increase firing in other odor-specific assemblies, because

these neurons receive incoherent inputs. Indeed, by construction,

postsynaptic neurons fire when they see coincidences that are

unlikely to be caused by chance. Therefore, false alarms (firing of

neurons tuned to B) are rare, while neurons tuned to A fire when

the signal-to-noise ratio is high enough. This is similar to a strategy

described as ‘‘listening in the dips’’ in speech recognition in noise

[66]. When two known odors are simultaneously presented, both

can be recognized by this principle (Fig. 9B, last column). It should

be stressed the reduction in firing rate of the neurons tuned to A

Table 1. Structure and synchrony in sensory modalities.

Binocular disparity Binaural hearing I Binaural hearing II Pitch Visual edges Olfaction

X (carrier) Visual object Source signal S(t) Source signal S(t) One period of
a sound

Intensity pattern
along one dimension

Concentration c(t)

T (structure) Projection to two
retinal images

Acoustical
propagation delays

Acoustical filtering
(HRTFs)

Repetition Repetition along
another dimension

Binding of odor to all
receptor types: T(X) = a.c(t)

Receptive
fields N

Circular receptive
fields

Axonal conduction
delays

Auditory filters
(include delay)

Auditory filters
(include delay)

Circular receptive
fields

Receptor type and global
sensitivity: Ni(T(X)) = ai.si.c(t)

SRF 3D visual point Specific ITD Specific filter pair
(source location)

Periodic sounds with
specific period, or
resolved harmonics

Edges with specific
orientation

Specific odor

doi:10.1371/journal.pcbi.1002561.t001

Figure 8. Synchrony receptive fields in an olfactory model. Top,
An odor is presented with fluctuating concentration c(t). Receptor
coverage is the affinity of the receptor type (type 1 for neuron C, type 2
for neurons A and B) times the concentration: a.c(t). The peak
transduction current (middle) is a Hill function of receptor coverage,
with different half-activation coverage for different neurons (inverse of
global sensitivity). Neurons fire in synchrony to an odor when the
product of odor affinity and global sensitivity match. This occurs for
neurons B and C (black traces), but not for neurons A and C (dashed red
trace).
doi:10.1371/journal.pcbi.1002561.g008

Computing with Neural Synchrony

PLoS Computational Biology | www.ploscompbiol.org 10 June 2012 | Volume 8 | Issue 6 | e1002561



when A+C or A+B is presented is not due to an inhibitory

mechanism. There is no inhibition in this model. Instead, it is due

to a desynchronization of the inputs caused by the distracting

odor. A neuron tuned to an odor responds less when another odor

is added because the operation that the neuron performs is

detecting similarity between sensory signals rather than adding

them. For example, suppose the stimulus produces two sensory

signals x1 and x2, and the postsynaptic neuron fires when x1 = x2.

If another stimulus (y1, y2) is added and the neuron is not tuned to

it (y1?y2), then x1+y1?x2+y2 and the neuron does not respond.

This reduction in firing rate occurs even though all presynaptic

receptors fire more (i.e., x1+y1.x1 and x2+y2.x2).

Fig. 9C shows the distribution of firing rates and coefficients of

variation in the receptors and postsynaptic neurons, when odor A is

presented. The peak in the firing rate distribution indicates that

many receptors saturate. As previously discussed (Fig. 1), the

sensitivity of postsynaptic neurons to coincidences depends on the

level of intrinsic noise. In Fig. 9B, the noise level was s= 0.15

(relative to the spike threshold). In Fig. 9D, the noise level was varied

between 0 and 0.5 and the model was presented with odor A (as in

Fig. 9B, first column). The top graphs show the average firing rate of

the postsynaptic neurons tuned to A (blue) and to B (red) as a

function of noise level. It appears that only neurons tuned to A

respond when the noise level is lower than about s<0.3. The

bottom panel shows the responses of both groups for the highest

noise level (s= 0.5). We note that, although the firing rates of both

groups are similar, the temporal structures are very different - that

is, the responses of neurons tuned to A are more coherent.

In Fig. 10A, I consider a mixture of two odors A and B and a

postsynaptic assembly tuned to the equal mixture (50% A, 50% B).

Figure 9. Computing with synchrony in olfaction. A, Top, Different odors produce different synchrony partitions (receptors with the same color
are synchronous). Bottom, To each odor corresponds an assembly of postsynaptic neurons, where the inputs to each neuron belong to the same
synchrony group (in each column, each postsynaptic with a given color receives synapses from all receptors with the same color). B, Top, Fluctuating
concentration of three odors (A: blue, B: red, C: black). Middle, spiking responses of olfactory receptors. Bottom, Responses of postsynaptic neurons
from the assembly selective to A (blue) and to B (red). Stimuli are presented is sequence: 1) odor A alone, 2) odor B alone, 3) odor B alone with twice
stronger intensity, 4) odor A with distracting odor C (same intensity), 5) odors A and B (same intensity). C, Spike train statistics for the receptors (left
column) and the postsynaptic neurons selective for odor A (right column), corresponding to the stimulation in the first 2 seconds of panel B. Top,
distribution of firing rates; bottom, distribution of coefficients of variation. D, Top, Average firing rate in the assembly of postsynaptic neurons
selective to A (blue) and in the assembly selective to B (red) when odor A is presented (as in panel B, first two seconds), as a function of the intrinsic
noise (standard deviation relative to spike threshold). Bottom, Responses of the postsynaptic neurons for the maximum amount of intrinsic noise
(s= 0.5).
doi:10.1371/journal.pcbi.1002561.g009
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The average firing rate varies with the concentrations of both

odors in the mixture and in contrast with Fig. 9B, the presented

mixture is always highly correlated with the target mixture.

Fig. 10A shows that the assembly responds best when there is an

equal proportion of A and B in the mixture, at all concentrations

(varying by a factor 100). Although selectivity is broader at the

highest concentration, the assembly still responds more to the

target mixture at the lowest concentration than to either odor A or

B at the highest concentration (6100). Odors A and B are bound

into a single mixture because their fluctuations are coherent. If the

same odors are simultaneously presented but as a mixture of two

independent plumes with their own fluctuations (two different

turbulent flows representing two different odor sources), then the

network does not bind them together and the assembly does not

respond (Fig. 10B). Thus the model implements the idea of

binding by synchrony, where precise spike timing acts as a

‘‘signature’’ of an object [24]. More precisely, since neural

responses follow the temporal structure of the stimulus, precise

coincidences can only detected between neurons that respond to

the same stimulus. This is a weak version of binding by synchrony,

in the sense that the temporal ‘‘signature’’ is intrinsic to the

stimulus rather than created as a result of object formation.

One interesting aspect of synchrony-based computation is that it

assigns a functional role to the variability of individual neural

properties – here, the variability in sensitivity of olfactory neurons.

I have not considered variability in other neural parameters, which

may be an issue. In Fig. 9, all receptors had the same membrane

time constant (20 ms). If it is made heterogeneous (Fig. 10C,

t= 15–25 ms) and the synaptic projections are unchanged, then

postsynaptic neurons see fewer coincidences and fire less (Fig. 10C,

initial wiring). This affects the rate but not the specificity of the

responses. We may redefine the synaptic projections to take this

heterogeneity into account: for example, in Fig. 10C (new wiring),

for each postsynaptic neuron, we only choose presynaptic neurons

with membrane time constants that differ by less than 5 ms (as well

as similar sensitivity to the target odor). As a result, the firing rate is

increased and the specificity is unchanged.

Finally, the specific wiring I have described can be learned by

synaptic plasticity mechanisms, as explained for the duration

model (Fig. 4). In Fig. 11, the two odors A and B were randomly

presented to the olfactory model, with random synapses between

receptors and postsynaptic neurons (50 synapses per postsynaptic

neuron). The presented odor is updated every 200 ms, for a total

duration of 40 s. The synaptic weights evolve according to the

same homeostatic and synaptic plasticity mechanisms as for the

duration model (Fig. 4). At the end of the stimulation, a tuning

ratio is calculated for each neuron, as the proportion of spikes in

response to odor A, over the second half of the stimulation. That

is, a tuning ratio of 0 means that the neuron only responds to odor

A, while a tuning ratio of 1 means that it responds only to odor B.

Fig. 11A shows the distribution of tuning ratios of the postsynaptic

neurons. All neurons but one have tuning ratios clustered near 0 or

1, that is, they are tuned to a single odor. The neurons are then

ordered by tuning ratio, and they are presented with odor A with

an increasing concentration, then with odor B (Fig. 11B). The

concentration varies between 0.1 and 10 (bottom), where 1 is the

concentration during the learning phase. It appears that odor

selectivity is preserved at all tested concentrations. Fig. 11C shows

Figure 10. Recognition of odor mixtures and robustness. A, Average firing rate of the postsynaptic assembly tuned to an equal mixture of
odors A and B, as a function of the proportion of A in the presented mixture. Each curve corresponds to a different concentration (1, 10, 100). B,
Binding: tuning curve of the postsynaptic assembly (same as in A for concentration 10) for mixtures presented in a single turbulent plume (solid) or in
two independent plumes for the two odors (dashed). C, Same as in Fig. 6, but the membrane time constant of receptors is heterogeneous (between
15 and 25 ms). With the same synaptic projections as in Fig. 6 (initial wiring), the postsynaptic rate is reduced, but not odor specificity. The firing rate
increases when the synaptic projections are adapted to this heterogeneity, i.e., presynaptic neurons have similar membrane time constants (new
wiring).
doi:10.1371/journal.pcbi.1002561.g010
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the voltage traces of a neuron tuned to odor B, when odor A (left)

and B (right) are presented (spikes are added for readability). The

membrane potential has standard deviation 0.17 (odor A) and 0.18

(odor B, calculated without the spikes), and mean 0.08 (A) and

0.07 (B). Thus, the membrane potential distributions are similar

for the preferred and non-preferred odors: the increased firing is

due to transient synchrony events rather than changes in input

statistics.

This olfactory model shares a few ideas with a spike-timing-based

model previously proposed by Brody and Hopfield [55], in

particular, odor-specific neurons detect an equality between different

quantities by means of synchrony detection. There are a few

differences: 1) in the Brody-Hopfield model, the input to encoders is

a constant signal, 2) this constant is a logarithmic function of

concentration, 3) it is translated into phase by an intrinsic oscillation.

The model I have presented has conceptual similarities, but makes

weaker hypotheses. First, the input is time-varying instead of

constant. Second, the transformation between concentration and

input current must be similar across receptors, but it can have an

arbitrary form. Third, the transformation from signal to spike times

does not rely on an intrinsic oscillation but on the input signal itself. It

is less restrictive, because 1:1 phase-locking occurs under specific

conditions. However, adding an internal oscillation to the stimulus-

locked signal would also work in the present model, if it is shared

across encoding neurons (as shown in Fig. 6).

Synchrony receptive fields in auditory and visual
modalities

Finally, I will show how the concepts I have exposed apply to a

few auditory and visual examples (Fig. 12). In Fig. 7A, I illustrated

the notion of structured stimulus in a simplified description of

binaural hearing, where the sound arrives at the two ears with an

interaural delay that depends on the source direction. In reality,

bina ural cues are more complex because the sound is diffracted by

the head and pinnae, and even the body (Fig. 12A). The correct

physical description is that the two monaural signals are two

linearly filtered versions of the original signal S: SL = FL*S,

SR = FR*S (* is the convolution). These location-specific filters are

called head-related impulse responses and are more complex than

pure delays (in particular, ITD is frequency-dependent [67]). I

consider two monaural neurons A and B on opposite sides with

different receptive fields NA and NB. These neural filters represent

basilar membrane filtering around a characteristic frequency (CF),

and include an outgoing axonal delay. Thus, they may differ both

in CF and in axonal delay. In the framework I have described,

these two neurons have synchronous responses when

NA*FL*S = NB*FR*S, that is, their SRF includes all acoustical

filter pairs (FL, FR) such that NA*FL = NB*FR, meaning that the

combination of neural and acoustical filtering match on both sides.

Therefore this is a spatial field, and synchrony signals source

location independently of source signal. A spiking neural model

based on these properties can accurately estimate the location of

previously unheard sounds in a realistic virtual acoustic environ-

ment [68]. This corresponds to the idea that the tuning properties

of binaural neurons may come not only from mismatches in

axonal delay but also in the preferred frequency of their monaural

inputs [69–71]. A prediction from this theory is that the preferred

ITD of a binaural neuron can depend on sound frequency,

because ITDs depend on frequency when diffraction is taken into

account [67]. This property has indeed been observed in binaural

Figure 11. Learning to detect odors. A, Two odors are randomly presented to the network for 40 s. This histogram represents the distribution of
tuning ratios after this learning period. The tuning ratio of a postsynaptic neuron is the proportion of spikes triggered by the first odor. B, Responses
of postsynaptic neurons, ordered by tuning ratio, to odor A (blue) and odor B (red), with an increasing concentration (0.1 to 10, where 1 is odor
concentration in the learning phase). C, Voltage traces for a postsynaptic neuron tuned to odor B, when odor A (left) and B (right) are presented.
doi:10.1371/journal.pcbi.1002561.g011
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neurons of many species [72,73]. More specifically, the theory

predicts that the frequency-dependence of preferred ITDs should

match the corresponding quantities in the acoustical filters, which

can be measured.

We may also look at the SRF of two monaural neurons on the

same side (Fig. 12B). In Fig. 7B, I only considered neurons with

identical auditory filters but different delays. If the two neurons

have different filters NA and NB, then synchrony occurs when

NA*S = NB*S (S is the sound). Looking at this identity in the

frequency domain, this means that the two filters must agree at all

frequencies where the sound S has power. The synchrony identity

means that both the phase and the amplitude spectrum of the

filters must agree at all frequency components of S. If the two

neurons have different CFs, then this can only occur at the

frequency f0 where the two amplitude spectra agree. In addition,

the phases agree if the difference in delays exactly compensates the

difference in phase delays of the filters. Therefore, the SRF is a

pure tone with frequency f0 - or a resolved partial harmonic of a

complex sound (that is, only one frequency component falls in the

bandwidth of filters NA and NB). In summary, only one specific

type of sound elicits patterns of synchrony in monaural neurons:

periodic sounds, which are associated with pitch in humans. This

produces a new theory of pitch perception, generalizing temporal

models, according to which pitch is represented by the pattern of

synchrony across frequency (CF) and time (axonal delay). It offers

a solution to the two major problems of temporal models of pitch:

1) that they require large axonal delays (as large as the maximum

period of a pitch-evoking sound, about 30 ms), 2) that they do not

distinguish resolved and unresolved harmonics, while there is a

perceptual difference between these two types of pitch-evoking

sounds [74]. In the synchrony pattern hypothesis, large axonal

delays are not necessary, because mismatches in CF can play this

role, and resolved harmonics produce wider synchrony patterns, as

they also include neurons with different CFs.

The analog of binaural hearing in vision is binocular disparity

(Fig. 12C). Consider two retinal ganglion cells in different eyes,

which move with microsaccades (tremor). The two cells fire in

synchrony when they see the same dynamic stimulus through their

receptive field (retinal ganglion cells are known to fire with

millisecond precision [5,75,76]). This occurs when there is an

object at the convergence point of their fixation lines (connecting

their retinal position to the pupil). Thus the synchrony receptive

field is a three-dimensional spatial receptive field. Synchrony

patterns across the two eyes reflect the structure of the binocular

stimulus, which comes from the fact that a single object produces

the two retinal images. The hypothesis that depth perception is

mediated by the detection of synchrony between two retinal

ganglion cells (presumably by a neuron in V1) predicts that

decorrelating the images in the two eyes should disrupt depth

perception.

In a similar way, the SRF of two monocular visual neurons with

circular receptive fields (e.g. neurons in the lateral geniculate

nucleus of the thalamus) is the set of images that are unchanged by

translations of the vector connecting the centers of the two

receptive fields (Fig. 12D). These are edges with the same

orientation and spatially periodic textures with the period given

by that vector.

Discussion

To understand the functional role of synchrony, I introduced

the concept of synchrony receptive field: the set of stimuli that produce

synchronous responses in a given neuron pair or group. In a

heterogeneous population of neurons, synchrony reflects the

structure of stimuli, for example a constant activation ratio

between two olfactory receptors responding to an odor. This

structure can then be detected by postsynaptic neurons which are

sensitive to synchrony. This framework applies to many perceptual

tasks, such as recognizing an odor or locating a sound source. I will

first comment these results from a computational perspective, and

then discuss the biological plausibility of this proposition.

Over the last century, the operating function of neurons has

been mainly described in terms of firing rates, and this point of

view has led to important developments in computing, from the

perceptron [77] to modern artificial neural network theories for

pattern recognition [78]. More recently, experimental evidence

and theoretical studies, showing the importance of the temporal

coordination of spikes [5,13], have triggered considerable interest

for spiking neuron models in computational neuroscience [79].

However, few theories of computation are specifically spike-based,

as I have proposed here. Fig. 5B illustrates a fundamental

difference between synchrony-based computation and traditional

neural network theory: a formal neuron (e.g. perceptron) fires

when the stimulus is on one side of a hyperplane, while two

neurons fire in synchrony when the stimulus is close to a

hyperplane.

In this framework, synchrony in neurons with heterogeneous

receptive fields reflects some structure in the stimulus (for example,

the periodicity of a pitch-evoking sound). The computational

interest stems from the fact that structure is invariant to many

Figure 12. Synchrony receptive fields in the auditory and
visual modalities. A, Binaural hearing with realistic sound diffraction.
The sound S arrives at the two ears as a binaural signal (FR*S, FL*S),
where FR and FL are location-dependent filters, and is subsequently
processed by two monaural neurons with receptive fields NA and NB.
The synchrony receptive field is the set of source locations such that NA

* FR = NB * FL. B, Pitch. Two monaural neurons with different preferred
frequencies fire in synchrony for a pure tone or resolved partial with
frequency 1/f0, at the intersection of the two amplitude spectra
(provided that the phase difference is compensated by appropriate
delays). C, Binocular disparity. Two retinal ganglion cells fire in
synchrony when there is an object at the convergence point of their
fixation lines. D, Edges and textures. Two visual neurons with circular
receptive fields fire in synchrony to images that are invariant to
translations of the vector linking the two receptive field centers: edges
with the same orientation and spatially periodic textures with the
period given by that vector.
doi:10.1371/journal.pcbi.1002561.g012
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aspects of the stimulus: for example, receptor coverage ratios are

invariant to odor concentration in a turbulent odor plume, and

binaural cues in sound localization are invariant to the signal

produced by the source. This computational principle applies to

many perceptual tasks in all sensory modalities, and it may also

apply to the exploration of sensorimotor contingencies [80].

Robustness to noise stems from the fact that incoherent signals

result in an absence of response (no synchrony) rather than in a

false response. This relates to the idea that meaningful structure in

an image (e.g. edges) is what could not occur by chance in a

random image, a principle called ‘‘Helmholtz principle’’ that was

recently successfully applied in computer vision [81].

At behavioral level, invariance is a striking aspect of perception:

translation invariance in vision [82], concentration invariance in

olfaction [65], acoustic scale invariance in hearing [83]. On the

other hand, neural responses often vary with many aspects of

sensory stimuli. This theory agrees with these observations because

the spatial structure of synchrony is invariant but individual neural

responses are variable. It relies on two main assumptions: that

neurons can synchronize to a similar signal, and that postsynaptic

neurons can detect this synchrony. Both properties are seen when

neurons are fluctuation-driven (rather than mean-driven), which is

in agreement with the temporal irregularity of spike trains in vivo

[84] and with direct intracellular measurements [40]. Spike timing

reproducibility has been observed in vivo in early sensory areas

[5,58], but also more recently in the sensory cortices, although at

longer timescales [85,86]. The sensory examples I have chosen are

all thought to be processed in subcortical areas, at least for the

neurons for which SRFs are defined: odor recognition in the

olfactory bulb, sound localization and pitch perception in the

auditory brainstem, binocular disparity in the retina and thalamic

relay cells (with coincidence detection in the primary visual

cortex). There is stronger evidence for the reproducibility of spike

timing in these subcortical areas. However, for this theory,

stimulus-locked reproducibility is a sufficient but not necessary

condition: as I previously remarked (Fig. 6), there may be stimulus-

specific synchrony without trial-to-trial reproducibility, if there is a

shared source of variability (e.g. activity of the local network, or

feedback from other areas). Finally, I have shown that the neural

circuits that detect structure-specific synchrony can spontaneously

emerge under the effect of spike-timing-dependent plasticity. This

was expected because modeling studies have shown that STDP

tends to select correlated inputs [20,21].

In many theories of spiking neural networks (with the notable

exception of liquid state machines [23]), neural heterogeneity is

seen as a source of noise to be averaged out: the unit of

computation is a neural population or ‘‘neural mass’’ [22]. On the

contrary, in this theory, it is specifically because of neural

heterogeneity that synchrony carries meaningful information. This

has some interest for neuroengineering. Indeed, a major problem

in low-consumption neuromorphic circuits is that there is

substantial variability in neuron properties, which makes it difficult

to specify a precise neuron model [87]. In the framework I have

described, this variability can be exploited.

How can this theory be experimentally tested? I have

mentioned a few predictions in the specific cases of ITD processing

and binocular disparity. More generally, a straightforward

approach is to measure synchrony receptive fields, by examining

how the cross-correlogram of a given neuron pair varies with

stimuli, and in particular with the structure of the stimulus, using

multielectrode recordings. Previous studies in the olfactory and

visual systems support the idea of stimulus-specific synchrony

[88,89], but new experiments should specifically test whether

synchrony is related to the structure of the stimulus, for example

whether it is robust to changes in intensity.

Methods

All neuron models were simulated with the Brian simulator

[90].

Models of duration selectivity (Fig. 1–4)
Neurons with rebound spiking are modeled with the following

membrane equation:

t
dv

dt
~El{vzgKLT EK{vð ÞzgKD EK{vð Þzgin tð Þ(EK{v)

where v is the membrane potential, t is the membrane time

constant (20 ms in Fig. 1, random between 10 and 50 ms in Fig. 2–

4), gKLT is the low-threshold K+ conductance (in units of the leak

conductance), gKD is the delayed-rectifier K+ conductance, gin(t) is

the inhibitory synaptic conductance, El = 235 mV is the leak

reversal potential and EK = 290 mV is the K+ reversal potential

(note that the resting potential is smaller than El because of the

low-threshold K+ conductance). The low-threshold K+ conduc-

tance depends on voltage through the following equation:

tKLT

dgKLT

dt
~g�KLT 1z exp

Va{v

ka

� �� �{1

{gKLT

where tKLT is the time constant (100 and 400 ms for neurons A

and B in Fig. 1, random between 300 and 500 ms in Fig. 2),

Va = 270 mV is the half-activation voltage, ka = 5 mV is the

activation Boltzmann factor and gKLT* is the maximal conduc-

tance (1 in Fig. 1, random between 1 and 1.4 in Fig. 2–4). Thus

this hyperpolarizing conductance increases with voltage. A spike is

produced when v reaches vt = 255 mV, then the membrane

potential is reset to 270 mV and the delayed-rectifier K+
conductance is set to gKD = 2. This conductance then decays

exponentially:

tKD
dgKD

dt
~{gKD

where tKD = 300 ms. This prevents the neuron from producing

bursts of spikes. Synaptic conductances are pulses of amplitude

gin = 5 (in units of the leak conductance) and variable duration.

This choice of parameter values is explained in Text S1.

Coincidence detectors are modeled as noisy integrate-and-fire

models:

t
dv

dt
~{vzn

t
dn

dt
~{nzs

ffiffiffiffiffi
2t
p

j(t)

where t= 5 ms is the membrane time constant, n(t) is a filtered

noise with standard deviation s= 0.2 (j(t) is white noise). The

resulting standard deviation of the membrane potential v is

sv~s=
ffiffiffi
2
p

&0:14. In Fig. 2, each presynaptic spike increases v by

an amount 1/N, where N is the number of presynaptic neurons,

and a spike is produced when v = 1. The 1/N scaling factor

ensures that the postsynaptic neuron fires with probability 1/2
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when inputs are synchronous. After spiking, the membrane

potential is reset to 0.

In Fig. 3B, inputs are modeled as synaptic conductances rather

than currents, i.e.,

t
dv

dt
~ge(Ee{v){vzn(t)

te
dge

dt
~{ge

where te = 2 ms is the excitatory time constant and Ee = 4.7 is the

excitatory reversal potential (relative to the threshold; this

corresponds to Ee = 0 mV for a threshold vt = 255 mV and

El = 270 mV). Each presynaptic spike increases ge by an amount

a/N, where a is calculated so that the PSP produced by a

conductance increase of size a reaches the spike threshold vt = 1,

with the approximation that the synaptic driving force is Ee21/2

(1/2 being the average of the resting potential 0 and the spike

threshold 1). This gives the following formula:

a~
1

Ee{
1
2

:
te

t

� � t
te{t

In Fig. 3C, the coincidence detectors are described by the same

equations as the model with rebound spiking, with tKLT = 400 ms,

gKLT* = 2.1, t= 10 ms, and inputs are also modeled as synaptic

conductances, with Ee = 0 mV. The noise is scaled so as to

represent the same proportion of the difference between resting

potential and threshold (which gives sv&1 mV). Each presynaptic

spike increases ge by an amount a/N, where a is calculated as

above, but taking into account the total conductance of the cell at

rest (leak plus K+) and the resting potential (empirically

determined as V0&{62 mV). The resulting formula is:

a~(1zg0
KLT )

Vt{V0

Ee{
VtzV0

2

:
te

t0

� � t0
te{t0

where g0
KLT is the K+ conductance at rest (calculated from the

activation curve) and t0~t=(1zg0
KLT ).

Learning models (Fig. 4–5, 11)
Synaptic weights w evolve with homeostasis and spike-timing-

dependent plasticity (STDP). Homeostasis is defined by:

dw

dt
~Rww

w?w(1{dwH ) when the postsynaptic neuron spikes

STDP is defined by a modification of synaptic weight that depends

on the timing of pre- and postsynaptic spikes:

dwLTP~aLTPe{(tpost{tpre)=tLTP if tpostwtpre

The time constant is tLTP~5 ms for the duration model and 3 ms

for the olfaction model. In Fig. 4, Rw~0:005=I (where I is the

duration of a stimulus presentation), dwH~0:05 and aLTP~0:003.

In Fig. 11, Rw~0:25 Hz, dwH~0:05 and aLTP~0:003.

Olfactory models (Fig. 8–11)
The fluctuations of concentration in an odor plume are

described by a half-wave rectified Ornstein-Uhlenbeck process:

t
dx

dt
~{xz

ffiffiffiffiffi
2t
p

j(t)

with time constant t= 75 ms [63], where the odor concentration

is proportional to [x]+ ( = max(x,0)). Each of the N = 5000

olfactory receptor neurons has an odor-specific affinity which

depends on its type, and a global sensitivity, which is neuron-

specific. Thus, each odor can be represented as an N-dimensional

vector of binding coefficients bi, combining affinity and sensitivity

(bi = ai.si). To generate an odor, we draw random binding

coefficients logarithmically distributed between 1023 and 103.

The transduction current of a receptor cell is a Hill function of

odor concentration:

I~Imax
cn

cnzKn
1
2

~Imax 1z K1
2
=c

� �n� �{1

where c is the (time-varying) concentration, n = 3 is the Hill

coefficient, related to the slope of the curve [64], Imax is

calculated to produce a maximum firing rate of 40 Hz, and K1/2

is the half-activation concentration, which is the inverse of the

binding coefficient: K1/2 = 1/bi. The concentration varies in time

as c(t) = c0.x(t) (x(t) are the random fluctuations defined above).

Note that this latter parameter depends on both the neuron and

the odor. Currents are transformed into spike trains through an

integrate-and-fire model:

t
dv

dt
~{vzI(t)

where t= 20 ms is the membrane time constant (except Fig. 7C,

where it is uniform between 15 and 25 ms), and I(t) is the

transduction current. A spike is produced when v = 1, then the

membrane potential is reset to 0.

Coincidence detectors are defined as for models of duration

selectivity, with t= 8 ms and s= 0.15. In Fig. 6, 400 such

postsynaptic neurons are split in two groups tuned to either odor A

or B. Each postsynaptic neuron receives excitatory synapses from

presynaptic neurons with similar binding coefficients for the target

odor. Specifically, the range of binding coefficients is divided in

200 equal layers (in logarithmic scale), and each layer is associated

with one postsynaptic neuron, which receives inputs from all

receptors with binding coefficients in that layer. The synaptic

weight is 1/n, where n is the number of presynaptic neurons

(12.463.6). In Fig. 10C (new wiring), odd index neurons only

receive inputs from receptors with t,20 ms and even index

neurons from those with t.20 ms. We compensate by doubling

the size of layers for binding coefficients, so that the average

number of presynaptic neurons is unchanged.

Measures of precision and reliability
Precision and reliability measures (Fig. 6) are obtained from

shuffled auto-correlograms (SAC) [14] - the average cross-

correlogram between distinct trials. These are normalized by

DD, where D is the time bin and D is the duration of trials. After

removing the baseline (equal to r2, where r is the firing rate), the

precision is defined as the half-width of the SAC, and the reliability

as the normalized integral of the peak:
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Reliability~

Ð
SAC sð Þ{r2
� �

ds

r

which gives a number between 0 and 1, where 0 is obtained for

independent spike trains and 1 when comparing a spike train with

a jittered copy (i.e., perfect synchrony if the timescale is 0 ms). This

corresponds to the total correlation coefficient in [91].

Shared variability
In Fig. 7, stimuli, shared input and private noise are generated

as Ornstein-Uhlenbeck processes with time constant 10 ms.

Stimuli and shared inputs have the same standard deviation and

that of the private noise is set by the signal-to-noise ratio. Neurons

are modeled as integrate-and-fire units:

t
dv

dt
~I(t){v

with t= 10 ms and I(t) is the total input. The spike threshold is 1

and the reset is 0. Shuffled and cross-correlograms are calculated

as in Fig. 6 (previous paragraph), averaged over many trials.

Supporting Information

Text S1 Supplementary methods. This supplementary text

describes the properties of the duration model, in relationship

with the parameter values.

(PDF)
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23. Maass W, Natschläger T, Markram H (2002) Real-time computing without

stable states: a new framework for neural computation based on perturbations.
Neural Comput 14: 2531–2560.

24. Singer W (1999) Time as coding space? Curr Opin Neurobiol 9: 189–194.

25. VanRullen R, Guyonneau R, Thorpe SJ (2005) Spike times make sense. Trends

Neurosci 28: 1–4.

26. Thorpe S, Delorme A, Van Rullen R (2001) Spike-based strategies for rapid
processing. Neural Netw 14: 715–725.

27. König P, Engel AK, Singer W (1996) Integrator or coincidence detector? The

role of the cortical neuron revisited. Trends Neurosci 19: 130–137.

28. Ermentrout GB (1985) Synchronization in a pool of mutually coupled oscillators
with random frequencies. J Math Biol 22: 1–9.

29. Mirollo RE, Strogatz SH (1990) Synchronization of pulse-coupled biological

oscillators. SIAM J Appl Math 50: 1645–1662.

30. Van Vreeswijk C, Abbott LF, Ermentrout GB (1994) When inhibition not

excitation synchronizes neural firing. J Comput Neurosci 1: 313–321.

31. Tsodyks M, Mitkov I, Sompolinsky H (1993) Pattern of synchrony in
inhomogeneous networks of oscillators with pulse interactions. Phys Rev Lett

71: 1280.

32. Marder E, Taylor AL (2011) Multiple models to capture the variability in
biological neurons and networks. Nat Neurosci 14: 133–138.

33. Fridberger A, Felix II RA, Leijon S, Berrebi AS, Magnusson AK (2011) Sound
rhythms are encoded by post-inhibitory rebound spiking in the superior

paraolivary nucleus. J Neurosci 31:12566–78.

34. Hooper SL (1998) Transduction of temporal patterns by single neurons. Nat
Neurosci 1: 720–726.

35. Macmillan NA, Creelman CD (2005) Detection theory: A user’s guide (2nd ed.).

Mahwah, NJ, US: Lawrence Erlbaum Associates Publishers. xix, 492 p.

36. DeWeese MR, Zador AM (2006) Non-Gaussian membrane potential dynamics

imply sparse, synchronous activity in auditory cortex. J Neurosci 26: 12206–
12218.

37. Azouz R, Gray CM (1999) Cellular mechanisms contributing to response

variability of cortical neurons in vivo. J Neurosci 19: 2209–2223.

38. Crochet S, Petersen CCH (2006) Correlating whisker behavior with membrane

potential in barrel cortex of awake mice. Nat Neurosci 9: 608–610.
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