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Abstract

Complex interactions between genes or proteins contribute substantially to phenotypic evolution. We present a
probabilistic model and a maximum likelihood approach for cross-species clustering analysis and for identification of
conserved as well as species-specific co-expression modules. This model enables a ‘‘soft’’ cross-species clustering (SCSC)
approach by encouraging but not enforcing orthologous genes to be grouped into the same cluster. SCSC is therefore
robust to obscure orthologous relationships and can reflect different functional roles of orthologous genes in different
species. We generated a time-course gene expression dataset for differentiating mouse embryonic stem (ES) cells, and
compiled a dataset of published gene expression data on differentiating human ES cells. Applying SCSC to analyze these
datasets, we identified conserved and species-specific gene regulatory modules. Together with protein-DNA binding data,
an SCSC cluster specifically induced in murine ES cells indicated that the KLF2/4/5 transcription factors, although critical to
maintaining the pluripotent phenotype in mouse ES cells, were decoupled from the OCT4/SOX2/NANOG regulatory module
in human ES cells. Two of the target genes of murine KLF2/4/5, LIN28 and NODAL, were rewired to be targets of OCT4/SOX2/
NANOG in human ES cells. Moreover, by mapping SCSC clusters onto KEGG signaling pathways, we identified the signal
transduction components that were induced in pluripotent ES cells in either a conserved or a species-specific manner. These
results suggest that the pluripotent cell identity can be established and maintained through more than one gene regulatory
network.
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Introduction

A major goal in biology is to understand the evolution of

complex traits, such as the development of multicellular body

plans or an organism’s physical state as it ages [1]. To a certain

extent, complex traits are governed by regulated gene expression,

and considerable plasticity exists such that the same or a similar

phenotypic outcome may arise from the same or vastly different

gene regulatory programs across species [1,2]. Methods for

identifying evolutionarily conserved as well as alternative gene

regulatory pathways underlying a biological trait should enable

deeper mechanistic understanding of the processes that shaped the

trait.

Cross-species comparative analyses have made fundamental

contributions to biology, most remarkably exhibited by compar-

ative analysis of genomic sequences [2]. With the growing

availability of functional genomic data, comparative paradigms

are now being extended to the study of other functional attributes,

most notably gene expression (e.g., [3,4,5,6,7] reviewed in [8]).

Major advantages of gene expression comparison include but are

not limited to pinpointing the genes and tissues whose expression

tends to evolve at an accelerated or reduced rate [4,9], improving

functional gene annotation [3], discovering conserved genetic

modules and pathways [5,7] and tracing phenotypic diversity by

differential expression of specific regulatory genes [3,4]. More

recently, cross-species expression data have been used for inferring

the evolution of interaction and regulatory networks [4,10].

A major challenge in comparing expression data between

organisms is that gene expression is not static and the level of

expression is influenced by external conditions. This difficulty was

circumvented in the special cases in which identical perturbations

could be applied across species, as in comparisons of the sexes across

species [11]. In the absence of identical perturbations, the co-

expression between gene pairs remains comparable across species

[8]. Therefore co-expression based analysis has been widely applied

to compare gene expression datasets across phylogenetically close

PLoS Computational Biology | www.ploscompbiol.org 1 March 2010 | Volume 6 | Issue 3 | e1000707



[3,10] and distant species [5,7,12]. These efforts often focused on

identifying conserved co-expression modules, groups of genes whose

expression profiles were correlated in multiple species. Because the

co-regulatory relationship of these genes was conserved, they were

considered to function in a coordinated manner. The methods to

identify these modules were based on first applying preset thresholds

to expression correlation in each species and then intersecting the

groups of orthologous genes across species [5,12,13,14,15,16]. Such

approaches were straightforward but often strongly influenced by

subjective inputs from the researcher, for example, in the choice of

correlation thresholds. An exception to the ad hoc thresholds was

that Ramani et al. used known interaction proteins to train a

threshold of co-expression [16]. This approach worked for protein-

protein interaction analysis, but would require a lot empirical data

to train similar thresholds for the analyses of other regulatory

relationships, such as the relationships between transcription factors

(TFs) and their target genes. Another limitation of the methods

discussed above is that these methods do not uncover species-

specific co-expression patterns, which may be important for

explaining and understanding the evolution of novel features, e.g.,

the unique liver genes in human as opposed to other primates [17].

Automatic clustering algorithms, such as K-means and

hierarchical clustering, have been widely used in gene expression

data analysis to discover co-expression patterns that can be

translated to biological knowledge or new hypotheses [18]. It is

thus a natural step to extend these algorithms to cross-species

analysis. However, clustering remains a difficult problem, as

exemplified by ad hoc criteria for choosing optimal clusters and

results being sensitive to the initial conditions. Naively applying

these algorithms to multiple species, for example, by clustering

each species separately and then combining the clustering results,

will likely amplify the computational errors made in each species.

A better approach is to customize the clustering methods for cross-

species analysis, taking advantage of the evolutionary context to

minimize clustering errors. Two methods, DCA [3] and

CoherentCluster [7], were proposed recently in this direction.

However, these two methods lacked statistical models and did not

maximize the use of data. For example, the expression of one

species was used for constraining the clustering of the other

species, but not vice versa. Ideally, some iterative schemes, such as

are common for many machine learning algorithms, would be

implemented to simultaneously cluster genes in multiple species.

We have developed a statistical model for cross-species

clustering analysis. The model allows each species to create its

own clusters of the genes but also encourages the species to borrow

strength from each others’ clusters of orthologous genes. The result

is a pairing of clusters, one from each species, where the paired

clusters share many but not necessarily all orthologous genes. The

clustering and degree of overlap are chosen by the data through

maximum likelihood estimation. The model-based approach not

only reduces subjective influence but also enables effective use of

evolutionary dependence.

Results

Model based soft cross-species clustering
A model-based Soft Cross-Species Clustering (SCSC) method

was developed. The rationale of this model stems from the

following observations and intuitions. First, clusters of co-

expressed genes may be conserved across a large evolutionary

distance, in the sense that the orthologous genes also exhibit

correlated expression [19]. Empirically, this is consistent with the

observation that shared cis-regulatory elements and cis-regulatory

modules that regulate a set of co-expressed genes in one species are

often found to be enriched in the regulatory regions of the

orthologous sets of genes in other species [20]. The conservation of

clusters also makes evolutionary sense because a cluster may

correspond to a regulatory program that is functionally important

and thus resistant to change [21]. Second, rewiring across clusters,

i.e., the change of cluster membership of orthologous genes, is also

observed in phylogenetically related species [22,23]. This rewiring

process can reflect simple sequence changes such as gain or loss of

transcription factor binding sites. The difference of regulatory

programs across species is believed to be an important source of

evolutionary diversity or novelty [17,22,23]. Finally, the expres-

sion patterns of orthologous clusters may not be conserved,

reflecting either a change in the activities of the trans-acting factors

(thus all the genes in a cluster will change their expression pattern,

but their co-regulatory relationship is maintained) [22] or

differences in experimental conditions across species.

We formulated the above observations and intuitions into a

probabilistic model, with certain simplifications that made the

model mathematically tractable. First, we assumed that in every

species there are a certain number of clusters that can be mapped

one-to-one (called orthologous clusters), with each cluster

corresponding to an essential regulatory program. However, the

mean profiles of orthologous clusters were assumed to be

independent. Second, the expression of a gene in a cluster was

assumed to be a sample from a Gaussian distribution, which was

the characteristic or mean profile of this cluster. This assumption is

commonly made in model-based clustering analysis [18]. Third, a

gene tends to belong to the orthologous clusters in the two species.

In other words, the prior probability that a gene belongs to the

clusters (i, i9) where i and i9 are the indices of the corresponding

clusters in two species respectively, was larger than that for non-

orthologous clusters. This intuition was formally represented by a

logistic regression of prior probabilities over the cluster indices (see

Methods). Overall, the model captured the main observations

discussed above: that cluster structure tends to be conserved, that

change of cluster membership should be allowed (as G59 in

Figure 1), and that the mean expression profiles of orthologous

clusters are relatively independent.

Author Summary

A major goal in biology is to understand the evolution of
complex traits, such as the development of multicellular
body plans. To a certain extent, complex traits are governed
by regulated gene expression. The comparison expression
data between species requires extra considerations than
sequence comparison, because gene expression is not static
and the level of expression is influenced by external
conditions. Considering that co-expression patterns are
often comparable across species, we developed a statistical
model for cross-species clustering analysis. The model
allows each species to create its own clusters of the genes
but also encourages the species to borrow strength from
each others’ clusters of orthologous genes. The result is a
pairing of clusters, one from each species, where the paired
clusters share many but not necessarily all orthologous
genes. The model-based approach not only reduces
subjective influence but also enables effective use of
evolutionary dependence. Applying this model to analyze
human and mouse embryonic stem (ES) cell data, we
identified the transcription factors and the signaling
proteins that are specifically expressed in either human or
mouse ES cells. These results suggest that the pluripotent
cell identity can be established and maintained through
more than one gene regulatory network.

Modeling Co-Expression Evolution in Stem Cells
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Synthetic data
The performance of SCSC was compared with that of DCA, K-

means, hierarchical clustering, MCLUST, WGCNA and CLICK

clustering [24] on six synthetic datasets (Table S1, Text S1).

Because the performance of K-means, hierarchical clustering,

MCLUST, WGCNA and CLICK algorithms were optimized

within each species, if the information of conservation of co-

clustering did not help, they should outperform SCSC and DCA.

In four of the six synthetic datasets, CLICK and SCSC

outperformed the other algorithms on the center-scatter score

(Figure S1), which is consistent to CLICK’s capability of filtering

out singleton genes and identifying very tight clusters. In all the

rest comparisons, SCSC outperformed K-means, hierarchical

clustering MCLUST, WGCNA, and CLICK, which in turn

outperformed DCA (Figure S1). These results suggest that

although conserved co-clustering information could help to

improve clustering performance, the power of such information

is released in a model-based approach (SCSC) but shackled in a

heuristic algorithm (DCA). DCA essentially sequentially performs

two hierarchical clustering in the two species, with no iteration.

Evaluation on synthetic data with errors in the orthology
map

To mimic errors in the orthology map or the scenario where

some orthologous genes have divergent functional roles in two

species, we permuted a proportion (10%–30%) of the orthologous

relations into wrong matches in the first synthetic dataset. SCSC,

DCA, and K-means were executed on these datasets with

orthology errors (Table S2). As the proportion of misplaced

orthology links increased, all four algorithms showed decreased

performance as expected. However, SCSC demonstrated robust-

ness against orthology errors in that its performance on the dataset

with 30% orthology errors was better than those of the other three

algorithms under 0% orthology errors.

Embryonic stem cell data
The biological process that inspired the SCSC model is cellular

differentiation, a fundamental process occurring universally in

multicellular organisms. Embryonic stem (ES) cells were used as a

tool to study this process. ES cells are characterized by the ability

to self-renew and differentiate into every cell type found in the

mature organism. We are interested in determining the extent to

which molecular circuits that underlie ES cell phenotypes and the

processes of commitment and differentiation are conserved across

species.

Human and mouse ES (hES and mES) cells share the critical

properties of ES cells but do not employ the identical set of

transcription factors. For example, transcription factor FOXD3 is

required for mES cell self-renewal [25], but its expression appears

to be non-essential for hES [26]. Similarly, STAT3, a transcription

factor downstream to LIF signaling, is also required for self-

renewal and the maintenance of pluripotency of mES cells, but it

seems to be dispensable in hES cells [27]. We hypothesize that the

pluripotent cell identity can be established and maintained through more than

one gene regulatory network. These regulatory networks share core

components that are universally indispensable for pluripotency.

Peripheral components, though critical for cell fate, can be

implemented using alternative designs. If this hypothesis is verified,

the conserved and species-specific ES cell gene clusters may reveal

the essential and peripheral components of gene regulatory

networks underlining pluripotency, which may in turn assist the

search for gene sets that are capable of reprogramming adult cells

into a pluripotent state with higher efficiency [28,29].

We generated detailed time-course microarray data during a

differentiation process of mES cells (GEO accession number:

GSE12550, see Methods). Using SCSC, we jointly analyzed them

with four datasets of undifferentiated and differentiated hES cells.

The mES cell data were generated at eight time points during

differentiation, with an average of six biological replicates at each

time point (see Methods). The four human datasets included

undifferentiated and differentiated cells from multiple American

and European ES cell lines [30,31,32] together with two

differentiation pathways of adult stem cells [33] (Figure S2A).

We ran SCSC on 6,088 pairs of probe sets, representing an

unbiased selection of orthologous genes that may best reflect the

gene regulatory networks in mES and hES cells (Text S2). SCSC

generated a result of 6|6 clusters (Figure 2).

Overview of clustering results
Clusters (2, *)FF and (3, *) were upregulated in mES cells, and

Cluster (*, 3) was upregulated in hES cells (Figure 2). Here *

denotes all the indices from 1 to 6. For example, (*, 3) includes the

clusters (1, 3), (2, 3) … (6, 3). The other mouse and human clusters

had increasing expression patterns during differentiation. Clusters

(2, 3) and (3, 3) had conserved upregulation in mES and hES cells.

The part of the gene regulatory circuit that is conserved between

mES and hES cells was represented in these two clusters (Table

S3A). The gene pairs that belonged to Clusters (2, *) and (3, *) but

did not belong to Clusters (2, 3) and (3, 3) were specifically

expressed in mES cells. These genes represent the part of the gene

regulatory network that are expressed in mES cells, but is

disrupted in hES cells (Table S3B). Finally, gene pairs belonging to

(*, 3) but not Clusters (2, 3) and (3, 3) were specifically expressed in

hES cells (Table S3C).

To explore which signaling pathways and what components of

these signaling pathways are induced in hES and mES cells, we

mapped the genes that were induced in either hES or mES cells,

i.e., Clusters (2, *), (3, *) and (*, 3), onto all known signaling

pathways documented in the KEGG pathway database [34]. The

ES-induced components of these signaling pathways were plotted

to highlight the hES-specific, mES-specific, and the conserved

components (Figure 3).

Figure 1. Major features and assumptions of the SCSC method.
1. G1–G8 are eight genes in Species 1, which have orthologues G19–G89

in Species 2. 2. G4 and G99 do not have orthologues, but they
participate in the clustering analysis. 3. The shapes of the lines
represent gene expression patterns. For example, G1 has an increasing
pattern and G69 has a first decreasing and then increasing pattern. 4.
The genes with the same color, except for the black color, are clustered
together. Genes in black are ‘‘scattered’’ genes, which form a singleton
cluster each.
doi:10.1371/journal.pcbi.1000707.g001

Modeling Co-Expression Evolution in Stem Cells
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Conserved regulatory mechanisms in ES cells
Among 1,113 genes involved in transcriptional regulation (GO:

0003700) and included in this analysis, 448 clustered in either

mES or hES upregulated clusters ((2, *), (3, *) and (*, 3)), indicating

that a very large proportion (40%) of the transcriptional regulators

were utilized in ES cells. Among these 448 transcription

regulators, 85 (19%) exhibited conserved upregulation in mES

and hES cells (in clusters (2, 3) and (3, 3)), representing a core set of

regulators with higher expression in undifferentiated than

differentiated ES cells (Table S4). Among these regulators,

OCT4 and SOX2 are indispensable for maintaining an ES cell

phenotype and for reprogramming [28]; NANOG, UTF1, and

polycomb group proteins EED and PHC1 either promote self-

renewal or inhibit differentiation. Repression of lineage-specific

differentiation genes is critical for maintaining the undifferentiated

state [35]. Conserved transcriptional repressors and corepressors

included DNA methylation enzymes DNMT1 and DNMT3B,

Polycomb group factors EED and PHC1, histone deacetylase

SAP30, and transcription factors SUPT4H1, E2F8, TGIF1 and

CTBP2. In addition, certain aspects of DNA replication and cell

cycle regulation were also conserved in ES cells, as exemplified

by conserved expression of CDK2, RAD51, E2F8, MYST2,

POLYA1 and TERF1.

The KLF regulatory module is required for pluripotency
only in mES cells

KLF2, KLF4 and KLF5 belong to the Krüppel-like factor

(KLF) family of evolutionarily conserved zinc finger transcription

factors that regulate numerous biological processes, including

proliferation, differentiation, development and apoptosis [36]. We

previously demonstrated that simultaneous depletion of KLF2,

KLF4 and KLF5 led to differentiation of mES cells [37].

Consistent with this result, in mES cells, KLF2, KLF4 and

KLF5 co-clustered with other pluripotency regulators (Clusters

(2,*) and (3,*)), including OCT4, SOX2 and NANOG. Chromatin

immunoprecipitation coupled to microarray assay (ChIP-chip)

Figure 2. SCSC clusters of mES and hES cell differentiation data. Representative transcription regulators are listed in each cluster. Thick lines
enclose clusters with upregulation in either mouse or human ES cells. Dotted lines enclose the conserved clusters with upregulation in ES cells of
both species. Detailed expression patterns of every cluster and sample information are given in Figure S2.
doi:10.1371/journal.pcbi.1000707.g002

Modeling Co-Expression Evolution in Stem Cells

PLoS Computational Biology | www.ploscompbiol.org 4 March 2010 | Volume 6 | Issue 3 | e1000707



data showed that KLF2, KLF4 and KLF5 proteins all bind

upstream of their own coding genes as well as upstream of OCT4,

SOX2 and NANOG [37]. NANOG and SOX2 ChIP-chip data

demonstrated that they both bind to KLF2, KLF4 and KLF5 [38].

The co-clustering result together with the published RNA

knockdown data and ChIP-chip data suggest that KLF2, KLF4

and KLF5 form a regulatory module that is coupled with the

OCT4-SOX2-NANOG regulatory module in mES cells (Figure 4A).

The mES cell expression of the three KLF factors was not

conserved in humans. Human KLF2, KLF4 and KLF5 were

clustered in Cluster (*, 1), which exhibited low expression in hES

cells and a steady increase during spontaneous and lineage-specific

differentiation. This led to the hypothesis that the KLF2/4/5

module was decoupled from the OCT4-SOX2-NANOG module

in the transcription network of hES cells. To explore the

decoupling hypothesis, we first re-examined the mouse data for

potential clues. In mES cells, the KLF2/4/5 regulatory module

and the OCT4-SOX2-NANOG regulatory module were firmly

established, because every factor bound to every other gene within

the module. A maximum of 30 regulator-target links among the six

transcription factors were allowed (Figure 4A). All except four of

the allowed regulator-target links were confirmed by ChIP-chip

Figure 3. Induced components of signaling pathways in hES and mES cells. The gene induced in either hES or mES cells, i.e., Clusters (2, *),
(3, *) and (*, 3), are mapped onto all the signaling pathways documented in the KEGG database [33] and plotted using Cytoscape software (www.
cytoscape.org). Gray, blue and green nodes represent genes that are induced in hES cells only, mES cells only or both (conserved), respectively. The
edges between any two nodes represent known protein-protein interactions documented in Cytoscape.
doi:10.1371/journal.pcbi.1000707.g003

Figure 4. Rewiring of the KLF regulatory module. Nodes represent upregulated genes in ES cells in a conserved (blue, upregulated in both hES
and mES cells) or species-specific (red, upregulated in mES cells only) manner. Edges represent positive regulatory relationships (activation) that are
validated by ChIP-chip and RNAi data in both species (dark blue), in mouse only (red), or in human only (light blue). As the KLF module appears to
have lost its regulatory function in hES cells, its target genes ESRRB, FOXD3 and SOCS3 have consistently lost their upregulation in hES cells as well (A).
However, LIN28 and NODAL, which are upregulated by the KLF module in mES cells, remain upregulated in hES cells. Their upregulation in hES cells
might be activated by NANOG and OCT4 instead (B).
doi:10.1371/journal.pcbi.1000707.g004

Modeling Co-Expression Evolution in Stem Cells
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data. The four missing links were OCT4-.KLF2/4/5 and SOX2-

.KLF2. All of these missing edges were between the two modules,

which seemed to poise them for decoupling. Second, we checked if

the inter-module regulatory links were preserved in hES cells.

Human ChIP-chip data [39] showed that three out of the five

inter-module regulatory links were dissociated (SOX2-.KLF4,

NANOG-.KLF4, NANOG-.KLF2). The two observations above

and co-expression result were consistent with the hypothesis that

the two regulatory modules were decoupled in hES cells.

If the KLF2/4/5 module was mouse-specific, it should specifically

regulate other regulatory factors in mES cells. Therefore, the

existence of species-specific targets of KLF2/4/5 could be further

evidence for the decoupling hypothesis. Besides the three KLF

genes themselves, ESRRB, FOXD3 and SOCS3 were among their

specific targets in mES cells. ESRRB [40], FOXD3 [25] and

SOCS3 [41] were all related to self-renewal and inhibiting

differentiation in mES cells.FFFF In mice, KLF2, KLF4, and KLF5

and ESRRB, FOXD3, and SOCS3 all exhibited high expression in

undifferentiated ES cells, and their expression decreases during

differentiation. Moreover, ESRRB, FOXD3 and SOCS3 upstream

regions were bound by KLF2, KLF4 and KLF5 in mES cells [37].

In humans, the expression levels of ESRRB and FOXD3 dropped

below a detectable level in all measured ES cells. Human KLF2,

KLF4, KLF5 and SOCS3 were clustered in Cluster (1, *), implying

that their expression increases as hES cells differentiate. In

summary, with the decoupling of the KLF module from the

OCT4-SOX2-NANOG module in hES cells, the upregulation of

ESRRB, FOXD3 and SOCS3 in undifferentiated hES cells was

diminished (Figure 4B).

Another group of KLF target genes in mice exhibited conserved

upregulation in hES cells. ChIP-chip and RNAi data [37]

confirmed that this group included OCT4, SOX2, NANOG,

LIN28 and NODAL (Figure 4A). In particular, LIN28 and NODAL

were upregulated by KLFs in mES cells, because KLFs bound to

these genes in vivo and knocking-down KLFs substantially

decreased their expression levels. Since KLF2, KLF4 and KLF5

themselves were not upregulated in hES cells, the maintenance of

upregulation of LIN28 and NODAL in hES cells may require

rewiring of the transcription networks [23]. In other words, the

upregulation of LIN28 and NODAL in hES cells had to be achieved

by transcription factors other than the KLFs. Consistent with this

hypothesis, ChIP-chip data [37,39] showed that OCT4, SOX2

and NANOG bound to LIN28 in hES cells but not in mES

cells; NANOG bound to NODAL in hES but not in mES cells

(Figure 4B). As controls, none of ESRRB, FOXD3 or SOCS3

upstream was bound by OCT4, SOX2 or NANOG in hES cells.

In summary, the mouse-specific KLF2/4/5 regulatory module

upregulated a set of key mES cell regulators. This module was not

conserved in humans and therefore represented a peripheral

component of the pluripotency maintaining regulatory networks.

KLF4 was included in the set of genes for reprogramming both

mouse [42] and human cells [28]; However, KLF4 was dispensable

for maintaining the ES cell phenotype [28,42]. This fact supports

our hypothesis that genes involved in peripheral components of ES

cell transcription networks should be capable of assisting but may

not be essential for reprogramming.

Empirical evaluation of SCSC results with independent
experimental data

To what extent do gene clusters reflect functionally related gene

groups? Although we do not expect a generic answer to this

question, well-deliberated quantitative analyses may provide use-

ful empirical data. Two sets of co-regulated genes were derived

from an independent functional analysis, where seven regulatory

proteins were knocked down by RNAi in mES cells [40]. To

evaluate the consistency between the clustering result and the

independently identified co-regulated genes, we applied a recently

developed metric called the biological homogeneity index (BHI)

[43]. BHI is the average proportion of gene pairs that are

consistently allocated to both the same cluster and the same

functional group in the gold standard dataset. A greater BHI

reflects a higher consistency between the clusters and the

functional groups. Because the gold standard datasets were

generated from mES cells, we compared SCSC results with K-

means clustering and hierarchical clustering performed on the

same genes in the mES cell differentiation dataset (Figure S3). For

a fair comparison, the same number of clusters were generated

from K-means and hierarchical clustering as from SCSC. We gave

K-means the advantage of starting from multiple initial values,

minimizing the chances of being trapped by local maxima. In both

comparisons, SCSC generated far more consistent gene groups

with the functional groups defined by the independent RNAi

studies, supporting the original intuition behind SCSC, that

functional gene groups could be better revealed by comparative

transcriptome analysis.

Discussion

The applications of clustering analyses of expression data are

limited by strong noise in the results. Some genes known to be

involved in a particular pathway are invariably missed, whereas

other apparently unrelated genes exhibit expression profiles that are

strikingly similar to bona fide pathway components [21]. These

shortcomings are explained in part by the observation that many

microarray studies failed to sufficiently sample the biological variabi-

lity within a system [21]. In light of this argument, transcriptomes of

several organisms undergoing a similar biological process might be

analyzed as one system with evolutionary distance providing the

biological variability. Consequently, statistical development of cross-

species clustering algorithms should enable assessment of expression

conservation and diversity across species, thereby generating more

functionally coherent gene groups. SCSC was built under this

premise (Text S4).

Other non-essential reprogramming factors
Similar to KLF4, LIN28, a transcriptional target of the KLF2/4/

5 regulatory module [37], was also used as a reprogramming factor,

but it was non-essential [29]. MYC, a transcription factor down-

regulated during mES cell differentiation but not during hES cell

differentiation (Figure 2), was another non-essential reprogramming

factor [28,42]. These examples highlight the power of cross-species

analysis to distinguish core versus peripheral components of a

transcription network for maintaining a particular phenotype.

Alternative implementations of signaling pathways in
mES and hES cells

Compared to differentiated cells, relatively few signal transduc-

tion factors were produced in ES cells. Comparing within the

clusters that were upregulated in either mES or hES cells, i.e.,

among Clusters (2, *), (3, *) and (*, 3), genes involved in NOTCH,

WNT, TGFb, JAK-STAT and MAPK pathways were all depleted

in the conserved clusters ((2, 3) and (3, 3), p-value ,4*1025). The

lack of shared signal transduction factors in the conserved clusters

suggests that these signaling pathways either do not present in one

of the two ES cells or they utilize alternative implementations in

them (Table 1).

JAK-STAT and NOTCH were present in mES cells, but no

typical signaling transducers of these pathways appeared to be
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present in hES cells. It has long been known that mES cells remain

undifferentiated in the presence of Leukemia Inhibitory Factor

(LIF), and the activation of Signal Transducer and Activator of

Transcription 3 (STAT3) via LIF-JAK signaling appears sufficient

for maintenance of pluripotency of mES cells. However, LIF is

unable to maintain the pluripotent state of hES cells [44]. The

mechanism behind this apparent discrepancy is not fully

understood, although the activation of human STAT3 alone does

not sustain self-renewal of hES cells [44]. As summarized in

Table 1, none of the key components of the JAK-STAT pathway

active in mES cells were present in hES cells, including key kinases

JAK3 and TK2 and a family of five STAT transcription factors.

This indicates that the JAK-STAT pathway is poised to receive the

LIF signal in mES cells. Although only STAT3 is known as a

downstream factor of LIF signaling in mES cells, our data predict

that the other four STAT transcription factors may also contribute

to maintaining the mES cell phenotype, since all of these genes are

downregulated during differentiation.

TGFb, WNT and MAPK pathways appeared to be present in

both mES and hES cells. However, our data suggest that mouse

and human ES cells do not always use orthologous factors in these

pathways. The non-orthologous components of these signaling

pathways appeared to share two common features. First,

paralogous members of the same gene family could serve as

surrogates of an orthologous component. Using the WNT

pathway as an example, growth factors FRIZZLED9 (mES),

FRIZZLED3 (hES), receptors LRP5 (mES) and LRP6 (hES), and

transcription regulators HHTLE4HH (mES) and TLE1 (hES)

were alternative members of the same gene family that appeared

to assume orthologous functions in mES and hES cells (Table 1).

Second, the alternatively implemented signaling transduction

routes in the two species appeared to share the same regulatory

logic. For example, TGFb signaling in mES cell is inhibited by

SMAD7 [45] and SKILl at the receptor and transcriptional levels

[46], whereas in the hES cell, another inhibition mechanism

appeared to be present through the interaction of SMAD2 and

TGIF1 [47]. Also, WNT signals to HHTLE4HH and TLE1 in

mES and hES cells, respectively, for probably the same purpose of

transcriptional repression [48]. The characterization of species-

specific signaling pathways and alternative routes of signaling

transduction facilitates understanding how pluripotency is main-

tained in mES and hES cells and why a signal could induce

seemingly different and even reverse responses from these cells

(BMP: [49,50], WNT: [51,52]; LIF: [44]).

Mouse epiblast stem cells
mES and hES cells are similar in the sense that they are both

derived from the inner cell mass of blastocyst embryos, and are

both pluripotent. Besides mES cells, pluripotent stem cells were

also derived from the late epiblast layer of post-implantation

mouse embryos (mEpiS cells) [53]. Compared to mES cells,

mEpiS cells are functionally more similar to hES cells in the

following ways. Both hES and mEpiS cells, but not mES cells, can

differentiate into trophoblast upon exposure to Bmp4; display very

limited capacity for chimera formation when injected or

aggregated with mouse preimplantation embryos; form relatively

large and flat colonies when grown as monolayers; do not survive

well as individual cells. Importantly, the pluripotency of hES cells

Table 1. Distribution of genes participating in six signaling pathways in the ES clusters.

Pathway Components
Mouse specific: Clusters
(2, *), (3, *) but not (2, 3), (3, 3)

Human specific: Clusters
(*, 3), but not (2, 3), (3, 3)

Shared: Clusters
(2, 3), (3, 3) Comment

JAK-STAT Extracellular & membrane LIF, IL2R, IL4R, IL6R mES specific

Downstream factors JAK3, TK2#, PTPRC, PTPRF, PTPRN,
SOSC3, PINK1*

Transcription regulators STAT3#, STAT4, STAT5A, STAT5B, STAT6

NOTCH Extracellular & membrane NOTCH4, JAGGED2, MFNG

Downstream factors

Transcription regulatorsF NCOA1*

TGFb Extracellular & membrane TGFb1, TGFbR1 BMP4, ACVR2B LEFTY, BMPR1 Alternatively
implemented

Downstream factors MAPK3, PINK1* PPP1CC*, SAR1A

Transcription regulators [SMAD7]&, SKIL&, NCOA1* [SMAD2]& (interact with TGIF1) TGIF1&

WNT Extracellular & membrane [FRIZZLED9], H{LRP5} [FRIZZLED3], {LRP6} [FRIZZLED7]

Downstream factors RHOA CSNK2A1, CSNK1D CSNK2B

Transcription regulators [TLE4]&, LEF1, MYC [TLE1]&, TCF7L2 CTBP2&

MAPK Extracellular & membrane FGF4, MET*, EGFR, GRB2 FGFR2 {FGF2}, TDGF1

Downstream factors [ARAF], {PTPRC}, {PTPRF}, {PTPRN},
[MAP3K6], [MAP2K7], [MAPK3]

[KRAS], {PTPRK}, {PRPRG},
{PTPN11}, [MAP3K7]

[RAF1]

Transcription regulators ATF4

VEGF Extracellular & membrane Unlikely to be
expressed in ES cells

Downstream factors PINK1*, PLCD1, PLA2 PTK2, PPP1CC*, CLK2

Transcription regulators

Genes in the same family are embraced with the same parenthesis. Genes with a * are involved in the multiple pathways. Genes with & signs are transcriptional
repressors or co-repressors. Genes with a # have abundant transcripts in mES cells, but they do not show obvious up or down regulation during differentiation of mES
cells.
doi:10.1371/journal.pcbi.1000707.t001
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and mEpiS cells, can be maintained via Activin/Nodal signaling

[53,54], whereas Activin induces mES cells to differentiate into

mesendoderm [55]. Thus, the alternative implementations of gene

regulatory networks between hES can mES cells may reflect their

functional differences and indicate the differences of their seemingly

comparable temporal origins during embryonic development.

Methods

Transcription profiling of mouse ES cells
Total RNA for transcriptional profiling was obtained from B6

mES cells at various stages of differentiation, including undiffer-

entiated (0 day), 4, 8, 12, 21 and 31 days of differentiation. Six

biological samples were analyzed at each time point. B6 mouse

ESC were cultured on mouse embryonic feeders (MEFs) using

standard methods as previously described [56] in 15% FCS

supplemented with LIF. Undifferentiated ES cell samples were

obtained by trypsinising near confluent plates of ES cells and

depleting the MEFs by plating the cells onto gelatin coated plates

for 2620 min. The ES on gelatin samples were MEF depleted ES

cells seeded on gelatin coated dishes and cultured until they

reached ,70% confluency. To ensure the undifferentiated ES cell

samples were free from MEF contamination, MEF depleted ES

cells that passaged once on gelatin were used as 0-day ES cell

samples. To make EBs, the ES cells on gelatin were seeded into

non-adherent petri dishes, and LIF was withdrawn to induce

differentiation. Half of the EB media was changed every 3–4 days.

The formation of EBs was consistent with previous studies [57,58].

After 8 days, numerous cystic structures were observed and

became progressively larger over time. After about 10 days,

beating foci of cardiac myocytes could be observed in some EBs,

indicating the terminal differentiation of some cell types.

Total RNA was extracted from the different samples using the

RNeasy kit (Quiagen) and amplified using a two-round linear

amplification strategy as previously described [56]. The labeled

RNA was then hybridized to Affymetrix MgU74Av2 microarrays

according to the manufacturer’s instructions. Normalization and

probe-level modeling were done with dChip software [59].

Statistical model
The expression value of an orthologous gene pair is denoted as

(gi, gi9), where i and i9 index two orthologous genes. The goal of

SCSC is to assign a cluster label ci,i9 to every orthologous gene pair

(i, i9). The range of ci,i9 goes from (1, 1) to (K, L), where K and L

are the maximum numbers of clusters allowed in the two species.

Without loss of generalizability, we assume there are no more than

K clusters in either of the two species; i.e., K§L, and then (K, K)

are the largest possible values ci,i9 can take. The following statistical

model does not assume K = L. However K = L is used in the

SCSC program implementation.

SCSC takes a model-based approach. The cluster labels

are assumed to be generated according to probabilities pk,l~

p(ci,i0~(k,l)) and that conform to a multinomial logit model [60]:

log (pk,l=p1,1)~akzblzcI ½k~l�, ð1Þ

where (k,l)=(1,1). akand bl capture the independent co-

expression information contributed by each species, i.e., row and

column effects in Figure 2. I ½:� is an 0–1 indicator function. c

represents the degree of dependence between correspondent

clusters between the two species. When k~l, cluster l is deemed

as the correspondent cluster to cluster k. The order of the result

clusters in a clustering analysis is usually arbitrarily determined.

SCSC orders its clusters in the two species in a way that the

clusters in the two species with the largest intersection of

orthologous genes are given the same numerical indicator (See

below).

Given the cluster indicator of a gene pair, for example

ci,i0~(k,l), the model for complete data is:

gi*N(mk,Sk), gi0*N(ml ,Sl), gi and gi0 are independent: ð2Þ

Here N(:) denotes a Gaussian distribution; mkand ml are the mean

vectors of the kth and the lth clusters in the two species, respec-

tively; Sk and Sl are their corresponding covariance matrices.

A generative probabilistic model for two species gene expression

data is:

Pr (Two species data)

~P
i,i0

(
X(K ,L)

(k,l)~(1,1)

pk(gi)|pl(gi0 )|p(ci,i0~(k,l))),
ð3Þ

where the product P
i,i0

(:) enumerates all gene pairs (i, i9);

p(ci,i0~(k,l)) is the probability of gene pair (i, i9) coming from

cluster (k,l); pk(gi) is the likelihood of gene i given it comes from

cluster k in one species, and pl(gi0 ) is the likelihood of gene i9 given

it comes from cluster l of the other species. An iterative

maximization algorithm was developed to fit the SCSC model

(Figure S4, Text S3). Because SCSC uses a likelihood maximiza-

tion approach based on the EM algorithm, the local maximum

issue that is general to EM algorithm applies. The SCSC program

is available both as a downloadable program and as a web

application at: http://biocomp.bioen.uiuc.edu/SCSC.

Supporting Information

Text S1 Synthetic data.

Found at: doi:10.1371/journal.pcbi.1000707.s001 (0.01 MB PDF)

Text S2 Selecting genes for SCSC analysis of mouse and human

ES cells.

Found at: doi:10.1371/journal.pcbi.1000707.s002 (0.01 MB

PDF)

Text S3 An iterative maximization algorithm for SCSC model.

Found at: doi:10.1371/journal.pcbi.1000707.s003 (0.03 MB

PDF)

Text S4 SCSC algorithm.

Found at: doi:10.1371/journal.pcbi.1000707.s004 (0.02 MB

PDF)

Figure S1 Performance evaluation on synthetic datasets.

Average performance scores from 20 independent runs of each

algorithm are listed. Dataset numbers correspond to the datasets

listed in Table S1. K-means, hierarchical clustering, MCLUST,

WGNCA and CLICK were first executed on each species and

then their results were summarized across the two species. The

Random clustering is generated by choosing random centroids

and assigning each data point into the nearest centroid. Three

performance scores were used for comparison, average global

scatter, average center scatter, and proportion of genes being

assigned to wrong clusters. The definitions of the first two

performance scores are as follows: 1. Average global scatter: the

average distance between every data point and the cluster center

that it was assigned to. For two species, the average global scatter
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was the sum of distances between every gene and the center of its

own species divided by the total number of genes in two species. 2.

Average center scatter: the average distance between true cluster

centers and their corresponding computed cluster centers. In a

perfect clustering result, center scatter equals 0. Center scatter for

two species was computed by dividing the sum of center scatters in

both species by the total number of clusters in both species.

Found at: doi:10.1371/journal.pcbi.1000707.s005 (0.06 MB PDF)

Figure S2 SCSC clusters of mouse and human ES cell

differentiation. (A) Sample information for human ES cells. (B)

The number of orthologous probe sets in each result cluster, and

(C) the corresponding expression patterns of mouse and human

clusters. Each dot represents the mean expression of a cluster in a

biological replicate.

Found at: doi:10.1371/journal.pcbi.1000707.s006 (0.04 MB PDF)

Figure S3 Performance evaluation with independent experi-

mental data. The consistency of a clustering result to a set of co-

regulated gene groups is measured by biological homogeneity

index (BHI). K-means clustering was run 10 times with different

initial values. The red bars and their error bars represent the

average BHI and the standard deviation for these 10 runs. The

best performance out of the 10 runs is also reported (yellow bar).

Two test sets of co-regulated genes groups were defined as follows.

Set 1: Co-regulated genes were defined as the genes whose

expression levels were affected by all of the seven RNA knockdown

(RNAi) experiments of seven regulatory proteins (OCT4, SOX2,

NANOG, ESRRB, TBX3, TCL1, DPPA4) which maintain ES

cell identity. Each RNAi experiment provided a list of genes whose

expression was affected. Taking the intersection of the seven gene

lists, a total of 60 genes were identified as regulated by all seven ES

cell regulators. These 60 genes were used as the first test set. Set 2:

Co-regulated genes were defined as the genes whose expression

was affected by RNAi knockdown of all four of the transcription

factors NANOG, OCT4, SOX2 and ESRRB, and for which the

direction of expression change was the same. These four

transcription factors physically interact and synergistically regulate

gene expression in ES cells. Two groups of co-regulated genes

were identified. Group 1 contained 107 genes that were

consistently induced by the RNAi of each of the four factors,

whereas group 2 contained 48 genes that were repressed by all

four RNAi treatments. These two co-regulated gene groups

constitute the second test set.

Found at: doi:10.1371/journal.pcbi.1000707.s007 (0.03 MB PDF)

Figure S4 Scheme of computational implementation of the

SCSC method. The scheme mimics an EM algorithm for

clustering one-species data under a Gaussian-mixture model.

(Text S4)

Found at: doi:10.1371/journal.pcbi.1000707.s008 (0.02 MB PDF)

Table S1 Synthetic datasets. Cluster number is the number of

clusters in the two species. For example, means 10 clusters in both

species. Dimension is the number of samples in each species. ‘‘# of

data points in each cluster’’ is the number of orthologous genes in

each cluster’’. ‘‘# of scatter data points’’ is the number of

randomly distributed gene pairs that do not belong to any clusters.

They represent intrinsic deviation of the transcriptome from a

clustering model. The cluster means of dataset 1–5 are randomly

generated between 0 and 10. The cluster mean of dataset 6 are

generated between 0 and 13. Cluster variation shows the standard

deviation used to generate each cluster, with the two numbers

representing two standard deviations for each of the two species.

Found at: doi:10.1371/journal.pcbi.1000707.s009 (0.02 MB PDF)

Table S2 Performance evaluation with errors in ortholog map.

10%–30% of the ortholog mapping in synthetic dataset 1 (Table

S1) are randomly permutated to represent the scenarios of errors

in ortholog map. SCSC, K-means and DCA were executed on

these perturbed datasets, and performance metrics were recorded.

Found at: doi:10.1371/journal.pcbi.1000707.s010 (0.01 MB PDF)

Table S3 SCSC clusters. (A) with conserved upregulation in hES

and mES cells, (B) specifically upregulated in mES cells, and (C)

specifically upregulated in hES cells.

Found at: doi:10.1371/journal.pcbi.1000707.s011 (0.15 MB PDF)

Table S4 Conserved transcription regulators in human and

mouse ES cells. Genes with a & may act as transcriptional

repressors or corepressors.

Found at: doi:10.1371/journal.pcbi.1000707.s012 (0.01 MB PDF)
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