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The structure, function, stability, and many other properties of a protein in a fixed environment are fully specified by
its sequence, but in a manner that is difficult to discern. We present a general approach for rapidly mapping sequences
directly to their energies on a pre-specified rigid backbone, an important sub-problem in computational protein design
and in some methods for protein structure prediction. The cluster expansion (CE) method that we employ can, in
principle, be extended to model any computable or measurable protein property directly as a function of sequence.
Here we show how CE can be applied to the problem of computational protein design, and use it to derive excellent
approximations of physical potentials. The approach provides several attractive advantages. First, following a one-
time derivation of a CE expansion, the amount of time necessary to evaluate the energy of a sequence adopting a
specified backbone conformation is reduced by a factor of 107 compared to standard full-atom methods for the same
task. Second, the agreement between two full-atom methods that we tested and their CE sequence-based expressions
is very high (root mean square deviation 1.1–4.7 kcal/mol, R 2 ¼ 0.7–1.0). Third, the functional form of the CE energy
expression is such that individual terms of the expansion have clear physical interpretations. We derived expressions
for the energies of three classic protein design targets—a coiled coil, a zinc finger, and a WW domain—as functions of
sequence, and examined the most significant terms. Single-residue and residue-pair interactions are sufficient to
accurately capture the energetics of the dimeric coiled coil, whereas higher-order contributions are important for the
two more globular folds. For the task of designing novel zinc-finger sequences, a CE-derived energy function provides
significantly better solutions than a standard design protocol, in comparable computation time. Given these
advantages, CE is likely to find many uses in computational structural modeling.
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Introduction

Protein structure prediction, homology modeling, fold
recognition, and design, including the prediction and design
of macromolecular interactions, are among the most complex
and essential problems in contemporary computational
structural biology. Proteins are critical players in the cell,
and their function is dictated by their structure. Because the
number of proteins with known sequence far exceeds the
number with known structure, an ability to predict structure
from sequence would be extremely valuable. On the other
hand, designing proteins with specific structure and function
is also important because of the usefulness of proteins as
reagents and therapeutics [1].

At the heart of any computational approach to protein
design or structure prediction lies the problem of determin-
ing the fitness (effective energy) of a particular protein in a
given conformation or state. Depending on the method used,
this effective energy may correspond to different physical
quantities, e.g., stability, solubility, binding affinity, catalytic
efficiency, or a combination thereof. In protein design, the
goal is to optimize this fitness in the large space of possible
amino-acid sequences. In the fold-recognition approach to
structure prediction (also called threading), the goal is to
identify the most suitable structure for a particular sequence,
given a library of known folds. In both cases, the complexity
of the problem imposes two sometimes conflicting require-

ments on the energy function used: physical accuracy and
computational efficiency.
There are two major classes of fitness functions used in the

fields of structure prediction and design. Lazaridis and
Karplus [2] refer to these as statistical effective energy
functions (SEEFs) and physical effective energy functions
(PEEFs). SEEFs are derived from databases of proteins with
known structures and describe the distribution of residues (or
atoms) at different distances, solvent exposure, and some-
times more complicated measures, such as local atom density
or relative orientation of secondary structure elements [3].
These terms are treated as effective potentials for calculating
the energy of a protein in a given conformation. Most
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statistical energy functions include up to pair interactions [4–
6]. However, it has been suggested that pairwise statistical
energy functions may not be suitable for protein design or
fold prediction [7,8], so some SEEFs include higher-order
terms [8–10]. The advantages of SEEF methods lie in their
computational efficiency, simplifying abstraction from de-
tails, and ability to implicitly capture effects such as
desolvation, loss of entropy, and the hydrophobic effect,
which are hard to account for explicitly. To gain these
benefits, accuracy and physical interpretability are compro-
mised.

PEEFs use atomic-level representations to capture under-
lying physical phenomena and approximate the free energy
of the studied system. Some of the terms commonly included
in PEEFs are van der Waals interactions, electrostatic
interactions, hydrogen bond energies, dihedral angle torsion
energies, atomic desolvation energies, and solvent-accessible
surface area–dependent or volume-dependent estimates of
the hydrophobic effect [2,11–13]. Some attempts have also
been made to model side-chain entropy [14]. The advantage
of PEEFs is that they have the potential to provide a more
comprehensive understanding of the observed phenomena.
The disadvantages are that much of the underlying physics is
difficult to account for quantitatively, and when it is possible
to do so, it is usually computationally expensive. An optimal
energy function would have the simplicity and computational
efficiency offered by SEEFs while retaining the theoretical
rigor and physical interpretability of PEEFs.

A protein’s behavior is a function of its sequence, given a
defined environment. In particular, the energy required for a
protein to fold to a given state or conformation (a quantity of
central importance for protein design and structure pre-
diction problems) is a function of its sequence regardless of
the complexity of the underlying physics that determines that
energy. In this paper we present a general method by which
the energy of a protein on a fixed backbone, given by an
arbitrary energy function, can be accurately expressed as a
simple function of its sequence. In principle, this method can
be applied in conjunction with any energy function, the only

limitation on the complexity being that it must be possible to
generate energies for enough training sequences with
reasonable computational effort. We illustrate an application
in which the calculated molecular mechanics energy of a
protein, with a continuum treatment of solvation, can be
mapped to a simple function of sequence that is extremely
fast to evaluate and that maintains high accuracy. We find
that the number of training sequences required to compute
this mapping is significantly lower than would normally be
adequate for sequence–space searches done in protein
design. Furthermore, the resulting expansion retains, and in
certain ways enhances, physical interpretability.
In the following sections, we first present an overview of

the theory of cluster expansion (CE) and detail its application
to protein structural modeling. We point out how the
expansion consists of terms that are conceptually familiar
to biochemists. We then go on to apply the method to three
protein systems: the a-helical coiled coil, the zinc finger, and
the WW domain. For each system, we show that CE can derive
useful yet highly simplified energy expressions. We conclude
with a direct demonstration of the power of CE in protein
design.

Theory
We seek to express the energy of a protein folding to a

particular conformation as a function of its sequence. To
accomplish this, we employ the technique of cluster expan-
sion. CE is a method for representing a property (in this case,
energy) that depends on discrete and topologically ordered
degrees of freedom in a system [15]. The method finds its
origin in alloy theory, in which very expensive ab initio
calculations are required to accurately capture material
properties, and only computations on a small number of
atomic arrangements with relatively small unit cells are
possible [15,16]. The CE is essentially a parameterization of
the energy in terms of discrete variables that give the
occupancy of each lattice point in the crystal. When the
occupation variable is a spin variable (ri¼þ1 or �1), the CE
takes on the form of a generalized Ising model. This approach
has proven itself highly accurate in predicting alloy phase
diagrams [17–19] and in identifying novel low-energy crystal
structures [20,21].
In its more general form, CE is an expansion of the energy

in a set of linearly independent basis functions that span the
relevant configuration space (e.g., all possible distributions of
atoms A and B on a crystal lattice, or all possible amino-acid
sequences on a protein backbone). In most forms, the basis
set of the CE is mathematically complete by construction, and
a full expansion will result in a perfect representation of the
energy. Truncated expansions may have practical utility,
however. The use of a truncated CE to model the energy is
analogous to using any truncated expansion in basis
functions (e.g., plane waves or spherical harmonics) to
represent a complex unknown function. The goal in devel-
oping an effective CE is to identify a truncated expansion
that, when fit to a training set of data, provides an accurate
mapping between degrees of freedom and energy using a
minimal number of parameters.
We have recently pioneered the use of CE for describing

protein energetics [22]. To do so, we make a correspondence
between an alloy lattice and a protein backbone, and between
alloy constituent elements and amino acids. Whereas alloy
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Synopsis

Many applications in computational structural biology involve
evaluating the energy of a protein adopting a specific structure. A
variety of functions are used for this purpose. Statistical potentials
are fast to evaluate but do not have a clear biophysical basis,
whereas physics-based functions consist of well-defined terms that
can be costly to compute. This paper describes how the theory of
cluster expansion, originally developed to describe the energies of
alloys, can be applied to generate a physical potential for proteins
that is extremely fast to evaluate. Cluster expansion is a way of
representing a property of a system as a discrete function of its
degrees of freedom. In this paper, it is used for the problem of
protein design, where the energy is determined by the identities
and conformations of amino acids at different sites on a fixed
protein backbone. Application of cluster expansion to three small
protein folds—the a-helical coiled coil, the zinc finger, and the WW
domain—shows that protein sequence can be mapped directly to
energy using a surprisingly simple function that maintains high
accuracy. Promising results on these small systems suggest that the
theory may have utility for macromolecular modeling more
generally.
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problems are typically solved for two or three possible species
per site, the complete collection of natural amino acids
requires 20 species per site. Such a dramatic increase in phase
space requires some reformulation of the CE implementation
typically used for alloys. The general idea is to define a set of
basis functions that correspond to the energetic contribu-
tions of single amino acids at single sites, pairs of amino acids
at pairs of sites, triples of amino acids at sets of three sites,
and so on. If intuition holds, the lower-order terms in this
expansion will be more important than the higher-order
ones, and a truncated expansion will be sufficient to
represent the energy. In practice, given a set of training
sequences and their energies, the CE is derived by starting
with lower-order terms and successively considering higher-
order contributions until a fit of the expansion to the data
gives adequate performance when tested under cross vali-
dation. This process is outlined in the flowchart in Figure 1
and elaborated in the Materials and Methods. A formal
description of the theory of CE as we have applied it to
protein energetics follows.

Given a discrete variable r that can take on M different
values (r ¼ 0 . . . M � 1), any function of it can be expanded
using a basis set of M linearly independent functions
U¼ f/0[1, /1, . . . , /M�1g:

f ðrÞ ¼
XM�1
a¼0

Ja/aðrÞ ð1Þ

where Ja are constants. A similar statement can be made
about any function f ð~rÞ of N discrete variables

~r ¼ fr1 ¼ 0 . . . M � 1; . . . ;rN ¼ 0 . . . M � 1g, because ~r
can be thought of as a discrete variable with MN possible
values. Thus, to expand f ð~rÞ exactly, a basis set with MN

functions is needed. Let vector ~r represent an amino-acid
sequence with element indices of the vector corresponding
to sites on the protein under study. Thus, we consider N
sites on a protein with M amino acids possible at each site.
Further, let function f ð~rÞ be the optimal energy of sequence
~r on a given backbone. According to the CE formalism [15],
a particularly convenient basis set for expanding f ð~rÞ can
be obtained by considering all the possible products
between funct ions in the N point bas i s se ts
Ui ¼ f/0ðriÞ[ 1;/1ðriÞ; . . . ;/M�1ðriÞg, each completely de-
scribing the sequence space at site i. Thus, a basis set
suitable for expanding f ð~rÞ is defined in the product space
of the point functions:

U9 ¼ U1 � U2 � . . .� UN ¼
½1�;
½/1ðr1Þ�; . . . ; ½/M�1ðr1Þ�; ½/1ðr2Þ�; . . . ; ½/M�1ðr2Þ�; . . . . . . ;
½/1ðrN Þ�; . . . ; ½/M�1ðrN Þ�;
½/1ðr1Þ/1ðr2Þ�; . . . ; ½/1ðr1Þ/M�1ðr2Þ�; . . . . . . ;
½/M�1ðr1Þ/M�1ðr2Þ�; . . . . . . . . . ; ½/M�1ðrN�1Þ/M�1ðrNÞ�;
½/1ðr1Þ/1ðr2Þ/1ðr3Þ�; . . . . . . . . . ;
½/M�1ðrN�2Þ/M�1ðrN�1Þ/M�1ðrNÞ�;

..

.

½/1ðr1Þ/1ðr2Þ/1ðr3Þ . . . /1ðrNÞ�; . . . . . . . . . ;
½/M�1ðr1Þ/M�1ðr2Þ/M�1ðr3Þ . . . /M�1ðrNÞ�

8>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>:

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;
ð2Þ

where in each row, the subscripts that index functions /
independently run through 1. . .M � 1 and the superscripts
indexing protein sites take on all possible combinations of
1. . .N, without duplicates. Each basis function in this set
(expressions in square brackets in Equation 2) depends on the
amino-acid identity at either no sites (constant term), one
site, two sites, and so on. We call a set of specific sites a cluster.
Each cluster has several basis functions, or cluster functions
(CFs), associated with it. For instance, any point cluster i (a
cluster consisting of site i) has M � 1 CFs associated with it
(functions /1(r

i),. . .,/M�1(r
i) but not /0(r

i)[1, which is
attributed to the constant cluster). Therefore, there are a
total of N (M � 1) point CFs (the second row in Equation 2)
because there are N point clusters. Similarly, each pair cluster
fi, jg has (M �1)2 CFs associated with it (/0(r

i)/k(r
j)[/k(r

j)
and /k(r

i)/0(r
j)[/k(r

i) are associated with point clusters i
and j for k . 0 and with the constant cluster for k ¼ 0).
Because there are N (N� 1)/2 pair clusters, the total number
of pair CFs is (M�1)2 (N�1)/2 (the third row in Equation 2).

For a size-k cluster, there are
�N
k

�
� ðM � 1Þk CFs. Therefore,

the total number of CFs is
PN

k¼0
�N
k

�
� ðM � 1Þk ¼ MN , and

there are as many linearly independent CFs in the basis set
as there are possible values of the discrete variable ~r. Given
the constructed basis set, we can exactly expand the energy of
a sequence on the modeled backbone as:

f ð~rÞ ¼
X
I

X
A

J IAw
I
A ð3Þ

where I is a cluster of sites, wI
A is the A-th CF associated with

cluster I, and the coefficients J IA are referred to as effective
cluster interactions (ECIs).

Figure 1. The Procedure for Fitting a Cluster Expansion

Cluster functions (CFs) capture the contribution of a particular set of
amino acids (aa) at a set of sites. Point, pair, and triplet CFs contain the
contributions of amino acids at single sites, pairs of sites, triplets of sites,
etc. The energetic contribution of any cluster function CFi is denoted by
the variable Ji. CV score designates the cross-validation root mean square
error (i.e., the average error with which the energy of each sequence is
predicted when left out of the fit), and its behavior serves as a measure
of parameter significance. The goal of the fitting procedure is to find an
optimal pool of CFs with which to expand the energy. Point and
constant (const) CFs are always included and thus form an initial pool of
CFs. In the next step, all pair CFs are considered as candidates. In order to
asses the relative importance of candidate CFs, they are initially all added
into the fit and their corresponding Ji’s are stored. The candidates are
then visited one by one in the order of decreasing jJij and considered for
inclusion into the CF pool. Candidates are included if they reduce the CV
score. If the final CV score upon trying all pair CFs is not satisfactory, the
list of candidates is appended with higher-order terms, and the
procedure is repeated. Details are provided in Materials and Methods.
DOI: 10.1371/journal.pcbi.0020063.g001
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Interpretation of the Expansion
Because the point basis set at a single AA site

U ¼ f/0 [ 1;/1; . . . ;/M�1g can be any set of linearly inde-
penden t func t i on s , we choose fo r s imp l i c i t y
/aðrÞ ¼ dða � ðr� aÞÞ. In other words /0ðrÞ is always one,
and for a . 0, /aðrÞ is always zero unless it is applied to the
amino acid with index a. For any particular sequence
~r ¼ fr1; . . . ;rNg, the only CFs that remain in the expansion
are of the form /r iðriÞ � � �/r j ðr jÞ where ri. . .r j 6¼ 0 (see
Equation 2) and thus f ð~rÞ is expressed as:

f ð~rÞ ¼ J0 þ
X

i
r i 6¼ 0

J ir i/r iðriÞ þ
X
i 6¼ j

ri;r j 6¼ 0

J ijr ir j/r iðriÞ/r j ðr jÞ þ � � �

¼ J0 þ
X

i
ri 6¼ 0

J ir i þ
X
i 6¼ j

r i;r j 6¼ 0

J ijr ir j þ � � � ð4Þ

The first term in the expansion is constant and J0 can be
thought of as the energy of a reference sequence. Indeed, for
a hypothetical sequence ~r ¼ fr1 ¼ 0;r2 ¼ 0; . . . ;rN ¼ 0g,
the only surviving part of the expansion is the constant term.
The amino acid that is assigned index zero at each site defines
the reference sequence; for simplicity, we take this to be
alanine. The ECI corresponding to higher-order terms in the
expansion then define additional contributions to the energy
of a sequence relative to poly-alanine. For example, J ir i

corresponds to the point contribution of amino acid ri at site
i relative to alanine at that site. This is the sequence context–
invariant portion of an alanine-mutation energy. If there
were no interactions among amino acids, point contributions
and Ala-mutation energies would be equivalent. The context-
dependent effects are captured by higher-order terms. For
example, when interactions are present, the ECI correspond-
ing to the terms J ijr ir j capture the effective interaction
between amino acids ri at site i and r j at site j relative to
an Ala-Ala pair. Notice, however, that for amino-acid pairs
Ala-X at sites i–j, where X denotes any amino acid, there is no
corresponding term J ijr ir j in the expansion (see Equations 3
and 4). The contribution of this interaction is captured in the
point energy for amino acid X at site i. Therefore, the ECI
corresponding to J ijr ir j represents the pure effective inter-
action between the two amino acids, devoid of self contribu-
tions. This is conceptually identical to a double-mutant
coupling energy—a measure well known to biochemists [23–
25]. Coupling energies measure the change in stability
brought about by a double mutation, corrected by the change
in stability due to each of the two single mutations. If the
reference sequence in our CE is poly-alanine, pair ECI
correspond to double-alanine mutant coupling energies.

Even though the physics determining the conformational
energy of a protein in solution is frequently modeled with
only single-atom energies and pairwise atomic interactions,
higher-order contributions may arise if one integrates out
some degrees of freedom. For example, when modeling
molecular solvation, if individual solvent molecules are
replaced with a continuum high-dielectric medium, higher-
order interactions are necessary to accurately describe
electrostatics as a function of conformational changes in
the solute [26]. Similarly, integrating out side-chain degrees
of freedom and expressing energy as a function of sequence
can lead to higher-order interactions between sequence

variables, even though on the atomic level no more than
pairwise interactions are present.
As shown in Equations 3 and 4, the CE formalism allows for

arbitrarily high-order interactions (up to N-tuples) of
residues. If all of the MN terms have to be accounted for,
such an expansion is not very useful. However, intuition
dictates that for physical systems, higher-order interactions
should be less important and, thus, that ignoring them may be
appropriate. If the expansion is truncated, the remaining
coefficients J IA can be fit to minimize the error between the
correct value of some desired fitness function and its CE
approximation. Given a set of training sequences ~r1 to ~rn

with known energies Eð~r1Þ to Eð~rnÞ, Equation 3 defines a
system of linear equations with J IA as the unknowns (each
equation corresponding to one sequence).

Eð~r1Þ
� � �

Eð~rnÞ

2
4

3
5 ¼

1 � � � w I
Að~r1Þ

� � � � � � � � �
1 � � � w I

Að~rnÞ

2
4

3
5 �

J0
� � �
J IA

2
4

3
5 ð5Þ

If there are more sequences than CFs, the linear system in
Equation 5 becomes over-determined, and it is possible to use
least-squares fitting to find the optimal values of J IA .

Results

In principle, the method of CE can be applied to any
property of a protein sequence that can be computed or
measured experimentally for a large set of training examples.
In this work, we expanded the energy of a sequence adopting
a particular backbone conformation, which is a necessary
component for protein design and some methods for fold
recognition. We computed this energy in two different ways.
First, using a side-chain repacking scheme and a molecular
mechanics potential (giving E f old

repack) and second, sub-
jecting every repacked structure to a short, continuous side-
chain relaxation procedure and then re-evaluating it
with a more accurate energy function that included a non-
pairwise decomposable electrostatics treatment (giving
E f old
min;GB)—see Materials and Methods.
In Results we describe the application of CE to model the

energetics of three different protein folds—the parallel
dimeric coiled coil (an extended periodic structure), the zinc
finger, and the WW domain (both aperiodic). These three
structures, though small, are each of significant biological
importance and have been the subject of previous protein
design efforts using a variety of techniques [27–31].

Coiled Coil
The method of CE is particularly well suited for systems

dominated by local interactions, because this limits the
number of clusters that need to be included. CE also has an
additional benefit in periodic systems, in which modeling the
energetics of a repeating unit cell can capture the behavior of
the entire system. Both conditions are usually true in alloy
theory, where the method is used extensively. Although
proteins are rarely periodic, there are instances in which they
are approximately so. An example of such a system is the a-
helical coiled coil. The coiled coil is a common structural
motif estimated to be present in approximately 5% of all
proteins [32]. It consists of two to five right-handed helices
that wrap around each other in a left-handed manner to form
a super helix [33,34]. Because of this super-coiling, the
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backbone geometry is repeated every seven residues—a unit
that is referred to as a heptad, with its residues labeled
abcdefg. Coiled coils can either be parallel (all N termini at
one end), anti-parallel (N and C termini at opposite ends), or
mixed (in higher-order oligomers). In a parallel dimeric
coiled coil (see Figure 2), positions a and d are located in the
core of the dimerization interface, whereas positions e and g
are largely solvent exposed and can form salt bridges between
strands of the coiled coil. Positions b, c, and f are solvent
exposed on the side of the helix opposite to the dimerization
interface.

The parallel dimeric coiled coil is an extended structure, so
it is reasonable to expect that only local clusters will
contribute significantly to the energy expansion. Addition-
ally, it is a periodic structure, so by accurately modeling the
interactions of one structural subunit (unit cell), we can
describe a coiled coil of arbitrary length. The unit cell must
contain within it all interactions likely to be important. We
postulated that interactions between amino acids more than
one heptad apart are not significant. Thus, we modeled the
unit cell as the central two-heptad section of a six-heptad
dimeric coiled coil in which the flanking sequences were
copies of the unit-cell sequence (see Figure 3). Because it is
generally assumed that positions b, c, and f play only a minor
role in determining the dimerization properties of coiled
coils, we set these to alanine in our model. Positions a, d, e,
and g were allowed to be one of 19 amino acids (all natural
ones except proline, which is rare in coiled coils).

We expressed the folding energy of a parallel dimeric
coiled coil (i.e., the difference between the dimer state and
the unfolded monomers state) as a function of its sequence.
In order to be tractable, the expansion in Equation 3 must be
truncated. Consistent with our unit-cell approximation, we
included only clusters involving sites no more than seven
residues apart in the expansion. Further, as a starting point,
we included only up to pair clusters, resulting in a total of 137
clusters. Taking into account coiled-coil symmetry (ECI for
symmetry-equivalent clusters are identical [15,16]), this was
reduced to one constant, four point, and 36 pair clusters with
unique ECI. To find appropriate values for coefficients J IA, we
considered approximately 30,000 randomly generated se-
quences (i.e., approximately 2.5 times as many sequences as J IA
parameters being fit) and computationally predicted their
structures under the assumption of a constant ideal backbone
and discretized side-chain conformations [35]. This involved

searching a conformational space of 1053 structures for an
average sequence. Given optimized structures, we calculated
E f old
repack for each and used these as a training set to find optimal

values for J IA (see Materials and Methods and Figure 1). Figure

Figure 2. Schematic of a Parallel Dimeric Coiled Coil

(A) Helical-wheel representation shows an end-on view of the structure. Opposing a and d residues interact in the core while opposing e and g residues
frequently participate in electrostatic interactions.
(B) Cartoon representation of the coiled coil, viewed from the side. Residues are represented as spheres. An e position is better located for interaction
with the g position of the previous heptad on the opposing strand than with the g position of the next heptad (bold arrows). This interaction is denoted
g-e9þ, and coupling energies for it have been determined experimentally [24].
DOI: 10.1371/journal.pcbi.0020063.g002

Figure 3. The Unit Cell Used for Modeling Coiled-Coil Interactions

The entire structure consists of three copies of the sequence of the
central unit cell, which is a1AAd1e1Ag1a2AAd2e2Ag2 on the one strand
and a99

1AAd99
1e99

1Ag99
1a99

2AAd99
2e99

2Ag99
2 on the other, marked in red (A ¼

alanine). Only positions a, d, e, and g were allowed to vary. The energy of
the central unit cell was calculated as the sum of its internal interactions
and half of its interactions with the bounding structure.
(A) Helical-wheel diagram corresponding to the entire structure
modeled, with sites in the central unit cell colored red.
(B) Ribbon diagram representation of the modeled system viewed as in
Figure 2B with the central unit cell colored red. Grey and orange balls
represent locations of side-chain Cb atoms of a/d and e/g sites,
respectively.
DOI: 10.1371/journal.pcbi.0020063.g003

PLoS Computational Biology | www.ploscompbiol.org June 2006 | Volume 2 | Issue 6 | e630555

Mapping Protein Sequence to Energy



4A shows the progress of the fit accuracy, measured by cross-
validation, as a function of the number and type of CFs
included in the expansion. The largest drop in error, per CF,
is due to point CFs. This is intuitive and consistent with the
fact that there are strong amino-acid preferences at different
coiled-coil heptad positions [36,37]. A few important pair CFs
further reduce the error significantly, and many less-
important pairs drive the error down slowly.

Figure 4B shows the performance of the resulting CE on
predicting coiled-coil energies for a test set of 4,000
sequences not present in the training set. When deriving
the expansion, we considered only the energy of a two-heptad
unit cell, so training-set sequences were periodic with a two-
heptad sequence repeated three times (see Figure 3 and
Materials and Methods). The test set, however, contained
non-periodic six-heptad sequences and allowed us to evaluate
not only the accuracy of the CE, but also the validity of the
unit-cell approximation. The overall root mean square
deviation (RMSD) is 1.96 kcal/mol, whereas that for more
relevant sequences (those with calculated energies below �5
kcal/mol) is 1.08 kcal/mol. This is a very small error and is in
fact comparable to or better than the accuracy of the
underlying energy function. Thus, for a six-heptad coiled
coil, the CE formalism reduces a sequence-structure space of
10115 possibilities to a search of 1061 sequences with minimal
cost in accuracy. The reduction of search space grows
exponentially with the length of the coiled coil modeled.

One of the strengths of the CE approach is that, in
principle, any energy function can be expanded as a function
of sequence. In a previous study we found that more
reasonable coiled-coil energies were obtained by allowing
the structures resulting from discrete side-chain repacking to
relax via several steps of continuous side-chain minimization
[35]. In addition, we derived a specific physics-based energy
model (HP/S) that performed well in predicting coiled-coil
dimerization preferences [35]. Unlike the original energy
function used above, HP/S is not pairwise decomposable at
the atomic level, due to its more accurate treatment of
electrostatics. We fit a CE for the HP/S energy using the same
training-set sequences as before. Figure 4C shows the
progress of the fit as a function of the number and type of
included CFs. Again, constant, point, and pair clusters are
sufficient for reasonable accuracy. Figure 4D shows the
performance of the resulting CE on a set of 4,000 test
sequences not included in the training set. The error for
relevant sequences (those with energies below 0 kcal/mol) is
1.96 kcal/mol. Note that these energies are not strictly on an
experimental scale. Our previous work has determined that
stable coiled coils of five to six heptads have energies varying
over 15 kcal/mol using this energy function [35], and random
sequences span a range of over 40 kcal/mol; this is surely
larger than the range of experimental free energies of
folding.

Figure 4. Cluster Expansion of Coiled-Coil Energies

(A) and (B) refer to the CE of E f old
repack ; in (C) and (D), energies from model HP/S [35] were used.

(A) and (C) represent the evolution of the CV score (the progress of the fit) as the number of CFs was increased, with the type of CF added at each point
(i.e., constant, point, or pair) indicated by color. The ordering of the points is described in Materials and Methods. The set of CFs and ECI used in the final
expansion was taken from the point with the minimal CV score, which is indicated on the graphs.
(B) and (D) show the performance of the respective CEs on predicting energies of 4,000 random sequences not included in the training sets. Insets show
the entire range of energies, whereas only sequences with reasonably low energies are shown in the main plots.
DOI: 10.1371/journal.pcbi.0020063.g004

PLoS Computational Biology | www.ploscompbiol.org June 2006 | Volume 2 | Issue 6 | e630556

Mapping Protein Sequence to Energy



Given the accuracy and simplicity of the CE functional
form, the task of evaluating the energy of a sequence is
reduced to several interaction table lookups, providing a
significant computational advantage. However, the CE for-
malism is also convenient because the functional form
implies that individual ECI have clear physical interpreta-
tions. Specifically, pair ECI correspond to double mutant
coupling energies. Figure 5A shows the agreement between
experimentally measured g-e9þþ coupling energies [24,38] (the
prime designates the opposite strand and the plus sign [þ]
indicates the next heptad) and the corresponding pair ECI
from the CE of E f old

repack. The excellent agreement illustrates the
physical interpretability of the CE. Figure 5B shows the same
correspondence, but for pair ECI from the cluster expansion
of HP/S energies. Because in the calculation of coupling
energies the effect of the unfolded state cancels exactly, we
observe a largely quantitative agreement between theory and
experiment, unlike in the case with folding free energies.

Zinc Finger
A cluster expansion including only up to residue–pair

interactions works well for the coiled coil, an extended fold in
which only local interactions are likely to be important. To
test whether this is a unique property of the coiled coil and
whether higher-order interactions are important in more
globular folds, we examined the zinc-finger motif. Zinc
fingers are found in a diverse set of proteins that require
coordination of one or more zinc ions to stabilize their
structure [39]. Cys2His2 zinc fingers coordinate a zinc ion with
two cystine and two histidine residues and are found in many
DNA-binding proteins. Among these, the murine zinc finger
Zif268 has been extensively studied [40]. To derive a CE
describing the Zif268 fold, we defined the backbone using
coordinates from the Protein Data Bank (PDB) entry 1ZAA,
residues 33–60. The amino acids allowed at each site were
based on the classic design by Dahiyat et al. [29] and were
such that one core site was chosen from seven aliphatic amino
acids, 18 surface sites varied among ten amino acids and
seven interface sites were selected from 16 amino acids (a
sequence space of 1027). This restriction gives design
sequences with better physical properties while retaining a
large and diverse protein design search space. Side-chain
repacking was used to calculate folding energies E f old

repack for
approximately 60,000 random training sequences and a CE
was derived. Results for the zinc finger are summarized in

Figure 6. The progress of fitting E f old
repack is shown in Figure 6A,

where the order in which triplet and pair CFs were added is
defined in Figure 1 (see Materials and Methods). In this case,
triplet CFs are necessary to attain good accuracy, and it is not
strictly true that pair terms contribute more significantly
than triplet terms. Additionally, the contribution of point
terms is relatively larger than for the coiled coil, indicating
that an amino acid’s contribution to the overall energy is
affected significantly by the three-dimensional template of
the molecule. Figure 6B shows the accuracy of the derived CE
when tested on a set of 4,000 random sequences not included
in the training set. The RMSD of 15.3 kcal/mol over the entire
range of energies is quite high, but this is due to the large
spread in energies (over 1,000 kcal/mol) caused by many of
the sequences producing van der Waals clashes. As a
percentage of the range, the error is quite low (,1.5%), and
for the more realistic zinc-finger sequences (those with
negative energies), the error is only 2.5 kcal/mol. In this case,
CE reduces a sequence-structure space of 1060 to 1027

sequences.
To expand a more physically meaningful energy, we used

approximately 30,000 structures to calculate E f old
min;GB for each

and used these for training. The progress of the resulting CE
fit is shown in Figure 6C. Once again, triplet terms are
important for attaining good accuracy. Most of the triplet CFs
arise from the two triplet clusters shown in Figure 7. These
are structurally compact, with CFs of significant magnitude
mostly corresponding to large amino acids (such as Y, F, and
W). Such clusters represent close-range interactions of bulky
residues. Figure 6D shows the performance of the CE on a test
set of 4,000 sequences not included in the training set.
Though the agreement is still very good (R2¼ 0.85), the error
is larger than in other cases (4.61 kcal/mol for sequences with
energies ranging between 0 and�60 kcal/mol) indicating that
the more complicated geometry of the domain may make the
energy a more complex function of sequence.

WW Domain
The WW domain is a protein–protein interaction motif

composed of 35–40 residues. It forms the smallest known
independently stable triple-stranded antiparallel b-sheet.
WW domains bind proline-rich or proline-containing ligands
[41]. A defining feature of this motif, from which its name is
derived, is the presence of two tryptophans spaced 20–22
residues apart. Under the assumption that the statistical

Figure 5. Agreement between Experimentally Measured Double-Alanine Coupling Energies and Corresponding Pair ECI

The coupling energies for residues E, Q, R, and K at g-e9þþ [24] and corresponding pair ECI from the CE (in kcal/mol) are shown.
(A) Energies from repacking calculations, E f old

repack, were used to fit the CE.
(B) E f old

min;GB energies were used to fit CE.
DOI: 10.1371/journal.pcbi.0020063.g005
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information encoded in multiple sequence alignments of WW
domains reflects evolutionary constraints, Ranganathan and
co-workers have used these statistics to engineer artificial
WW domains with specific binding properties [28,42]. Protein
design methods using energy functions similar to those we
employ here have also been applied to this domain [31].

We derived a cluster expansion for the WW domain that
captures relationships between sites that are important for
folding energetics. We used the structure of human PIN1 WW
domain to define backbone coordinates and chose an
alphabet of amino acids at each site using a multiple-
sequence alignment of WW domains from the SMART
database [43]. The choices at each position covered at least
90% of all naturally occurring residues. Thus the search space
is very diverse, while at the same time it excludes sequences
that are grossly incompatible with the WW domain fold and
not worth searching. The resulting problem had an average of
7.5 amino acids per position and a total of 1.13 1027 possible
sequences. We explicitly computed structures for approx-
imately 42,700 random sequences and estimated their folding
energies.
Results of applying CE to the WW domain are summarized

in Figure 8. Figure 8A shows the progress of expanding E f old
repack

as a function of the number and type of CFs in the expansion.
Similar to the zinc finger, we found that higher-order terms
(11 triplet clusters and one quadruplet cluster) were
necessary for good agreement. Figure 8B shows the perform-
ance on a set of 4,000 test sequences not included in the
training set. The error of only 1.76 kcal/mol over a range of
approximately 40 kcal/mol is impressively low and the
correlation is good. Here CE reduces a sequence-structure
space of 2.6 3 1065 to 1.1 3 1027 sequences.

Figure 6. Cluster Expansion of Zinc-Finger Energies

(A) and (B) refer to the CE of E f old
repack ; in (C) and (D), E f old

min;GB was used.
(A) and (C) represent the evolution of the CV score (the progress of the fit) as the number of CFs was increased, with the type of CF added at each point
(i.e., constant, point, pair, triplet, or quadruplet) indicated by color. The ordering of the points is described in Materials and Methods. The set of CFs and
ECI used in the final expansion was taken from the point with the minimal CV score, which is indicated on the graphs.
(B) and (D) show the performance of the respective CEs on predicting energies of 4,000 random sequences not included in the training sets. Insets show
the entire range of energies, whereas only sequences with reasonably low energies are shown in the main plots.
DOI: 10.1371/journal.pcbi.0020063.g006

Figure 7. Important Triplet Clusters for the Expansion of Zinc-Finger

Energies

Orange balls represent the location of the Cb atoms of side chains. Two
clusters are shown, one in red and one in blue.
DOI: 10.1371/journal.pcbi.0020063.g007
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Figure 8C shows the progress of expanding E f old
min;GB for the

WW domain. Once again, higher-order interactions contrib-
ute significantly to the expansion. However, the relative
contribution of point terms as compared to the case in which
no minimization was done (Figure 8A) is much larger. This is
likely due to the fact that many high-energy side chain–to–
side chain interactions were relieved upon minimization.
Several triplet clusters contribute many CFs of considerable
magnitude. However, unlike for the zinc finger, for the WW
domain there are two types of triplet clusters. One consists of
structurally compact sites, and CFs arising from these clusters

are mostly positive and correspond to large amino acids (see
Figure 9A for an example). In the other, sites are more
structurally dispersed, and combinations of residues produc-
ing significant CFs consist mostly of charged and polar amino
acids (see Figure 9B). These two types of clusters roughly
correspond to the two main classes of interactions we
model—van der Waals (short range) and electrostatics (which
can be long range). Additionally, there is one quadruplet
cluster that seems to be important for overall accuracy—it is
shown in Figure 9C. The set of amino acids at this cluster that
give rise to large CFs is diverse, and it does not have a clear

Figure 8. Cluster Expansion of WW-Domain Energies

(A) and (B) refer to the CE of E f old
repack ; in (C) and (D), E f old

min;GB was used.
(A) and (C) represent the evolution of the CV score (the progress of the fit) as the number of CFs was increased, with the type of CF added at each point
(i.e., constant, point, pair, triplet, or quadruplet) indicated by color. The ordering of the points is described in Materials and Methods. The set of CFs and
ECI used in the final expansion was taken from the point with the minimal CV score, which is indicated on the graphs.
(B) and (D) show the performance of the respective CEs on predicting energies of 4,000 random sequences not included in the training sets. Insets show
the entire range of energies, whereas only sequences with reasonably low energies are shown in the main plots.
DOI: 10.1371/journal.pcbi.0020063.g008

Figure 9. Important Higher-Order Clusters for the Expansion of WW-Domain Energies

Orange balls represent the location of the Cb atoms of side chains.
(A) A structurally compact cluster corresponding to short-range interactions.
(B) A more disperse cluster arising from long-range electrostatic interactions.
(C) Quadruplet cluster with many contributing CFs corresponding to a wide range of amino-acid types.
DOI: 10.1371/journal.pcbi.0020063.g009
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structural or energetic interpretation. The error of the fit, 4.7
kcal/mol (Figure 8D), is higher than before but, considering
the energy range of over 300 kcal/mol, this is sufficiently
accurate to be very useful.

A Design Application and Speedup Analysis
Because the sequence-dependent energy function provided

by CE is enormously simplified relative to the full physical
model, it takes significantly less time to evaluate the energy of
one sequence. This parameter is of critical importance in
protein design, where very large sequence spaces need to be
searched. We compared the amount of time it takes to
evaluate the energy of one sequence either with the direct
structural method or using CE (see Materials and Methods; all
computations were run on 2.4-GHz CPU machines with 2 GB
of memory, although memory was not a limiting factor). For
the coiled-coil system considered above (a total of 48 variable
sites), it took 360 s on average to repack, minimize, and re-
evaluate one sequence. Using CE, it took 4310�5 s to evaluate
an approximation of that same energy, a speedup of 9 3 106.
For the zinc finger (a total of 26 variable sites), it took on
average 70 s per sequence for the structural method and 7 3

10�6 seconds with CE—a speedup of 107. And finally, for the
WW domain (34 variable sites), the corresponding times were
70 s and 6 3 10�6 s—a speedup of 1.2 3 107.

The large speed advantage of CE comes at the cost of an
error in energy. In addition, deriving a CE relies on
evaluating a set of training sequences with the slower,
atomic-level methods and carrying out the fitting procedure.
To assess the overall advantage that CE brings to protein
design, we used the zinc finger as an example and carried out
two design procedures. One was a sequence search driven by
the ‘‘exact’’ energies obtained by repacking, minimizing, and
evaluating every sequence (direct design). The other consisted
of using the same evaluation procedure to calculate energies
for a training set of random sequences, deriving a CE and
performing a sequence search guided by CE energies (CE
design). In an approximation of a head-to-head competition,
the two methods were allowed the same amount of wall-clock
time (approximately 2 d), and up to 20 processors, as follows.
Direct design was allowed to sample a total of 60,000
sequences by performing 20 independent Monte Carlo runs,
each with 3,000 steps (with the temperature linearly falling
from 1,000 K to 298 K and the acceptance of each step
governed by the Metropolis criterion [44]), which took 2 d on
20 processors. Fitting the CE required explicit modeling of
approximately 30,000 sequences, which took 1 d on 20
processors. In addition, the fitting procedure (run in serial)
took approximately a day of mostly human operational time
(see Materials and Methods for details of the fitting
procedure). Upon completing the fit, CE design was given
12 min on one processor to run 100 Metropolis Monte Carlo
searches guided by CE energy, each with 106 steps and the
same temperature range as above. The best sequences from
each of these 100 runs were then explicitly repacked,
minimized, and evaluated using the original, direct energy
function. Figure 10 compares energy histograms correspond-
ing to these sequences (with their energies evaluated with the
explicit energy function) and the 100 best sequences from
direct design. Clearly, due to its ability to cover a consid-
erably larger sequence space, CE discovers significantly better
sequences.

Discussion

We successfully adapted the method of cluster expansion
[15], often used in alloy theory, to express the energies of
proteins in several backbone conformations directly as
functions of their sequences [22]. The resulting energy
functions are a tremendous simplification relative to the
underlying physical model, and as such offer an enormous
computational speedup compared to explicit atomic-level
calculations. Despite their simplicity, these functions produce
energies in close agreement with those obtained through
explicit calculations. Additionally, the functional form
associated with the CE formalism ensures that the individual
terms of the final expression are easily interpreted physically.
The fact that this approach can be used in conjunction with
any theoretical or experimental energy function, regardless
of its complexity, makes this a very powerful general method
that is likely to prove useful for many computational
structural approaches.
We successfully applied CE to three model systems and

illustrated its potential for computational protein design.
Figure 4 shows the results for the parallel dimeric coiled coil.
We found that including only up to pair interactions in the
CE was sufficient for excellent agreement, giving an error of
just 1–2 kcal/mol. Interestingly, several methods of scoring
coiled-coil dimerization have assumed that pair interactions
in sequence space are sufficient to describe the fold
[36,45,46]. Additionally, many experimental studies of
coiled-coil interactions have made the assumption that a
pair of amino acids at a pair of sites has a roughly constant
contribution, regardless of the remaining sequence environ-
ment [38,47]. The finding that a CE with only up to pair terms

Figure 10. Distribution of the Energies of the Top 100 Sequences from

Direct Design and CE Design

The best solutions from CE design were modeled and repacked using the
direct method for comparison purposes. Thus, the reported energy is
that computed using the direct method for both cases. The best
sequence found with CE design is significantly better than the best one
from direct design. Also, the ensemble of best sequences found with CE
is significantly more stable than that from direct design. This indicates
that its greater speed allows CE design to reach and sample a lower-
energy sequence space.
DOI: 10.1371/journal.pcbi.0020063.g010
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is sufficient to accurately describe the energy of the entire
structure supports these assumptions.

One of the strengths of the CE approach is the trans-
parency of the functional form and the consequent inter-
pretability of the fitting coefficients. Supporting this, we
demonstrate good agreement between experimentally meas-
ured coiled-coil g-e9þ coupling energies [24] and the
corresponding pair ECI from the CE (see Figure 5). These
measures are not exactly equivalent, as coupling energies are
measured in a specific context, whereas ECI capture an
effective interaction between two residues that is independ-
ent of surrounding sequence. Practically, however, much of
the context-dependence probably cancels in corrections for
single-site effects.

There is a less direct correspondence between point ECI
and Ala-mutation energies, which are very sensitive to
environment. Additionally, self contributions to folding are
more sensitive than coupling energies to the nature of the
unfolded state, and modeling the unfolded state is a challenge.
However, we do find qualitative agreement between point ECI
and experimentally observed positional amino-acid prefer-
ences. Leucine has the most favorable point ECI at d positions
according to the CE derived from minimized structures.
Analysis of parallel dimeric coiled-coil sequences shows that
Leu is by far the most common residue at position d [36,37,45].
Moitra et al. have further shown that in at least two slightly
different sequence backgrounds, Leu is the most stabilizing
aliphatic amino acid at the d position [48]. Based on these
results, it is reasonable to propose that the observed
preference for Leu at d positions in parallel dimeric coiled
coils comes from a favorable single-body energetic contribu-
tion, as captured in the CE. Sequence analysis also suggests
that Leu is the most common amino acid at the a position
[36,45]. Accordingly, Leu has the second best point ECI at a
according to the CE. In fact, six of the top sevenmost favorable
amino acids based on point ECI are also among the top seven
most frequently observed amino acids at a positions [36].

We also applied the CE approach to two more compact
folds—the zinc finger and the WW domain, and these differ
from the coiled coil in several respects. First, higher-order
CFs are necessary for a good fit. Important triplet clusters can
be either structurally compact or disperse. In compact
triplets, the largest ECI correspond to combinations of large
hydrophobic amino acids engaged in short-range van der
Waals interactions. Examples of such clusters are shown in
Figures 7 and 9A. Disperse clusters arise from long-range
electrostatic interactions, and most significant ECI arise from
triplets of charged and polar amino acids (see Figure 9B).

Another difference between the coiled coil and the two
more globular systems is that the accuracy of the fit is better
for the coiled coil. CE can attain an arbitrary degree of
accuracy provided enough terms are included. However, to
derive statistically meaningful ECI for high-order interac-
tions, enough sequences are needed to provide several
instances of that interaction. Thus, it was easier to derive a
good fit for the coiled coil, where only up to pair clusters
were required, than to identify and fit the triplet and
quadruplet terms necessary to describe the zinc finger and
the WW domain folds. Ultimately, the desired target accuracy
is dictated by the application. For protein design, in which
the goal is to find one or several good sequences, the
magnitude of the error in all three systems is amply

compensated by a sizeable increase in the accessible sequence
space, especially given that the underlying full-detail physical
models are only approximations themselves and do contain
significant errors. For other applications, higher accuracy
may be obtained by including more CFs and training on
larger datasets, and/or by iteratively improving the CE fit by
generating biased training datasets enriched with poorly fit
sequences. Theoretically, because the complete expansion is
exact, any desired level of accuracy can be attained. However,
the cost of this (i.e., in time and memory requirements)
depends on the specifics of the system under study, which is
already apparent from the examples considered here.
Alternatively, in cases in which the accuracy of the expansion
is not high enough for direct application, CE can be used as a
highly efficient filter followed by evaluation with a higher
resolution energy function.
A trend seen in all three systems is that the accuracy of theCE

fit is worse afterminimizing the structures and evaluating them
with a non-pairwise decomposable energy function. This
indicates that the energy resulting from this procedure is a
more complicated function of sequence. Interestingly, in these
cases fewer important higher-order interactions are detected.
This might indicate that structure relaxation reduces the
importance of each high-order interaction, so they are harder
to detect, but there could be more of them. Even though the
error is larger for cases with minimization, the actual energies
aremore informative because they are devoid of the unphysical
van der Waals clashes that often result from optimization in
discrete side-chain space. In addition, the computational
speedup is especially significant here, as minimization and re-
evaluation are computationally expensive.

Conclusions
The advantages offered by the CE methodology should

make it widely useful in computational structural biology. We
have demonstrated the application of CE to protein design
problems in sequence spaces up to 1027. Application to fold-
recognition problems of similar size should be straightfor-
ward, although the best energy function to expand may differ
from that used here. In both design and fold-recognition, CE
can be applied to help relieve the fixed backbone approx-
imation by expanding energies for several variants of the
same structure. Once expansions are complete, evaluation of
a sequence, or of all sequences in a proteome, on each of the
backbones is extremely fast. Additionally, given the inter-
pretability of CE, cluster expansions of many closely related
structures may reveal key structure determinants.
The prospect that CE may be able to provide a general tool

for approaching problems in protein structure prediction
and design, beyond the initial demonstrations that we present
here, is exciting. Where the limits of the approach lie remains
to be explored. We have shown that the type of expansion
required will be sensitive to the protein fold studied and to
the nature of the energy function being expanded. Large
proteins will require more parameters and possibly more
memory-efficient fitting procedures. It is easy to imagine
many promising heuristics for choosing which parameters to
fit strategically, however, and/or for partitioning larger
problems into smaller ones. We hope that the modeling
community will join us in exploring the boundaries of CE for
their own problems of interest. The potential payoffs, as we
have demonstrated here, are very large.
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Materials and Methods

Repacking and minimization. Energies for repacking were calcu-
lated in CHARMM based on parameter set 19 [49]. The energy
function consisted of van der Waals energy (with atomic radii scaled
to 90%), dihedral angle torsion energy, screened electrostatic
interactions given by a distance-dependent dielectric model, and
desolvation energy given by the EEF1 model [50,51]. We treated the
unfolded state by ignoring all side chain–to–side chain interactions
and treating each side chain on a five-residue stretch of its local
native backbone. Rotamers were taken from the Dunbrack 2002
rotamer library [52]. We used our implementation of the dead end
elimination (DEE) and A* branch and bound algorithms [53–58] to
find the optimal structure for each sequence. Given this structure, we
calculated its folding energy E f old

repack using the potential used for
repacking. To compute more accurate energies (devoid of large
uninterpretable steric clashes and with better electrostatics), we
subjected the solutions obtained with DEE to continuous side-chain
minimization in CHARMM (ten cycles of steepest-descent minimiza-
tion and ten cycles of adopted-basis Newton-Raphson minimization).
The resulting structures were evaluated with an alternate energy
function in which 100% radii were used for van der Waals
calculations, and screening of electrostatic interactions was modeled
using the Generalized Born model with ‘‘perfect’’ Born radii
[59] computed using the program PEP [60] (E f old

min;GB). For the zinc
finger and WW domain, the same penta-peptide representation of
the unfolded state as before was used for calculating reference
energies. For the coiled-coil system, additional modifications were
made to the unfolded state according to an energy model previously
shown to perform well in recognizing coiled-coil dimerization
preferences (model HP/S) [35].

The coiled-coil unit cell. To derive a scoring function for coiled
coils of arbitrary length, we expanded the energetics of a repeating
structural element (unit cell). We postulated that interactions
between amino acids more than one heptad apart in a coiled coil
would not be appreciable and so did not include clusters corre-
sponding to these interactions in the CE. The unit cell was chosen to
be a two-heptad dimeric parallel coiled coil (see Figure 3). Addition-
ally, to avoid edge effects, we used a periodic boundary condition for
the backbone structure and sequence (see Figure 3). Each periodic
six-heptad training-set sequence was repacked as specified above. CE
was fit to just the energy of the central unit cell (all of the unit cell self
energy and half of all interactions between the unit cell and the rest
of the molecule), which allowed each interaction type to be counted
exactly once. Thus the resulting ECI map exactly onto the energies of
the corresponding interactions and can be applied to non-periodic
sequences.

Cluster expansion fitting. If energies for enough sequences are
available, J IA can be solved for by standard fitting procedures (see
Equation 5). We used the method of pseudo-inverse [61] to perform
least-squares fitting with an exponential weighting reducing the
contributions of the less meaningful high-energy sequences. There-
fore, for n CFs, the fitting procedure has a worst-case asymptotic
running time of O(n3) and memory requirement of O(n2). Determin-
ing which of the MN CF terms to keep in the fitting is not trivial (M is
the number of residues possible at each site and N is the number of
sites; for simplicity, we assume all sites to have the same number of
possibilities). Although one may be guided by the notion that point
terms are more important than pairs, which in turn are more
important than triplets and so on, this is not always true. We address
the problem using the cross-validation (CV) score rather than the
RMSD to guide the fitting procedure. The CV score is the average
error with which each sequence is predicted when left out of the
fitting, and is a good measure of predictive power. When more CFs
are included, the RMSD score decreases, whereas the CV score might
increase (i.e., possible over-fitting) if the CFs are not physically
relevant.

The fitting procedure used was as follows (see Figure 1). The
number of sequences in the training set was chosen to be in the range
of 1.5–2.5 times the expected number of parameters in the fit (i.e., the
number of parameters required to model up to all pair interactions).
The constant and point CFs were initially included in the CF pool and
used to compute a baseline value of the CV score; all pair CFs were
considered as candidates for inclusion into the pool. For each pair
cluster fi, jg, we considered all CFs associated with it (each
corresponding to the contribution of a pair of amino acids) one at
a time, and only those pair CFs that decreased the CV score were
added to the pool. Because the contribution of a new CF (and its
effect on the CV score) in general depends on the CFs that are already
present, the order in which pair CFs are considered for inclusion into

the pool is important. To determine a meaningful order, we first
performed a fit with all pair CFs (in addition to the constant and
points) to obtain fitting parameters Ji for each CFi. Pair CFs were then
considered in the order of decreasing j Jij. Once all pair CFs were
considered for inclusion, it was determined whether the quality of the
fit (i.e., the magnitude of the CV error) was satisfactory. If it was not,
we used the characteristics of poorly fit sequences X:j DE j.D kcal/mol
(i.e., those sequences with error larger than D kcal/mol, where D was
10 for unrelaxed cases and 5–6 for relaxed ones) to locate important
higher-order clusters (triplets and quadruplets). We calculated the
information content I i ¼ ln(M)�S(p(rijX)) for each site i and
I i, j¼ ln(M2)�S(p(rir jjX)) � I i � I j for each pair of sites fi, jg
out of the amino-acid distribution in X. The terms p(rijX) and
p(r ir jjX) are the amino-acid distributions at site i and at the pair of
sites fi , jg in the sequence profile X, respectively, and
SðpÞ ¼ �

P
fpg p lnp denotes the entropy of a probability distribution.

Usually only a few sites had significant point information content.
Triplet and/or quadruplet CFs among sites with significant pair
information content were manually added to the pool. The number
of training sequences was increased (i.e., energies for more
sequences were explicitly calculated) if the number of fitting
parameters exceeded the number of sequences. For the un-relaxed
cases with the zinc finger and the WW domain, the newly considered
sequences were biased to include the amino-acid pairs over-
represented in poorly fit sequences. All pair CFs in addition to
the selected higher-order CFs formed the new set of candidates. The
procedure for considering candidate CFs one at a time was repeated
as above, and a final CV score was derived.

Zinc-finger design exercise. The energy models employed in this
study do not account for protein solubility. Additionally, the rather
crude unfolded state models make it difficult to properly estimate the
overall relative point contributions of different amino acids at a
given site. To get around these problems, we performed fixed
composition design—an optimization problem in which amino-acid
composition is held constant, but the sequence is free to change
under this constraint [62]. This allows one to specify a reasonable
composition that ensures likely solubility while relying on the
optimization process to pick a permutation particularly well suited
for the given backbone. An additional advantage is the cancellation of
the unfolded state energy (assuming a strict composition depend-
ence) across different sequences.

We used the zinc-finger sequence designed by Dahiyat and Mayo
[29] (QQYT AKIK RTFR NQKQ LRDF IEKF KR), which has been
experimentally characterized, to fix the amino-acid composition of
our design. Note that because this sequence is quite heterogeneous,
the search space of all unique permutations, 8.6 3 1020, is very large
and the design problem is still challenging. Each step of a Monte
Carlo search in this fixed composition space amounted to picking two
sites at random and swapping amino acids between them (if they were
not already the same). Two Monte Carlo searches were run—one
using repacking, minimization, and re-evaluation according to E f old

min;GB
to score each sequence (direct design) and the other using CE
equivalent of the same energy function (CE design). The DEE and A*
branch and bound algorithms for repacking [53–58] were imple-
mented in C. CHARMM [49] was used for continuous side-chain
minimization and calculation of the van der Waals and EEF1 portions
of the potential. PEP [60] was used to calculate atomic Born radii. A
wrapper script that combined these steps for each sequence was
written in Perl. Sequence design code was written in C to use MPI
(http://www-unix.mcs.anl.gov/mpi) and was distributed over 20 CPUs.
The program for searching using CE was written in C without
parallelization.

Supporting Information
Accession Numbers

The Protein Data Bank (http://www.rcsb.org/pdb) accession number
for the human PIN1 WW domain is 1PIN and for the murine zinc
finger Zif268 is 1ZAA; the SMART database (http://smart.
embl-heidelberg.de) accession number for the WW domain is
SM00456.
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