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Abstract

A cornerstone of biotechnology is the use of microorganisms for the efficient production of chemicals and the elimination
of harmful waste. Pseudomonas putida is an archetype of such microbes due to its metabolic versatility, stress resistance,
amenability to genetic modifications, and vast potential for environmental and industrial applications. To address both the
elucidation of the metabolic wiring in P. putida and its uses in biocatalysis, in particular for the production of non-growth-
related biochemicals, we developed and present here a genome-scale constraint-based model of the metabolism of P.
putida KT2440. Network reconstruction and flux balance analysis (FBA) enabled definition of the structure of the metabolic
network, identification of knowledge gaps, and pin-pointing of essential metabolic functions, facilitating thereby the
refinement of gene annotations. FBA and flux variability analysis were used to analyze the properties, potential, and limits of
the model. These analyses allowed identification, under various conditions, of key features of metabolism such as growth
yield, resource distribution, network robustness, and gene essentiality. The model was validated with data from continuous
cell cultures, high-throughput phenotyping data, 13C-measurement of internal flux distributions, and specifically generated
knock-out mutants. Auxotrophy was correctly predicted in 75% of the cases. These systematic analyses revealed that the
metabolic network structure is the main factor determining the accuracy of predictions, whereas biomass composition has
negligible influence. Finally, we drew on the model to devise metabolic engineering strategies to improve production of
polyhydroxyalkanoates, a class of biotechnologically useful compounds whose synthesis is not coupled to cell survival. The
solidly validated model yields valuable insights into genotype–phenotype relationships and provides a sound framework to
explore this versatile bacterium and to capitalize on its vast biotechnological potential.
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Introduction

Pseudomonas putida is one of the best studied species of the

metabolically versatile and ubiquitous genus of the Pseudomonads

[1–3]. As a species, it exhibits a wide biotechnological potential,

with numerous strains (some of which solvent-tolerant [4,5]) able

to efficiently produce a range of bulk and fine chemicals. These

features, along with their renowned stress resistance, amenability

for genetic manipulation and suitability as a host for heterologous

expression, make Pseudomonas putida particularly attractive for

biocatalysis. To date, strains of P. putida have been employed to

produce phenol, cinnamic acid, cis-cis-muconate, p-hydroxy-

benzoate, p-cuomarate, and myxochromide [6–12]. Furthermore,

enzymes from P. putida have been employed in a variety of other

biocatalytic processes, including the resolution of D/L-phenylgly-

cinamide into D-phenylglycinamide and L-phenylglycine, produc-

tion of non-proteinogenic L-amino acids, and biochemical

oxidation of methylated heteroaromatic compounds for formation

of heteroaromatic monocarboxylic acids [13]. However, most

Pseudomonas-based applications are still in infancy largely due to

a lack of knowledge of the genotype-phenotype relationships in

these bacteria under conditions relevant for industrial and

environmental endeavors. In an effort towards the generation of

critical knowledge, the genomes of several members of the

Pseudomonads have been or are currently being sequenced

(http://www.genomesonline.org, http://www.pseudomonas.com),

and a series of studies are underway to elucidate specific aspects of

their genomic programs, physiology and behavior under various

stresses (e.g., http://www.psysmo.org, http://www.probactys.org,

http://www.kluyvercentre.nl).

The sequencing of P. putida strain KT2440, a workhorse of P.

putida research worldwide and a microorganism Generally
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Recognized as Safe (GRAS certified) [1,14], provided means to

investigate the metabolic potential of the P. putida species, and

opened avenues for the development of new biotechnological

applications [2,14–16]. Whole genome analysis revealed, among

other features, a wealth of genetic determinants that play a role in

biocatalysis, such as those for the hyper-production of polymers

(such as polyhydroxyalkanoates [17,18]) and industrially relevant

enzymes, the production of epoxides, substituted catechols,

enantiopure alcohols, and heterocyclic compounds [13,15].

However, despite the clear breakthrough in our understanding

of P. putida through this sequencing effort, the relationship between

the genotype and the phenotype cannot be predicted simply from

cataloguing and assigning gene functions to the genes found in the

genome, and considerable work is still needed before the genome

can be translated into a fully functioning metabolic model of value

for predicting cell phenotypes [2,14].

Constraint-based modeling is currently the only approach that

enables the modeling of an organism’s metabolic and transport

network at genome-scale [19]. A genome-wide constraint-based

model consists of a stoichiometric reconstruction of all reactions

known to act in the metabolism of the organism, along with an

accompanying set of constraints on the fluxes of each reaction in

the system [19,20]. A major advantage of this approach is that the

model does not require knowledge on the kinetics of the reactions.

These models define the organism’s global metabolic space,

network structural properties, and flux distribution potential, and

provide a framework with which to navigate through the

metabolic wiring of the cell [19–21].

Through various analysis techniques, constraint-based models

can help predict cellular phenotypes given particular environmen-

tal conditions. Flux balance analysis (FBA) is one such technique,

which relies on the optimization for an objective flux while

enforcing mass balance in all modeled reactions to achieve a set of

fluxes consistent with a maximal output of the objective function.

When a biomass sink is chosen as the objective in FBA, the output

can be correlated with growth, and the model fluxes become

predictive of growth phenotypes [22,23]. Constraint-based analysis

techniques, including FBA, have been instrumental in elucidating

metabolic features in a variety of organisms [20,24,25] and, in a

few cases thus far, they have been used for concrete biotechnology

endeavors [26–29].

However, in all previous applications in which a constraint-

based approach was used to design the production of a

biochemical, the studies addressed only the production of

compounds that can be directly coupled to the objective function

used in the underlying FBA problem. The major reason for this is

that FBA-based methods predict a zero-valued flux for any

reaction not directly contributing to the chosen objective. Since

the production pathways of most high-added value and bulk

compounds operate in parallel to growth-related metabolism,

straightforward application of FBA to these biocatalytic processes

fails to be a useful predictor of output. Other constraint-based

analysis methods, such as Extreme Pathways and Elementary

Modes analysis, are capable of analyzing non-growth related

pathways in metabolism, but, due to combinatorial explosion

inherent to numerical resolution of these methods, they could not

be used so far to predict fluxes or phenotypes at genome-scale for

guiding biocatalysis efforts [30].

To address both the elucidation of the metabolic wiring in P.

putida and the use of P. putida for the production of non-growth-

related biochemicals, we developed and present here a genome-

scale reconstruction of the metabolic network of Pseudomonas putida

KT2440, the subsequent analysis of its network properties through

constraint-based modeling and a thorough assessment of the

potential and limits of the model. The reconstruction is based on

up-to-date genomic, biochemical and physiological knowledge of

the bacterium. The model accounts for the function of 877

reactions that connect 886 metabolites and builds upon a

constraint-based modeling framework [19,20]. Only 6% of the

reactions in the network are non gene-associated. The reconstruc-

tion process guided the refinement of the annotation of several

genes. The model was validated with continuous culture

experiments, substrate utilization assays (BIOLOG) [31], 13C-

measurement of internal fluxes [32], and a specifically generated

set of mutant strains. We evaluated the influence of biomass

composition and maintenance values on the outcome of flux

balance analysis (FBA) simulations, and utilized the metabolic

reconstruction to predict internal reaction fluxes, to identify

different mass-routing possibilities, and to determine necessary

gene and reaction sets for growth on minimal medium. Finally, by

means of a modified OptKnock approach, we utilized the model

to generate hypotheses for possible improvements of the

production by P. putida of polyhydroxyalkanoates, a class of

compounds whose production consumes resources that would be

otherwise used for growth. This reconstruction thus provides a

modeling framework for the exploration of the metabolic

capabilities of P. putida, which will aid in deciphering the complex

genotype-phenotype relationships governing its metabolism and

will help to broaden the applicability of P. putida strains for

bioremediation and biotechnology.

Results

Highlights of the Model Reconstruction Process
We reconstructed the metabolism of P. putida at the genome-

scale through a process summarized in Figure 1. The reconstruc-

tion process involved: (1) an initial data collection stage leading to

a first pass reconstruction (iJP815pre1); (2) a model building stage in

which simulations were performed with iJP815pre1 and reactions

were added until the model was able to grow in silico on glucose

minimal medium (iJP815pre2); and (3) a model completion stage in

which BIOLOG substrate utilization data was used to guide model

expansion and in silico viability on varied substrates. The final

Author Summary

The pseudomonads include a diverse set of bacteria whose
metabolic versatility and genetic plasticity have enabled
their survival in a broad range of environments. Many
members of this family are able to either degrade toxic
compounds or to efficiently produce high value com-
pounds and are therefore of interest for both bioremedia-
tion and bulk chemical production. To better understand
the growth and metabolism of these bacteria, we devel-
oped a large-scale mathematical model of the metabolism
of Pseudomonas putida, a representative of the industrially
relevant pseudomonads. The model was initially expanded
and validated with substrate utilization data and carbon-
tracking data. Next, the model was used to identify key
features of metabolism such as growth yield, internal
distribution of resources, and network robustness. We then
used the model to predict novel strategies for the
production of precursors for bioplastics of medical and
industrial relevance. Such an integrated computational and
experimental approach can be used to study its metabolism
and to explore the potential of other industrially and
environmentally important microorganisms.

Genome-Scale Metabolic Modeling of P. putida
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reconstruction, named iJP815 following an often used convention

[33], consists of 824 intracellular and 62 extracellular metabolites

connected by 877 reactions. Eight hundred twenty one (94%)

reactions have at least one assigned gene as delineated in the gene-

protein-reaction (GPR) relationships. GPR relationships are

composed of Boolean logic statements that link genes to protein

complexes and protein complexes to reactions via combinations of

AND and OR operators. An ‘AND’ operator denotes the required

presence of two or more genes for a protein to function (as in the

case of multi-protein complexes), while an ‘OR’ operator denotes

a redundant function that can be catalyzed by any of several genes

(as in the case of isozymes). Only 56 reactions, of which nine are

non-enzymatic, lack associated genes. The remaining 47 non-

gene-associated, enzymatic reactions were added in order to close

metabolic network gaps identified during the successive steps of

the reconstruction process.

Most network gaps (27) were identified during the second round

of the reconstruction and were resolved through detailed literature

mining, thereby enabling iJP815 to grow in silico on glucose in

minimal medium. The remaining gaps identified in the model

completion step (Figure 1) were mostly single missing steps in the

pathway for which there is experimental evidence of operation

(e.g., a compound is consumed but not produced, and no

alternative pathways exist). It should be noted that for some gaps,

there is more than one combination of reactions with which the

gap could be closed [34]. In cases where more than one gap

closure method was available, the decision of which to use was

made based on similarity queries to related bacteria.

The iJP815 model includes 289 reactions for which non-zero

flux values cannot be obtained under any environmental condition

while enforcing the pseudo steady-state assumption (PSSA). We

term these reactions ‘‘unconditionally blocked’’ meaning that they

are unable to function because not all connections could be made

with the information available. Three hundred sixty two

metabolites that are only involved in these reactions are classified

as ‘‘unbalanced metabolites’’. Another important subset of model

reactions is the ‘‘weakly annotated’’ set, which means that all the

genes assigned to these 57 reactions are currently annotated as

coding for ‘‘putative’’ or ‘‘family’’ proteins. The relationships

between all the subsets are shown in Table 1 and Figures 2 and 3.

The final reconstruction accounts for the function of 815 genes,

corresponding to 15% of all genes in the P. putida genome and to

65% (1253) of those currently assigned to the classes ‘Metabolism’

(K01100) and ‘Membrane Transport’ (K01310) in the Kyoto

Encyclopedia of Genes and Genomes (KEGG) orthology classi-

fication [35]. These figures are consistent with recently published

metabolic reconstructions for other prokaryotes (see Table S1).

Model Assessment and Extension through High-
Throughput Phenotyping Assays

A high-throughput BIOLOG phenotypic assay was performed

on P. putida to validate and extend the model. In this assay, P.

putida was tested for its ability to oxidize 95 carbon substrates in

minimal medium. Of these 95 substrates, P. putida oxidized 45. We

added 2 other carbon sources to the positive-oxidation group (L-

phenylalanine and L-threonine) despite a negative BIOLOG

result, since these substrates had been previously shown to be

growth substrates [16] and since we confirmed these results

experimentally (data not shown), giving altogether forty seven

compounds utilized in vivo. Forty seven out of the 95 carbon

Figure 1. Schematic diagram of the metabolic reconstruction and analysis processes. Solid lines indicate consecutive steps of the
reconstruction. Dashed lines represent information transfer. Dotted lines specify planned tasks.
doi:10.1371/journal.pcbi.1000210.g001

Genome-Scale Metabolic Modeling of P. putida
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sources tested were accounted for in iJP815pre2, enabling a

comparison of these BIOLOG data with FBA simulations of

iJP815 grown on in silico minimal medium with the respective

compound as sole carbon source (see Table 2 and Table S2).

The initial working version of the model (iJP815pre2) was able to

simulate growth with 14 of the 47 BIOLOG-assayed compounds

as sole carbon sources. This version of the reconstruction

contained only a few transport reactions, prompting us to identify

compounds that could not be utilized in silico simply due to the lack

of a transporter. This was achieved by allowing the intracellular

pool of each compound of interest to be exchanged with

environment in silico, and by evaluating the production of biomass

in each case through FBA simulations. This approach increased

the number of utilizable substances to 34 but also produced six

false-positives (i.e., substances that support in silico growth, but

which gave a negative phenotype in the BIOLOG assay). These

included three metabolites involved in central metabolic pathways

(D-glucose 1-phosphate, D-glucose 6-phosphate and glycerol-3-

phosphate), an intermediate of the L-histidine metabolism pathway

(urocanate), an intermediate of branched amino acids biosynthesis

(2-oxobutanoate), and the storage compound glycogen. This

analysis suggests that the inability of P. putida to utilize these

compounds in vivo is likely due to the lack of appropriate transport

machinery.

The final P. putida model (iJP815) grew on 39 of the 51

compounds tested in the BIOLOG assay and that concurrently

were accounted for in the model. Of these, 33 were true positives

(compounds utilized in vivo and allowing for growth in silico). The

mode of utilization of the remaining fourteen in vivo oxidized

compounds (i.e., false negatives) could not be elucidated. The

remaining forty two compounds posed true negatives, eight of

which were accounted for in the reconstruction. Ten utilized

compounds also lack transport reactions, as nothing is known

about their translocation into the cell. Nevertheless, this

comparison of in silico growth predictions with BIOLOG substrate

utilization data indicates that the core metabolism of P. putida has

been properly reconstructed.

A note of caution when comparing the BIOLOG assays with

growth predictions is that this assay evaluates whether an organism

is able to oxidize the tested compound and yield energy from it,

which is different from growth. However, as P. putida is able to

grow on minimal medium supplemented with these compounds,

we considered the assumption to be justified.

Model-Driven Reannotation
The reconstruction process systematizes knowledge about the

metabolism of an organism, allowing the identification of errors in,

and discrepancies between, various sources of data. A major value

of a manual model-building effort is the careful revision of the

Table 1. Summary of the main characteristics of the iJP815 metabolic model.

System Parameter Subset Size

P. putida KT2440 Genome size 6.18 Mbp

Total ORFs 5446

iJP815 Reactions Total 877

Potentially active 588 (67.0%)

Unconditionally Blocked 289 (33.0%)

Well annotated 764 (87.1%)

Weakly annotated 57 (6.5%)

Non-gene-associated 56 (6.4%)

Transport 70 (8.0%)

Metabolites Total 888

Internal 824 (92.8%)

Balanced 461 (55.9%)

Unbalanced 363 (44.1%)

External 64 (7.2%)

Genes Total 815

Well annotated 701 (86.0%)

Weakly annotated 114 (14.0%)

doi:10.1371/journal.pcbi.1000210.t001

Figure 2. Schematic representation of various reaction classes
and their interdependency. The areas of the squares correspond to
the sizes of the subsets.
doi:10.1371/journal.pcbi.1000210.g002

Genome-Scale Metabolic Modeling of P. putida
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current genome annotation, based on literature evidence encoun-

tered during the model building process, BLAST searches, and

gap closures. During the reconstruction of the P. putida metabolic

network, we discovered a number of genes that appear to have

been improperly annotated in biological databases (Pseudomonas

Genome Database, KEGG, NCBI). These mis-annotations arose

due to a lack of information at the time of the original annotation

or because knowledge that was available in the literature had been

overlooked in the original annotation. In a number of other cases,

the model building process has also generated new hypotheses for

gene functions. For instance, our reconstruction process identified

an unlikely gap in the L-lysine degradation pathway of P. putida.

Extensive literature search and careful reannotation has provided

considerable evidence that the genes PP0382 and PP5257,

currently annotated as ‘carbon-hydrogen hydrolase family protein’

and ‘oxidoreductase, FAD binding’ respectively, most probably

code for a ‘5-aminopentamidase’ and ‘L-pipecolate oxidase’,

respectively [36]. Another example is the propanoate degradation

pathway: In the iJP815pre2 version this pathway was complete

except for one enzymatic activity, namely the 2-methylisocitrate

dehydratase. Analysis of the enzymes flanking this reaction showed

that all of the enzymes are encoded by genes immediately adjacent

to the ORF PP2330. Inspection of this region of the genome

revealed that PP2336 is annotated as ‘‘aconitate hydratase,

putative’’, although the flanking genes are responsible for

degradation of propanoate. Analysis of PP2330 via BLAST

revealed a homology of more than 99% over the whole length

of the protein with the 2-methylisocitrate dehydratase from other

bacteria, such as other strains of P. putida (GB-1, W619),

Burkholderia prymatum STM 815, Burkholderia multivorans ATCC

17616, Pseudomonas aeruginosa PA7, and Stenotrophomonas maltophilia

R551-3. Consequently the gene was reannotated to code for this

function and the gap in propanoate degradation pathway was thus

closed by addition of the corresponding GPR. In other cases,

discrepancies exist between various databases, as in the case of

PP5029, which is annotated in KEGG as ‘formiminoglutamase’

but in NCBI as ‘N-formylglutamate deformylase’. Analysis of

network gaps, genomic context and sequence homology provided

a strong indication that ‘N-formylglutamate deformylase’ is the

correct annotation. In many other cases the reannotation meant

changing the substrate specificity of the enzyme (which corre-

sponds to changing the last part of the EC number). These were

mainly identified by BLASTing the protein against protein

sequences of other microbes and, whenever available, cross-

checking the BLAST results against primary research publications.

The full list of reannotations suggested by the reconstruction

process is shown in Table 3.

Comparison of the Predicted and Measured Growth
Yields and the Role of Maintenance

After completing the reconstruction, we assessed whether the

model was capable of predicting the growth yield of P. putida, a

basic property of the modeled organism. In silico growth yield on

succinate was calculated by FBA and compared with in vivo growth

yield measured in continuous culture [37]. If the in silico yield were

lower than the experimental, it would indicate that the network

may lack important reactions that influence the efficiency of

conversion of carbon source into biomass constituents and/or

energy. In fact, the calculated in silico yield (0.61 gDW?gC
21) was

higher than the experimental yield (0.47 gDW?gC
21), indicating

that some of the processes reconstructed in the network might be

unrealistically efficient and/or that P. putida may be diverting

resources into other processes not accounted for in the model. This

greater efficiency of the in silico model versus in vivo growth data is

also consistent with recent studies that suggest optimal growth is

not necessarily the sole objective (function) of biochemical

networks [38,39].

The in silico growth yield is influenced not only by the structure

of the metabolic network, but also by other factors including

Table 2. Summary of the comparison with the BIOLOG
substrate utilization assay.

Compounds tested 95

Utilized compounds 47

Reconstruction version iJP815pre2 iJP815

Tested compounds included in
the model

47 51

Utilized compounds included in
the model

33 37

Compound supply Ext Int Ext Int

True positives 14 28 23 33

True negatives 48 (14) 42 (8) 48 (14) 42 (8)

False positives 0 6 0 6

False negatives 33 (19) 20 (6) 24 (14) 14 (4)

Values in brackets indicate only those compounds that iJP815 accounts for.
doi:10.1371/journal.pcbi.1000210.t002

Figure 3. Assignment of the reactions to the particular pathways.
doi:10.1371/journal.pcbi.1000210.g003

Genome-Scale Metabolic Modeling of P. putida
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biomass composition and the growth-associated and non-growth-

associated energy maintenance factors (GAM and NGAM), the

values of which represent energy costs to the cell of ‘‘living’’ and

‘‘growing’’, respectively [22]. Therefore, since both the biomass

composition and the GAM/NGAM values were taken from the E.

coli model [22,33] due to a lack of organism-specific experimental

information, we evaluated the influence of these factors on the

predicted growth yield.

First, we analyzed the effects of changes in the ratios of biomass

components on the iJP815 growth yield. These analyses (displayed

in the Text S1, section ‘‘Assessment of the influence of the biomass

composition the growth yield’’) indicated that varying any single

biomass constituent by 20% up or down has a less than 1% effect

on the growth yield of P. putida (Figure S1). These results are

consistent with results of a previous study on the sensitivity of

growth yield to biomass composition [40]. Although it is still

possible that some components of P. putida biomass are not present

in E. coli or vice versa, we conclude that the use of E. coli biomass

composition in the P. putida model is a justified assumption for the

purpose of our application and is probably not a great contributor

to the error in our predictions of growth yield.

Subsequently, the effects of changes in the GAM on the in silico

growth yield were tested (Figure S2A and S2B). It was found that if

GAM was of the same order of magnitude as the value used in the

E. coli model (13 [mmolATP?gDW
21), its influence is negligible, as

increasing or decreasing it twofold alters the growth yield by

merely 5%. A higher GAM value in P. putida than in E. coli could

contribute to the discrepancy between the experimental measure-

ments and in silico predictions, but it could not be the only factor

unless the E. coli and P. putida values differ more than twofold,

which is unlikely.

Finally, we assessed the effects of changes in the value of NGAM

on in silico growth yield. The NGAM growth dependency is

influenced by the rate of carbon source supply, and thus indirectly

by the growth rate. If the carbon intake flux is low (as in the case of

the experiments mentioned above, with a dilution rate of

0.05 h21), the fraction of energy utilized for maintenance purposes

is high and therefore so is the influence of the NGAM value on

growth yield (Figure S2A). Under such low-carbon intake flux

conditions, a twofold increase of the NGAM value can decrease

the growth yield by about 30%. This indicates that the main cause

for the discrepancy between in vivo and in silico growth yields is that

the NGAM value is likely to be higher in P. putida than in E. coli.

Figure S2A indicates that increasing the NGAM value from 7.6 of

12 [mmolATP?gDW
21?h21] would reduce the in silico growth yield

and lead to a better match with experimental values. Consequently

this NGAM value was used in subsequent FBA and Flux

Variability Analysis (FVA) [41] simulations.

For a high influx of carbon source (Figure S2B) the influence of

NGAM on the growth yield is low and the influence of the NGAM

and GAM values on growth yield are comparable. It should be

noted that, while FBA predicts the optimal growth yield, few

cellular systems operate at full efficiency. Bacteria tend to ‘‘waste’’

or redirect energy if it is abundant [42], leading to a lower-than-

optimal in vivo growth yield. It is also worth mentioning that

maintenance values may depend on the carbon source used [43]

and on environmental conditions [44–46].

Additionally, we computed the growth yields of P. putida on sole

sources of three other important elements—Nitrogen (N),

Phosphorous (P), and Sulfur (S)—and compared these with

published experimental data from continuous cultivations [37],

as shown in Table 4. Since biomass composition can play a role in

the efficiency of in silico usage of basic elements, this analysis can

aid in assessing how well the biomass equation, which is equivalent

to the E. coli biomass reaction, reproduces the true biomass

composition of P. putida. The yield on nitrogen differs only by 10%

between in silico and in vivo experiments, which suggests that the

associated metabolic network for nitrogen metabolism is well

characterized in the iJP815 reconstruction. The yields on

phosphorous and sulfur, however, differ by more than a factor

Table 3. List of genes reannotated during the reconstruction process.

Gene Old Annotation New Annotation Reference

PP0213 Succinate-semialdehyde dehydrogenase; EC:1.2.1.16 Glutarate-semialdehyde; dehydrogenase EC 1.2.1.20 [36]

PP0214 4-Aminobutyrate aminotransferase; EC:2.6.1.19, EC:2.6.1.22 5-Aminovalerate transaminase; EC 2.6.1.48 [36]

PP0382 Carbon-nitrogen hydrolase family protein 5-Aminopentanamidase; EC 3.5.1.30 [36]

PP0383 Tryptophan 2-monooxygenase, putative Lysine 2-monooxygenase; EC 1.13.12.2 [36]

PP2336 Aconitate hydratase, putative; EC:4.2.1.3 2-Methylisocitrate dehydratase; EC 4.2.1.99 a

PP2432 Oxygen-insensitive NAD(P)H nitroreductase; EC:1.-.-.- 6,7-Dihydropteridine reductase; EC 1.5.1.34 a

PP3591 Malate dehydrogenase, putative; EC:1.1.1.37 D1-Piperideine-2-carboxylate reductase; EC 1.5.1.21 [36]

PP4066 Enoyl-CoA hydratase, putative; EC:4.2.1.17 Methylglutaconyl-CoA hydratase; EC 4.2.1.18 [88]

PP4065 3-Methylcrotonyl-CoA carboxylase, beta subunit, putative
EC:6.4.1.3

Methylcrotonoyl-CoA carboxylase; EC 6.4.1.4 [88]

PP4067 AcCoA carboxylase, biotin carboxylase, putative; EC:6.4.1.3 Methylcrotonoyl-CoA carboxylase; EC 6.4.1.4 [88]

PP4223 Diaminobutyrate-2-oxoglutarate transaminase; EC:2.6.1.76 Putrescine aminotransferase; EC 2.6.1.82 a

PP4481 Acetylornithine aminotransferase; EC:2.6.1.11 Succinylornithine transaminase; EC 2.6.1.81 a

PP5029 Formiminoglutamase; EC:3.5.3.8 N-Formylglutamate deformylase; EC 3.5.1.68 a

PP5036 Atrazine chlorohydrolase N-Formylglutamate deformylase; EC 3.5.1.68 a

PP5257 Oxidoreductase, FAD-binding L-Pipecolate oxidase; EC 1.5.3.7 [36]

PP5258 Aldehyde dehydrogenase family protein; EC:1.2.1.3 L-Aminoadipate-semialdehyde dehydrogenase; EC 1.2.1.31 [36]

aAnalysis of the sequence homology and genomic context information.
doi:10.1371/journal.pcbi.1000210.t003
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of two between the in vivo and in silico analyses, suggesting that

there may be significant differences between the biomass

requirements and the metabolic networks of P. putida and E. coli

for these components. The differences in yields, however, may be

also caused by the change of the in vivo biomass composition,

which decreases the fraction of compounds containing the limited

element, when compared to the biomass composition while the

bacterium is grown under carbon-limitation. Such changes were

observed experimentally in P. putida for nitrogen and phosphate

limitations [47]. Thus, the biomass composition of P. putida needs

to be determined precisely in the future. However, for the purpose

of this work and since the global effect of the biomass composition

on the outcome of the simulations is negligible (as shown above),

we considered the use of the original biomass equation to be

justified.

Analysis of Blocked Reactions: The Quest for
Completeness

As described above, iJP815 contains 289 unconditionally (i.e.,

not dependent on external sources) blocked reactions (that is,

reactions unable to function because not all connections are

made), corresponding to 33% of the metabolic network. In

previously published genome-scale metabolic reconstructions, the

fraction of blocked reactions varies between 10 and 70 percent

[48]. Blocked reactions occur in reconstructions mostly due to

knowledge gaps in the metabolic pathways. Accordingly, the

blocked-reactions set can be divided into two major groups; (1)

reactions with no connection to the set of non-blocked reactions,

and (2) reactions that are either directly or indirectly connected to

the operating core of the P. putida model. The first group of

reactions includes members of incomplete pathways that, with

increasing knowledge and further model refinement, will gradually

become connected to the core. This subset comprises 108

reactions (35% of blocked reaction set). The second group of

reactions comprises also members of incomplete pathways, but

many of them belong to pathways that are complete but that lack a

transport reaction for the initial or final compound. Examples of

pathways lacking a transporter are the degradation of fatty acids

and of propanoate.

In addition, there could exist compounds whose production is

required only in certain environmental conditions, e.g., under

solvent stress, and as such are not included in generic biomass

equation. Pathways synthesizing compounds that are not included

in the biomass equation but that likely are conditionally required

include the synthesis of thiamine, various porphyrins and

terpenoids. In this case, reactions involved exclusively in the

production of such compounds would be blocked if no alternative

outlets exist for those pathways. Allowing a non-zero flux through

these reactions would require inclusion into biomass of the

conditional biomass constituents, which in turn would require

having various biomass equations for various conditions. This level

of detail, however, is beyond the scope of our initial metabolic

reconstruction and investigation.

The high number of blocked reactions in iJP815 clearly

indicates that there are still vast knowledge deficits in the model

and, thus, in the underlying biochemical and genomic informa-

tion. Since a genome-scale metabolic model seeks to incorporate

all current knowledge of an organism’s metabolism, these reactions

are integral elements of the metabolic reconstruction and of the

modeling scaffold, even if they are not able to directly participate

in steady state flux studies. Therefore, the inclusion of these

reactions in the model provides a framework to pin-point

knowledge gaps, to include novel information as it becomes

available and to subsequently study their embedding and function

in the metabolic wiring of the cell.

How P. putida Allocates Its Resources: Evaluating the
Prediction of Internal Flux Distributions

The assessment performed as described above by means of

high-throughput phenotyping assays, growth experiments and

continuous cultivations, has shown that the model is coherent and

that it captures the major metabolic features of P. putida. We

subsequently used the model to probe the network and to ascertain

the distribution of internal fluxes and properties such as network

flexibility and redundancy of particular reactions. To this end, we

predicted the distribution of reaction fluxes throughout the central

pathways of carbon metabolism by flux variability analysis (FVA),

and compared the simulations to internal fluxes computed from

experimentally obtained 13C data in P. putida [49,50].

Optimal FVA
Genome-scale metabolic networks are, in general, algebraically

underdetermined [41]. As a consequence, the optimal growth rate

can often be attained through flux distributions different than the

single optimal solution predicted by FBA simulations. Therefore

we used flux variability analysis (FVA) to explore the network, as

this method provides the intervals inside which the flux can vary

without influencing the value of the growth yield (if the flux of the

reaction cannot vary then the range is limited to a single value)

[41]. The results of the simulations are given in Figure 4. As

isotopic (13C) measurements are not able to distinguish which

glucose uptake route is being used by P. putida, all the fluxes in the
13C experiment and in the FVA simulations were computed

assuming that glucose is taken up directly into the cell. For the

precise description of the network models used in this comparison

(i.e., FBA/FVA vs. 13C-Flux analysis) see Text S1 and Text S2

(sections ‘‘Comparison of FVA analyses with 13C flux measure-

ment data’’).

Figure 4 shows that the predictions (in red) generally agree well

with the measurements (in green) throughout the network, as most

of the 13C values fall within the FVA intervals, where intervals

were predicted, or both values are close to each other (in absolute

values), when a single value was predicted. As P. putida lacks

phosphofructokinase, glucose can be converted to pyruvate (the

entry metabolite of TCA cycle) via the pentose phosphate (PP) or

the Entner-Doudoroff (ED) pathways. The ED pathway is

energetically more efficient and the 13C measurements indicate

that KT2440 uses it preferentially over the PP pathway.

Therefore, the FVA yields locally single flux values rather than

intervals, which reflects the relative rigidity of this part of the

network. In contrast, the energy generating part of the central

metabolic network (the TCA cycle and its vicinity) exhibits greater

flexibility, as illustrated by the broad flux intervals. Firstly, the

conversion of phosphoenylpyruvate into pyruvate can proceed

Table 4. Comparison of the in silico predicted growth yields
(in gDW?gElement

21) with experimental continuous culture
data.

Limiting Element Yield – Experimental Yield – Model

C 0.47 0.61

N 5.74 6.67

P 84.95 34.92

S 268.75 130.18

doi:10.1371/journal.pcbi.1000210.t004
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either directly or via oxaloacetate, although the bacterium appears

to use the direct route (the 13C-model assumes, in fact, only the

direct route; see Text S1, section ‘‘Comparison of FVA analyses

with 13C flux measurement data’’). Secondly, the conversion of

malate to oxaloacetate may also occur directly or via pyruvate.

The 13C flux measurements indicate that the bacterium uses the

indirect route in addition to the direct one although, according to

the FVA, the indirect route is energetically less efficient.

Interestingly, our model suggests also that the glyoxylate shunt

could be used interchangeably with full TCA-cycle without any

penalty on growth yield. However, as the glyoxylate shunt is

inactivated in many bacterial species via catabolite repression

upon glucose growth [51], it is possible that this alternative is not

used in P. putida.

Figure 4. Comparison of FVA calculations with 13C experimental flux data. The explanation of color codes is given in the figure. ‘‘0*’’ means
that the reaction is not included in the particular metabolic network; double-headed arrows depict reversible reactions, the bigger head shows
direction of the positive flux.
doi:10.1371/journal.pcbi.1000210.g004
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Discrepancies between Model Predictions and
Measurements

Despite the general agreement between in silico predictions and 13C

measurements, there still exist a number of discrepancies. For

instance, the 13C-experiments suggest that the bacterium utilizes the

portion of glycolysis between triose-3-phosphate and D-fructose-6-

phosphate in the gluconeogenic direction, which is not energetically

optimal and as such is not captured in standard FBA (or FVA)

simulations. This illustrates one of the possible pitfalls of FBA, which

per definition assumes perfect optimality despite the fact that

microorganisms might not necessarily allocate their resources towards

the optimization function assumed in analysis, and in some cases may

not operate optimally at all [52,53]. Another group of differences

concentrates around the pentose phosphate pathway (PPP), although

these are relatively minor and are likely due to differences in the

quantities of sugar diverted toward biomass in the 13C model vs.

iJP815. A third group of differences revolves around pyruvate and

oxaloacetate, whereby the in vivo conversion of malate to oxaloacetate

shuttles through a pyruvate intermediate rather than directly

converting between the two. The last area where discrepancies exist

between in silico and 13C data is in the TCA cycle, around which the

flux is lower in FVA simulations than in the experiment. This suggests

that the in silico energetic requirements for growth (maintenance

values) are still too low when compared to in vivo ones, as the main

purpose of the TCA cycle is energy production.

Suboptimal FVA
To investigate further these differences, we carried out a

suboptimal FVA (Figure 4, blue values), allowing the production of

biomass to range between 90 and 100% of its maximum value. In

this suboptimal FVA experiment, the 13C-derived fluxes fall

between FVA intervals for every flux value in the 13C network. To

filter out artifacts, we re-did all FVA computations using the

structure of the network used in the 13C-experiment and found no

major differences (see Figure S3). We also assessed the influence of

the biomass composition on the distribution of internal fluxes and

network structure and found that this was negligible on both

accounts (see Text S2, section ‘‘Evaluation of biomass equation

composition on the outcome of FBA/FVA simulations’’ and

Figure S4). The results show that, in principle, the bacterium can

use all the alternatives described above and that the penalty on the

growth yield is minimal. While this analysis validates the FVA

simulation results, the wide breadth of the intervals (i.e., the mean

ratio of interval width to mean interval value exceeds three),

suggests that the (mathematical) under-determination of central

metabolism can be quite high, and indicates that there exist

multiple sub-optimal solutions across the network and that is thus

difficult to predict exact internal flux and to ‘‘pin-point’’ a

particular solution. These results reflect the essence of constraint-

based modeling and FBA, which provide only a space of possible

flux distributions and not exact values. Therefore, deductions from

results of FBA simulations have to be made with great care. This

underscores the notion that constraint based modeling should be

seen more as navigation framework to probe and explore networks

rather than as an exact predictive tool of cellular metabolism.

Gauging the Robustness of the Network
Essentiality of genes and reactions. To assess the

robustness of the metabolic network to genetic perturbations

(e.g., knock-out mutations), we carried out an in-silico analysis of

the essentiality of single genes and reactions, which enabled us to

identify the most fragile nodes of the iJP815 network. Reaction

essentiality simulations were performed by systematically removing

each reaction from the network and by assessing the ability of the

model to produce biomass in silico via FBA in minimal medium

with a sole carbon source (glucose and acetate). Gene essentiality

was assessed by: (i) identifying for each gene the operability of the

reaction(s) dependent on this gene, (ii) removing from the network

the reactions rendered inoperative by the deletion of that

particular gene, and (iii) determining the ability of the model to

produce biomass in the same manner as for the reaction

essentiality tests. Additionally, we estimated for both carbon

sources the smallest possible set of reactions able to sustain in silico

growth, in order to estimate the number of reactions necessary for

biomass synthesis in minimal medium (minimal set). This set

encompasses both all reactions that are essential (including those

essential regardless of the medium and those ‘conditionally

essential’) and the minimal number of non-essential reactions

that, together, are able to provide in silico growth (see Figure 5).

These conditionally essential reactions can be used as a reference

for identifying sections of metabolism for which alternative

pathways exist. For both glucose and acetate, the minimal sets

encompassed approximately 315 reactions (Table S5). This

estimate is consistent with values obtained for other bacteria [54].

The sets of essential reactions consist of 259 and 274 reactions

for glucose and acetate conditions respectively, constituting 82 and

86 percent of the minimal set. These numbers indicate that most of

the crucial metabolic routes are not duplicated at the level of

metabolic network structure. The set of essential reactions under

glucose growth is a subset of that under acetate, suggesting that the

growth on glucose is more resistant to perturbations (as the smaller

number of reactions mean less fragility points in the network). The

reactions belonging exclusively to the acetate minimal set are

mostly members of glyconeogenic pathway, with ATP synthase,

the reactions constituting the glyoxylate shunt, and acetate

transport reactions being the exceptions. The inessentiality of

ATP synthase under glucose and essentiality of the glyoxylate

shunt under acetate conditions are not surprising and similar

effects have been reported in E. coli [55–57].

The reactions belonging to the non-essential part of the minimal

set are mostly members of central metabolic pathways (PPP, TCA

cycle, and Pyruvate metabolism), which emphasizes the impor-

tance of these pathways for the operation of the metabolism and is

in agreement with observations made in other bacteria [58].

Figure 5. Interdependency between the metabolic network,
the minimal set and the set of essential reactions. The set sizes
are given for glucose growth conditions.
doi:10.1371/journal.pcbi.1000210.g005
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Isoenzymes. The metabolic robustness of an organism may

also be provided at the genetic level through genes coding for

isozymes. Data on gene and reaction essentiality provide insights

into this phenomenon. We utilized FBA to generate a list of in silico

essential gene predictions, including 153 and 159 genes under

minimal glucose and acetate growth respectively, in order to

determine how gene/pathway redundancy affects network

robustness. These values may seem low when compared to the

size of the predicted essential reactions sets (259 and 274 reactions

for glucose and acetate growth, respectively). However, it must first

be noted that each essential reaction set contains about 25 (26 and

27 for the glucose and acetate essential set, respectively) non gene-

associated reactions, and that elucidating the genes catalyzing these

reactions would increase substantially the number of in silico essential

genes. Further, approximately 20% of each minimal set (78 and 84

genes under glucose and acetate conditions, respectively) consists of

essential reactions that can be catalyzed by two or more isozymes

and thus are essential at the metabolic network level but not at the

genetic level. In contrast to non-essential reactions in the minimal

set, these reactions essential at the metabolic network level but not at

the genetic level are not clustered in particular metabolic pathways

but are rather spread throughout the entire metabolic network.

Altogether, these results indicate that for about 40% of the reactions

required to produce biomass, there are alternative at either the

genetic or the metabolic network level.

This analysis highlights the limitations of possible interventions

aimed at reshaping the flux distributions, because these can be

applied only to reactions that are not essential (since the

inactivation of an essential reaction yields a lethal phenotype).

Identification of reactions catalyzed by multiple enzymes shows

which reactions may be best avoided when planning mutational

strategies as their inactivation may pose additional technical

problems, by requiring production of multiple knock-outs.

Flexibility of flux distributions. To further investigate

these conclusions, we determined the flexibility of fluxes over

particular reactions as a measure of metabolic network flexibility

during biomass production. We found that the variability of fluxes

is similar under either glucose or acetate growth, but that acetate

growth instills a slightly higher rigidity to the metabolic network (as

observed above). We observed also that the flux of more than a

half of the reactions can vary to some degree without influencing

biomass output. We next analyzed the pathway-distribution of

reactions exhibiting variable flux, and found that biosynthetic

pathways are in general more rigid (i.e., the fraction of reactions

with flexible flux is relatively lower) than other pathways. This

rigidity might reflect the essentiality of these pathways modules for

the survival of the cell (See sections ‘‘Analysis of flexibility of the

flux over particular reactions’’ in the Text S1 and Text S2, Figure

S5, Table S3 and Table S5). A further measure to ascertain

network flexibility was the assessment of pairwise couplings

between the reactions via Flux Coupling Finder (see Text S1

and Text S2, sections ‘‘Flux Coupling Finder’’ and Figure S6).

This analysis indicated that for 90% of the reactions that are

unblocked in a given condition, at least one other reaction exists

whose flux is proportionally coupled to the flux of the first

reaction, and therefore that the great majority of reactions can be

inactivated through inactivation of some other reaction. This

analysis is helpful in optimizing mutational strategies as it pin-

points alternative mutations that exhibit equivalent outcomes.

Prediction of Auxotrophic Mutations and Model
Refinement

Assessment of network models through comparison of in silico

growth-phenotypes with the growth of knock-out strains is a

powerful way to validate predictions. This has been done in a

number of studies for which knock-out mutant libraries were

available [59,60]. As there is currently no mutant library for P.

putida, we tested gene knock-out predictions with a set of P. putida

auxotrophic mutant strains created in our laboratory that are

incapable of growth on minimal medium with acetate as the sole

carbon source. First we compared whether the corresponding in

silico mutants followed the same behavior (lack of growth on

minimal medium with acetate, where zero biomass flux during FBA

corresponded to a no-growth phenotype). This comparison was

performed only for strains whose knocked-out gene is included in

iJP815. Thirty-eight out of the 51 strains tested did not grow in silico

(Table S4). Of the remaining 13 false positives (i.e., those growing in

silico but not in vivo), four (PP1470, PP1471, PP4679, and PP4680)

are mutated in genes considered non-essential in silico due to

‘‘weakly annotated’’ gene putatively encoding redundant isozymes.

In the case of PP5185 (coding for N-acetylglutamate synthase), its

essentiality is removed by PP1346 (coding for bifunctional ornithine

acetyltransferase/N-acetylglutamate synthase protein), which is not

only an isozyme of PP5185 (the N-acetylglutamate synthase

function) but which also catalyses a reaction (ornithine acetyltrans-

ferase) that produces N-acetyl-L-glutamate (the product of N-

acetylglutamate synthase) and thus renders the activity of PP5185

redundant. It appears either that this is a mis-annotation or that the

enzyme is utilized only under different conditions.

In addition, PP0897 (fumC) seems to have two paralogues

(PP0944, PP1755) coding for isoenzymes of fumarate hydratase,

but since the mutant in PP0897 does not grow auxotrophically,

they are either non functional or mis-annotated. The enzyme

complex that is composed of proteins expressed from the genes

knocked-out in the two false positives PP4188 and PP 4189

catalyzes the decarboxylation of a-ketoglutarate to succinyl-CoA

in the TCA cycle, concurrently producing succinyl-CoA for

anabolic purposes. In the model, this functionality is not needed as

this part of the TCA cycle can be circumvented by the glyoxylate

shunt, whereas succinyl-CoA can be produced by reverse

operation of succinate-CoA ligase. Restricting this reaction to be

irreversible renders both genes essential. This altogether suggests

that either the succinate-CoA ligase is irreversible or the glyoxylate

shunt is inactive. The latter solution is, however, impossible, due to

the essentiality of the glyoxylate shunt upon growth on acetate.

The false positive PP4782 is involved in thiamine biosynthesis.

This cofactor is not included in the biomass, which is why the gene

is not in silico essential. This suggests thus that the in-silico P. putida

biomass reaction should be enriched with this cofactor. The

remaining false positives (PP1768, PP4909, PP5155) are involved

in the serine biosynthesis pathway. We found experimentally that

mutants in these genes can grow on acetate if the medium also

contains L-serine. These genes can be rendered in silico essential by

setting glycine hydroxymethyltransferase to operate only unidi-

rectionally from L-serine to glycine. The operation of this enzyme,

however, is required for growth of the bacterium on glycine, which

is possible; though very slow (results not shown). One of these

genes (PP5155) has also a weakly annotated isozyme (PP2335). We

found out as well that several of the mutants (PP1612, PP4188-9,

PP4191-4) grow in silico on glucose, which we confirmed

experimentally (results not shown). Altogether, these experimental

results assisted us in improving the accuracy of the model.

Albeit limited to a relatively small mutant set, this analysis shows

that while constraint-based models are not always able to predict

exact flux values, they are very useful in the identification of

essential reactions and, through the GPRs, the genes responsible

for their catalysis. This enables identification of vulnerable points

in the metabolic network.
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Model Application—Production of
Polyhydroxyalkanoates from Nonalkanoates

To illustrate the utility of a genome-scale model for metabolic

engineering, we used iJP815 to predict possible improvements to an

industrially relevant process; namely, the production of polyhy-

droxyalkanoates (PHAs) from non-alkanoic substrates for biomed-

ical purposes [61–63]. As the production of PHAs uses resources

that would be otherwise funneled towards growth, increasing in silico

PHA production would decrease the growth. Consequently, in

classic optimization-based approaches (e.g., FBA), no PHA

production would be predicted while optimizing for growth yield.

The aim was thus to increase the available pool of the main

precursor of PHAs—Acetyl Coenzyme A (AcCoA). This approach

was based on the observation that inactivation of isocitrate lyase

(ICL) enhances the production of PHAs in P. putida due to increased

availability of AcCoA that is not consumed by ICL [64]. We

therefore searched for other possible intervention points (mutations)

in the metabolic network that could lead to the accumulation of

AcCoA. This analysis was performed through application of a

modified OptKnock approach [28], which allowed for parallel

prediction of mutations and carbon source(s) that together provide

the highest production of the compound of interest.

Two main methods were employed to model a cellular pooling of

AcCoA. The first was the maximization of AcCoA production by

pyruvate dehydrogenase (PDH). In the second, an auxiliary reaction

was introduced that consumed AcCoA (concurrently producing

CoA, to avoid cofactor cycling artifacts) and that would represent

the pooling of AcCoA (Figure 6A and 6B, insets). It is noteworthy

that the value of ‘AcCoA production’ predicted by the first method

includes AcCoA that is then consumed in other reactions (some of

which will lead towards biomass production for instance), whereas

the value of ‘AcCoA pooling’ predicted by the second method

includes only AcCoA that is taken completely out of the system, and

therefore made available for PHA production but unusable for

growth or other purposes. Therefore, only with the first method

(AcCoA production) can AcCoA fluxes and growth rates be

compared directly with the wild-type AcCoA flux and growth rate,

as the second method (AcCoA pooling) will display lower values for

AcCoA fluxes and growth rates but will avoid ‘double counting’

AcCoA flux that is shuttled towards growth, and therefore is not

available for PHA production (see plots in Figure 6A and 6B).

To create the in silico mutants, we allowed the OptKnock

procedure to block a maximum of two reactions, which

corresponds, experimentally, to the creation of a double mutant.

To avoid lethal in silico strains, the minimal growth yield was

limited to a value ranging between 0.83 and 6.67 gDW?molC
21,

corresponding to about 5 and 40 percent of maximum growth

yield, respectively.

Six mutational strategies suggested by this approach are

presented in Table 5. The first three were generated by the

AcCoA production method, and the last three were generated by

the AcCoA pooling method. The results provide a range of options

for possibly increasing AcCoA production, some of which

constrain growth more than others (see Figure 6A and 6B).

One promising hypothesis (strategy 2) generated by the AcCoA

production method predicted that a double-mutant devoid of 6-

phosphogluconolactonase (pgl/PP1023) and periplasmatic glucose

dehydrogenase (gcd/PP1444), would produce 29% more AcCoA

than the wild type growing on glucose as a carbon source

(Figure 6A). As we are currently still in the process of generating

this mutant, we were not yet able to test the prediction. Another

promising hypothesis (strategy 1) included knocking-out triose

phosphate isomerase (tpiA/PP4715). As the mutant for tpiA was

generated in this work, we tested whether it is able to grow on the

predicted carbon source (D-fructose), but the observed growth was

very weak (only very small colonies grew on agar plates after three

days). This suggests that growth might be too inhibited by this

strategy for it to be of great use.

One strategy suggested by the AcCoA pooling method (strategy

4) called for knocking out 2-methylcitrate dehydratase (prpD/

PP2338) and citrate synthase (gltA/PP4194), and supplying P. putida

with valine. Using this strategy, AcCoA pooling could theoretically

reach 21.9 mmol?gDW
21?h21, but at a severe expense in bacterial

growth (Figure 6B). The other strategies suggested by the AcCoA

pooling method highlight a somewhat linear tradeoff between

growth and AcCoA pooling, which could be investigated experi-

mentally to determine how much growth disruption is acceptable in

a bioengineered production strain of P. putida (Figure 6B).

These strategies illustrate the possible approaches to optimizing

production of a non-growth associated compound, and highlight

the need for further experimental work to assess the performance

of this approach.

Discussion

A primary value of genome-scale metabolic models is their

ability to provide a holistic view of metabolism allowing, for

Figure 6. Mutational strategies for increased PHA production.
This figure highlights 6 strategies suggested by the modified optknock
approach for increased production of AcCoA, a precursor for
polyhydroxyalkanoates. (A) AcCoA production ranges vs. growth yield
of in silico strains developed using the ‘AcCoA production’ strategy. (B)
AcCoA pooling versus growth yield of in silico strains developed using
the ‘AcCoA pooling’ strategy.
doi:10.1371/journal.pcbi.1000210.g006
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instance, for quantitative investigation of dependencies between

species existing far apart in the metabolic network [20]. Once

experimentally validated, these models can be used to characterize

metabolic resource allocation, to generate experimentally testable

predictions of cell phenotype, to elucidate metabolic network

evolution scenarios, and to design experiments that most

effectively reveal genotype-phenotype relationships. Furthermore,

owing to their genome-wide scale, these models enable systematic

assessment of how perturbations in the metabolic network affect

the organism as a whole, such as in determining lethality of

mutations or predicting the effects of nutrient limitations. Since

these multiple and intertwined relationships are not immediately

obvious without genome-scale analysis, they would not be found

during investigation of small, isolated circuits or genes as is typical

in a traditional reductionist approach [65,66].

We present here a genome-scale reconstruction and constraint-

based model of the P. putida strain KT2440, accounting for 815

genes whose products correspond to 877 reactions and connect

886 metabolites. The manually curated reconstruction was based

on the most up-to-date annotation of the bacterium, the content of

various biological databases, primary research publications and

specifically designed functional genomics experiments. New or

refined annotations for many genes were suggested during the

reconstruction process. The model was validated with a series of

experimental sets, including continuous culture data, BIOLOG

substrate utilization assays, 13C flux measurements and a set of

specifically-generated mutant strains. FBA and FVA were used to

ascertain the distribution of resources in KT2440, to systematically

assess gene and reaction essentiality and to gauge the robustness of

the metabolic network. Hence, this work represents one of the

most thorough sets of analyses thus far performed for an organism

by means of constraint-based modeling, providing thereby a solid

genome-scale framework for the exploration of the metabolism of

this fascinating and versatile bacterium. However, since this

modeling endeavor relies upon a number of approximations, the

limits, potential and applicability of the analysis must be clearly

identified and defined. We address these points below.

Altogether, our results and analyses show that the model

accurately captures a substantial fraction of the metabolic

functions of P. putida KT2440. Therefore, the model was used to

generate hypotheses on constraining and redirecting fluxes

towards the improvement of production of polyhydroxyalkanoates,

which are precursors for industrially and medically important

bioplastics. This is, to our knowledge, the first reported application

of constraint-based modeling to direct and improve the yield of a

compound of which the production is not directly coupled to the

growth of the organism. This opens up novel areas of application

for the constraint-based approach. Our approach, based on the

OptKnock algorithm, allows for both prediction of mutants with

desirable properties and identification of conditions that support

the expression of these properties.

Notwithstanding the generally good agreement between exper-

imental results and simulations of our model, several of the

discrepancies encountered reflect pitfalls inherent to constraint-

based modeling that go beyond the scope of our study:

Firstly, the high number of blocked reactions and the

mismatches with the BIOLOG data show that there are still

many areas of the metabolism that require thorough exploration.

The genes encoding transport-related are particularly relevant, as

for most of them, neither the translocated compound nor the

mechanism of translocation is known. Furthermore, it should be

highlighted that the genome still has 1635 genes annotated as

‘‘hypothetical’’ or ‘‘conserved hypothetical’’, more than 800 genes

annotated as putative, and over 800 for which the functional

Table 5. Summary of the characteristics of the in silico strains generated in the procedure of optimization of the PHA production.

Strain Blocked Enzymatic Activity Loci To Be Blocked Carbon Source(s)

AcCoA Production
[mmol gDW

21?h21]
Growth Yield
[gDW?molC

21]

Min Max Limit Sim

WT WT WT L-Serine 11.47 22.26 0.83 11.16

1 Triose-phosphate isomerase PP4715 D-Fructose 7.7 29.74 0.83 3.5

6-Phosphoglucono lactonase PP1023

2 Glucose dehydrogenase
(membrane)

PP1444 D-Glucose 7.05 28.51 0.83 4.17

6-Phosphoglucono lactonase PP1023

3 Isocitrate dehydrogenase PP4011 or PP4012 L-Serine 22.41 23.01 6.66 10.67

Formate dehydrogenase PP0490 or PP0491

PP2183 or PP2184 or PP2185 or PP2186

4 Citrate synthase PP4194 L-Valine 21.85 0.83 1.00

2-Methylcitrate dehydratase PP2338

5 Glycine hydroxymethyl transferase PP0322 L-Leucine, L-lysine, L-

phenyl-alanine

16.75 3.33 4.00

PP0671

Citrate synthase PP4194

6 Glycine hydroxymethyl transferase PP0322 L-Leucine, L-isoleucine 9.35 6.66 9.33

PP0671

Citrate synthase PP4194

doi:10.1371/journal.pcbi.1000210.t005
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annotation gives no information beyond the protein family name.

It is thus likely that a fraction of the hypothetical and non-

specifically annotated genes in the current P. putida annotation are

responsible for unknown metabolic or transport processes, or that

some might code for proteins that add redundancy to known

pathways. This observation is common to all genomes sequenced

so far and illustrates a major hurdle in the model building process

(and hence, its usefulness) that can be overcome only through

extensive studies in functional genomics.

Secondly, although we carefully constrained the in silico flux

space through FBA and FVA and obtained distribution spaces

roughly consistent with those experimentally determined via 13C-

flux analysis, these approaches are inherently limited as they

assume growth as a sole metabolic objective and ignore any effects

not explicitly represented in a constraint-based metabolic model. It

has been shown that FBA using objective functions other than

growth can improve predictive accuracy under certain conditions

[53]. Kinetic limitations also may play a very important role in

determining the extent to which a particular reaction or pathway

is used. Teusink et al. [52] showed that in the case of L. plantarum

these factors may lead to false predictions.

Thirdly, the reconstruction includes causal relationships between

genes and reactions via gene-protein-relationships (GPRs) but it

lacks explicit information regarding gene regulation. The regulation

of gene expression causes that there are many genes in the cell that

are expressed only under certain growth conditions. Therefore, the

in silico flux space is generally larger than the true in vivo flux space of

the metabolic network. This, in turn, may influence the robustness

of the metabolic network and the essentiality of some reactions and

genes. The lack of regulatory information and of the genetic

interactions involved is likely to be one of the causes for faulty

predictions of the viability of mutant strains. Adding this

information will be an important step in the further development

and improvement of the accuracy of the reconstruction.

Fourthly, although our analyses indicated that growth yield is

relatively insensitive to changes in biomass composition, these

analyses also suggest that factors other than the structure of the

metabolic network play an important role in defining the

relationship between the growth yield and environmental

conditions. The prediction of the exact growth yield requires the

precise measurement of maintenance values, which may vary

substantially from one condition to the other [44–46]. As the

maintenance accounts for 10–30% of the total carbon source

provided in unstressed conditions, this may set a limit to the

accuracy of the growth yield predictions.

To enhance the usefulness and predictiveness of the model,

several avenues could be followed in the future. Firstly, additional

constraints can be overlaid on the network to reduce the space of

possibilities and increase the accuracy of predictions. In addition to

specific knowledge of particular enzymatic or transport processes,

such constraints are best based on high-throughput experimental

evidence such as transcriptomic and proteomic data, which are

instrumental in expanding genotype-phenotype relationships in

the context of genome-scale metabolic models [67]. Microarray

experiments have guided the discovery of metabolic regulons, and

usage of microarray and proteomic data to constrain metabolic

models has improved model accuracy for other systems [23].

Secondly, P. putida provides a good opportunity for incorporating

kinetic information into a genome-scale model as there are various

kinetic models available and under development for small circuits

in P. putida [68–71]. Incorporating data from these models into the

genome-scale reconstruction would provide insights into the

relationships of isolated metabolic subsystems within the global

metabolism. This synthesis would also improve the flux predictions

of the global model, particularly in areas where current FBA-based

predictions methods fail due to their inherent limitations.

Experimental validation of a genome-scale model is an iterative

process that is performed continuously as a model is refined and

improved through novel information and validation rounds. In this

work, we have globally validated iJP815 as well as specific parts

thereof by using both up-to-date publicly available data and data

generated in our lab, but there will be always parts of the model

that include blocked reactions and pathways that will require

further, specific validation. As more knowledge becomes available

from the joint efforts of the large P. putida community (e.g., http://

www.psysmo.org), focus will be put on these low-knowledge areas

for future experimental endeavors. We anticipate that this model

will be of valuable assistance to those efforts.

The metabolic reconstruction, the subsequent mathematical

computation and the experimental validation reported here provide

a sound framework to explore the metabolic capabilities of this

versatile bacterium, thereby yielding valuable insights into the

genotype-phenotype relationships governing its metabolism and

contributing to our ability to exploit the biotechnological potential

of pseudomonads. By providing the means to examine all aspects of

metabolism, an iterative modeling process can generate logical

hypotheses and identify conditions (such as regulatory events or

conditional expression of cellular functions) that would reconcile

disagreements between experimental observations and simulation

results. Through a detailed in silico analysis of polyhydroxyalkanoate

production, we show how central metabolic precursors of a

compound of interest not directly coupled to the organism’s growth

function might be increased via modification of global flux patterns.

Furthermore, as the species Pseudomonas putida encompasses strains

with a wide range of metabolic features and numerous isolates with

unique phenotypes, the reconstruction presented provides a basic

scaffold upon which future models of other P. putida strains can be

built with the addition or subtraction of strain-specific metabolic

pathways. Due to its applicability across the numerous P. putida

strains iJP815 provides a sound basis for many future studies

towards the elucidation of habitat-specific features, bioremediation

applications and metabolic engineering strategies with members of

this ubiquitous, metabolically versatile and fascinating genus.

Materials and Methods

Constraint-Based Models
The P. putida model we present was built using a constraint-

based (CB) approach. A constraint-based model consists of a

genome wide stoichiometric reconstruction of metabolism and a

set of constraints on the fluxes of reactions in the system

[19,20,24]. The reconstruction represents stoichiometry of the

set of all reactions known to act in metabolism of the organism,

which can be determined in large part from genomic data since

most cellular reactions are catalyzed by enzymes. Thus the model

does not require any knowledge regarding the kinetics of the

reactions, and the requisite thermodynamic knowledge is limited

to the directionality of reactions.

In addition to the reactions, the model includes a set of genes

tied via Boolean logic to reactions that their protein products

catalyze, which allows for accurate discrimination of the effects of

genetic perturbations such as knockouts [33,72]. These Boolean

rules together form the gene-protein-reaction relationships (GPRs)

of the metabolic reconstruction [33].

The second part of the CB-model, namely the constraints,

constitutes a set of rules that narrow down the interval within

which the flux of particular reaction must lie. These constraints

rest upon physico-biological knowledge. One of them, the
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information regarding reaction directionality, has already been

mentioned above. Another constraint that is widely applied in

biological systems is the Pseudo-Steady-State Assumption (PSSA)

[73], which states that a concentration of a chemical compound

stays constant over the simulated time frame. The reactants to

which this constraint is applied are usually called internal

compounds, and in biological models correspond to the chemical

substances located inside the cell or its compartments. Remaining

substances, external compounds, correspond to species that can be

taken up or secreted and thus exchanged with the environment.

Other types of constraints are top and bottom limits that

correspond to catalytic capabilities of the enzymes. More detailed

description of constraint based modeling approach can be found in

[74] and the Text S1, section ‘‘Constraint based models—

mathematical explanation’’.

Analysis Methods
Flux balance analysis. Flux balance analysis (FBA) is a primary

method for analysis of constraint-based models. Generally, a

constraint based model of metabolism represents an

underdetermined system, i.e., one in which a range of flux

distributions are mathematically possible. FBA narrows the flux

possibilities by determining a point in closed flux space that

maximizes a certain linear combination of fluxes. [75]. FBA poses

a linear programming (LP) problem and thus a global maximum

always exists, provided that the problem is feasible (i.e., there exists at

least one combination of fluxes which fulfills all the constraints). Using

the matrix notation the FBA problem can be stated as following:

maximize : cT : v

subject to : Si
: v ~ 0

vmin ƒ v ƒ vmax,

where S is the stoichiometric matrix containing reaction

stoichiometry information, v is a vector of all reaction fluxes in the

system, vmin and vmax represent minimum and maximum constraints

on reaction fluxes, respectively, and cT is a vector containing

coefficients for each flux that is to be maximized (for more detail on

FBA, refer to [76]).

FBA optimization yields an optimal value for the objective along

with a flux value for every reaction belonging to the metabolic

network. Commonly, FBA is used to predict maximal growth or

metabolite production yields. Cell growth is simulated by the flux

over a special ‘Biomass’ reaction that consumes precursors of

cellular components (amino acids, lipids, dNTPs, NTPs, cofactors)

and produces a virtual unit of cell biomass. Maximization of this

flux is usually set as the FBA objective. This procedure assumes

that organisms have been shaped by the evolution towards growth

maximization, an assumption that has been validated under a

variety of conditions [77].

Flux variability analysis. Metabolic networks of living

organisms are usually considerably underdetermined [78–80].

The size of the mathematically allowed flux space can vary

depending upon the network structure and the constraints. Flux

variability analysis (FVA) is a method that allows for rough top

estimation of the flux space for a given FBA optimization [41].

FVA computes for each reaction an interval of values inside of

which the flux of the reaction can change without influencing

value of the objective function, provided that other fluxes are

allowed to vary freely within their constraints.

It is often the case that cells do not operate perfectly optimally

when FBA simulations are compared to real data. Therefore, a

variant of the FVA approach called suboptimal FVA [41] is

sometimes informative, wherein instead of fixing the objective to

its optimal value from the initial FBA run (as in standard FVA), the

objective value is allowed to vary within a predetermined limit. For

every suboptimal FVA presented in this paper the objective lower

limit was chosen at 90% of the initial objective value (assuming

that FBA maximized the objective).

OptKnock
OptKnock is an approach for identification of mutations that

selectively increase production of a certain compound of interest,

assuming that the mutant would optimize for the same quantity as

the wild type (e.g., growth yield) [28]. OptKnock points out

reactions (and genes, through GPR logic) that must be blocked in

order to maximize a linear combination of target fluxes (outer

objective) while simultaneously maximizing for the cell’s assumed

objective (growth yield; inner objective). OptKnock poses a bi-level

optimization approach that is solved via Mixed-Integer Linear

Programming (MILP). Further details can be found in Text S1,

section ‘‘OptKnock – mathematical formulation’’ and [28].

OptKnock—modification. In order to enable the choice of

the carbon source(s) the original OptKnock procedure was

modified as follows:

1. A virtual reaction, with limited flux, was created that sourced

the virtual compound ‘‘vcarbon’’

2. For each carbon source a virtual irreversible reaction that

converted the compound ‘‘vcarbon’’ into the respective carbon

source was added to the model. The stoichiometry of this

virtual reaction corresponded to the number of carbon atoms

in the carbon source, e.g.:

6 vcarbon R D-glucose.

3. For each of those reactions (vj) a binary variable (zj) defining its

activity was created and following constraint was added to the

model: vj # vj
max?zj, where the vj

max was set to value high

enough, so that the whole ‘‘vcarbon’’ could be consumed by

each reaction.

This modification allows for the choice of one or more carbon

sources that, together with the mutation set identified by

OptKnock, provide the highest objective.

Identification of Minimal Growing Reaction Set
The minimal growing set was identified using a Mixed Integer

Linear Programming (MILP) approach, by modifying original

FBA LP problem. For every non-blocked and non-essential

reaction a binary variable was added that reflects the activity of

the reaction. When the binary variable takes value of 1 the

corresponding reaction is virtually unlimited (or limited by rules of

original LP problem). When the variable is set to 0 the

corresponding reaction is blocked (non-zero flux is impossible).

This was achieved by adding a following set of equations to the

original LP problem:

{yi
: vlim

i ƒ vi ƒ yi
: vlim

i

for reversible reactions, and

vi ƒ yi
: vlim

i

for irreversible reactions. In order to assure that growth was not

overly restricted, a minimal flux value was established for the
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biomass reaction. We set the lower limit on biomass flux to 0.05

when the supply of carbon source was 60 mmolC?gDW
21h21,

which corresponds to growth yield of 0.07 gDW?gC
21, 16 times

lower than the wild type. The objective of the problem was set to

minimize the sum of all binary variables yi:

minimize
X

i

yi

This method searches for a minimal set that is able to sustain

growth greater than or equal to to the minimal growth

requirement.

Metabolic Network Reconstruction
The main sources of information regarding the composition of

the metabolic network of Pseudomonas putida KT2440 were various

biological databases. Most of the information came from the Kyoto

Encyclopedia of Genes and Genomes (KEGG) [35,81] and

Pseudomonas Genome Database (PGD) [82]. Information regard-

ing P. putida contained in these two databases is mainly based on the

published genome annotation of the bacterium [14], so there is a

large overlap between them. Additionally, substantial information

was taken from the BRENDA database, which catalogs reaction

and enzyme information [83]. This all was augmented with

knowledge coming directly from primary research publications

(see Text S3). The reconstruction process was performed in an

iterative manner, i.e., by adding or removing reactions from the

model in between rounds of model testing. First, reaction

information for P. putida was collected from KEGG and PGD.

Reactions supported by sufficient evidence and with specific enough

functional annotations were incorporated into the model. For every

accepted reaction its reversibility was assessed basing on assign-

ments in KEGG pathways as well as information from BRENDA

database. For reactions with inconsistent assignments a decision

about reversibility was made basing on analysis of the reaction as

well as its reversibility in other organisms. Hereby, a first version of

the metabolic model was created (iJP815pre1).

The next step involved assessing whether the reconstructed

metabolic network is able to produce energy from glucose. This

was achieved by running FBA with ATP production set as the

objective function. Subsequently, the ability of the model to grow

in silico on glucose was tested. Successful in silico growth indicates

that every chemical compound belonging to the biomass equation

can be synthesized from present sources, using the reactions

contained in the model. Since the exact cellular composition of P.

putida is not known, the composition of E. coli biomass was used as

an approximation. This test was performed by running FBA with

production of each biomass constituent set as the objective. If a

compound could not be synthesized, the gaps in the pathway

leading to it were identified manually and a search was performed

for reactions that could fill the gaps. If this approach was

unsuccessful, gaps were filled with reactions from the E. coli model.

This yielded the second version of the reconstruction (iJP815pre2).

The third round of reconstruction consisted of two sub-steps.

First, the compounds for which transport proteins exist were

identified and appropriate reactions added. Second, the results of

BIOLOG carbon-source utilization experiments were compared

with in silico simulations for growth on those compounds. It was

assumed that the ability to grow in silico on the particular

compound as the sole carbon source approximates the in vivo

utilization. For those compounds that did not show in silico growth,

a literature search was performed in order to identify possible

pathways of utilization. The results of this search, in the form of

reactions and GPRs, were added to the model. The outcome was

the final version of the model (iJP815).

Comparison of Growth Yields with the Continuous
Culture Experiments

Growth yields on sources of basic elements (C,N,P,S) were

compared with experimental values obtained by Duetz et al. [37].

The yields of the model were computed using FBA, by setting the

growth rate to the value of the dilution rate used in experiments

and subsequently minimizing for consumption of source of

respective element (succinate, ammonia, phosphate and sulfate).

Computational Methods
The model was created and maintained using ToBiN (Toolbox

for Biochemical Networks, http://www.lifewizz.com). The opti-

mizations (FBA, FVA, OptKnock) were computed by free, open

source, solvers from the COIN-OR family (COmputational

INfrastructure for Operations Research, http://www.coin-or.org)

or by the lp_solve ver. 5.5 (http://lpsolve.sourceforge.net/5.5/)

software package. All computations were performed on a Personal

Computer with a Intel Core 2 2.40 GHz CPU and 2GB of RAM.

Experimental Methods
Media and chemicals. P. putida KT2440 was grown either on

EM-medium (Bacto Trypton – 20 g, Yeast-Extract – 5 g, NaCl – 5 g,

Glucose 0.5%, H2Odist at 1000 ml; the glucose was as 10% solution

autoclaved separately and added in appropriate amount) or SOC-

medium (Bacto Trypton – 2%, Yeast-extract – 0.5%, Glucose – 20

nM, NaCl – 10 mM, KCl – 2.5 mM, MgCl2 – 10 mM, MgSO4 –

10 mM, H2Odist ad 1000 ml; magnesium salts were autoclaved

separately and subsequently merged with the remaining components)

or minimal medium (106; Na2HPO4 – 50 g, KH2PO4 – 100 g,

MgSO467H2O – 2 g, (NH4)2SO4 – 20 g, CaCl2 – 0.01 g,

FeSO467H2O – 0.01 g, H2Odist ad 1000 ml; the potassium and

sodium salts were dissolved separately and subsequently mixed with

other dissolved salts; pH was set to 7.0 by adding 10 mM NaOH)

with different compounds as the sole carbon source.
BIOLOG substrate utilization experiments. Pseudomonas

putida KT2440 was tested for its ability to utilize various carbon

sources using BIOLOG GN2 Microplates [31] (BIOLOG Inc.

Hayward, CA, USA). All procedures were performed as indicated

by the manufacturer. Bacteria were grown overnight in 28uC on a

Biolog Universal Growth agar plate. Afterwards they were

swabbed from the surface of the plate and suspended in GN

inoculating fluid. Each well of the Microplate was inoculated with

150 ml of bacterial suspension and the plate was incubated in 28uC
for 24 h. Subsequently the plate was read by a microplate reader

and the read-outs were analyzed with MicroLog3 4.20 software.
Growth experiments. If not stated differently, cells were

grown on agar plates overnight in 30uC.
Transposon mutagenesis. The mutants of P. putida were

created using an in vitro transposition system (Epicentre

Technologies, Madison, Wisconsin, USA) [84]. This system

bases on a hyper-reactive Tn5-transposase and Tn5-

Transposome that, in the absence of magnesium ions, builds a

stable synaptic complex, which can be transmitted into the cell via

electroporation. To render Pseudomonas putida KT2440

electrocompetent, cells were grown in 50 ml of EM-medium to

OD600 of 0.6 to 1.0 and subsequently cooled on ice for 15 minutes.

The cells were centrifuged (4000 g, 4uC) and washed twice with

H2Odist. The cells were washed twice in 0.3 M cold solution of

sucrose and resuspended in 0.5 to 1.0 ml of 0.3 M sucrose

solution. The electrocompetent cell were used for transformation

by electroporation with Gene Pulser (BioRad, Munich, Germany)
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using the EZ:TN ,Kan-2. Tnp Transposome. 20–40 ml of cells

was mixed with 1–2 ml of DNA in ice-cooled cuvette. The

electroporation setting were 25 mF, 200 V, and 1.7 or 2.5 for the

gap size 0.1 and 0.2 cm, respectively. After two hours of

incubation in SOC-medium, transformants were selected on EM

agar plates with 60 mg/ml of kanamycin. Selection of auxotrophic

mutants was performed on minimal medium with acetate as the

sole carbon source, by replica-plating P. putida

KT2440::Tn5(Kanr) strains on the minimal and EM media.
Identification of flanking sequences. The auxotrophic P.

putida KT2440::Tn5(Kanr) mutants were genotyped by enrichment of

either flanking sequences of transposon insertions using PCR [85,86].

Two rounds of amplifications were performed using primers specific

to the ends of transposons and random primers that can anneal to the

chromosome. In the first round of amplification the Kan-2 RP1

(59-GCAATGTAACATCAGAGATTTTGAG-39) primer

complementary to the end of Tn5-element and the arbitrary

primer ARB1 (59-GGCCACGCGTCGACTAGTACNNN-

NNNNNNNGATAT-39) were used. A 1 ml of supernatant from a

P. putida KT2440 lysate was used as the DNA-template. The PCR-

reaction was performed in following mixture [H2Odist – 28.7 ml,

incubation buffer(106) – 5 ml, dNTPs(5 mM) – 5 ml, primer(10 mM) –

2,5 ml, Taq DNA-polymerase (5U/ml) – 0.2 ml] under following

conditions: (i) 5 m at 95uC, (ii) 306[30 s at 30uC, 90 s at 72uC], (iii)

306[30 s at 95uC, 30 s at 45uC 120 s at 72uC]. In the second round

of amplification a 5 ml of product of the first PCR-reaction was used

as the DNA-template, together with the primers TnINT Rev (59-

GAGACACAATTCATCGATGGTTAGTG-39) and ARB-2 (59-

GGCCACGCGTCGACTAGTAC-39). The reaction conditions

were following: 306[30 s at 95uC, 30 s at 45uC, 120 s at 72uC].

The PCR-products were purified with ‘‘QIAquick- spin PCR

Purification Kit’’ (Qiagen GmbH, Hilden, Germany) according to

manufacturer’s instructions. Subsequently, the sequencing procedure

was performed. 200–500 mg of dsDNA in normal sequencing vectors

(pBlueskript, pUC18, etc.) with 10 pmol of primer (TnINT Rev) and

6 ml of ‘‘Big Dye Terminator v. 2.0 Ready Reaction Mix’’ were mixed

in total volume of 10 ml. The conditions of the reaction were

following: 256[30 s at 95uC, 30 s at 60uC, 4 m at 60uC]. After the

cycle sequencing the remaining dNTP were removed using ‘‘Dye Ex

Spin Kit’’ (Qiagen GmbH, Hilden, Germany) according to

manufacturer’s instructions. To the purified product 50 ml sterile

MiliQ-H2O was added and the DNA was precipitated wit 250 ml

Ethanol (100% v/v) for 30 min at 160006g in the room temperature.

The supernatant was removed and the pellet washed with 250 ml of

ethanol (100% v/v), precipitated again by centrifugation (160006g,

RT, 10 min) and dried in vacuum-centrifuge. All the DNA-pellets

were stored in 220uC in 20 ml Hi-Di Formamide (PE Biosystems)

until sequencing. The sequencing was performed with ABI PRISM

377 sequencer [87]. The fluorescence signals were analyzed with ABI

PRISM 3100 Genetic Analyser and the obtained sequences

compared with P. putida KT2440 genome sequence.

Supporting Information

Figure S1 Influence of biomass composition on the growth yield.

Each bar represents a biomass with the fraction of one compound

modified.

Found at: doi:10.1371/journal.pcbi.1000210.s001 (0.18 MB TIF)

Figure S2 Influence of maintenance values on the growth yield.

(A) influence when the glucose is supplied with the rate of

2.2 mmol?gDW
21?h21 (B) influence when the glucose is supplied

with rate 10 mmol?gDW
21?h21.

Found at: doi:10.1371/journal.pcbi.1000210.s002 (1.07 MB TIF)

Figure S3 Predictions of the fluxes in the central metabolism

when the network structure assumed by the authors of the 13C

measurements is used.

Found at: doi:10.1371/journal.pcbi.1000210.s003 (1.97 MB TIF)

Figure S4 Influence of biomass composition on the prediction of

internal fluxes. (A) results obtained from Optimal FVA (B) results

obtained from suboptimal FVA.

Found at: doi:10.1371/journal.pcbi.1000210.s004 (0.63 MB TIF)

Figure S5 Analysis of variability of particular reactions.

Comparison of sizes of particular variability groups in various

conditions.

Found at: doi:10.1371/journal.pcbi.1000210.s005 (0.29 MB TIF)

Figure S6 Flux Coupling Finder, comparison of numbers of

coupled reaction sets with respect to their size.

Found at: doi:10.1371/journal.pcbi.1000210.s006 (0.67 MB TIF)

Table S1 Comparison of metabolic reconstruction created up to

date

Found at: doi:10.1371/journal.pcbi.1000210.s007 (0.07 MB

DOC)

Table S2 BIOLOG assay details

Found at: doi:10.1371/journal.pcbi.1000210.s008 (0.02 MB XLS)

Table S3 Distribution of variable reactions among pathways

Found at: doi:10.1371/journal.pcbi.1000210.s009 (0.05 MB

DOC)

Table S4 In silico growth results of the mutant strains

Found at: doi:10.1371/journal.pcbi.1000210.s010 (0.05 MB

DOC)

Table S5 Assembly of various properties of the reactions

belonging to iJP815

Found at: doi:10.1371/journal.pcbi.1000210.s011 (0.36 MB XLS)

Text S1 Supplementary methods

Found at: doi:10.1371/journal.pcbi.1000210.s012 (0.11 MB

DOC)

Text S2 Supplementary results

Found at: doi:10.1371/journal.pcbi.1000210.s013 (0.05 MB

DOC)

Text S3 Publications that contributed to the iJP815 reconstruc-

tion process

Found at: doi:10.1371/journal.pcbi.1000210.s014 (0.02 MB

DOC)
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