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Pathogens that evolve resistance to drugs usually have reduced fitness. However, mutations that largely compensate
for this reduction in fitness often arise. We investigate how these compensatory mutations affect population-wide
resistance emergence as a function of drug treatment. Using a model of gonorrhea transmission dynamics, we obtain
generally applicable, qualitative results that show how compensatory mutations lead to more likely and faster
resistance emergence. We further show that resistance emergence depends on the level of drug use in a strongly
nonlinear fashion. We also discuss what data need to be obtained to allow future quantitative predictions of resistance
emergence.
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Introduction

Drug-resistant pathogens are found at an alarming rate and
few replacement drugs are in sight, suggesting a rapidly
increasing public health problem [1–6]. There exists broad
consensus that prudent use of antibiotics and antivirals is of
critical importance to stop or at least reduce emergence of
drug resistance.

Theoretical between-Host Studies of Drug Resistance
A number of theoretical between-host studies have

provided some insights into prudent drug use. Both pop-
ulation-genetic [7–9] as well as epidemiological [10,11] studies
analyzed the relationship between drug use and levels of
resistance for the community at large. Further studies focused
on specific scenarios, such as hospital settings [12,13], the
interaction between hospitals and the community [14], and
influences of animal reservoirs [15]. Other studies inves-
tigated drug resistance for specific pathogens, such as malaria
[16], HIV [17,18], HSV [19,20], multidrug-resistant tuber-
culosis [21,22], and influenza [23,24]. Results obtained from
these and other studies have led to an improved under-
standing of the relation between drug use and resistance
emergence. In these studies, it is assumed that in the absence
of drugs, the resistant pathogen strain is less fit than the
sensitive strain. Drug treatment reduces the fitness of the
sensitive strain, which leads to potential resistance emer-
gence. What is not considered is the ability of the resistant
pathogen to regain some or most of its fitness through
compensatory mutations.

Experimental within-Host Studies of Compensatory
Mutations

Compensatory mutations have been found to play an
important role in the evolution of pathogens [25–27]. In vitro
studies of streptomycin-resistant Escherichia coli found that the
cost associated with resistance was quickly reduced by
compensatory mutations, and these compensatory mutations
can occur in both the presence and absence of the drug [28–
30]. Subsequent studies found that compensatory mutations
were also important in vivo. Studies passaging drug-resistant
Salmonella typhimurium through mice led to the emergence of

strains with increased fitness that retained resistance [31,32].
Further studies suggested that compensatory mutations
might play a role for the evolution of resistance in
Mycobacterium tuberculosis [33,34], Streptococcus pneumoniae [35],
Staphylococcus aureus [36], and the yeast Candida albicans [37].
These and other studies suggest that compensatory mutations
play a potentially important role in the evolution of
resistance.

Combining Compensatory Mutations and Epidemiological
Models
Despite the importance of compensatory mutations for the

process of resistance emergence, we are aware of only one
population-genetic study investigating the effect of compen-
satory mutations on the interplay between drug (pesticide)
use and resistance [38]. Epidemiological models that include
compensatory mutations currently do not exist. To our
knowledge, our study is the first one to include compensatory
mutations into a between-host epidemiological model of
resistance emergence.
Ideally, we would like to study a system for which we can

obtain quantitative predictions. Unfortunately, despite the
existing studies on compensatory mutations, no host–patho-
gen system currently exists—as far as we are aware—for
which such quantitative predictions could be made. There is
simply not enough data available to allow estimation of all the
parameters that are needed to quantitatively describe the
process of population-wide resistance emergence.
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Currently missing are estimates for the between-host
fitness levels of resistant mutants. In epidemiological models,
the between-host fitness of a pathogen can be defined
through the basic reproductive number R0, the number of
secondary infections caused by one infected host introduced
into a fully susceptible population [39,40]. In contrast, within-
host studies such as compensatory mutation studies measure
fitness through in vitro or in vivo growth rates. While a
connection can be made between a pathogen’s within-host
dynamics and its ability to transmit and infect hosts [41], it is
currently not known how within-host fitness measured by
pathogen growth rates translate into between-host fitness
measured by R0.

Also unknown are the rates at which hosts infected with
one pathogen strain ‘‘convert’’ to hosts infected with another
strain. Each pathogen has a certain probability of undergoing
mutations. Provided that a mutation confers a competitive
advantage, the mutant can outgrow the other pathogens
within an infected host. Once the mutant strain dominates,
one can consider the infected host as having ‘‘converted.’’ (As
we will discuss at the end of this article, assuming that a host
is completely dominated by only one strain at a time is
probably an oversimplification.) The rates of conversion
depend on both the mutation rates and the dynamics of the
different strains within a given host. A recent study provides
estimates for the probability that a host commensally infected
with Helicobacter pylori is taken over by a newly arising mutant
[42]. However, the results only apply under very restricted
conditions. While estimates of compensatory mutation rates
exist, for instance for S. typhimurium [43], no clear connection
has been established between these mutation rates and the
rates at which a host is converted from being infected with
one strain to being infected with another strain.

Last, it is also not known what routes of compensatory
mutation a pathogen can undergo in a clinically relevant in
vivo setting. One study showed that S. typhimurium can follow
different routes of compensatory mutations in vitro and in
vivo [32]. In principle, these routes could be a single linear

pathway or there could be multiple routes with multiple
possibilities for compensatory mutations to increase fitness.
The current lack of data for these three quantities—

between-host fitness levels, rates of conversion, and routes of
compensatory mutations—unfortunately limits the predictive
power of any model. Nevertheless, one can gain important
qualitative insights into how compensatory mutations influ-
ence the dynamics of resistance emergence. This is the main
point of our current study.
In the absence of good estimates for all the necessary

parameters, we consider a pathogen for which most param-
eters are well-defined, and then we investigate how changes in
the unknown parameters influence the results. To that end,
we study a between-host model for gonorrhea transmission
dynamics. Many of the parameters defining the transmission
dynamics of gonorrhea infections are rather well-known [44–
47]. This allows us to study how the unknown parameters
related to compensatory mutations affect the emergence of
resistance. Additionally, many strains of Neisseria gonorrhoeae,
the pathogen causing gonorrhea, have been found to be
resistant to antibiotics such as penicillins, tetracyclines, and
quinolones [48,49]. While the pathogen is still mostly
susceptible to third-generation cephalosporins, it is likely to
be just a matter of time before resistance reaches levels that
render this class of drugs ineffective. Therefore, gonorrhea is
a pathogen for which resistance studies are needed to help
inform public health policy.

Materials and Methods

The dynamics of gonorrhea transmission has been analyzed
in detail [44–47]. One of the findings from these studies is the
concept of core groups [44]. Core groups are broadly defined
as subsets of the population in which the disease can persist,
even if it cannot persist in the rest of the population. For
gonorrhea, core groups consist of sexually active high-risk
individuals. Since core groups are most likely the ‘‘breeding
ground’’ for resistance, we focus on such a group.

The Model
We include four different pathogen strains in our model,

namely a drug-sensitive strain, a resistant mutant, and two

Figure 1. Flow Diagram of the Compartmental Model Describing

Gonorrhea Transmission within a Homogenous Core Group

Not shown are the flows out of each compartment at rate k. Table 1
summarizes the variables and parameters. A detailed explanation of the
model is given in the text.
DOI: 10.1371/journal.pcbi.0020137.g001
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Synopsis

Pathogens that evolve resistance to drugs pose a serious public
health problem. Acquisition of drug resistance usually leads to a
pathogen which in the absence of the drug is less fit than the
nonresistant pathogen. However, the resistant pathogen can
undergo additional mutations that compensate for the fitness cost
involved with acquisition of resistance. This can result in a drug-
resistant pathogen with fitness comparable to that of the non-
resistant pathogen. Handel, Regoes, and Antia analyzed a mathe-
matical model to explain how this process of compensatory
mutations influences the probability of and time to resistance
emergence on a population level. The authors found that with
compensatory mutations, resistance emergence is faster and more
likely. Their study also shows how small changes in levels of
treatment can lead to large changes in the time to resistance
emergence. They further discuss how our ability to accurately
predict resistance emergence will depend on improved estimates of
the parameters governing the processes of resistance acquisition
and compensatory mutations. The study suggests that compensa-
tory mutations can play an important role in the evolution and
spread of resistant pathogens through a population.

Compensatory Mutations and Drug Resistance



further resistant mutants that have undergone compensatory
mutations and thereby regained some of the fitness that was
lost in the resistance mutation. The model is given by
Equation 1, a flow diagram of the model is shown in Figure 1,
and Table 1 summarizes the variables and parameters of the
system.

S_¼ kN � kSþ
X3
i¼1
ðbi þ miÞIi

� S
N
ðbsIu þ bsIt þ muIu þ mtItÞ

I_u ¼ ð1� f Þ S
N

bsðIu þ ItÞ � ðkþ muÞIu

I_t ¼ f
S
N

bsðIu þ ItÞ � ðkþ mt þ ltÞIt ð1Þ

I_1 ¼ ltIt þ ð
S
N

b1 � k� m1 � l1ÞI1

I_2 ¼ l1I1 þ ð
S
N

b2 � k� m2 � l2ÞI2

I_3 ¼ l2I2 þ ð
S
N

b3 � kI3 � m3ÞI3:

The details of the model are as follows. We consider a
homogeneous core group of sexually highly active people 15–
39 years of age. New susceptible individuals S enter the group
by turning 15 years old and becoming sexually active, and
leave the group by turning 40, which can be seen as a proxy
for becoming sexually less active. This gives an entry and exit
rate of k ¼ 1

25 y
�1. Gonorrhea does not cause significant

mortality, and the general death rate is low in persons aged
15–39, therefore we ignore deaths.

Susceptible individuals can become infected through
sexual interactions with infected persons at a rate determined
by the transmission parameters for the different pathogen
strains bs, b1, b2, b3. We assume that there are no differences
in transmission between treated and untreated individuals;
treatment only reduces the duration of infection. We specify
the transmission parameters through the between-host fitness

as measured by the basic reproductive number R0 (Equation
3). We choose the basic reproductive number for the sensitive
strain to be Rs

0 ¼ 2, corresponding to a 50% prevalence in the
absence of treatment. Such a high prevalence might occur in
certain core groups; for instance, among commercial sex
workers. Fitness levels for the resistant strains are chosen at
intermediate values such that 1,R1

0 ,R2
0 ,R3

0 ,Rs
0. As

mentioned earlier, values for the between-host fitness levels
are not known. In a recent study of M. tuberculosis isolated
from patients, relative within-host fitness levels between 50%
and 100% were reported [34]. While keeping in mind the
difficulties of comparing within-host fitness measured by
pathogen growth rates and between-host fitness measured by
R0, we use these within-host values as a guideline and choose
the between-host fitness for the different resistant strains to
be between 60% and 95% that of the sensitive strain.
Some infecteds, Iu, do not receive treatment and remain

infectious for six months [44,45]. A fraction f of infecteds, It,
receive treatment and clear the infection after one month.
Since N. gonorrhoeae undergoes constant antigenic changes,
hosts that clear the infection do not become protected
against reinfection and therefore return to the susceptible
pool. Instead of recovering, some treated hosts evolve
resistance at rate lt and convert to I1. Since we assume that
treatment has no effect on hosts infected with the resistant
strains, the duration of infection is the same as those of the
untreated hosts. The first and second resistant strains can
evolve further to convert to the second and third resistant
strains at rates l1 and l2, respectively. As mentioned above,
clinically relevant routes of compensatory mutation are not
known for any pathogen. Here we choose the simple linear
pathway I1 ! I2 ! I3, with each mutation leading to a strain
with increased between-host fitness. Also not known are the
rates at which hosts can convert from being dominated by
one strain to being dominated by another strain. While it was
found in experiments that compensatory mutations are more
frequent than mutations resulting in resistance [30], the
fitness advantage of a resistance mutation in the presence of
drug is likely larger than that of a compensatory mutation. It
is not clear how these two effects (and potentially others)
influence the overall rates of conversion. We therefore

Table 1. Variables and Parameters of the Model

Symbol Meaning Values

S Susceptible hosts NA

Iu Untreated hosts infected with the sensitive strain NA

It Treated hosts infected with the sensitive strain NA

I1, I2, I3 Hosts infected with resistant mutants NA

N Population size 10,000

f Fraction of infecteds receiving treatment 0–1

k Entry and exit rate into the modeled population 1/25 y�1

mu, m1, m2, m3 Recovery rate of untreated and resistant infecteds (infection duration of six

months)

2 y�1

mt Recovery rates of treated infecteds (infection duration one month) 12 y�1

lt , l1, l2 Rates of conversion between strains 10�6 � 10�1

bs, b1, b2, b3 Transmission parameters for sensitive and resistant strains Given by Equation 3

Rs
0 Basic reproductive number of susceptible strain (in the absence of treatment) 2

R1
0; R2

0; R3
0 Basic reproductive numbers of resistant strains 1.2 � 1.9

NA, not applicable.
DOI: 10.1371/journal.pcbi.0020137.t001
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assume for most of our study that all conversion rates are
equal, i.e., lt¼ l1¼ l2. We additionally choose values for the
conversion rates between 10�6 and 10�1. We investigate how
changes in the conversion rates affect the results.

Figure 2 summarizes the basic dynamics of resistance
emergence for our model. The bars indicate the between-host
fitness levels as measured by R0 for the sensitive and resistant
pathogen strains. All strains are assumed to have a fitness of
R0 . 1. The sensitive strain can mutate to a resistant strain
with strongly reduced fitness. Due to competition between
the strains, a given resistant strain can only invade if its
fitness is larger than that of the sensitive strain. Therefore, for
all but the highest levels of treatment, once the resistant
strain is created, it is outcompeted and goes extinct.
However, while stuttering to extinction, the resistant strain
can undergo further compensatory mutations and thereby
increase in fitness. Once the level of fitness is above that of

the sensitive strain, the resistant strain can emerge. The level
of drug use determines which of the resistant strains can
invade.

Analysis of the Model
Gonorrhea is thought to persist in the population in an

endemic state [44], which can be well described by the steady
state values of the mathematical model. In the absence of
resistant strains, the steady state values are found to be

Ŝ ¼ Nctcu
bsw

;

Î u ¼
Nð1� f Þkctv

bswu
; ð2Þ

Î t ¼
Nf kcuv
bswu

;

where we introduced the abbreviations cu¼kþ mu, ct¼kþ mtþ
lt, u¼ ctkþ cu f kþ cu flt – ct f k, v¼ ctbs� ctcu� bsct fþ bscu f, and
w ¼ ct – ct f þ fcu. The between-host fitness levels of the
different strains are given by their basic reproductive
numbers

Rs
0 ¼ bs

1� f
cu
þ f
ct

� �
; Ri

0 ¼
bi

ci
; ð3Þ

for the sensitive strain and the i ¼ 1,2,3 resistant strains,
respectively. We defined c1¼ kþ m1þ l1 and c2¼ kþ m2þ l2.
The relative fitness of the resistant strains compared with the
sensitive strain can be defined as

R̂i ¼
Ri

0

Rs
0
; i ¼ 1; 2; 3 ð4Þ

The dynamics of the resistant strains can be computed if we
assume that during the process of resistance emergence, the
endemic steady state does not change. This is a good
approximation if the resistant strains are at a low level,
which corresponds to the initial phase of resistance emer-
gence that we consider here. If we assume that the system is at
steady state and that initially no resistant pathogens are
present, we find the explicit expressions for I1(t), I2(t), and I3(t)
to be

I1ðtÞ ¼
Qg1
r1

;

I2ðtÞ ¼
Ql1ðg1r2 � g2r1Þ
r1r2ðr1 � r2Þ

; ð5Þ

I3ðtÞ ¼
Ql1l2ðf1 þ f2 þ f3Þ

r1r2r3ðr1 � r2Þðr1 � r3Þðr2 � r3Þ
;

with the abbreviations Q ¼ ltÎ t, ri ¼ ðR̂i � 1Þci, gi ¼ erit � 1,
f1 ¼ g1ðr22r3 � r2r23Þ, f2 ¼ g2ðr1r23 � r21r3Þ, and f3 ¼ g3ðr21r2 � r1r22Þ.
Q is the rate at which resistant mutants are introduced. If the
fitness of resistant strain i at treatment level f is below that of
the sensitive strain, the values of R̂i are smaller than one,
resulting in ri , 0 and equilibrium values for the populations Ii,
given by

I1 ¼
Q
jr1j

; I2 ¼
Ql1

jr1r2j
; I3 ¼

Ql1l2

jr1r2r3j
ð6Þ

These equilibrium values correspond to a dynamic balance
between influx of resistant mutants Q and extinction due to
being outcompeted by the sensitive strain. If the fitness of a

Figure 2. The Process of Resistance Emergence

The bars indicate between-host fitness levels of the different strains.
Solid curved arrows show conversion events that occur frequently due to
large or expanding source populations.
Dashed arrows show conversion events that occur infrequently due to
small source populations.
(A) Without treatment, all resistant strains are less fit than the sensitive
strain. Therefore, resistance emergence is not possible.
(B) Treatment of a small fraction of the population reduces fitness of the
sensitive strain enough to allow for emergence of the fittest resistant
strain. For that to happen, one frequent and two rare conversions need
to occur.
(C) Further increase in treatment level allows both the second and third
resistant strains to emerge. For the second resistant strain to emerge,
one frequent and one rare conversion need to occur. Subsequently, the
third resistant strain is rapidly generated and will outcompete all other
strains.
(D) Treatment of a large fraction of the population results in all
conversion events being frequent and in rapid emergence of resistance.
DOI: 10.1371/journal.pcbi.0020137.g002
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given resistant strain at treatment level f exceeds that of the
sensitive strain, the corresponding R̂i is greater than one and
exponential growth occurs. In this case, the time Ti at which
the population Ii has reached a certain level L is given by the
implicit equation

IiðTiÞ ¼ L ð7Þ

One can obtain an explicit expression for T1. For the times
T2 and T3, the equation needs to be solved numerically once
the level of resistance L has been specified.

We also study a stochastic version of the model (Equation 1).
In the stochastic version of the model, the rate parameters of
the deterministic model become probabilities that a given
event happens. We can obtain the probability of and time-to-
resistance emergence using a branching process formalism
[50–53]. In our model, the relative fitness R̂i associated with
each resistant strain represents the mean number of secon-
dary infections. Since R̂i is given in units of generation time,
we need to rescale the conversion rates accordingly by
defining l9i ¼ li

ci
. Following the formalism described in detail

in [53], we find that for our three-strain model, the probability
of emergence for a single resistance introduction is

p ¼
1þ aþ cþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ aÞ2 � 2ða� 1Þcþ c2

q
2a

ð8Þ

with a ¼ R̂1ðl91 � 1Þ and c ¼ l91R̂1p92, and the probability p92
is again given by Equation 8 with a ¼ R̂2ðl92 � 1Þ and
c ¼ l92R̂2ð1� 1

R̂3

Þ. Combining the result for p with the
number of introductions Q leads to the probability of
emergence in s years

Ps ¼ 1� ð1� pÞQs ð9Þ

Results

The Rate of Resistance Introductions
We consider a scenario where the infection is at an endemic

equilibrium, which is believed to be the case for gonorrhea

[44]. In the absence of any resistant strains, we obtain from
the deterministic model the steady state values Ŝ, Îu, and Ît
(Equation 2). At steady state, hosts infected with the resistant
strain are introduced at a rate Q ¼ ut Ît. Figure 3 shows the
number of introductions per year as a function of f. As f
increases, the fraction of treated hosts increases. At the same
time, treatment reduces the total number of infected hosts.
Competition between these two effects determines the shape
of Ît, and thereby Q, as a function of f. In general, the number
of introductions is zero at f¼ 0 and at some level f *, at which
treatment drives the pathogen to extinction. The maximum
number of introductions is found for some intermediate
value of f and depends on the parameters of the system.

Time to Emergence for the Deterministic Model
A first guess might suggest that one should try to minimize

the number of introductions Q to maximize the time until
resistance emerges. However, the whole process of resistance
emergence also depends on the competition of the sensitive
and resistant strains. If the relative fitness of a resistant strain
is below that of the sensitive strain, the resistant strain will
only be present at a low mutation–selection level (Equation
6). While it can convert to a fitter, compensated mutant
(corresponding to the dashed arrows in Figure 2), it cannot
emerge. Population-wide emergence of a resistant strain can
only happen if its between-host fitness (R0) is larger than that
of the sensitive strain. If emergence is possible, one can
compute approximations for the times at which resistant
strain I reaches a specified level L (Equation 7). In line with
epidemiological considerations for gonorrhea [49], we choose
L as 5% of the total number of infecteds. One finds that the
time to emergence not only depends on the rate of
introductions Q, but also on the relative fitness of the
sensitive compared with the resistant strain. While Q can
either increase or decrease with increasing treatment, the
relative fitness of the resistant strains always increases with
treatment. Because this latter effect turns out to be the more
important one, increases in treatment level directly lead to
decreases in the time to emergence, as seen in Figure 4.

Probability of Emergence for the Stochastic Model
The results shown in Figure 4 are obtained using a

deterministic model. Deterministic models provide good
approximations when the populations as well as the rate
parameters are not too small. In the deterministic model,
every resistant strain gets seeded at t¼ 0 at a level depending
on the conversion rates and then grows or decays in an
exponential fashion, depending on its relative fitness com-
pared with the sensitive strain (Equation 5). However, since
the rates of conversion and levels of resistant strains are
small, stochasticity can lead to extinction of newly created
resistant mutants, until finally one of them takes hold and
grows in an essentially deterministic fashion. It is not clear
how well the deterministic model can describe the underlying
stochastic process, making comparison with a stochastic
model necessary. We again consider the endemic scenario.
Using a branching process formalism [50–53], we can
compute the probability p that a single introduction of a
resistant strain leads to population-wide resistance emer-
gence (Equation 8), and from that we can estimate the overall
probability of emergence (Equation 9). Figure 5 shows P1, the
probability of emergence within one year, as a function of the

Figure 3. Number of Introductions Q¼ lt Ît per Year

Parameter choices are described in the text and in Table 1. Note that
above a certain level of treatment, indicated by f*, the basic reproductive
number for the sensitive strain is Rs

0 , 1, which makes the endemic
steady state unsustainable and leads to disease extinction. In this study,
we only consider the endemic situation with 0 � f , f*.
DOI: 10.1371/journal.pcbi.0020137.g003
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level of treatment f. We also show results obtained from
stochastic simulations, utilizing the well-known Gillespie
algorithm [54–56].

Time to Emergence for the Stochastic Model
We can use the expression obtained for the probability of

emergence to estimate the time until emergence occurs. If the
probability that a single introduction leads to emergence is p,
then on average 1/p introductions are needed for certain
emergence. Because each introduction occurs on average
after time 1/Q, the time it takes until a process starts to
emerge is of order 1

pQ. To get an estimate for the total time it
takes for a resistant strain to reach a level L, we can add the
deterministic time Ti obtained earlier (Equation 7) and find
T̂i ¼ 1

pQ þ Ti. The result shows that if pQ is of order one, the
deterministic and stochastic results are expected to give
similar results. However, as Figures 3 and 5 show, pQ can be
significantly less than one, especially for low treatment levels
and small conversion probabilities. Therefore, the stochastic
component can contribute significantly to the overall time to
emergence. Figure 6 shows T̂i together with results from
stochastic simulations. For comparison, we also show the time
to emergence obtained earlier from the deterministic model.

Dependence of Time to Emergence on the Model
Parameters

We end our analysis by briefly studying how changes in the
number of resistant strains, levels of fitness, and conversion

probabilities influence the results. Some examples are shown
in Figure 7. Figure 7A confirms the expectation that if more
compensatory mutation steps are required to achieve a
certain level of fitness, the time to resistance emergence
increases. Figure 7B shows how differences in conversion
rates and number of compensatory mutation steps influence
the time to emergence. It also shows that for small conversion
probabilities, small changes in the level of treatment can
result in significant changes in the emergence time. Figure 7C
shows that for a fixed number of mutation steps, smaller
conversion probabilities lead to an increase in time until
resistance emerges. Figure 7D shows that even if the number
of compensatory steps as well as the product of all conversion
probabilities is kept fixed, one obtains varying results for the
emergence time, depending on the values of the conversion
probabilities.

Discussion

Before we discuss in detail the results, we want to stress that
while we chose a model and parameters to describe
gonorrhea transmission dynamics, the qualitative results we
obtained are not limited to gonorrhea and should hold for
other diseases as well.

Implications of Results
While not unexpected, our first and arguably most

important finding is that compensatory mutations signifi-
cantly influence the process of resistance emergence. With
the inclusion of compensatory mutations, it is possible that a
nonfit resistant strain undergoes further mutations before it
goes extinct, until it has regained enough fitness to be able to
compete with the sensitive strain (see Figure 2). As an

Figure 5. Probability That Resistance Emerges within One Year

The black diamonds show the probability that any one of the resistant
strains emerges (reaches a level of 5% of total infecteds), obtained from
stochastic simulations of the full system (stochastic version of Equation
1). The red dashed, green dash-dotted, and blue solid lines show the
analytic result (Equation 9 with s¼1). The vertical black lines indicate the
level of treatment at which the fitness of the respective resistant strain is
the same as that of the sensitive strain. Parameters are chosen as in
Figure 4.
DOI: 10.1371/journal.pcbi.0020137.g005

Figure 4. Years until Resistance Emerges—Deterministic Model

The black diamonds show the earliest time at which any one of the
resistant strains emerges (reaches a level of 5% of total infecteds),
obtained from simulations of the full deterministic system (Equation 1).
The red dashed, green dash-dotted, and blue solid lines show the
analytic approximation (Equation 7) for the time to emergence of the
first, second, and third resistant strain. The vertical black lines indicate
the level of treatment at which the fitness (R0) of the respective resistant
strain is the same as that of the sensitive. For the top panels, fitness
levels of the resistant strains are 75%, 85%, and 95% of the sensitive
strain in the absence of treatment, resulting in values for the basic
reproductive numbers as indicated. For the bottom panels, fitness levels
of the resistant strains are 60%, 75%, and 90% of the sensitive strain. The
left panels show results for conversion rates lt¼l1¼l2¼ 10�1, the right
panels show results for lt¼ l1¼ l2¼ 10�3. Other parameter choices are
given in Table 1.
DOI: 10.1371/journal.pcbi.0020137.g004
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example of this effect, consider the results shown in Figure 5.
The red dashed lines show the probability of resistance
emergence if no compensatory mutations would occur. For a
resistant strain that has 75% fitness compared with the
sensitive strain, any treatment level below ’30% would lead
to a zero probability of emergence (top panels). If the fitness
were reduced to 60%, treatment of almost 50% of the
infecteds would not allow resistance to emerge (bottom
panels). However, inclusion of compensatory mutations leads
to a more pessimistic outlook. For instance, if the fitness of
the most evolved resistant strain is 95%, a treatment level of
’6% still leads to a nonzero, albeit potentially small,
probability of emergence (top panels).

A second important finding is the nonlinear dependence of
the probability of and time to emergence on the treatment
level. In general, small changes in treatment levels at low f
lead to much larger changes in the results when compared
with changes in f at high treatment levels (Figures 5 and 6).
The regions of high and low sensitivity to treatment changes
depend on the exact nature of the underlying system. For
high conversion rates, the curves are relatively smooth, while
low conversion rates can result in sharp step-like changes. For
instance, if it were known that the dynamics of a specific
host–pathogen system is described by the dashed green curve
in Figure 7B, one could increase treatment level from ’20%
to ’45% without significantly reducing the time to resistance
emergence. However, even small further increases would lead
to a significant drop in the time to emergence. This likely
generic feature, which changes in treatment level do not
necessarily lead to proportional changes in time to resistance
emergence, could have important implications for treatment

strategies as well as for the interpretation of epidemiological
data.
An additional interesting result is that for treatment levels

close to the extinction threshold, it can be beneficial to
increase treatment further. Not only might it lead to
eradication of the pathogen, but even if eradication does
not happen, the low prevalence of infecteds will lead to very
few introductions of resistance (Figure 3). If the number of
resistance introductions becomes small enough, this effect
dominates over the increase in relative fitness of the resistant
strains with treatment increase, leading to an overall increase
in the average time to emergence (Figure 6). Therefore, while
for most treatment levels increased treatment leads to faster
resistance emergence, under certain circumstance increasing
the treatment level can decrease the probability of resistance
emergence.
Our final result concerns the choice of modeling frame-

work. Since the process of compensatory mutations has low
numbers and low rates, stochastic effects become important.
As Figure 6B and Figure 6D show, results obtained from the
deterministic model can differ significantly from the stochas-
tic results. As mentioned earlier, this discrepancy exists
because in the stochastic model, introductions of resistance
can be followed by extinction, until a resistant pathogen is
able to emerge. If the introduction occurs at low frequency,
the time until a resistant strain finally starts the emergence
process can be potentially large. In contrast to that, the

Figure 6. Years until Resistance Emerges—Stochastic Model

Boxplots show distribution of times to emergence (resistance at a level of
5% of total infecteds) for 5,000 simulations of the stochastic model. The
red dashed, green dash-dotted, and blue solid lines show the analytic
approximations T̂ i for the time to emergence of the first, second, and
third resistant strain. The vertical black lines indicate the level of
treatment at which the fitness of the respective resistant strain is the
same as that of the sensitive. For comparison, the black dashed line
shows the deterministic result (Equation 7). Parameters are chosen as in
Figure 4.
DOI: 10.1371/journal.pcbi.0020137.g006

Figure 7. Years until Emergence Occurs as a Function of Treatment

(A) All conversion probabilities are li ¼ 10�3. The green dashed line
shows a situation with two resistant strains with fitness 60% and 90%
that of the sensitive strain. The blue dash-dotted line shows three
resistant strains with fitness 60%, 75%, and 90%, and the red solid line
shows four resistant strains with fitness 60%, 70%, 80%, and 90%.
(B) Same number of strains and fitness levels as (A) but the product of all
conversion probabilities is kept the same. We choose lt ¼ 10�2 for all
three cases and l1¼ 10�6 for the two-strain scenario (dashed green line),
l1¼l2¼10�3 for the three-strain scenario (dash-dotted blue line), and l1

¼ l2¼ l3 ¼ 10�2 for the four-strain scenario (solid red line).
(C) Three resistant strains with fitness of 60%, 75%, and 90%. Conversion
rates are li¼ 10�1 (dashed green line), li¼ 10�2 (dash-dotted blue line),
and li ¼ 10�3 (solid red line).
(D) Same as (C) but with conversion rates lt ¼ 10�2, l1 ¼ l2 ¼ 10�3

(dashed green line), lt¼ 10�4, l1¼l2¼ 10�2 (dash-dotted blue line), and
lt ¼ l2¼ 10�3, l1¼ 10�2 (solid red line).
DOI: 10.1371/journal.pcbi.0020137.g007
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deterministic model seeds all resistant strains immediately,
and the emergence process starts without delay. Since
compensatory mutations likely play a role in the resistance
emergence of most pathogens, we suggest that stochastic
models are more appropriate to investigate the resistance
emergence process.

Toward Quantitative Predictions of Resistance Emergence
To quantitatively predict resistance emergence, as well as

to design optimal drug-use strategies, one needs detailed
knowledge of the parameters and dynamics of the underlying
system.

As discussed in the introduction, current lack of data
unfortunately limits the quantitative and predictive power of
our model. Several steps need to be taken to move toward
quantitative results. First and foremost, it is important to
obtain good estimates for the parameters involved in
resistance emergence. The most straightforward way of doing
so would be through epidemiological studies. One would
need to identify individuals infected with resistant mutants
and determine the clinically relevant routes of compensatory
mutation a particular resistant pathogen can follow. Further,
one would need to determine the rate at which hosts infected
with each mutant arise, and measure the number of
secondary infections a host infected with a specific mutant
causes. These measurements would directly give parameter
estimates for R0, the conversion rates li, and the compensa-
tory mutation pathways that are important in the process of
emergence. Unfortunately, this approach is as impossible to
implement as it is straightforward. It is already difficult to
estimate R0 for pathogens that infect many hosts. Since
potentially few hosts are being infected with the different
resistant strains, it is pretty much impossible to detect those
infections and obtain useful parameter estimates. There
might be a better chance to obtain results in controlled
transmission experiments in animals. It would likely be
possible to investigate the compensatory mutation paths
involved in the emergence of resistance. However, measure-
ments for R0 and the conversion rates would still be difficult
to obtain. We think that a more promising approach is to try
and obtain the needed parameter estimates by utilizing
within-host data and appropriate theoretical models. Meas-
urements of in vivo mutation rates, fitness levels, and
pathogen dynamics, combined with appropriate models,
might allow estimation of the relative between-host fitness
levels for the resistant mutants. Some preliminary work in
this direction has been done [41,57], and we are currently in
the process of extending some of these results.

Once better and more complete parameter estimates are
available, another step toward quantitative predictions can be
made by creating more complex epidemiological models. For
gonorrhea transmission dynamics, a more realistic model
would accurately describe the population and disease life-
history by including factors such as gender, sexual activity,
sexual orientation, ethnicity, social status, and others [44,45].

Another step toward quantitative predictions will involve
more detailed models of the process of resistance emergence.
For instance, in our model we assume that treatment does not
influence the resistant pathogen. However, in vitro studies of
E. coli have shown that the presence of drugs can lead to

different compensatory mutations compared with their
absence [58]. It is not clear if this is important for in vivo
evolution. However, since it is usually not known if a host is
infected with a resistant strain or not, potentially resulting in
a resistant host receiving treatment, this finding needs to be
kept in mind. Further, in our model we assume that a host is
always dominated by a single strain. In reality, a host might be
infected with a mix of different strains which upon trans-
mission might infect a new host either with one of the
transmitted strains or a mixed inoculum, calling for a more
detailed model that can incorporate mixed-inoculum effects.
We also assumed that conversions happen with a constant
probability during the infection and that upon conversion, a
host enters a new class, basically starting the infection over.
Our model also excludes density-dependent effects, which
might become important if the resistant strains become
frequent.
As always with biological systems, including every detail

would lead to a model that is very complicated and difficult to
analyze. Often, simplified models are able to capture the
dynamics of complex systems, even on a quantitative level.
Without additional studies, it is difficult to predict which
biological details will need to be included if one wants to
obtain quantitative predictions. However, currently the most
serious limitation concerning quantitative results is not the
lack of model complexity but the almost complete lack of
data for the parameters that govern resistance emergence.
In summary, we obtained important qualitative insights

into the effects that compensatory mutations have on the
population-wide emergence of drug resistance. Our model
used parameters applicable for gonorrhea; however, the
results we obtained are rather general. Our finding that the
inclusion of compensatory mutations significantly influences
the dynamics of resistance emergence has important impli-
cations for the design of detailed, predictive models.
Especially the fact that changes in the level of treatment
can lead to disproportionate changes in the probability of
and time to resistance emergence has important public
health implications. In future work, it will be necessary to
obtain estimates for the currently unknown parameters. This
knowledge, combined with more complex and detailed
epidemiological models, can ultimately lead to quantitative
predictions of how the level of treatment influences
emergence of resistance. Such knowledge will be extremely
valuable for the rational implementation of treatment
strategies.
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