
Evolutionary Dynamics on Protein Bi-stability
Landscapes Can Potentially Resolve Adaptive Conflicts
Tobias Sikosek1*, Erich Bornberg-Bauer1, Hue Sun Chan2

1 Evolutionary Bioinformatics Group, Institute for Evolution and Biodiversity, University of Münster, Münster, Germany, 2 Departments of Biochemistry, Molecular Genetics,

and Physics, University of Toronto, Toronto, Ontario, Canada

Abstract

Experimental studies have shown that some proteins exist in two alternative native-state conformations. It has been
proposed that such bi-stable proteins can potentially function as evolutionary bridges at the interface between two neutral
networks of protein sequences that fold uniquely into the two different native conformations. Under adaptive conflict
scenarios, bi-stable proteins may be of particular advantage if they simultaneously provide two beneficial biological
functions. However, computational models that simulate protein structure evolution do not yet recognize the importance
of bi-stability. Here we use a biophysical model to analyze sequence space to identify bi-stable or multi-stable proteins with
two or more equally stable native-state structures. The inclusion of such proteins enhances phenotype connectivity
between neutral networks in sequence space. Consideration of the sequence space neighborhood of bridge proteins
revealed that bi-stability decreases gradually with each mutation that takes the sequence further away from an exactly bi-
stable protein. With relaxed selection pressures, we found that bi-stable proteins in our model are highly successful under
simulated adaptive conflict. Inspired by these model predictions, we developed a method to identify real proteins in the
PDB with bridge-like properties, and have verified a clear bi-stability gradient for a series of mutants studied by Alexander et
al. (Proc Nat Acad Sci USA 2009, 106:21149–21154) that connect two sequences that fold uniquely into two different native
structures via a bridge-like intermediate mutant sequence. Based on these findings, new testable predictions for future
studies on protein bi-stability and evolution are discussed.
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Introduction

New functional proteins are likely to evolve from existing

proteins. Most existing proteins, however, are under selection to

conserve their existing native structure in order to maintain

functionality (and also to avoid aggregation and proteolysis).

Without such selective constraints, the accumulation of random

mutations would soon render a protein nonfunctional. When the

same gene (protein) is under two selection pressures, i.e. to evolve a

new functional structure while conserving its existing structure, an

adaptive conflict arises. This adaptive conflict scenario is at the

heart of most contemporary theories of molecular evolution, such

as the popular Neofunctionalization and Subfunctionalization

models (as reviewed in [1,2]). However, these models generally

require gene duplications to take place before adaptive conflicts

can be resolved. This implies that such models can only explain

long-term processes that involve many unlikely events, such as the

occurrence of a suitable gene duplication event, followed by

retention, fixation in the population, and additional beneficial or

neutral point mutations in one or both gene copies. Only then

would an adaptive advantage become possible. Because of these

potential drawbacks, a more recent model (Escape from Adaptive

Conflict, EAC) emphasizes the sufficiency of single-gene, multi-

functional proteins during short term adaptive conflicts [3].

Similar ideas have been proposed earlier in terms of the concept

of ‘‘gene sharing’’ [4,5]. In fact, a gene duplication of a multi-

functional protein is more likely to be successful than duplicating a

protein with only a single function: first, because a new function is

already present – thus it does not have to first evolve the new

function in a rare mutant carrying a gene duplication; second,

functional divergence can be faster because the multiple functions

have already been responding to conflicting selection pressures;

and, finally, retention and fixation of the duplication is more likely

because the second copy can immediately provide higher activity

levels through higher protein concentrations for the multiple

protein functions, none of which would likely have been fully

optimized in a single-gene, multi-functional protein.

Indeed, there is increasing evidence that proteins have a

significant capacity for multi-functionality. Not only are many

enzymes known to exhibit promiscuity for nonnative reactions and

substrates [6–8], multi-functionality has also been linked to

proteins with two or more stable conformations [9–12]. These
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proteins can be called bi- or multi-stable. A few naturally

occurring cases of such proteins are known, such as the prion

protein that can assume different structures. One of these

structures can aggregate to cause neurodegenerative pathologies

such as mad-cow and Creutzfeldt-Jakob diseases [13,14]. Protein

bi-stability was also found in the cysteine-rich domain proteins

(minicollagen) that form the walls of Cnidarian organelles called

nematocysts [15]. Different conformers of these protein domains

exhibit distinct patterns of disulfide bridges and perform different

functions. Another example is the antiviral protein RhTC, which

was found to target different HIV viruses by allowing a dynamic

active site to assume very different conformations [16]. More

generally, emerging evidence is lending support to the view that

functional promiscuity in enzymes may frequently be based on

thermodynamic fluctuations of conformational sub-states [17].

However, this may not always be the case, for example, if the

functional promiscuity is mediated by changes of catalytic residues

that do not cause conformational changes. An evolutionary theory

of structure-based multi-functionality requires detailed knowledge

of the sequence-structure relationship in proteins, as emphasized

by the theory of neutral networks [18–23]. A neutral network

consists of a connected set of sequences that fold into the same

native (maximally stable) structure, and a pair of sequences in the

network is connected if and only if they differ by one point

mutation. Proteins can tolerate a number of mutations (mostly of

surface amino acids [24,25]) without losing their native structure.

It has been shown experimentally that the neutral networks of two

protein structures can be directly connected, such that one or two

mutations can cause a switch from one native structure to the

other [9,26–28].

Because actual protein sequence space is too vast for

computational — let alone experimental — exploration using

current resources, we rely on a well-established explicit-chain

biophysical model with exhaustive sequence-to-structure mapping

[22,23,29–33] to provide a model of protein sequence space

consisting of sequences with up to six-fold degenerate native state

(i.e. proteins with up to six native structures). This model, termed

the ‘‘hydrophobic-polar’’ (HP) model, is based on the central role

of hydrophobic interactions in protein structures [29]. Earlier

studies using the HP model but with non-degenerate native states

have revealed that sequence space consists of distinct islands of

neutral networks corresponding to unique native structures, which

can be bridged either by single-site mutations (substitutions)

[22,32] or recombinational jumps [30]. A key feature of neutral

networks arising from the HP model and similar simple exact

models is a funnel-like distribution of free energy values around a

most stable, and mutationally robust, prototype sequence [23,34–

36], or consensus sequence [37]. These funnels can act as

attractors on evolving proteins outside the neutral network by

allowing for selection of excited (non-native) conformational states,

the stabilities of which increase with every incremental step toward

the prototype sequence of that excited state [32]. More recently,

the model was used to show an association between evolvability

and phenotypic variation [33]. Some sequences in HP and HP-like

models have been shown to have multiple native structure [23,29]

and even exhibit prion-like behaviors [38,39]. However, an

extensive account of sequence spaces with degenerate native

structures is lacking and most theoretical studies of protein neutral

networks to date have not considered the implications of multiple

native structures [40–47].

In this context, our main aims here are to investigate: (i) where

do bridge proteins preferably locate in sequence space, (ii) the

manner in which bi-stability is distributed in the sequence-space

neighborhood around bridge proteins, and (iii) the role of opposing

selection pressures in the evolutionary dynamics that may take

advantage of bi-stability. Toward these goals, we will first describe

below the characteristics of the sequence space in our simple

biophysical protein chain model. We will show that bridge

proteins, and bi-stable proteins in general, have a high potential

for facilitating evolution under adaptive conflicts. We will further

demonstrate that this potential originates from a nonrandom

distribution of bi-stability in sequence space. Subsequently, we will

apply the concepts and insights gained from our simple model to

real protein structures. In particular, we will describe bi-stability in

a well-documented experimental case and also in a larger set of

putative bi-stable proteins in the Protein Data Bank (PDB).

Results

Sequence space distribution of bridge proteins
Proteins with degenerate native states as bridges between

neutral networks. Bridge proteins have been described as

intermediate evolutionary states along a mutational path leading

from one protein phenotype to another phenotype

[9,10,15,26,27,48,49]. Phenotype is often defined in terms of

biological function. Here we identify phenotype of a protein with

its tertiary structure that underlies function. In the HP model we

adopted, genotypes are modeled by polymer sequences consisting

of 18 monomers that can either be hydrophobic or polar, whereas

phenotypes are modeled by the conformations that these polymer

chains can configure, as self-avoiding walks, on a two-dimensional

(2D) square lattice [23,29]. The simplicity of this setup allows for a

complete, exhaustive description of the sequence-to-structure

mapping within the model (see Methods). The availability of such

a mapping is of immense benefit to the modeling of evolutionary

processes [31]. Folded proteins in short-chain 2D HP models (with

*18 monomers) have ratios between inside and outside residues

similar to those of three-dimensional real proteins of lengths *150
residues [29]. As a result, despite these models’ limitations in

capturing detailed energetics of protein folding [50,51], short-

chain 2D HP and HP-like models have been shown to embody

general trends in the sequence-to-structure mapping of real

Author Summary

Proteins are essential molecules for performing a majority
of functions in all biological systems. These functions often
depend on the three-dimensional structures of proteins.
Here, we investigate a fundamental question in molecular
evolution: how can proteins acquire new advantageous
structures via mutations while not sacrificing their existing
structures that are still needed? Some authors have
suggested that the same protein may adopt two or more
alternative structures, switch between them and thus
perform different functions with each of the alternative
structures. Intuitively, such a protein could provide an
evolutionary compromise between conflicting demands
for existing and new protein structures. Yet no theoretical
study has systematically tackled the biophysical basis of
such compromises during evolutionary processes. Here we
devise a model of evolution that specifically recognizes
protein molecules that can exist in several different stable
structures. Our model demonstrates that proteins can
indeed utilize multiple structures to satisfy conflicting
evolutionary requirements. In light of these results, we
identify data from known protein structures that are
consistent with our predictions and suggest novel direc-
tions for future investigation.

Evolution on Protein Bi-stability Landscapes
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proteins, exhibiting features such as a particular form of non-

randomness in the distribution of hydrophobicity along real

protein sequences [52], domain structure and autonomous folding

units [30,31,53], and homology-like behaviors in the sequence-

structure mapping [54].

In our terminology, extended neutral networks in our model refer

to networks that include sequences that fold uniquely to a given

structure as well as sequences that have the given structure as one

of its multiple native structures, wherein native-state degeneracy g
is limited to the range 1ƒgƒ6 [23]. In other words, one native

structure is shared by all of the sequences with 1ƒgƒ6 in an

extended neutral network. In contrast, the core neutral network of a

given structure refers to the more conventional network consisting

only of g~1 sequences that fold uniquely to that structure. Thus

the core network is a subnet of the extended network for the same

structure. In accordance with this definition, bridge proteins are

found in extended networks, and a single bridge protein can

belong to several extended neutral networks.

For a protein with native-state degeneracy g, it can serve to

connect a maximum number of (g2{g)=2 pairs of core neutral

networks among the g neutral networks defined by the protein’s g
native structures (see Figure 1a and entries along the sixth row in

Table 1). Specifically, a two-network connection is effected by a

gw1 sequence if there is a single-point mutation that can result in

a sequence in one core neutral network while there is another

single-point mutation that can result in another sequence that

belongs to another core neutral network. Likewise, connections

can also exist between more than two networks, if the gw1
sequence can be mutated into g~1 sequences of more than two

core networks. Sequences that can effect such connections are

referred to as bridges. Exact enumeration of all model sequences

with 2ƒgƒ6 shows that 13:4% of these sequences are bridges

with at least one connection (i.e. linking at least two neutral

networks; see Table 1). All other 2ƒgƒ6 sequences — which are

not bridges — can only be mutated to a g~1 sequence from only

one core neutral network, or alternatively cannot be mutated to a

g~1 sequence at all.

Bridges constitute almost 2% of the entire sequence space in the

present model (Table 1). Interestingly, this percentage is compa-

rable to the &2% of all sequences that fold uniquely, i.e., have

g~1 in the same model [55]. While the true scaling factors that

relate the 2D lattice model to real proteins are unknown, one can

speculate that the sequence space of real proteins could also

exhibit similar proportions of uniquely folding proteins vs bridge

proteins.

Results in Table 1 also show that only a small fraction of the

possible maximum number of connections was achieved by most

of the bridges in the HP model. For instance, a bridge with six

degenerate native-state structures (g~6) could connect up to 15

pairs of the six associated neutral networks. However, the average

number of connections among such bridges is only about two

(second last row in Table 1), even though there is a small

percentage of bridges that can realize the maximum number of

connections (bottom row in Table 1). In view of these statistics and

for the sake of terminological simplicity, we will use the term bi-

stable below regardless of whether or not the protein has g~2 or

gw2 when the meaning of the term is clear from the context of the

discussion.

Increased connectivity of extended neutral networks. Having

identified bridge proteins among model proteins, we now study

the potential advantage of bridges for protein evolution due to the

bridges’ ability to provide additional viable pathways through

sequence space. When comparing all 17205 pairwise combina-

tions of the 186 extended neutral networks (with five or more

sequences per core network), 3:6% of these combinations shared

at least one bridge. The percentage of one-mutation connections

between neutral networks increased considerably (from 0:61% to

9:4%) when extended networks were included, instead of only the

core networks. Among the 22 largest networks (with 20 or more

sequences per core network), the percentage of the 231 network

pairs sharing a bridge was even higher (13:9%). Likewise, the

percentage of one-mutation connections between core and

extended networks increases from 5:6% to 22:1%. Large neutral

networks are of particular importance for molecular evolution

[56] because they provide a higher degree of mutational

robustness and thus are more likely to be populated over long

time scales when compared to smaller neutral networks with

lower mutational robustness [57,58]. A neutral network resembles

a protein family. In this regard, a large network could allow more

variants among a protein’s descendant to be functional. Now our

model results indicate that a large network probably enjoys an

added advantage of enhanced evolvability by virtue of its

increased connectivity to other networks.

Bridge proteins have relatively stable native states. Another

factor that makes bridge proteins form viable connections

between neutral networks is their significantly higher median

native state stability (measured by the fractional population W;

see Methods) compared to proteins with the same g but that are

not bridges (Figure 1b). This phenomenon can be readily

explained by the close sequence space adjacency of bridge

proteins to the prototype sequences of neutral networks (see

Figure S1 in the supporting information online). A prototype

sequence is the most thermodynamically stable protein within a

neutral network. Since native stability increases with decreasing

Hamming distance from the prototype [23], bridges are on

average more stable than non-bridge sequences because they are

closer to the prototype.

Potential bridge proteins in the Protein Data Bank. In

contrast to the complete account of bridge proteins in a simple

model that we obtained by exact enumeration, it is currently not

feasible to achieve the same for actual proteins. Nonetheless, we

may scan the available data on proteins to identify candidates that

have a high likelihood of bi-stability by using the broadest criteria

for a bridge protein, viz., the existence of two distinct structures

with similar stabilities that are encoded by the same amino acid

sequence. A potential source of such candidates that has recently

become available is the Protein Conformational Database (PCDB)

[59] that collects all instances of proteins in the Protein Data Bank

(PDB) for which more than one structure has been experimentally

determined. Because many of these instances could have been

caused merely by experimental uncertainties, especially when

there is only a small backbone RMSD (root mean square deviation

of backbone atoms) between the alternate structures, we only

considered proteins with an RMSD of at least 2A, which has been

considered to indicate a substantial structural difference [60–62],

and structure pairs that shared 98{100% sequence identity. Once

a protein was so identified, Rosetta free energy scores [63]

(corrected for differences in protein chain length; see Methods)

were computed for both structures of the protein, and a small

difference between these scores was taken to be a measure of high

bi-stability. In the present investigation, only those proteins that

have Rosetta-determined stability differences among the smallest

25% of all stability difference values in the initial set of candidates

screened by the w2A criterion were considered as potential

bridges. We consider the resulting subset of candidates after two

levels of screening to have satisfied rather stringent structural and

energetic requirements for bridge proteins, and thus may serve as

starting points for further experimental investigations of possible

Evolution on Protein Bi-stability Landscapes
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bi-stable behaviors. A list of these proteins is provided in Dataset

S1. Our dataset contains only single-domain proteins because

PCDB only compares structures of single-domain (i.e., not multi-

domain) proteins as defined by CATH [64].

A selection of these putative bridge proteins is highlighted in

Table 2. This selection comprises the ten candidates with the

smallest stability difference and the ten candidates with the highest

RMSD between structure pairs (Nitrophorin-4 belongs to both

categories), as well as two proteins that have previously been

shown experimentally to exhibit bi-stability (the transcriptional

regulator Rop [65] and Cytochrome P450 [66]). Lymphotactin,

which is included in Table 2, has previously been found to be bi-

stable, forming two very distinct structures [67]. However, the

automated clustering in PCDB did not pair these distinct

structures. Instead, it paired different versions of the same

structure, which has a long disordered tail. This is an illustration

of the potential limitations of simple automated approaches. At the

same time, this example also reflects the challenges that bi-stable

proteins pose for experimental methods that often require

significant modifications of a protein and its interactions (e.g.,

Figure 1. Bi-stable and multi-stable proteins acting as evolutionary bridges. (a) Proteins with degenerate native states (two or more
structures with maximum stability) can function as connectors between neutral networks. Bi-stability is indicated for a bi-stable protein by a
schematic folding funnel with two free energy minima. In an ideal case, the neutral network of sequences for each native-state structure can be
reached by a single mutation from a centrally located sequence. This would enable efficient evolutionary transitions between those neutral networks.
The frequency of such a bridge protein sequence may be maintained at an appreciable level in populations evolving under adaptive conflicts. Bridge
proteins with up to six-fold native-state degeneracy (g) are illustrated. (b) Box plots of native-state stability (i.e., fractional population W) versus native
state degeneracy (g) of all model sequences with gƒ6 (grey), and the subset of all bridge sequences (magenta). Here we follow the standard
convention for box plots in descriptive statistics: For each sample defined by a given value of the variable plotted along the horizontal axis (g for
bridge or non-bridge sequences in this case), the lowest and highest bars are, respectively, the lowest and highest values of the property of interest
(W in this case) observed for the given sample. The top and bottom of the box are, respectively, the corresponding lower and upper quartiles of the
sample, whereas the median of the sample is shown by the line within the box. The box plots here indicate that bridge sequences are significantly
more stable than non-bridge sequences (Wilcoxon Rank Sum Test; pv0:01 in all cases, except g~2, where pv0:05). In the biophysical protein chain
model used here (see Methods), the upper bound of W, given g, is 1=g (black dashed line).
doi:10.1371/journal.pcbi.1002659.g001

Table 1. Bridge proteins as connectors in sequence space.

native-state degeneracy g of multi-stable protein 2 3 4 5 6 all 2,…,6

number of multi-stable proteins in HP model 11018 6212 8541 5193 6690 37654

number of bridges (§1 neutral network connection) 1421 1088 967 852 721 5049

percentage of bridges among multi-stable proteins 12.897% 17.514% 11.321% 16.406% 10.777% 13.408%

percentage of bridges in sequence space 0.542% 0.415% 0.368% 0.325% 0.275% 1.926%

upper limit of neutral network connections per bridge (g2{g)=2 1 3 6 10 15 n/a

observed neutral network connections per bridge (average) 1 1.449 1.774 1.959 2.008 1.551

percentage of bridges reaching upper limit of neutral network connections 100% 22.426% 5.791% 0.469% 0.693% 34.264%

A bi- or multi-stable protein (with a degenerate native state) is a bridge sequence if it has at least two 1-error mutants that fold non-degenerately into at least two
different structures among the sequence’s multiple native-state structures, i.e., each mutant folds uniquely to a different structure. In other words, there is at least one
connection to the core of each of the two or more neutral networks. In total, for sequences with chain length n~18 studied here (see Methods), there are 218~262144

sequences in the model sequence space, 6349 of which have non-degenerate (g~1) native states.
doi:10.1371/journal.pcbi.1002659.t001
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changes in the protein’s amino acid sequence, binding partners, or

environmental conditions) in order to capture their alternative

structures.

The proteins in Table 2 perform a variety of biological

functions. Some of the listed examples are metabolic enzymes,

others are involved in epigenetics, transcriptional regulation and

signaling, larger intra-cellular structures, or immune functions. It

will be interesting to investigate possible roles of bi-stable structural

dynamics in these proteins’ function. Often bi-stability is a part of

a protein’s normal functional dynamics. A common example is the

conformational changes that some proteins undergo upon binding

to a ligand. In that case, the alternate structures are associated with

the same ‘‘native’’ function. Such structural dynamics is unlikely to

be an evolutionary response to adaptive conflicts. Nevertheless,

such bi-stable behavior may, under certain evolutionary condi-

tions, lead to one of the protein’s native functional/structural states

being co-opted for a different function. In that case a situation of

adaptive conflict would be created.

Evolutionary landscapes of bi-stability around bridge
proteins

Smooth bi-stability gradients around bridge pro-

teins. As discussed above, our model suggests that only a small

fraction of the sequence space are bridge proteins (Table 1). This

phenomenon raises the question as to the relevance of bridge

proteins to evolution, because it would appear that the likelihood

of these proteins emerging by random drift is small. However,

evolution toward new protein phenotypes does not have to rely

solely on random drift. It can be a directed, adaptive process. In

this regard, model simulations have shown that evolving proteins

can respond to selection of an excited (i.e. non-native) state

structure before mutations convert the protein sequence from one

that folds to a given original native structure to another sequence

that folds into a new native structure [32]. As a consequence of the

sequence space energy funnels around prototypes (see above), the

stability gradient, i.e., the variation of stability with respect to

change in sequence, for any given protein structure is essentially

smooth [23,68]. In this perspective, because bridge proteins lie in

between two neutral networks — i.e. they reside in an overlap

region of two sequence space stability funnels — mutations in a

bridge protein are expected to gradually stabilize one structure

and destabilize the other.

To elucidate this expected trend, we used our model to measure

the stability difference hB{hA between two structures, XA and

XB, for all sequences in the corresponding neutral networks A and

B (Figure 2 and S2), where hA and hB are the number of intra-

chain hydrophobic-hydrophobic (HH) contacts (the only type of

interactions that carries a favorable energy in the model; see Eq. 1

and 2 in Methods). This metric reflects the propensity of a protein

to fold into one or the other structure, and thus reflects the degree

of bi-stability: the more similar the stability values, the higher the

degree of bi-stability, and vice versa. It follows that the highest

degree of bi-stability in our model is reached when the native state

is degenerate (gw1), in which case the stabilities of the multiple

native structures are exactly equal. A negative stability difference,

hB{hAv0, corresponds to XA as the most favorable sole native

structure, whereas a positive value corresponds to XB as the most

favorable sole native structure. Both structures are equally stable

for a bridge protein. Hence bridge proteins have a stability

difference of zero (hB{hA~0). Within a given neutral network,

the stability difference between the native structure of the neutral

network and the native structure of an adjacent neutral network

can vary (Figure 2a). Therefore, an evolving protein can increase

its stability toward a nonnative structure, while still maintaining its

original structure as the sole native (most favorable) conformation.

We have quantified the gradual bi-stability change around

bridge proteins in our model by considering all non-redundant

pairs of extended neutral networks, each with at least five core

sequences, wherein the two networks in each pair are connected

by at least one bridge sequence (Figure 2b). A clear correlation is

seen between the degree of bi-stability and the Hamming distance

(number of mutational steps) of a sequence from the nearest

bridge.

A bi-stability gradient along an experimentally deter-

mined mutational path. Inspired by the finding of the gradual

sequence-space distribution of bi-stability in our simple biophysical

protein chain model, we applied the methodology developed

above to study the bi-stability of experimental protein structures.

As a first step, we conducted an analysis of a set of sequences

discovered by Alexander et al. [27,69], who have mutationally

inter-converted the albumin-binding (GA) and immunoglobulin-

binding (GB) domains of Streptococcal protein G — two structurally

very dissimilar domains — by introducing a series of single point

mutations that do not change the respective native structures until

one critical mutational step in the interconversion. One pair of

single mutations (forward and reverse) inter-converts between two

sequences (labeled GA98 and GB98) that predominantly encode

either for one native structure or the other; and a small degree of

measurable bi-stability was observed in the GA98 mutant [27].

Recognizing that this experimental observation comes remarkably

close to the situation envisioned by our theoretical investigations,

we attempted to verify a gradient of increasing bi-stability toward

the bridge state (i.e. the structural switch) similar to that predicted

above by our model.

To this end, we used Rosetta [63] and FoldX [70] (see Methods)

to insert the mutations determined by Alexander et al. into the

wildtype structures of GA and GB, with the intermediate labels in

Figure 3a–d (horizontal axes) reflecting sequence identity, in

accordance with the notation in Ref. [27]. For instance, the

sequence pairs GA77 and GB77 share 77% sequence identity. For

each sequence variant, the relative favorability of the two

structures was computed using Rosetta or FoldX. Structure GA

is the favored native state on the left side of Figure 3a–d: it has a

higher stability (a lower energy) than GB. In this situation, GB is

interpreted as an excited state. The left-most variant labeled ‘‘wt

GA’’ corresponds to the wildtype sequence for GA. The roles of GA

and GB are reversed on the right side of these plots, with structure

GB now being the favored native state.

Figure 3a shows the absolute free energy scores (E) computed

with Rosetta. The resulting trend demonstrates that this tool is

able to accurately predict which of the two structures is the native

state (more stable, more negative free energy scores) for each of the

sequences.

The FastRelax [71] method of Rosetta in combination with

strong Lennard-Jones repulsions [72] was used for free energy

minimization for all Rosetta applications in the present study.

Because FastRelax allows for movements of the side chains and the

backbone, and can therefore produce multiple similar but

nonidentical structures for the same sequence variant, the averages

and standard deviations of the free energy scores determined from

25 replicate calculations are given in Figure 3a to provide a more

comprehensive presentation of the Rosetta prediction.

In contrast to the Rosetta/FastRelax method, FoldX fixes the

main chain and only optimizes the side chains. A possible

consequence of this limitation is that the absolute free energy

scores (E) of the wildtypes were rather unfavorable and differed

considerably between GA (E*40) and GB (E~{3:5). Assuming

Evolution on Protein Bi-stability Landscapes
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that FoldX in conjunction with side chain optimization reasonably

models the relative stabilities of different sequences adopting the

same given main-chain structure even though the FoldX protocol

may not account for the relative stabilities of different main-chain

structures, Figure 3b shows only the relative change of free

energies, DwtE(GA) and DwtE(GB), from the respective wildtype.

The trend of gradual change in stability with respect to sequence

variation along each of the two individual curves (for GA and GB

respectively) is similar to that obtained using Rosetta, but the

FoldX free energies themselves cannot capture the expected

structure switch between GA98 and GB98.

Based on the results in Figure 3a,b, Figure 3c shows the stability

differences, E(GA){E(GB) (Rosetta) and DwtE(GB){DwtE(GA)
(FoldX), with the convention that negative differences correspond

to GA being the favored native state (light blue area in

Figures 3c,d). This representation of the data allows for a more

direct visual comparison with Figure 2, where model proteins were

shown to follow a similar trend of increased stability for an excited,

non-native structure, while maintaining the same original native

structure, as the point at which the mutated protein undergoes a

structure switch is approached.

A very similar trend was observed in Figure 3d, where instead of

employing the complex free energy functions of Rosetta and

FoldX, we applied a simpler measure of stability, H, defined for

any given sequence with respect to a given structure as the fraction

of inter-residue contacts that are between carbon atoms among all

atomic contacts (see Methods). Thus this measure may be viewed

as a hydrophobic contact density. It corresponds roughly to the

number h of HH contacts in the simple HP model normalized by

the total number of contacts (i.e., H*h=t, where t is the total

number of nearest-neighbor topological contacts in the lattice

chain model [73]). The normalization was introduced to facilitate

comparison of the GA and GB structures on a more equal footing

in view of their considerably different total numbers of atomic

contacts due to the presence of disordered termini in GA but

ordered termini in GB. Accordingly, H(GB){H(GA) is defined as

a measure of stability difference between the two structures.

As in the computational results in Figure 3, the overall native

stability of the mutants measured experimentally by Alexander et

al. decreases with decreasing sequence distance to the structure

switch between GA98 and GB98 [27]. Indeed, this observation is

expected in the conceptual framework of stability super-funnels

[23] and with the low native-state stability of bridge proteins

(Figure 1b). A recent study on HP model proteins of sequence

length nƒ30 [74] based on an efficient algorithm [75] has also

made the observation of decreased stability around the borders of

adjacent neutral networks, although this study focused only on

g~1 sequences and did not address bi-stability.

Evolutionary population dynamics under adaptive
conflict

Bi-stable proteins dominate the steady-state population

under weak adaptive conflict. To better understand the

potentially important role of bi-stability in evolution under

conflicting selection pressures (adaptive conflicts), we have also

performed evolutionary simulations of sequence populations under

two selection pressures. Each sequence of the combined neutral

networks in Figure 2a was assigned a fitness value based on their

Figure 2. Bi-stability decreases with increasing sequence distance from bridge proteins. (a) An example of the distribution of bi-stability
in a small section of a model sequence space. The difference in the number of hydrophobic contacts, hB{hA, (stability difference) for the native-state
structures XA and XB of two adjacent neutral networks A and B (blue and red, respectively) are depicted by a two-dimensional representation of
sequence space (see Methods). Nodes represent sequence variants. Node sizes are scaled according to native-state stability (W, a larger node size
corresponds to a large W value). Edges connect sequences that differ by one mutation. The arrow indicates a mutation from a sequence with a
stability difference of {2 to a sequence with a stability difference of {1. In other words, this mutation increases stability for XB while conserving XA

as the native state. Bridge proteins (magenta squares) are equally stable for both native states and thus have a stability difference of zero. (b)
Generalization of smooth bi-stability gradients around bridge proteins. Each box plot gives the distribution (i.e. the entire data range with vertical
lines delimiting quartile boundaries as specified in the caption for Figure 1b above) of 623 average stability differences computed for individual
sequences that belong to the same neutral network and can be mutated into a bridge protein with the same given number of mutations (i.e. have
the same Hamming distance from a bridge). The stability difference was calculated between the native structures of all 623 pairs of extended neutral
networks (that have at least 5 core nodes, and at least one bridge). Data for each pair was counted only once, and the color blue is used in this plot
for the larger network of each pair. The further away a sequence is located from a bridge in sequence space, the higher its stability difference towards
one of the two structures, and the lower its bi-stability. All differences between box plots were significant (Wilcoxon Rank Sum Test, p%0:01).
doi:10.1371/journal.pcbi.1002659.g002
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stability for the two beneficial native-state structures XA and XB (see

Methods). As a first step in this endeavor, we carried out

deterministic population dynamics simulations where initially only

the prototype of network A (pA) was populated. This corresponds to a

scenario in which previous strong purifying selection has eliminated

all but the most stable protein variant of all the proteins that encode

uniquely for structure XA. The simulations began with the onset of a

second selection pressure, for XB, that is as strong as the selection

pressure for XA. This created an adaptive conflict to simultaneously

conserve XA and also to improve stability for XB. Subsequent

iterations of the master equation (Eq. 5) allowed the spreading of

fractional sequence population Pi from pA towards all other allowed

sequences i (i.e., all sequences plotted in Figure 2a), representing the

evolutionary change within an infinite-size population over time.

The spreading of the population over all allowed sequences was

determined by two main factors: 1) the fitness distribution among

sequences; and 2) the neutral network connectivity.

The selection pressure h in our model parametrizes how much

stability loss is tolerated upon mutation in either of the two

structures, ranging from a maximum stability requirement (h~1;

strong selection), over a relaxed stability requirement (h~0:5; weak

selection), to no specific stability requirement (h~0; no selection, as

long as XA and XB were among the native states — otherwise the

sequence was considered non-viable). The steady-state population

(Pi)st (plotted as the negative natural logarithm { ln (Pi)st in

Figure 4) represents the frequency, or probability, of a certain

sequence i at steady state, i.e. when the evolutionary dynamics had

resulted in a time-independent population distribution. The

definition of { ln (Pi)st is akin to that of free energy in statistical

physics, with more negative values for { ln (Pi)st representing

higher populations. This choice of sign convention is in accord

with the super-funnel [23] and ‘‘mortality landscape’’ [30]

imageries that invoke a ‘‘downward’’ driving force toward the

more favorable (i.e., more populated) regions (attractive basins) of

the sequence space [51]. Here, the quantity { ln (Pi)st is plotted

against the Hamming distance of i from the most stable bridge

sequence, bAB. As a control, steady-state populations were also

calculated for an altered sequence set, where all bridge proteins

Figure 3. Modeling the folding stability of an experimentally determined mutational path from one real protein structure to
another indicates a gradual stability shift. In this study, the PDB structures of GA (PDB code 2FS1) and GB (PDB code 1PGA) were used as
wildtypes (wt) for energy calculations and mutagenesis. There is only *14% sequence identity between wt GA and wt GB sequences. Based on the
2FS1 and 1PGA structures, the structures of all intermediate mutants (sequence variants) were constructed by either FoldX or Rosetta in accordance
with the published sequences in Alexander et al. [27,69]. The sequence labels along the present horizontal axes have the same meaning as those in
these references. (a) The average free energy (E) predicted by the standard free energy scoring function of Rosetta was computed for all sequence
variants. The GA and GB structures of the sequence variants were also constructed by Rosetta with its FastRelax free energy minimization procedure.
The plotted averages (connected by lines that are merely a guide for the eye) were obtained from 25 replicate calculations and all error bars in this
and other panels of this figure correspond to one standard deviation from the mean. (b) The FoldX free energy scores relative to that of the wildtype
(DEwt) for all GA and GB variants. (c) Bi-stability of each sequence variant is quantified by the difference in predicted free energy between the variant
GA and GB structures (vertical axis). Free energy differences are computed using either the Rosetta values in (a) (black line with error bars) or the
FoldX values in (b) (grey line). (d) Here bi-stability of each sequence is quantified by the difference in hydrophobic contact density H (see Methods)
between the Rosetta/FastRelax-constructed structures of GA and GB for the given sequence (same structures as those in (a)). In (c) and (d), the blue
area covers sequences that are known experimentally to adopt GA as their native structure, whereas the red area covers sequences that are known
experimentally to adopt GB as their native structure.
doi:10.1371/journal.pcbi.1002659.g003
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Figure 4. Steady-state populations of protein sequences after simulated evolution under adaptive conflict. The negative logarithmic
steady-state populations, { ln (Pi)st, of all sequences i from two adjacent extended neutral networks (A in blue, B in red, overlap region in magenta;
see Figure 2a) in our biophysical protein chain model are plotted against their respective Hamming distances with respect to the most stable bridge
protein sequence bAB . A low { ln (Pi)st value corresponds to a high population (probability) at steady state. The { and z signs of the sequence
distance values (horizontal axis) distinguish between the two networks A and B, respectively. Steady state populations were obtained with (black
symbols) and without (grey symbols) bridge proteins for an example neutral network pair, under three different selection pressures: h~1 (a; strong
selection), h~0:5 (b; weak selection), and h~0 (c; no selection). The same selection pressure was applied for both selected structures (XA and XB).
The black solid and grey dashed lines indicate the average { ln (Pi)st values as functions of Hamming distance that were simulated, respectively,
with and without the bridge sequences. To facilitate comparison, even in cases where bridge proteins were removed from the neutral networks
during the evolutionary simulation, Hamming distances are still defined by that between a given sequence and (the removed) bAB .
doi:10.1371/journal.pcbi.1002659.g004
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were removed. The purpose of this control was to establish the

relative importance of bridge proteins compared to other bi-stable

proteins (such as the ones summarized in Figure 2b) under

adaptive conflict.

Under strong selection (Figure 4a), the prototypes of each

neutral network — not the bridge proteins — have highest fitness.

Because the network on the left (blue) has the more stable

prototype, steady-state population accumulated there (lowest

{ ln (Pi)st at Hamming distance 22 from bAB). In the absence

of fitness selection (Figure 4c), steady-state populations are only

determined by network adjacency/topology [21,23] in that

sequences with many neutral neighbors in the network are more

populated at steady state, regardless of how stably they fold into

their native structure. A very similar steady-state population

distribution to the previous strong-selection case was observed,

owing to a high correlation between mutational robustness (i.e.

neighbours in the neutral network) and thermodynamic stability

[23,45,68,76,77]. Prototypes generally exhibit both properties

prominently [22]. In both the ‘‘strong selection’’ and ‘‘no

selection’’ cases, steady-state populations are largely unaffected

by the removal of bridge proteins from the networks (open

symbols).

In contrast, a very different steady-state distribution emerged

under weak selection (Figure 4b). In this scenario, the most

stable bridge protein (magenta circle) is clearly favored over any

other sequence (black symbols). This distribution was also

preserved, albeit to a lesser degree, when the actual bridge

proteins were artificially removed (grey symbols) so as to force

the evolutionary process to populate other sequences in this

control simulation. The population as a whole is more equally

spread out over many sequence variants, but it is still

concentrated around the intersection zone between the two

neutral networks (where bridges are usually located). Bridge

proteins, despite being highly advantageous, are therefore not

absolutely necessary for the evolution of bi-stability. The bi-

stability landscape in Figure 2 helps to explain why model proteins

that are close to bridge proteins in sequence space are more

populated when bridges are removed: they are the next best

solution to providing the two beneficial structures. Instead of

equal stability for XA and XB (in bridge proteins), one of the two

structures is more stable than the other (by as little as one

hydrophobic contact) in these model proteins. This stability

difference is still large enough, however, to incur a considerable

reduction in fitness — and thus steady-state population —

compared to a bridge protein.

To assess the generality of the trends revealed in Figure 4, we

repeated the master-equation evolutionary dynamics simulation

for several additional neutral network pairs. The resulting steady-

state populations (Figure S3) exhibited trends very similar to that

in Figure 4, i.e., a V-shaped distribution of { ln (Pi)st around bAB

under weak selection pressures and a considerably flattened

distribution upon the removal of bridges.

We have also examined how evolutionary steady states are

achieved in our model. Under weak selection, the model

evolutionary dynamics prior to achieving steady state indicates

that the population of the initial prototype sequence pA decreases

gradually as it spreads to mutants within network A, resulting in

other g~1 sequences being populated (Figure S4a; solid blue

lines). At the same time, the highly beneficial bridge sequence bAB

increases rather quickly to become the highest-populated geno-

type, giving rise to the steady-state population distribution in

Figure 4b. These results were first obtained using our master-

equation (ME) method, which is an efficient approach to obtain

the steady-state distribution. The ME describes the deterministic

dynamics of an effectively infinite population that can access all

possible sequences. Recognizing that this assumption may be

biologically unrealistic except for ‘‘quasi-species’’-like systems

consisting of fast-replicating entities such as viruses [78–80], we

sought to contrast the behaviors observed in our ME treatment

with those obtained from stochastic Monte Carlo (MC) simulations

of finite populations of 1000 individuals (Figure S4a; dashed lines;

MC protocol described in Methods). Naturally, because of their

stochastic nature, individual MC simulation runs differ. Nonethe-

less, when results are averaged over 100 simulations, a clear

agreement in the general behaviors between the ME and MC

simulations is seen, with both sets of simulations achieving

essentially the same high steady-state population for the bAB

bridge (Figure S4a). Not unexpectedly, the evolutionary process in

the finite-population MC simulation is somewhat slower than that

in the ME simulation (cf. solid and dashed curves in Figure S4a)

because there are continuous population transfers between

neighboring sequences in every generation in ME but the

corresponding discrete population transfers do not necessarily

occur in every generation in MC. The evolutionary dynamics of

the control case in which bridge proteins are not allowed to be

populated is considered in Figure S4b. Consistent with Figure 4b,

non-bridge sequences from networks A and B rose to significant

frequencies, with network A being generally more populated due

to its larger size. Because prototype pA is more distant from the

bridge sequences than prototype pB in terms of Hamming distance

(2 vs 1) as well as stability difference (22 vs 1; Figure 2a), pB

becomes more populated than pA when h~0:5 and bridges are

not available (Figure S4b). Compared to the dynamics in Figure

S4a with bridges, the time needed to achieve steady state takes

considerably longer in Figure S4b when bridges are not available

because no individual sequence possesses a strong fitness

advantage to provide a strong drive for the evolutionary dynamics

in this hypothetical case.

Bridge proteins persist under unequal selection

pressures. To relate our model results to real proteins, we

realize that it is unlikely that two selection pressures acting on the

same protein are exactly equal. Indeed, the selection pressures

may even change over time. To address the impact of such effects

on our conclusions, we considered a model in which the selection

pressures for two structures are not identical. Now, instead of

using a single selection pressure h that applies to both structures

XA and XB as in the above, we consider two independent

selection pressures hA and hB. We found that the prominence of

bridges is robust against imbalances between selection pressures

under certain conditions (Figure 5). Intuitively, as is assumed in

our model, the advantage of a bridge protein under adaptive

conflict lies in the presumed additive nature of the fitness

contributions derived from each native structure. Prototypes, on

the other hand, are optimized for only one structure. Thus,

essentially, they can only benefit from the fitness contribution

from that one structure because fitness contributions from any

other excited-state structure would be minuscule. If, in addition,

there is a low requirement for native stability (i.e., low selection

pressure h), the advantage that a highly stable prototype (Ww0:5;

see Figure 1b) may have over the less stable (Wv0:5) yet bi-

structural bridge protein will be reduced even further. Only if the

difference in selection pressures becomes too large, evolution will,

as expected, then favor a more stable protein (e.g. prototype) for

the structure under stronger selection. These trends are

quantified in Figure 5. The magenta area at the center of the

plot delimits the combinations of selection pressures that favor a

bridge over a prototype, whereas the blue and red peripheral

areas are dominated by a prototype.
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Discussion

Our analysis of an entire model protein sequence space

demonstrates that viability of proteins with degenerate native

states can confer an advantage under adaptive conflicts. In such

situations, extensive overlaps exist between stability funnels of

neutral networks, with bi-stable bridge proteins situated at the

interface between networks. Although detailed characteristics of

real protein sequence space remain to be elucidated, based on our

model results we have little doubt that the investigation of bi-

stability and evolvability is a promising area of future research. Bi-

stability, however, cannot be the only evolutionary response to

adaptive conflicts, because the two alternative conformations are

mutually exclusive and thus the function of the protein can never

be fully optimized. In this regard, the role of gene duplications

would also be crucial. We leave this topic for another study [81].

Strengths and limitations of the present simple
biophysics model

Here we have employed a simple biophysical protein chain

model to infer general properties of bi-stable proteins and their

distribution in sequence space. The model used here is a simple

exact model with an explicit representation of the protein

conformations on a two-dimensional lattice. Despite their simplic-

ity, such models capture essential features of the sequence-to-

structure mapping of real proteins (see discussion in Results), and

have provided significant insights into protein folding and

evolution (reviewed in Refs. [31,35]). The simple exact modeling

approach allows a complete description of a system, but clearly

such models are only a caricature of reality. In particular, only a

limited variation of stability and bi-stability is allowed in our

simple model, resulting in an appreciable percentage of sequences

adopting two native structures with identical stability. Real

proteins, in contrast, are unlikely to have exactly equal native

stability in bridge proteins. Nonetheless, inasmuch as the goal of

theoretical/conceptual models is to make predictions that can be

tested experimentally, the main testable prediction of this work is

that bi-stability can be increased or decreased by mutations

leading either towards or away from bridge proteins, which are

sequences that enjoy maximum bi-stability.

While the fraction of actual bridge proteins is unknown, one

may speculate how the HP model relates to real proteins. For

example, consider the following argument: Our simple model only

allows for 10 different energy states (h~0, . . . ,9 HH contacts). If

the conformational ensemble of a real protein was mapped onto

10 equally sized bins of energy, the lowest-free energy bin (highest

stability) could contain two structures with similar yet non-

identical stabilities such that the protein may function as a bi-stable

bridge (e.g. see Table 2). This relaxed definition of a bridge could

entail that one structure would still be much more stable than the

other (as in the case of GA98 in Alexander et al. [27]). As a

consequence, perhaps many such bridge proteins do not have

easily measurable bi-stability because one structure remains

dominant over the other. Nevertheless, the known examples of

functional promiscuity suggest that even such unequal bi-stability

may be of biological relevance. However, it is important to note

that bi-stability can only occur if the two alternative native (or

near-native) states are both thermodynamically accessible on time

scales that are relevant for molecular functions.

The consequence of bi-stability landscapes (Figure 2) for

evolution is that proteins evolving under adaptive conflict for

two alternative structures (whose extended neutral networks are

connected in sequence space) are automatically directed towards

bi-stable states, and that the dynamics of this process do not have

to rely entirely on random genetic drift. Bridge proteins may thus

be created in the laboratory by providing appropriate combina-

tions of selection pressures, or known bridge proteins can be

stabilized towards one of their structural sub-states. So far, this

gradual shift in bi-stability was studied in terms of structural

phenotypes; but the same concept should also apply to other

definitions of phenotypes that depend upon structural stability.

The simple fitness function in the present study rewards

increased protein stability. This fitness function has provided

significant insights; but it does not fully capture the subtle

relationship between conformational stability and biological

function in real proteins [82]. Too much stability can be

detrimental for protein function, for example. More sophisticated

biophysical models will need to be developed to incorporate such

effects.

Future work should also improve the computational methods

for determining bi-stability changes of in-silico mutated PDB

structures. In this regard, the discrepancy between FoldX and

Rosetta predictions in Figure 3a is noteworthy. Using these

algorithms, only local structural optimization around PDB

structures for GA and GB was performed in the present study.

We made no attempt in global structural optimization, which

amounts to using an amino acid sequence as the only input to

determine its native structure, i.e., solving the protein folding

problem for the given sequence. For this much more challenging

task, scoring functions such as Rosetta that rely on comparative

modeling have difficulties when presented with sequences that

have a high degree of identity but fold to different structures

nonetheless. The ability of Rosetta to arrive at the correct

structure can be greatly enhanced by considering not only the

amino acid sequence but also including experimental NMR

chemical shift data as input [83], as has been demonstrated for the

GA=GB system [84]. This finding underlines that the scoring

function alone is insufficient for this system. As emphasized

Figure 5. Bridge proteins persist under unequal selection
pressures for two native-state structures. In our biophysical
protein chain model, hA and hB serve as the selection pressures on XA

and XB, respectively, by setting the minimum required stability for
optimal fitness. Here hA and hB values are plotted in units of Wb, where
Wb is the stability of the (equally stable) native-state structures (XA and
XB) of the most stable bridge protein bAB. The magenta area is the
range of hA and hB values within which bridge proteins have higher
fitness than the specialized prototypes of neutral networks A and B.
doi:10.1371/journal.pcbi.1002659.g005
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recently by van Gunsteren and coworkers, the energetics that

govern the structural transition between GA98 and GB98 is highly

delicate and cannot yet be accounted for atomistically using

current force fields [85]. The quest for an accurate energy function

for protein folding will likely remain a great challenge for years to

come. In this light, the Rosetta criterion we adopted to obtain the

present protein conformational diversity dataset (Dataset S1) is,

inevitably, tentative. Nevertheless, based on the theoretical

framework we developed and the general trend observed here,

this dataset should serve as an impetus and provide useful

candidates to be evaluated by future experimental investigations.

Our evolutionary simulations (Figures 4, S3, and S4) are

idealized scenarios that do not realistically capture evolution in

natural populations, where usually only a small portion of

sequence space would be explored by individuals within a

population that are related to each other by common ancestry.

Our master equation approach and the calculated steady state

therefore only give a general evolutionary trend: given enough

time and mutations, a population will acquire the most bi-stable

proteins. Nevertheless, we have shown that the nature of bi-

stability landscapes (Figure 2) – where incremental shifts of excited

state stability can lead towards increased bi-stability – have the

potential to speed up adaptation under adaptive conflict, whenever

such stability shifts are advantageous. Evolutionary experiments

will be needed to test these predictions under natural conditions.

Consequences for the theory of neutral networks
The increasing knowledge of promiscuous enzymes and the

high evolvability of new enzyme functions [86] suggests that

enzymes are in general mutationally robust for their native

functions, while at the same time accepting mutations that

enhance promiscuous functions. An apparently neutral mutation

may therefore actually be adaptive. Even an apparently detri-

mental (destabilizing) mutation might promote a promiscuous

function that is only beneficial under certain environmental

conditions that the experimenter may not be aware of.

The theory of neutral networks is impacted by the inclusion of

degenerate native-state structures in that the notion of ‘‘neutrality’’

is moderated. While the strictest definition of neutrality (no change

in protein activity/stability whatsoever) is usually not realistically

applicable, a weaker definition (neutral, if the overall native

structure is conserved, but a small loss of stability is tolerated) can

be reconciled with experimental data. One can also go one step

further and define neutral networks as fuzzy sets, where set

membership is a continuous (not a binary) function over the

interval ½0,1� [87]. Degenerate native states could be easily

incorporated into such a definition. Our biophysical model shows

that, at least in theory, excited state conformations may contribute

to promiscuous functions, and could therefore be included into the

‘‘fuzzy’’ neutral set of all sequences that have some non-zero

probability of forming that conformation. The membership to a

fuzzy sequence set could be provided by the fractional population

of the conformation (Equation 1 in Methods). Neutrality depends

on the strength of the selection pressures involved, so that

membership to a fuzzy neutral set as defined above requires a

certain threshold of minimum stability. In the same manner as a

falling sea level will expose more habitable land mass, a reduced

selection pressure will allow for a larger number of viable protein

variants.

Can evolvability be promoted by degenerate native
states?

The intrinsic mutational robustness of neutral networks has

been proposed to promote evolvability, i.e. the capacity to evolve

towards new phenotypes [57,88]. High robustness allows a

population to accumulate many neutral variants within a neutral

network. Some of these variants may be mutationally close to

other phenotypes. We have shown that the inclusion of proteins

with degenerate native states into neutral networks also enhances

evolvability by providing more viable sequences between neutral

networks. Compared to only proteins with non-degenerate native

states, these additional sequences can access a substantial number

of additional phenotypes. However, strong selection pressures

would generally prevent evolution from utilizing degenerate native

states, especially if only one of the native states is beneficial. The

higher the native-state degeneracy, the lower the stability of a

particular structure (see Figure 1b), and the lower the selection

pressure would have to be for viability. If more than one native-

state structure is beneficial, and if fitness effects are additive, a low

stability may be compensated by providing multiple beneficial

structures. Therefore, evolvability requires weak selection pres-

sures in our model.

Draghi et al. [88] have found an analytical solution to the

general problem of how robustness and evolvability are related.

Their results are general enough to be applied to any system

(biological or non-biological) that exhibits robustness. In particu-

lar, they have provided a biological example of RNA phenotypes.

However, their study does not provide any information specific to

proteins, because the necessary parameters cannot be measured

easily. Proteins are fundamentally different from RNA: structure

formation in proteins is largely determined by hydrophobic-polar

interactions, which are largely absent in RNA. Consequently,

proteins and RNA do not share similar genotype-phenotype

relationships [89]. The results from our simple protein model are

consistent with the general predictions by Draghi et al. that

evolvability increases with robustness, given two conditions: first,

robustness is relatively low (only *10{30% of mutations in

sequences belonging to the same neutral network are neutral in

our model; detailed data not shown); and second, only a small

fraction of phenotype space can be accessed from each point in

genotype space (true for our model, since the number of mutations

per sequence is limited to 18, while phenotype space consists of

1475 stable structures [22]). One of the measures of evolvability

that they use, and that we also have used here, is the number of

mutationally accessible new phenotypes per genotype. An

alternative measure is the time (e.g. number of generations) a

population takes to adapt to a new beneficial phenotype. These

two measures, however, capture different aspects of evolvability:

one is the potential to quickly access many different phenotypes if

the need arises (a concept followed by some experimentalists

working on promiscuous enzymes [90]), while the other is

adaptation to one specific phenotype that is under selection (a

scenario we have investigated previously [32]). Here, we have

followed the first approach of measuring evolvability, because we

also impose the important additional requirement of conservation

of the existing phenotype. With this restraint, the new beneficial

phenotype is never fully reached by adaptation, especially since we

refrain from a binary definition of neutral network membership

(see previous section). Dual phenotypes (as exhibited by bi-stable

proteins) have not been considered by Draghi et al. or any other

theoretical study on neutral networks. By allowing dual pheno-

types, which evidently also exist in nature, we allow an

evolutionary compromise, whereas a binary definition of neutral

networks completely prohibits adaptation as long as the need for

conservation exists. In addition, our results also have consequences

for the case of ‘‘unopposed’’ adaptation (without conservation), at

least as far as modeling efforts are concerned: the true connectivity

(evolvability) between neutral networks could be significantly
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underestimated, if proteins with degenerate native states are not

considered. Both scenarios — a complete shift of selection

pressures from one phenotype to another [32,88] and adaptive

conflict (present study) — are important fields of investigation

since both are likely to exist in nature.

The true robustness and evolvability parameters of proteins

remain largely unknown. It appears plausible, however, that

proteins may have become the dominant type of biopolymer (as

opposed to RNA, or other unknown biopolymers that might have

existed during early stages of evolution), in part because they

produce the right balance between robustness and evolvability that

allows for fast adaptation.

Future research on protein bi-stability and evolution
Bi-stability as a factor for protein evolution (as opposed to

conformational changes that are part of the same protein function)

is currently based on a few mostly artificial example cases, but has

not been widely observed in natural settings. This may be caused,

in part, by experimental limitations in protein structure determi-

nation, and possibly also by a lack of research focus. Conforma-

tional diversity, as a more general case of bi-stability, has only

recently gained broader attention [11,59,91], but much of its

potential for evolution remains unexplored. We propose that bi-

stability is particularly beneficial in complex and quickly changing

environments that are likely to create adaptive conflicts. One

important example could be the evolutionary arms-race between

hosts and parasites. Bacteria and viruses have limited genetic

material for adaptation to act upon, therefore these organisms

might benefit from bi-stable and thus bi-functional proteins.

Further studies in this direction will be instructive.

Methods

Simple biophysical protein chain model
Our model folds polymers of length n~18 that are configured

on a two-dimensional square lattice. The model sequences have a

binary residue alphabet (H for hydrophobic, P for polar). This

simplicity makes it possible to enumerate all possible structures, or

conformations (self-avoiding walks on the lattice) for all 218 HP

sequences. The energy function only includes one type of

favorable energy, which is assigned for each hydrophobic intra-

chain contact in any of the structures. Despite the simplicity in its

construction, short-chain two-dimensional HP models have been

shown to capture the essential physics of the sequence to native

structure mapping of real proteins [29,52]. The simplicity of the

HP model allows for exact computation of the partition function

— which takes full account of the energies of all structures, and

thus permits an exact determination of the fractional population W
of each structure, which we use here as a stability measure.

Specifically, W(Xl ,i) gives the probability of a protein with

sequence i to fold into (adopt) structure Xl :

W(Xl ,i)~e{ hl=kBT=
X

h

g(h)e{ h=kBT , ð1Þ

where is the energy per hydrophobic-hydrophobic (HH) contact,

h is the number of such contacts in a conformation (thus total

energy E~ h), kB is the Boltzmann constant and T is absolute

temperature. Conformation Xl has hl HH contacts. The

summation in Equation 1 is over all possible h values in the

entire conformational space X , and g(h) denotes the density of

states of sequence i [23]. For any given HP sequence i, the native-

state degeneracy g:g(hN) is the number of structures with the

highest number of HH contacts, hN. In the present study, e and T

were chosen to provide conditions generally favorable to the

folding of g~1 sequences. As in some of our earlier studies [23],

we have used { =kBT~5 throughout the present work.

If the number of HH contacts in XA and XB are denoted by hA

and hB, respectively, the difference hB{hA for a given sequence i

is a measure of stability difference for that sequence (as used in

Figure 2) because hB{hA is directly related to the fractional

populations WB~W(XB,i) and WA~W(XA,i), viz., it follows from

Eq. 1 that

{

kBT
(hB{hA)~ ln (

WB

WA

): ð2Þ

The system of two adjacent neutral networks that we showed in

Figures 2 and 4 as examples comprises one core neutral network

(A; blue) with 48 g~1 sequences or the corresponding extended

neutral network that includes an additional 84 sequences with

2ƒgƒ6, as well as another core network (B; red) with 20 g~1
sequences or the corresponding extended neutral network that

includes an additional 40 sequences with 2ƒgƒ6. The Hamming

distance between the two prototype sequences is 2, and the intra-

chain contact difference between the native-state structures XA

and XB is also 2 (Figure S2).

Calculation of fitness
In our model, the fitness of an HP sequence i evolving under

selection for two beneficial structures XA and XB is given by

Wi~
X

Xl[fXA,XBg
Wi(Xl), ð3Þ

where

Wi(Xl)~
Wl if Wlvh

h if Wl§h

�
ð4Þ

and h[½0,1� is an upper bound for the contribution of stability

Wl~W(Xl ,i) to fitness [81]. In all the computational results

presented in this paper except those in Figure 5, the same h was

assumed for XA and XB for simplicity, whereas two different upper

bounds hA and hB were used to gain a broader perspective in

Figure 5. The upper bounds serve as a selection pressure because a

low h allows for destabilization of the protein, without fitness costs,

whereas a high h does not tolerate destabilization.

Calculation of sequence populations at evolutionary
steady state

Let SX be the set that contains all sequences in the extended

neutral networks of two structures XA and XB. In our master-

equation formulation of population dynamics [30,81], the

population of sequence i[SX at time qz1 is a function of

sequence populations at time q:

Pi(qz1)~N (q)½{mnPi(q)zm
XAi

r~1

Pni (r)(q)zPi(q)� Wi

�WW (q)
, ð5Þ

where m~10{3 and n~18 are, respectively, the mutation rate and

sequence length chosen for the present study. Pi(q) is the

population of i at time q, and Pni (r)(q) is the population of the

r~1,2, . . . ,Ai adjacent sequences of i, denoted here by ni(r), in

the sequence network SX , where two sequences are adjacent if and
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only if they can be converted to each other by a single mutation.

The factor N (q)~1=
P

i[SX
Pi(qz1) is introduced to keep the

total population normalized to 1 to facilitate comparisons of Pi

distributions at different time steps. The factor Wi= �WW (q) is a

reproduction term that is determined by the relative fitness of

sequence i, �WW (q) being the average fitness (weighted by

population) of all i[SX at time q.

Population dynamics were calculated from an initial state (q~1)

in which only the prototype sequence of one network (A) was

populated (Figure S4). The steady state was reached by iterating

Eq. 5 until the Pi values remained essentially unchanged over

many generations. For a given network topology, the steady state is

independent of the initial state. In this regard, it should be noted

that for some of the control calculations in Figure S3 only the

initially populated network were populated at steady state because

in those cases the two networks were disconnected by the artificial

removal of bridge sequences in the control simulations.

Monte Carlo simulations of finite populations
The above master-equation approach presupposes an effectively

infinite population. To assess the effect of finite population on

steady-state distributions, we have also conducted Monte Carlo

simulations under the same general conditions with respect to

selection pressure and mutation rate (Figure S4) [81]. Similar to

the initial conditions in the master-equation formulation, every

Monte Carlo simulation was initialized with a population

consisting of N~1000 identical individuals each carrying the

prototype sequence pA. At each subsequent time step, a random

number between 0 and 1 was drawn for each of the 18 monomers

in each of the 1000 sequences. If the random number was less than

m, the monomer was mutated (H?P or P?H, depending on

whether the initial monomer was H or P), and fitness was then

recalculated in accordance with Equation 3. Multiple mutations in

one sequence can occur in one time step; but these events were

very rare under the chosen value for m. Evolution thus proceeded

essentially in discrete steps of single point mutations. After all

mutations were performed for a given time step, a new population

was selected for the next time step by the following consideration:

As in the master-equation formulation, the relative fitness of

individual i in the population with fitness Wi is Wi= �WW , where

�WW~
PN

i~1 Wi. Let R0:0 and Ri:
Pi

i
0
~1 Wi

0 = �WW for

i~1,2, . . . ,N (thus RN~1). The Ri’s resulting from this

construction are the boundaries of N discrete bins in ½0,1� with

widths equal to the Wi= �WW values. Now, to select an individual, a

random number u[½0,1� was drawn and individual i was selected if

Ri{1vuƒRi. This procedure picks an individual by letting the

random number fall into one of the N bins. By repeating this

procedure N~1,000 times, a new population of 1,000 individuals

was selected. Because the same individual could be picked multiple

times and some individuals might not be picked at all, fitter

individuals would be statistically over-represented in the next

generation, as they should.

Neutral network layout
For illustrative purposes, the sequences belonging to the two

adjacent neutral networks in Figure 2a were depicted as nodes

placed by the Fruchterman-Reingold algorithm [92] that simulates

physical spring forces between connected nodes. This algorithm

serves to keep edge lengths as equal as possible, resulting in a

network layout that roughly reflects the sequence connectivity

relationships, i.e. sequences differing by many mutations are also

farther apart in the two-dimensional node layout. Stability

difference hB{hA (see above) was then added as a third axis for

the drawing in Figure 2a.

Mutagenesis and energy calculations for the GA=GB

system
The NMR model 1 of GA (PDB code 2FS1) and the X-ray

structure of GB (PDB code 1PGA) were used as the wildtype

structures in our analysis. The two wildtype sequences have a

sequence identity of around 14%. In addition to the wildtype pair,

we considered also the sequence pairs in Refs. [27,69] that are

intermediate mutants between the two wildtypes and have

pairwise sequence identity of 30%, 77%, 88%, 91%, 95%, and

98%. For any one of these sequences, only one — but not both —

of the GA and GB structures was experimentally inferred to be

native [27], the other was a hypothetical excited-state structure.

To estimate the stability difference between excited- and native-

state structures, we modeled the free energy of every sequence in

both the GA and GB structures by ‘‘threading’’ each mutant

sequence into a modified GA and a modified GB structure that were

locally optimized for the given sequence. Two different methods,

namely Rosetta and FoldX, were employed for this computation.

In the Rosetta approach (PyRosetta v2.0 implementation [93]),

mutations were introduced using the ‘‘PackRotamersMover’’

routine to produce the sequence variants, then each of the two

wildtype PDB structures embodying the mutant sequence were

optimized using the FastRelax method, which is currently the best-

performing free energy minimization method of Rosetta [71].

FastRelax was applied three times in a row to each wildtype PDB

structure to ensure that the resulting structures were as optimized

as possible and had comparable free energy scores. The same

FastRelax procedure was also applied to the two wildtype

sequences. Free energy scores were computed by the standard

energy function of Rosetta with undamped Lennard-Jones

repulsions (‘‘hard rep’’) [72].

In the FoldX approach, the mutagenesis engine (‘‘BuildModel’’)

and the standard energy function of FoldX were used to generate

and evaluate the sequence variants. For each sequence, the

‘‘Repair’’ function of FoldX was used to optimize the side-chain

orientations. In contrast to the Rosetta approach that allows for

movement of all atoms to achieve local optimization of the

structure, FoldX (version 3.0) [70] only optimizes side-chain

orientations but leaves the backbone unchanged, resulting in less

structural optimization (from the PDB wildtype) for any given

sequence. A comparison of the performance of Rosetta and FoldX

in our analysis of the GA=GB system is provided in Figure 3c.

Intra-chain hydrophobic contacts in PDB structures
To determine the hydrophobic contact density H for a given all-

atom protein structure (Figure 3d), the number of C-atom pairs

from different amino acid residues and the total number of inter-

residue atomic contacts were counted. An atomic contact is

defined by an inter-atomic distance of less than 7A. Computation

of contacts was performed using the P3D Python module [94].

Among several possible choices of threshold separation, we found

that a threshold separation of 7A in the definition of H produced

the best illustration of the native-structure switch between GA98
and GB98 (Figure 3d). As in the lattice HP protein model [73],

only contacts between residue pairs that are at least 3 positions

apart along the chain sequence were counted in the H measure.

Conceptually, the difference in hydrophobic contact density

H(GB){H(GA) plotted in Figure 3d for the all-atom protein

structures corresponds roughly to (hB=tB){(hA=tA), where tA and

tB are, respectively, the total number of contacts of structures XA

and XB in our biophysical protein chain model. We note that H is
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a simple measure of hydrophobic contact density that does not rely

on a hydrophobicity scale (e.g., that of Kyte-Doolittle [95]). It

takes contributions from the carbon atoms in hydrophobic as well

as non-hydrophobic residues. For instance, in the present

application to the GA=GB system, H contains contribution from

the C-atoms in the polar residue lysine in the core of both GA and

GB [27].

Protein conformational diversity dataset
All 7989 redundant protein structure clusters were obtained

from the protein conformational database PCDB (version 2,

August 2011) [59]. Each entry in PCDB contains a cluster of

CATH [64] domain structures that correspond to the same

sequence. The largest conformational difference (max PCD)

between two structures of the same cluster was determined, using

the RMSD values (in A) that were already included in PCDB

(obtained using MAMMOTH [59,96]). Stability value of each

structure in a pair with max PCD was calculated with Rosetta [93]

by the standard energy function (see above). If a structure had

unfavorable energy (w0), the FastRelax method (see above) was

applied until a favorable energy (v0) was reached. Potential

bridge proteins were identified by the criteria described above in

Results. The set of proteins we thus obtained is listed in Dataset S1

with the cause(s) of conformational diversity provided by PCDB.

Supporting Information

Dataset S1 Excel table containing accession numbers of

potential bridge proteins in the PCDB database.

(XLS)

Figure S1 Bi-stable bridges are mutationally closer to a
prototype sequence than non-bridge bi-stable proteins
are. The general plotting convention of the box plots are the same

as that provided in the caption for Figure 1b in the main text. The

median Hamming distance to the nearest prototype sequence for

the non-bridge sequences (grey box) and for the bridge sequences

(magenta box) are, respectively, 2 and 1. (In both of these cases,

the median coincides with the first quartile, i.e., the lower bound of

the box). The detailed procedure for constructing this figure is as

follows. First, for each sequence with 2ƒgƒ6, the prototype

sequences of all of the neutral networks for the multiple native-

state structures of that sequence were identified. In the second

step, the shortest Hamming distance among the Hamming

distances between the given sequence and each of the prototype

sequences was determined. This procedure was repeated for all the

bridge and non-bridge sequences to produce the statistics shown.

By definition, bridge sequences are connected by single point

mutations to at least two of the neutral networks of their native

structures; whereas non-bridge sequences do not have this

property. The statistics for 3987 bridge sequences and 19129

non-bridge sequences in our biophysical protein chain model are

summarized in the present figure. Non-bridge sequences for which

none of their multiple native structures form neutral networks (i.e.,

no sequence with g~1 exists that folds into those structures) were

excluded in this analysis because in that case there are no

prototype sequences for the non-bridge sequence’s multiple native

structures.

(TIFF)

Figure S2 Example model protein structures. The

prototype sequences pA (a) and pB (b) of neutral networks A

and B used in the main text are shown in their native structures

XA and XB. Black beads are hydrophobic residues, white beads

are polar residues. Intra-chain hydrophobic contacts are indicated

by orange dashed connections between beads. The sequences

differ at three positions (labeled 1,2, and 3), and the structures

differ by 2 intra-chain contacts (arrows).

(TIFF)

Figure S3 Steady-state distributions under adaptive
conflict for several neutral network pairs. Same as

Figure 4 in the main text but generalized to other neutral network

pairs. The largest six neutral networks (left hand sides; blue areas),

each with a neighboring network (right hand sides; red areas), were

chosen for evolutionary simulations (a–f). The overlapping region

of the two networks is shown in magenta. Figure 4 from the main

text is reproduced in panel a to facilitate comparison. Steady state

sequence populations ({ ln (Pi)st values) are plotted against

Hamming distances of each sequence to the bridge protein with

maximum stability. Negative distances indicate sequences from the

initially populated (blue) network. The removal of bridges (grey

symbols) disconnects neighboring networks in some cases, leaving

only the left-hand network populated.

(TIFF)

Figure S4 Evolutionary dynamics under adaptive con-
flict leads toward bi-stable proteins. Simulations were

initialized with a population that was homogeneous for the

prototype of network A (pA), assuming previous strong conserva-

tion for only structure XA. At the commencement of the dynamics

simulation (first time step), a second selection pressure (for XB) was

introduced, thus creating an adaptive conflict. Selection pressures

were intermediate for both structures (h~0:5) for this set of

simulations. This condition allowed bi-stable proteins to evolve.

Results from two different simulation approaches are presented.

Master-equation (ME; solid curves) simulations are deterministic

and assume an effective infinite population size (solid lines). We

used this approach to compute the steady-state genotype

distribution in Figure 4 in the main text. For comparison,

simulations under analogous conditions were also performed using

a stochastic Monte Carlo (MC; dashed curves) approach, where

100 finite populations of 1000 individuals each were simulated

independently. For the ME simulations, genotype frequencies are

given as fractions of 1 (left vertical axis). For the MC simulations,

genotype frequencies are given as average numbers of individuals

over 100 independent runs (right vertical scale). As in the ME

simulations, the mutation rate in the MC simulations was

m~0:001 per monomer per time step. Time-dependent frequen-

cies (time plotted along horizontal axis, in logarithmic scale) are

shown in a for the following gene (sequence) categories: prototype

pA (blue diamond; dark blue curve), all g~1 sequences from

network A (blue circle; light blue curves), and the most stable

bridge bAB (magenta square; magenta curves). Panel b provides

results from the control simulations in which bridge proteins were

artificially removed from the neutral networks. Thus, bAB as well

as other bridges cannot be populated. Instead, the prototype of

network B (pB; red diamond; darker red curves), and other g~1
sequences from B (red circles; lighter red curves) become

populated in this control case.

(TIFF)
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