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Both the excitability of a neuron’s membrane, driven by active ion channels, and dendritic morphology contribute to
neuronal firing dynamics, but the relative importance and interactions between these features remain poorly
understood. Recent modeling studies have shown that different combinations of active conductances can evoke similar
firing patterns, but have neglected how morphology might contribute to homeostasis. Parameterizing the morphology
of a cylindrical dendrite, we introduce a novel application of mathematical sensitivity analysis that quantifies how
dendritic length, diameter, and surface area influence neuronal firing, and compares these effects directly against
those of active parameters. The method was applied to a model of neurons from goldfish Area II. These neurons
exhibit, and likely contribute to, persistent activity in eye velocity storage, a simple model of working memory. We
introduce sensitivity landscapes, defined by local sensitivity analyses of firing rate and gain to each parameter,
performed globally across the parameter space. Principal directions over which sensitivity to all parameters varied
most revealed intrinsic currents that most controlled model output. We found domains where different groups of
parameters had the highest sensitivities, suggesting that interactions within each group shaped firing behaviors within
each specific domain. Application of our method, and its characterization of which models were sensitive to general
morphologic features, will lead to advances in understanding how realistic morphology participates in functional
homeostasis. Significantly, we can predict which active conductances, and how many of them, will compensate for a
given age- or development-related structural change, or will offset a morphologic perturbation resulting from trauma
or neurodegenerative disorder, to restore normal function. Our method can be adapted to analyze any computational
model. Thus, sensitivity landscapes, and the quantitative predictions they provide, can give new insight into
mechanisms of homeostasis in any biological system.
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Introduction

Recent studies have demonstrated that neurons and
neuronal networks are capable of functional homeostasis,
maintaining specific levels of neural activity over long time
scales. Although the combination of currents within individ-
ual neurons of the same class varies widely, the output of
these neurons and even the network as a whole remains
remarkably stable [1–7]. Interestingly, in some circumstances
function is maintained despite changes in neuronal morphology
[4]. Computational models have been used to explore
processes underlying neuronal homeostasis [8], and have
demonstrated that many combinations of conductance
parameters across the parameter space can evoke similar
firing patterns [2,3,6]. Neuronal morphology also seems to be
under homeostatic control: global features, including the
distribution of dendritic mass, are conserved across different
classes of neurons, making it unlikely that local morphologic
features, such as dendritic length and numbers of branches,
are regulated independently [9,10]. Nonetheless, computa-
tional models have not yet explored how morphology might
contribute to functional homeostasis.

Dendritic morphology is a critical determinant of neuronal
firing dynamics and signal processing [11–16]. The influence
of morphology on neuronal processing is further enhanced
by active ion channels distributed throughout the dendrites
[14,17–19]. Previous computational studies have identified

conductance [2,3,6,20] and morphologic [11,21,22] parame-
ters that drive general firing patterns, but have not quantified
how these different parameters influence individual models
across parameter space. Moreover, few studies have analyzed
the contributions of intracellular calcium (Ca2þ) dynamics to
firing patterns [21], despite the crucial role of intracellular
Ca2þ in shaping membrane potential, synaptic transmission,
and signaling cascades [23].
Working memory, which maintains a brief mental repre-

sentation of a recent event necessary for future task
performance [24,25], is one function thought to exploit the
computational capacity of dendrites [26,27]. Persistent neural
activity, a hallmark of working memory, has been observed
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throughout the brain. Neurons from the pre-cerebellar
nucleus Area II of goldfish exhibit, and likely contribute to,
eye velocity storage [28–31], a mechanism that displays
persistent activity long after termination of its eliciting
stimulus. Experiments suggest that intrinsic properties of
individual cells contribute to persistent activity (see Major
and Tank [32] for review). We hypothesize that morphologic
properties of Area II neurons partially compensate for
intrinsic differences in active and passive conductances to
maintain similar firing patterns throughout the nucleus
[30,31].

To begin to test hypotheses like this, we introduce a novel
application of mathematical sensitivity analysis [33] in which
we quantify the effects of different classes of parameters, like
active conductances and morphology, on model output. This
quantification allows us to compare the effects of each of
these parameters on models across parameter space that
produce similar output, identifying mechanisms of homeo-
stasis. Sensitivity analysis has been used widely in physics,
chemical engineering, and biological signaling models to
understand the relationship between model input and output
[33–36], but its use within computational neuroscience has
been limited [37,38]. Traditionally, sensitivity analysis is
performed locally around a single optimal model, or globally
reporting a general sensitivity throughout the parameter
space, to quantify how each parameter contributes to model
output. The large number of parameters and their nonlinear
interactions render such techniques insufficient over the
broad parameter space of neuronal compartment models. To
synthesize these approaches, we explore sensitivity land-
scapes, which provide a global picture of parameter sensitiv-
ities while identifying how intrinsic properties of individual
neurons influence their firing patterns. This method can be
adapted easily to compare sensitivities of parameters in any
computational model.

Our method is defined by three basic steps: parameterizing
morphology to permit its systematic variation; evaluating the
sensitivity to small perturbations of models across parameter

space; and exploring sensitivity landscapes constructed from
the local sensitivities to identify global trends. To simplify the
presentation of our method, we use a reduced morphologic
model comprising a soma and cylindrical dendrite. We later
demonstrate that our sensitivity analysis method can be
applied to models that include more realistic morphologies.
Our analysis identified principal directions over which
sensitivity magnitude, and even sign, to all parameters varied
most. At the same time, we found domains across the space in
which different groups of parameters, even morphologic
ones, had the highest sensitivities. Together, these results
reveal mechanisms that maintain homeostasis, both locally
and globally across parameter space. We show how sensitiv-
ities can be used to predict compensatory tradeoffs quanti-
tatively, between morphologic and conductance parameters
that can maintain target activity levels in Area II cells. Such
compensatory mechanisms exist in many systems where
function is conserved despite variability in dendritic struc-
ture, synaptic input, or membrane excitability [4,39], and may
offset some of the morphologic changes associated with aging
and neurodegenerative disorders (reviewed by Dickstein et al.
[40]). Sensitivity landscapes provide new insight into mech-
anisms of functional homeostasis throughout the brain, and
can facilitate analysis of homeostasis in any biological system.

Results

A reduced model neuron was constructed to conserve the
maximal dendritic length and surface area of an Area II
neuron electrophysiologically characterized in vivo [30] and
reconstructed in three dimensions (3-D; Figure 1A; see
Materials and Methods). The model included seven conduc-
tances, fired regular action potentials (APs) without external
excitation, and exhibited a biphasic afterhyperpolarization
(AHP) following the AP. The model morphology, a cylindrical
soma with a constant diameter dendrite (14 compartments
overall; Figure 1B), was parameterized by length (L), diameter
(D), and total surface area (SA); somatic dimensions were held
constant.
We compared the sensitivity of simulated neuronal firing

patterns to two different classes of parameters: those
describing active ionic membrane properties (including
parameters controlling intracellular Ca2þ dynamics), and
those describing dendritic morphology. See Table 1 for
parameter classifications. Sensitivities were computed for two
model types: passive dendrite ‘‘optimized models’’ identified
by an automated parameter search as acceptable fits to target
data, and Area II–like active dendrite ‘‘candidate models’’
identified during systematic searches of parameter space. The
distinction between passive dendrite and active dendrite
models is shown in Figure 1B. Sensitivity to perturbations of
morphologic parameters was compared with sensitivity to
active parameters.
Inherently associated by the relation SA ¼ p � L � D, the

three morphologic parameters L, D, and SA together
represent only two independent parameters. To dissociate
the confounded effects of L, D, and SA, we systematically held
one parameter constant while perturbing the other two (i.e.,
perturb L and SA, holding D constant [L þ SA; Figure 1C];
perturb D and SA with constant L [D þ SA; Figure 1C]; and
perturb L and D with constant SA [L þ D; Figure 1C]).
Morphologic perturbations necessarily perturb either the
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Author Summary

Homeostasis is a process that allows a system to maintain a certain
level of output over a long time, even though the inputs controlling
the output are changing. Recently, studies of neurons and neuronal
networks have shown that the ‘‘active’’ parameters that describe
the movement of ions across the cell membrane contribute to
homeostasis, since these parameters can be combined in different
ways to maintain a specific output. There is also evidence that the
physical shape (‘‘morphology’’) of the neuron may play a role in
homeostasis, but this possibility has not been explored in computa-
tional models. We have developed a method that uses sensitivity
analysis to evaluate how different kinds of parameters, like active
and morphologic ones, affect model output. Across a multi-
dimensional parameter space, we identified both local and global
trends in parameter sensitivities that indicate regions where
different parameters, even morphologic ones, contribute strongly
to homeostasis. Significantly, the authors used sensitivities to
predict which parameters should change, and by how much, to
compensate for changes in another parameter to restore normal
function. These predictions may prove important to neuronal aging,
disease, and trauma research, but the method can be used to
analyze any computational model.
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density or total number of active membrane channels. These
confounded effects were uncoupled by performing morpho-
logic perturbations in the active dendrite either with
constant channel densities (Figure 1D, middle) or constant
channel numbers (Figure 1D, bottom).

Model output was quantified by two variables: spontaneous
firing rate, and firing rate gain (Materials and Methods).
Firing rate gain, a best-fit line to the firing rate versus current
curve, provided a general measure of neuronal excitability:

models with low gain were less excitable than those with high
gain (compare solid black and dashed blue lines in Figure 2A).
Normalized sensitivity coefficients were calculated for each
model, estimating the change in each output measure to a
small perturbation in each parameter (Equation 7, Materials
and Methods). We explored sensitivity landscapes by evaluat-
ing normalized sensitivity coefficients across the parameter
space. To demonstrate the method, we describe trends in the
sensitivity landscapes of the two output variables to active
and morphologic parameters for both the optimized and
candidate model types. We describe trends over two
generalized parameter spaces: one defined by active and
passive parameters (‘‘conductance space’’), the other defined
by morphologic parameters (‘‘morphologic space’’).

Analysis of Optimized Models
Area II neurons fire spontaneously at 10.4 6 5.8 Hz in vivo

[31]. These neurons also tend to fire spontaneously in thin in
vitro slices, suggesting that intrinsic currents contribute
strongly to the spontaneous discharge, and exhibit a biphasic
AHP (G. Gamkrelidze, personal communication). Synthetic
‘‘target’’ data consistent with these observations were
constructed from a single compartment model [41,42] and
used to constrain the simple morphologic model (Table S1;
see Materials and Methods). To represent the range of firing

Figure 1. Constructing the Morphologic Model

(A) Morphology of an Area II neuron traced in 3-D. The reduced morphology in (B) conserved the surface area of the soma (shown in green) and the
length and surface area of the dendritic tree. The axon (truncated thick process extending from the left of the soma) was omitted.
(B) Channel distributions in active and passive dendrite models. Red compartments included active channels; gray compartments included only passive
ones.
(C) Morphologic perturbations. Top left: unperturbed model morphology. Top right, L þ SA: dendritic length L and surface area SA perturbed with
dendritic diameter D held constant. Bottom left, Dþ SA: D and SA perturbed with L held constant. Bottom right, LþD: L increased and D decreased such
that SA remained constant.
(D) When dendritic morphology of the active dendrite was perturbed (e.g., Lþ SA), either the original dendritic channel density of each ion species was
conserved (constant density; middle) or the number of dendritic channels was conserved (constant numbers; bottom).
(E) Top, spatial distribution of active channels in the active dendrite. Dendritic channel density (as a proportion of its somatic density) either increased
(�gA, thick dashed line), decreased (�gCa, solid black line; �gNa, �gK , �gNaP, red solid line), or remained constant (�gK�Ca, thin dashed line). See Materials and
Methods. Bottom, decremental AP backpropagation as a function of distance from the soma, for the conductance distributions shown at top. Somatic
AP shown in red.
doi:10.1371/journal.pcbi.0040011.g001

Table 1. Classification of Active and Morphologic Model
Parameters

Active Parameters
Morphologic (Dendrite)

Parameters

Transient sodium: �gNa High-threshold

activated Ca2þ: �gCa

Diameter and surface

area: (D þ SA)

Delayed rectifier

potassium: �gK

Persistent

sodium: �gNaP

Length and surface

area: (L þ SA)

Ca2þ-dependent

potassium: �gK�Ca

Ca2þ influx: Kp Length and diameter:

(L þ D)

A-type potassium: �gA Ca2þ efflux: RCa

doi:10.1371/journal.pcbi.0040011.t001
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rates observed in Area II experiments, models were optimized
to reproduce the general AP shapes of the target data closely,
but loosely reproduce its firing rates (Table 2; see Materials
and Methods). To investigate the sensitivity of model output
to morphologic parameters independent of any added
conductance, the dendrite of these optimized models was
made passive. The fit of a typical parameter set to the target
data is shown in Figure 2B for both spontaneous firing and a
100 pA somatic current injection.

Spontaneous firing rate. The conductance space locations
of 15 optimized models that matched target data are shown in
Figure 3A. Nine dimensions of the conductance space (the
eight optimized parameters, plus leak conductance �gLk) are
illustrated as a set of three 3-D graphs. Optimized models
assumed parameter values spanning the full range of
conductance parameters, demonstrating that different com-
binations of parameters can produce similar output [2,6,20].
Interestingly, values of �gNaP and �gA were correlated across the
entire parameter space (r2 ¼ 0.98; Figure S1), suggesting a
global compensatory interaction between enhancement
(�gNaP) and reduction (�gA) of excitability. There was no
significant correlation between any other pair of parameters.
The spontaneous firing rates of the optimized models, shown
in Figure S2A, ranged from 7 to 14 Hz.

Sensitivity of the two model output variables to a given
parameter (see Materials and Methods) depended upon a

model’s location in parameter space; a comparison of
sensitivities at the points labeled A, B, and C in Figure 3
demonstrates this point. For the point labeled B, (blue
triangles in Figure 3A), Figure 3B compares the effect on
spontaneous firing rate of a 20% increase in the active
parameter �gNaP (solid black line; unperturbed model shown in
solid blue), with a 20% decrease in the morphologic
parameter D þ SA (dashed black line). At this point, a 20%
increase in �gNaP increased firing rate by 50%; hence, the
sensitivity of firing rate to �gNaP was 50% / 20% ¼ þ2.5
(sensitivities shown on inset bar plot, Figure 3B). A 20%
reduction in DþSA also increased firing rate, this time by 67%;
hence, firing rate sensitivity to D þ SA was 67% / �20% ¼
�3.35, larger in magnitude and opposite in sign to sensitivity
to �gNaP (inset bar plot, Figure 3B). In contrast, at the point
labeled C (red triangles in Figure 3A), the same 20%
perturbation of D þ SA increased firing rate by only 8%,
resulting in a much lower sensitivity value of �0.4 (D þ SA
reduction, dashed black line versus unperturbed model in
red; sensitivity, inset bar plot, Figure 3C). The sensitivity to
�gNaP at point C (þ8) was much greater than at point B,
however: a 10% increase in �gNaP increased firing rate by more
than a 20% increase at point B (solid black line and inset bar
plot; compare Figure 3B and 3C).
Figure 4 shows the sensitivity of spontaneous firing rate to

perturbations of each of the active and morphologic
parameters (totaling 11 in all) for three models in different
regions of parameter space (points labeled A, B, and C in
Figures 3A and 4D). Sensitivity varied across parameter space.
Sensitivity of all optimized models to perturbations of just
one morphologic parameter, Dþ SA, is indicated by color on
a scale of�4 (dark blue) toþ4 (dark red) as a function of their
positions in this subspace (Figure 4D). There was a clear trend
of increasing sensitivity in the direction of the thick arrow in
the [�gA, �gCa, �gNaP] subspace (Figure 4D), but no trend visible by
eye along other directions of the nine-dimensional parameter
space. Comparing points A and B (Figure 4A and 4B),
sensitivities to each parameter have the same sign and similar
magnitudes, demonstrating that along some directions of
parameter space, sensitivity is relatively constant (Figure 4D,
thin arrow). In contrast, between points B and C (Figure 4B
and 4C), sensitivity magnitude and even its sign can change
(compare colored bars representing sensitivities to L þ D in
Figure 4A–4C). For example, from point B to point C, the

Figure 2. Quantifying Model Output

(A) Computing firing rate gain. Black circles and solid line show firing rates and the associated fit for a model with a gain of 331.1 Hz/nA. A model with a
gain of 640.0 Hz/nA is also shown (blue open triangles and dashed line).
(B) Typical match of optimized model (red) against target data (black dashed line), for 0 and 100 pA injected current (top and bottom, respectively).
Models were constrained to match the general AP shape, and approximate firing rates, of the synthetic target data.
doi:10.1371/journal.pcbi.0040011.g002

Table 2. Constraints on Active Parameters Applied During
Optimization

Parameter Units Minimum Maximum References

�gNa mS/cm2 0.2 50 [41,64,72]
�gK mS/cm2 0.2 50 [41,64]
�gK�Ca mS/cm2 0.1 50 [41,64,72]
�gA mS/cm2 0 100 [2,6,20,41,64]
�gCa mS/cm2 0 5 [2,20,41,64]
�gNaP mS/cm2 0 5 [41,64]

Kp M � cm2/mC 0.0001 100 [6,41,72]

RCa ms�1 0.0001 100 [6,20,41,72]

The constraints applied to each of eight parameters during optimization (units given in
second column). A few previous computational studies with parameters in each range are
shown in the final column.
doi:10.1371/journal.pcbi.0040011.t002
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sensitivity of spontaneous firing rate to L þ D changed from
�1.8 to 0.75. These sensitivities indicate that at point B, a 1%
increase in LþD will decrease spontaneous firing rate by 1.8%,
while at point C, a 1% increase in LþD will increase firing rate
by a smaller amount, 0.75%. Along some directions of

parameter space, sensitivity magnitude and sign changed
dramatically (thick arrow in Figure 4D); a trend of increasing
sensitivity along a certain direction of parameter space will
hereafter be referred to as the ‘‘principal sensitivity direc-
tion.’’ We identified these principal sensitivity directions
visually for active and morphologic parameters, and inves-
tigated how they changed when measuring different output
variables.
Firing rate sensitivity to active and morphologic parame-

ters. Spontaneous firing rate was most sensitive to perturba-
tions of �gNaP throughout the parameter space. Sensitivities to
perturbations of �gK�Ca, �gA, and Ca2þ influx and efflux (Kp and
RCa, respectively) were also high in different domains of the
space. As expected, sensitivity was positive to �gNa, �gNaP , and
RCa, and negative to �gCa, �gA, �gK�Ca, and Kp. Surprisingly, firing
rate sensitivity to �gK was positive, due to the prominence of
the Ca2þ-dependent potassium (K–Ca) current (Figure S3A–
S3C). An increase in �gK caused a deeper fast AHP; this
hyperpolarized membrane potential reduced Ca2þ influx into
the neuron. The subsequent reduction in the K–Ca current
caused a smaller medium AHP. With its membrane potential
closer to threshold, the model with increased �gK fired earlier
and hence faster than the unperturbed model. Firing rate
sensitivity to �gK was negative in models without K–Ca current
(Figure S3D).
Conceptually then, the active parameters can be grouped

into those with positive sensitivity that enhance neuronal
excitability (called ‘‘excitatory parameters’’: �gNa, �gNaP , �gK , and
RCa), those with negative sensitivity that reduce neuronal
excitability (‘‘inhibitory parameters’’: �gA, �gK�Ca, and Kp), or
those with a mixed effect (�gCa is excitatory, but activates the
inhibitory K-Ca current; called ‘‘mixed’’). There was a clear
increase in sensitivity to all active parameters as both �gNaP
and �gA increased in the optimized models (Figure S2B). This
principal sensitivity direction indicated that �gNaP and �gA, and
likely interactions between them, strongly influenced sponta-
neous firing rates and firing rate sensitivities.
Sensitivities of spontaneous firing rate to all morphologic

parameters were consistently higher than to most active
parameters. In 11 of the 15 optimized models, sensitivity to
Dþ SA was higher than to any active parameter (filled circles,
Figure 4D). Sensitivity to LþSA was negative for all optimized
models, whereas sensitivity to Dþ SA and LþD changed sign
as �gNaP and �gA increased (Figures 4D and S2B). The principal
sensitivity direction across conductance space was similar for
morphologic parameters to that for active parameters (heavy
arrows in Figure 4D; see also Figure S2B). These sensitivity
findings can be understood from the relative contributions of
somato-dendritic axial current and active membrane cur-
rents to the somatic membrane potential during interspike
intervals (ISIs), and by examining how these contributions
vary across parameter space (see Discussion).
Firing rate gain. Some of the optimized models fired bursts

or doublets in response to current injections above 250 pA.
Area II neurons exhibit neither behavior. Because these
models spontaneously fired single APs, they were used to
evaluate trends in firing rate sensitivity, but were omitted
from the analysis of gain sensitivity trends. Firing rate gains
calculated from the remaining nine models ranged between
92 and 384 Hz/nA (Figure S4A).
Firing rate gain sensitivity to active and morphologic

parameters. Firing rate gain was generally most sensitive to

Figure 3. Evaluating Sensitivity for Optimized Models Across Parameter

Space

(A) Location in nine-dimensional parameter space of the 15 optimized
passive dendrite models (gray circles and colored triangles), shown in
three 3-D subspaces: [�gNa , �gK , �gK Ca] (top); [Kp, RCa, �gLk ] (middle); and [�gA,
�gCa ,�gNaP] (bottom). Voltage traces and sensitivity coefficients of three
models represented as colored triangles (A, B, and C) are compared in (B),
(C), and Figure 4.
(B) Comparison of morphologic (D þ SA) and active parameter (�gNaP)
perturbations of the model labeled ‘‘B’’ (blue triangles in [A], above).
Solid blue line represents the somatic voltage trace of the unperturbed
model. Dashed line shows the response to a 20% decrease in D þ SA;
solid black line shows the response to a 20% increase in �gNaP . Inset
barplot shows the normalized sensitivity coefficients of spontaneous
firing rate to Dþ SA and �gNaP (Sp. FR Sens.): positive to �gNaP, negative and
of greater magnitude to D þ SA.
(C) Perturbations of the model labeled ‘‘C’’ (red triangles in [A], above).
Shown are perturbations analogous to those in (B) above, except that
the solid black line shows the response to a 10% increase in �gNaP .
Sensitivity to D þ SA is small and negative, while sensitivity to �gNaP is
large and positive. Note the difference in scale between the sensitivity
barplot insets in (B) and (C).
doi:10.1371/journal.pcbi.0040011.g003
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perturbations of �gK�Ca. Sensitivities to excitatory �gNa and
�gNaP , inhibitory Kp, and mixed parameter �gCa were also high
in certain domains of the space. In general, gain sensitivity
was positive to excitatory parameters and negative to
inhibitory ones, although gain sensitivity was negative to
(excitatory) �gNaP [43]. This counterintuitive sensitivity arose
because increasing �gNaP preferentially increased firing rates
more at lower levels of injected current, causing an overall

gain decrease. Gain sensitivity to some active parameters
increased along the same principal direction as spontaneous
firing rate sensitivity (e.g., �gA; compare Figures S2B and S4B
top right, arrow).
For most of the optimized models, firing rate gain

sensitivity was high to perturbations of at least one of the
morphologic parameters (Figure S4B, filled circles). Gain
sensitivities varied across space, negative to D þ SA, and
negative to LþSA and LþD for about half the models (Figure
S4B, bottom row). Gain sensitivities to D þ SA and L þ SA
increased with �gA and �gNaP , along the same principal
direction as spontaneous firing rate sensitivity (compare
arrows, Figure S2B and S4B, bottom left).
To summarize, analysis of the optimized models with a

passive dendrite indicated that sensitivity magnitude and sign
varied throughout parameter space, changing most along the
principal direction as �gA and �gNaP increased. Spontaneous
firing rate and gain were generally more sensitive to
diameter-based perturbations of dendritic morphology than
to most active parameters. To characterize the shape of the
sensitivity landscape and to evaluate these findings for an
active dendrite, we performed systematic searches of the
parameter space.

Sensitivity Landscape Revealed by Systematic Searches of
Conductance Parameter Space
Because a systematic search of sensitivities to all active and

morphologic parameters of this model would be computa-
tionally prohibitive, we restricted the search to biophysically
plausible ranges (Materials and Methods; Table 3) of the five
dimensions over which firing rate sensitivities varied most:
excitatory parameters �gNaP and RCa, inhibitory parameters �gA
and Kp, and the mixed parameter �gCa. The remaining
parameters �gNa, �gK , and �gK�Ca were fixed to values represen-
tative of the set of optimized models. The systematic search,
conducted for the active dendrite model (Figure 1E; see
Materials and Methods), is presented here. Assuming a passive
dendrite yielded similar results except where noted, and these
are summarized in Figures S5–S7. A summary of fixed
parameters, search ranges, and grid sizes of the systematic
search is given in Table 3.
Spontaneous firing rate. To provide a context for the

systematic search of sensitivity landscapes, we first mapped
out the variation in baseline spontaneous firing rate across
parameter space. Four slices through the sampled space are
shown in Figure 5. The fixed parameters [�gNa, �gK, �gK�Ca, �gLk]
are marked as black circles in Figure 5A (top and middle
plots). In each subpanel, Kp and RCa are held fixed at four
different values, labeled (A–D) in Figure 5A, middle plot. A
systematic search of the lower 3-D parameter subspace [�gA,
�gCa, �gNaP] was performed for each of these points (Figure 5A–
5D), and the results are shown graphically in Figure 5A
(bottom plot), 5B, 5C, and 5D, referred to as subspaces A, B,
C, and D, respectively. In each subspace, spontaneously firing
models were clustered in the top left corner of the lower 3-D
subspace; i.e., when �gNaP was large enough to initiate an AP,
and when �gA was low enough not to prevent firing. Otherwise,
the neuron did not fire (uncolored cells, Figure 5). The
spontaneous firing rate changed continuously, increasing
with the excitatory parameter �gNaP but decreasing with the
mixed parameter �gCa as it activated the K–Ca current. In each
subspace, the number of spontaneously firing models and the

Figure 4. Sensitivity of Spontaneous Firing Rate to Model Parameters

Varied Across Parameter Space

(A–C) Somatic voltage traces and normalized sensitivity coefficients to
perturbations of active (�gNa, �gK , �gK�Ca , Kp, RCa, �gA, �gCa, �gNaP) and
morphologic (LþD, Lþ SA, Dþ SA) parameters, for the models labeled A,
B, and C in Figures 3A and (D) (colored triangles). For some regions of
parameter space (points A and B), the pattern of parameter sensitivities
was similar. In other regions (C), the sensitivity to several parameters
changed dramatically (compare colored bars in [A] and [B] versus [C]), so
that the relative influence of different parameters on spontaneous firing
rate was changed.
(D) Firing rate sensitivity to Dþ SA of all optimized models, as a function
of their location in the [�gA, �gCa , �gNaP] subspace. The points shown in (A–
C) above are labeled (A, B, and C), with color indicating the magnitude
and sign of firing rate sensitivity to D þ SA according to the colorscale
shown on the right. Arrows show the directions along which sensitivity
to D þ SA was relatively constant (thin arrow), and along which it
changed substantially (thick arrow). Along this principal direction, even
the sensitivity sign reversed (yellow circle, marked with ‘‘þ’’). In the 11
models shown as filled circles, firing rate sensitivity was largest to the
morphologic parameter D þ SA than to any active parameter. Open
squares show the four models for which firing rate sensitivity was greater
to at least one active parameter than to Dþ SA.
doi:10.1371/journal.pcbi.0040011.g004
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peak spontaneous firing rate increased with RCa (from point
A to point B, compare Figure 5A and 5B; from point C to
point D, compare Figures 5C and 5D) and decreased with Kp

(from point A to point C, compare Figure 5A and 5C; from
point B to point D, compare Figure 5B and 5D). This finding
is intuitive: small Kp or large RCa reduced intracellular Ca2þ,
which prevented a significant K–Ca current, allowing
excitatory conductances to depolarize the neuron more
easily.

All but 13 of the 9,000 active dendrite models fired
regularly. The 13 irregular models fired doublets; 12 of them
had low values of �gCa, �gA, and RCa and high �gNaP . Previous
studies that have identified large regions of parameter space
for which models burst spontaneously [2,20] assumed a slow
intracellular Ca2þ removal rate, corresponding to RCa¼ 0.005
ms�1. Larger RCa values were used here to minimize
spontaneous bursting, as Area II neurons do not exhibit this
behavior.

The shape of the sensitivity landscape depended both upon
location in parameter space and baseline firing rate. To
analyze sensitivity trends independent of baseline firing rate
effects, we focused on Area II–like ‘‘candidate models’’ firing
spontaneously from 7–13 Hz; the gain of these models was
unconstrained (see Materials and Methods). Figure 6A shows
136 candidate models identified during the systematic search.
With four dimensions [�gNa, �gK, �gK�Ca, and �gLk] held fixed, these
candidate models were connected across the remaining five-
dimensional search space, forming a wedge in the [�gA, �gCa,
�gNaP] subspace (Figure 6A).
Firing rate sensitivity to active and morphologic parame-

ters. Figure 6B compares trends in the sensitivity of
spontaneous firing rate to perturbations of two active
parameters (excitatory RCa and inhibitory �gA; top row Figure
6B) and two morphologic parameters (D þ SA and L þ D;
bottom row, Figure 6B) in the candidate models. Space
limitations permit us to show only the sensitivities for models
within subspace A; however, results were similar for candi-
date models throughout the space.

Throughout the space, firing rate was most sensitive to
perturbations of �gNaP , with sensitivities to excitatory RCa and

inhibitory �gK�Caand �gA also high in different domains. Similar
to the optimized models, global sensitivity was positive to
perturbations of excitatory parameters and negative to
perturbations of mixed and inhibitory parameters. The
arrows in the top row of Figure 6B show the principal
sensitivity directions to perturbations of RCa (positive sign)
and �gA (negative sign); these trends were representative of
almost all active parameters. Sensitivities increased for lower
values of �gCa (compare thin versus thick arrows in Figure 6B)
and as RCa increased (Figure S5A, left and right columns).
Firing rate sensitivity to morphologic parameters D þ SA

and L þ D with dendritic channel densities held constant
(‘‘constant density’’ [CD]) was higher than to most active
parameters, among candidate models with smaller RCa values
(Figure S5A, filled circles). For these models, sensitivity to only
�gNaP and sometimes �gA and �gK�Ca was higher than sensitivity
to morphologic parameters. Sensitivities to L þ SA / CD and
Dþ SA / CD were negative across the parameter space: firing
rate decreased as length or diameter increased, and changed
sign to L þ D / CD (Figure 6B, bottom row). Sensitivities to
LþSA / CD and DþSA / CD increased along the same principal
direction as for the active parameters (arrows, Figure 6B,
bottom row).
When dendritic channel numbers were held constant

(‘‘constant numbers’’ [CN]), sensitivities to perturbations of
D þ SA / CN and L þ SA / CN increased along the same
principal direction as the corresponding CD perturbations,
but were opposite in sign—firing rate increased with Dþ SA—
and of lower magnitude (Figure S6A). Even so, when RCa was
low, sensitivity to perturbations of D þ SA / CN was higher
than to all active parameters except �gNaP and sometimes �gA
and �gK�Ca.
The relationship between CD and CN morphologic

perturbations depended on the dendritic channel distribu-
tions and can be understood in terms of perturbing electrical
load at the soma. Intuitively, an increase in dendritic surface
area should increase the electrical load on the soma,
decreasing firing rate, as occurred with CD morphologic
perturbations (Figure S6A, right column). Morphologic
perturbations that increase surface area holding channel

Table 3. Parameter Range Constraints for Systematic Searches

Parameter Conductance Space Morphologic Space

Passive Dendrite Model Active Dendrite Model Active Dendrite Model

Min Max N Min Max N Min Max N

�gNa 20 20 20
�gK 10 15 15
�gK�Ca 2 1 1

Kp 0 1 5 0 1 5 0.833

RCa 0 1 5 0 1 5 0.167
�gA 0 20 5 0 20 8 1.667
�gCa 0 1 5 0 2 9 0.167
�gNaP 0 0.2 5 0 0.2 5 0.1

L (lm) 1183.6 1183.6 100 2000 15

D (lm) 4.38 4.38 0.5 7 15

Shown are parameter constraints for the passive dendrite model across conductance space (first column) and for the active dendrite model across conductance and morphologic space
(second and third column respectively). Across conductance space, �gA , �gCa , �gNaP , Kp, and RCa assumed one of N equally spaced values from Min to Max with �gNa , �gK , �gK Ca , L, and D held
constant. Across morphologic space, all active parameters were held constant while L and D were varied.
doi:10.1371/journal.pcbi.0040011.t003
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numbers constant result in lower dendritic channel densities.
With the predominance of inhibitory over excitatory chan-
nels in our active dendrite (see Figure 1E), increasing the
surface area of the dendrite by an Lþ SA / CN or Dþ SA / CN
perturbation decreased the relative density of those inhib-
itory channels. Because this perturbation reduced the
electrical load on the soma, it increased the firing rate of most
candidate models (Figure S6A, left column). To illustrate this
point, we recomputed firing rate sensitivities after redistrib-
uting dendritic channels uniformly so that inhibition no
longer dominated (Figure S6B). Firing rate sensitivity to CN
morphologic perturbations that increased SA and hence
electrical load were now negative, as expected (Figure S6B).

Firing rate gain. The baseline firing rate gain of all active
dendrite models within subspace A is illustrated as a
colormap in Figure 7A. Representative gains, computed as
the slopes of firing rate versus injected current, for the three
models labeled (1, 2, and 3) in Figure 7A are shown in Figure
7B. Regions of lowest spontaneous firing rate and lowest gain
coincided (Figure 7A and 7B, Model 1); the same was
generally true for high spontaneous firing rates and gain
(Figure 7A and 7B, Model 2; compare Figures 5A and 7A). The
only exceptions to these observations were models with high
�gNaP but low �gCa (Figure 7A and 7B, Model 3). Baseline firing
rates in these models were high and nearly saturated. Since
injecting current had little additional effect, these models had
intermediate gain values. In a subset of the candidate models,

we compared gains computed from injected somatic current
against gains computed from dendritic synaptic excitation.
The high correlation between these measures (r2¼ 0.992, n¼
19; see Materials and Methods) and the linearity of each
model’s firing rate response to injected current (Figure 7B)
demonstrated that the gain was a good measure of the firing
activity over a range of inputs.
Firing rate gain sensitivity to active and morphologic

parameters. Among candidate models, the sensitivity of firing
rate gain to perturbations of �gK�Ca was highest throughout
the space; in different domains of space, sensitivities to
excitatory parameters RCa, �gNa, and �gNaP and inhibitory
parameter �gA were also high. Figure 7C compares firing rate
gain sensitivity to two active parameters (RCa and �gA; top row)
and two morphologic parameters (Dþ SA and Lþ D; bottom
row) for candidate models within subspace A. For most active
parameters, sensitivities of firing rate and gain had the same
sign. Gain sensitivities tended to be smaller than spontaneous
firing rate sensitivities, but increased along the same
principal directions (arrows, top row of Figure 7C).
As with spontaneous firing rate, gain was more sensitive to

morphologic parameters Dþ SA / CD and Lþ D / CD than to
most active parameters for candidate models with smaller RCa

values. Only sensitivity to �gK�Ca, RCa, and sometimes �gNaP was
higher in those models. Gain sensitivity to all morphologic
perturbations reversed sign along the principal direction of

Figure 5. Systematic Search Across Conductance Space Revealed Continuous Variation in Baseline Spontaneous Firing Rate

Throughout the systematic search, values of �gNa, �gK , and �gK�Ca([A], top graph) and �gLk ([A], middle graph, z-axis) remained fixed. In each subpanel, Kp

and RCa are held fixed at four different values, labeled A, B, C, and D) ([A], middle graph). A systematic search of the lower 3-D subspace [�gA, �gCa , �gNaP] for
each of these points is shown graphically in A, B, C, and D, respectively. Each model in the [�gA, �gCa , �gNaP] subspace is shown as a cell whose color
represents its spontaneous firing rate, according to the colorscale on the right of subspace A. Uncolored cells were spontaneously silent models.
Spontaneous firing rate depended sensitively on a balance between �gNaP and �gA: when �gNaP was high but �gA was low, rates were high, and vice versa.
Firing rates also increased with RCa (from A to B and from C to D) and inversely with Kp (from A to C and from B to D).
doi:10.1371/journal.pcbi.0040011.g005
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sensitivity increase to active parameters (arrows, bottom row
of Figure 7C).

Sensitivity of gain was higher to Dþ SA but lower to Lþ SA
when channel numbers, rather than densities, were held
constant. Otherwise, trends of sensitivity magnitude and sign

were similar to those of CD morphologic perturbations. Thus,
the overall effect of these morphologic perturbations on gain
was independent of the channel density or numbers, even
though CD and CN perturbations had opposite effects on
firing rates at each level of applied current.
Gain was much lower across conductance space for the

passive dendrite model than for the active dendrite, and
decreased only slightly as �gCa increased (Figure S7A and S7B).
These differences in baseline gain caused a divergence in gain
sensitivity trends between the active and passive dendrite
models: gain sensitivities varied only slightly across conduc-
tance space in the passive dendrite model (note difference in
sensitivity scale from Figures 7C and 7D to S7C and S7D). For
the passive and active dendrite models, gain was highly
sensitive to the same parameters, but the principal sensitivity
directions differed (compare arrows in Figures 7C and 7D
and S7C and S7D).
To evaluate the robustness of these sensitivity trends over a

range of dendritic morphologies, and to examine the nature
of sensitivity landscapes across morphologic space, we
performed a second systematic search over the space defined
by morphologic features.

Sensitivity Landscapes Across Morphologic Space
We explored the sensitivity landscape across morphologic

parameter space by systematically varying L and D while
holding active and passive parameters fixed. Active param-
eters from the active dendrite candidate model across
conductance space with lowest firing rate gain were used
for the search (model marked by blue triangle labeled ‘‘M’’ in
Figure 6A; see Materials and Methods). The search was
performed twice, holding either active channel densities
constant (‘‘CD morphologic space’’) or overall active channel
numbers constant (‘‘CN morphologic space’’) as morphology
varied (Figure 1C). Table 3 summarizes the search conditions.
Spontaneous firing rate across CD morphologic space.

Figure 8A shows the spontaneous firing rate of models across
CD morphologic space. A small, connected set of models did
not fire spontaneously (uncolored cells); the others fired
regularly at rates up to 25 Hz. Firing rate varied less across
this morphologic space than across conductance space
because active parameter values in the soma, the site of AP
initiation, were held fixed along each dimension of the space.
Firing rates varied continuously over the sampled points, and
inversely with D. Models with similar firing rates lay in
colored bands of vertical stripes over the lower half of the D
range, and in approximately hyperbolic shaped bands over
the upper half of the D range (Figure 8A). These observations
revealed an interaction between L and D, largely driven by D
over the lower half of the D range, and by SA as a whole
(Figure 8A; black curve indicates constant SA } L 3 D
matching the original morphology). Increasing SA increased
both the electrical load on the soma and also the number of
active channels (dominated by inhibitory �gA), resulting in
lower firing rates. Of the 225 models analyzed across this
region of morphologic space, 47 Area II–like candidate
models were identified, shown as colored symbols in the
subpanels of Figure 8B.
Firing rate sensitivity across CD morphologic space. The

signs and relative magnitudes of firing rate sensitivities to
active parameter perturbations were the same across mor-
phologic space, as those across conductance space described

Figure 6. Sensitivity of Spontaneous Firing Rate Across Parameter Space

(A) Colored symbols show 136 Area II–like candidate models identified
during the systematic search of conductance space. Values of �gNa, �gK ,
and �gKCa(top graph) and �gLk (middle graph, z-axis) were the same for all
candidate models; locations along Kp and RCa dimensions (middle graph)
and �gA, �gCa and �gNaP dimensions (bottom graph) varied. Some models
have been shifted slightly along the �gA axis to aid in visualization. Red
dots indicate candidate models within subspace A (Figure 5A); the blue
triangle (‘‘M’’) marks the active parameter values used in the systematic
search of morphologic space.
(B) Sensitivity of spontaneous firing rate to parameter perturbations of
the subspace A candidate models as a function of their location in the
lower [�gA, �gCa , �gNaP] subspace. Color indicates sensitivity magnitude and
sign according to the colorscale shown at top left. Shown are sensitivities
to active parameters RCa and �gA (top left and right, respectively) and to
morphologic parameters D þ SA and L þ D with constant channel
densities (‘‘CD’’; bottom left and right). Arrows indicate the principal
sensitivity direction across the space.
doi:10.1371/journal.pcbi.0040011.g006
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above. Figure 8B compares spontaneous firing rate sensitiv-
ities to perturbations of active parameters RCa and �gA (top
row) and to morphologic parameters D þ SA and L þ D
(bottom row) for candidate models. The principal sensitivity
direction to all active parameters followed increasing SA and
decreasing baseline firing rate; as an example consider
sensitivities to RCa and �gA (Figure 8B, top row, arrows).
Sensitivity to perturbations of the morphologic parameter

DþSA / CD for candidate models was greater than to all active
parameters except �gNaP ; the same was true of L þ D / CD for
candidate models with large L (filled circles, Figure 8B,
bottom row). Sensitivities were negative to all morphologic
perturbations. The principal sensitivity direction to morpho-
logic parameters was the same as to active parameters,
increasing with SA and decreasing with baseline firing rate
(arrows, Figure 8B, bottom row).
Spontaneous firing rate across CN morphologic space.

Figure 8C shows the spontaneous firing rate of models across
CN morphologic space. Firing rate varied continuously up to
25 Hz and inversely with D. Holding CNs constant reduced
the dependence of firing rate on SA seen across CD
morphologic space (compare Figure 8A and 8C). Instead,
firing rate depended more on the axial resistance (AX)
between the soma and the dendrite (AX } L/D2; see Materials
and Methods; Figure 8C black line). Coupling between the
soma and dendrite was weak when AX was high (upper left;
high L, low D) and strong when AX was low (right, large D)
[11,21]. Accordingly, models fired quickly in the upper left of
the space, minimally affected by the inhibition-dominated
dendrite, and more slowly to the right of the space, where
reduced dendritic SA caused an increase in (mostly inhib-
itory) dendritic CDs. A total of 102 candidate models were
identified across this space (colored symbols, Figure 8D).
Firing rate sensitivity across CN morphologic space. Figure

8D shows sensitivities of spontaneous firing rate to active
parameters RCa and �gA (top row) and to morphologic
parameters D þ SA / CN and L þ D / CN (bottom row) for
candidate models in CN morphologic space. Compare these
to Figure 8B across CD space. Sensitivities to active
parameters were similar in sign and relative magnitude to
those across the CD morphologic and conductance spaces.
Although sensitivities to morphologic parameters were small-
er than in CD space, sensitivities to DþSA / CN and LþD / CN
were larger than those to almost all active parameters for
about half the candidate models with smallest SA (filled
circles, Figure 8D, bottom row). In these models, only
sensitivities to �gNaP and �gA were larger. Sensitivities increased
as firing rates decreased across space, but this trend did not
follow decreasing AX as much as it did increasing SA
(compare Figure 8A and 8C with arrows in Figure 8D). Thus,
the principal sensitivity directions of the CD and CN
morphologic spaces were similar (compare firing rate
sensitivity to RCa; arrows, Figure 8B and 8D).
Firing rate gain across CD morphologic space. Most models

across CD morphologic space fired regularly. A connected
subset of these models fired doublets in response to 300–600
pA current injections (gray cells, Figure 9A). As with
optimized models, such models were included in firing rate
sensitivity analysis but were omitted for gain. Inspection of
the relative timing of somatic and dendritic spiking revealed
that the bursting mechanism lay within the soma of these
models, and that dendritic membrane potential simply

Figure 7. Sensitivity of Firing Rate Gain Across Conductance Space

(A) Firing rate gain for models within subspace A, according to the
colorscale at top right. Uncolored cells did not fire under any of the
injected currents. Gain sometimes varied nonmonotonically with �gCa ;
compare models labeled 1, 2, and 3.
(B) Firing rate versus injected current with fitted gain slopes for Models 1,
2, and 3 shown in (A). Models with low �gCa had high spontaneous firing
rates but intermediate gain (Model 3, yellow triangles); gain increased for
intermediate �gCa (Model 2, dark red circles), then decreased for high �gCa
(Model 1, blue squares).
(C) Sensitivity of firing rate gain to active parameters RCa and �gA (top left
and right) and constant density morphologic perturbations Dþ SA / CD
and LþD / CD (bottom left and right) according to the colorscale at top
left, for candidate models within subspace A. Arrows indicate the
principal direction of global sensitivity trends across the space, which
were similar for perturbations of active and morphologic parameters.
The sign of sensitivity (marked by ‘‘þ’’ and ‘‘�’’) often changed along this
principal direction.
doi:10.1371/journal.pcbi.0040011.g007
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followed the somatic time course (unpublished data). While
spontaneous firing rate largely followed SA, baseline gain
exhibited a strong dependence on D (black vertical line,
arrow) and minimal dependence on L, indicated by the
vertical stripes of iso-gain values parallel to the L axis.

Firing rate gain sensitivity across CD morphologic space.
As across conductance space, gain was most sensitive to the
inhibitory parameter �gK�Ca and excitatory parameters �gNa
and �gNaP across CD morphologic space. Gain sensitivity was
positive to excitatory and mixed parameters and negative to
inhibitory ones. Figure 9B compares gain sensitivities to
active parameters RCa and �gA (top row) and morphologic
parameters D þ SA and L þ D (bottom row) for candidate
models across the space. The principal sensitivity direction to
active parameters followed an increase in D, as shown by the
arrow in Figure 9B, top left.

Among the candidate models, gain was more sensitive to
the morphologic parameter D þ SA than to all active
parameters except �gK�Ca and sometimes �gNa. For models with
small L, sensitivities to L þ D and L þ SA were also high.

Sensitivity to Lþ SA was positive for a few models; otherwise,
sensitivities to all morphologic parameters were negative
everywhere (Figure 9B, bottom row). The principal gain
sensitivity direction to morphologic parameters, increasing as
D increased, was the same as to active ones (compare arrows,
Figure 9B, top and bottom rows).
Firing rate gain across CN morphologic space. Two disjoint

regions contained models that fired irregularly upon depola-
rization across CN morphologic space (Figure 9D, gray cells),
and were omitted from the gain analysis. As seen in CD space,
bursting occurred first at the soma then propagated to the
dendrite for the region with large D, where somatic and
dendritic membrane potentials were tightly coupled. In the
second bursting region where D was small (and axial
resistance high), somato-dendritic coupling was weak. In
these models, bursting was caused by a delayed dendritic
calcium spike that quickly repolarized the soma after its
initial AP [21] (not shown). In the remaining models, gain
decreased with D in two populations separated by their
baseline gain values (Figure 9C, thick versus thin arrows). The

Figure 8. Spontaneous Firing Rate Sensitivity across Constant Density and Constant Numbers Morphologic Spaces

(A) Baseline spontaneous firing rate represented as a colormap across CD morphologic space (colorscale 0–25 Hz; top right). Black dot marks the
original morphology used for the conductance space searches. Thick black curve indicates all models matching the original SA.
(B) Spontaneous firing rate sensitivities to perturbations of active parameters RCa and �gA (top row), and morphologic parameters D þ SA / CD and
LþD / CD (bottom row) of candidate models across the space. Arrows indicate the principal sensitivity trend to each parameter. In the bottom left of (B),
filled circles indicate models for which sensitivity to DþSA / CD was greater than sensitivity to all active parameters except �gNaP . In the model shown as an
open square, sensitivity to two or more active parameters was greater than sensitivity to Dþ SA / CD. In the bottom right of (B), filled circles and open
squares likewise compare the sensitivity to Lþ D / CD and sensitivities to active parameters. Analogous colormaps across CN morphologic space are
shown for (C) baseline spontaneous firing rate and (D) spontaneous firing rate sensitivity to parameter perturbations among candidate models. The black
curve in (C) indicates all models matching the original axial resistance (see Materials and Methods). In the bottom row of (D), filled circles show models for
which sensitivity to either Dþ SA / CN or LþD / CN was greater than sensitivities to all active parameters except �gNaP and �gA. In models shown as open
squares, sensitivity to three or more active parameters was greater than sensitivity to either Dþ SA / CN or Lþ D / CN.
doi:10.1371/journal.pcbi.0040011.g008
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low gain population included most models with small L,
reflecting an increase in dendritic channel densities relative
to the original morphology (black dot, Figure 9C) that was
dominated by inhibitory parameters �gA and �gK�Ca.

Firing rate gain sensitivity across CN morphologic space.
Figure 9D shows the sensitivity of firing rate gain to active
parameters RCa and �gA (top row) and to morphologic
parameters D þ SA and L þ D (bottom row) for candidate
models in this space. Similar to CD space, gain was more
sensitive to all morphologic parameters than to all active
parameters except �gK�Ca and sometimes �gNa. The principal
sensitivity direction to all parameters following increased D
(compare Figure 9D with 9B). In addition to this trend,
sensitivity to active parameters reversed sign as L decreased
(arrows, Figure 9D, top left).

Discussion

We have designed a novel method to quantify the
sensitivity of neuronal output to different classes of model
parameters. We applied the method to a model of neurons

from goldfish Area II, which exhibit and likely contribute to
persistent activity during eye velocity storage, a simple model
of working memory. We examined how sensitivities to active
and morphologic parameters varied among similarly firing
models across the parameter space. Our results identified
parameters contributing to functional homeostasis: some that
were restricted to limited domains, and others that act
globally. The sensitivities can be used to predict which
parameters to perturb, and by how much, to compensate for
a change in other parameters in order to maintain functional
homeostasis. Conceptually simple but computationally rig-
orous, our method can be used to characterize the sensitivity
landscape defined by any biological model, and to predict
compensatory mechanisms over widely varying regions of
parameter space.

Sensitivities Compare Influences of Different Classes of
Parameters
The sensitivity landscape of a model output variable (here,

neuronal firing rate and gain) to each parameter was defined
by the normalized sensitivity coefficient function (Equation 7,

Figure 9. Firing Rate Gain Sensitivity Across Constant Density and Constant Numbers Morphologic Spaces

(A) Colormap representing baseline firing rate gain across CD morphologic space (colorscale 0–400 Hz/nA; top right); the gain of models firing
irregularly at 300 or 600 pA was not calculated (gray cells). Black vertical line denotes models with the default value of D; arrow indicates that D was the
main driver of baseline gain.
(B) Gain sensitivity to RCa and �gA (top row) and to Dþ SA / CD and LþD / CD (bottom row). Models shown in gray fired irregularly. Arrows indicate the
principal sensitivity direction with increasing D. Sensitivity to �gA was near zero throughout the space. Analogous colormaps across CN morphologic
space are shown for (C) baseline firing rate gain and (D) gain sensitivity to parameter perturbations among candidate models. Arrows in (C) show that
decreases in baseline gain followed D; the principal sensitivity directions in (D) follow this trend. Across constant number space, sensitivities to active
parameters often had opposite sign for large versus small L values (‘‘�’’ versus ‘‘þ’’ in [D]). Among the candidate models, gain was more sensitive to Dþ
SA than to all active parameters except �gK�Ca and sometimes �gNa.
doi:10.1371/journal.pcbi.0040011.g009
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Materials and Methods), evaluated across parameter space.
Sensitivity landscapes indicate domains where an increase in
a parameter will either increase or decrease model output
(where its sensitivity is positive or negative), and where the
parameter’s impact is high or low (where the magnitude of its
sensitivity is large or small). Interactions between two or
more parameters are likely to occur in domains where
sensitivities to all those parameters are high. Thus, comparing
the sensitivity landscapes to different parameters can
elucidate which parameters might interact to control a
certain behavior. Such information is essential for under-
standing mechanisms underlying homeostasis, widely ob-
served in neuroscience [2–6,20,44] and in other biological
systems [45–47].

Significantly, we found that while similar dynamics were
generated from different parameter sets across the space, the
influence of each parameter on these dynamics varied. This was
shown here for a simple neuronal compartment model, but
our methods can be used to study any computational model.
Sensitivities of firing rate and gain to the active parameters
�gNaP and �gK�Ca were high throughout the space; these results
are supported by experiments [5,43,48], including in the
vestibular nucleus, which is related functionally to Area II.
Sensitivities to some parameters (�gK, �gCa; L þ SA) were
universally low, while sensitivities to all other parameters
(�gNa,�gA, Kp, RCa, Lþ D, Dþ SA), even morphologic ones, were
high across certain domains of space. The similarity of these
trends over morphologic parameter space confirmed the

robustness of the sensitivities to wide variation in dendritic
morphology.
Sensitivities of firing rate to all parameters varied most

along the same principal directions: with �gNaP , �gA, RCa, and
�gCa, and with dendritic SA. For firing rate gain, the principal
sensitivity directions were relatively similar. Intrinsic cur-
rents controlling the neuron’s membrane potential, and
therefore its proximity to AP threshold, increased most
along these directions, as illustrated below (see The Combi-
nation of Intrinsic Currents Determines Neuronal Firing
Sensitivities, and Figure 10). As the membrane potential
remained closer to AP threshold along this direction,
perturbation of any parameter could more easily affect firing
rate, so that sensitivity of firing rate and gain to all
parameters increased along this direction. Thus, principal
sensitivity directions indicate those ‘‘principal parameters’’
that contributed highly to the measured output over the
space as a whole. Such principal parameters represent groups
of parameters that must be closely tuned to maintain a
certain level of output, and those that can compensate
globally for changes in other parameters.
For illustration, we restricted this study to sensitivities of

active and simple morphologic parameters, and to two of the
many measures of neuronal function. Evidence suggests that
sensitivities to other parameters, such as those describing
passive cable properties, ion channel kinetics, and dendritic
channel densities, may also be high [22,49]. Other firing rate
and gain sensitivity trends may also exist along dimensions of

Figure 10. The Relative Size of Intrinsic Currents Determined the Size of Parameter Sensitivities

(A) The unperturbed somatic voltage trace of the model labeled ‘‘B’’ in Figures 3A and 4D (solid line), compared with the voltage trace after a 5%
increase in DþSA (dashed line). Inset barplot shows that spontaneous firing rate sensitivity of this model to �gA was low (blue), but high to �gNaP (red) and
Dþ SA (green).
(B) Somatic voltage traces of the model labeled ‘‘C’’ in Figures 3A and 4D. Labeling scheme is analogous to that in (A): the unperturbed model (solid) is
compared with a 5% D þ SA increase (dashed). Here, firing rate sensitivity was high to �gA and �gNaP but low to Dþ SA.
(C–D) The absolute value of each intrinsic current, normalized by the absolute sum of somatic membrane and axial currents at each time step, for the
models shown in (A) and (B), respectively. The Na, K, and K–Ca currents are shown in gray (INa, IK, IK-Ca). Also shown are A-current and NaP current (IA,
determined by �gA, in solid blue; INaP determined by �gNaP in solid red) and the somato-dendritic axial current (IAx, determined by morphologic
parameters, in heavy solid green). Black arrows indicate artifactual inflection points creased by taking the absolute value, when the unnormalized
current reversed sign. For both points B and C, increasing Dþ SA delayed the next AP and reduced firing rate by increasing IAx; IA and INaP were also
perturbed through their interactions with IAx (dashed colored lines).
(C) At point B, IAx dominated during the ISI, so that the Dþ SA perturbation had a large effect on IAx, and INaP. As a result firing rate sensitivity to Dþ SA
was high.
(D) At point C, IAx was relatively small throughout most of the ISI. Hence, increasing Dþ SA had a small effect on the intrinsic currents overall, so that
firing rate sensitivity to D þ SA was low.
doi:10.1371/journal.pcbi.0040011.g010
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parameter space that we did not explore. Importantly,
sensitivity depends on the output being measured, like
bursting, spike frequency adaptation and synaptic integra-
tion. The most appropriate output measures for a particular
study will depend on the type and function of the neuron
being analyzed. In general, sensitivities of somatocentric
functions such as firing rate are likely to be highest to channel
kinetics [49] and dendritic channel density gradients and
intercepts (Figure S6), while sensitivities of dendritic func-
tions such as AP backpropagation and propagation and
integration of synaptic inputs are likely to be highest to
passive parameters [22] and dendritic channel density
gradients. Morphologic parameters are likely to influence
both somatocentric and dendritic functions [11,13,22].

Maintenance of stable firing behaviors is important
throughout the brain. The firing rates of Area II and central
vestibular neurons, for example, encode precisely tuned eye
velocity in response to a given angular head velocity. The
fidelity of this match between oculomotor response and head
velocity stimulus is crucial for maintaining accurate gaze
control during locomotion. Our analysis predicts that
individual Area II neurons could maintain a target firing
rate stably over time by simultaneously regulating persistent
sodium (�gNaP , high positive sensitivity) and K–Ca (�gK�Ca, high
negative sensitivity). This prediction is supported by recent
experiments in Purkinje cells and the stomatogastric ganglion
[5,50]. Equivalently, a neuron could maintain a target input–
output response by oppositely regulating sodium conduc-
tance densities (�gNa) and dendritic diameters (D þ SA),
combining morphologic and active properties in appropriate
proportions. The wide range of morphologic features
observed among Area II neurons with similar firing proper-
ties [30] is consistent with this prediction.

The Combination of Intrinsic Currents Determines
Neuronal Firing Sensitivities

Neuronal firing rate reflects how frequently membrane
potential in the spike initiation zone (here, the soma) crosses
AP threshold. This frequency is strongly affected by currents
that are active during the ISI, after the refractory period
following an AP. We focus on two kinds of intrinsic currents:
‘‘membrane currents’’ flowing across the membrane, driven
by active parameters, and ‘‘axial currents’’ between the soma
and dendrite, which are most influenced by morphologic
parameters. Parameter perturbations alter firing rate and
gain by influencing these intrinsic currents, which constantly
interact to determine membrane potential. In Figure 10,
comparison of the relative sizes of these intrinsic currents
provides a mechanistic explanation of the observed sensitiv-
ity trends. Figure 10A and 10B shows one ISI of the models
marked (B,C) in Figure 4. Figure 10C and 10D illustrates the
relative size of several intrinsic currents that are active during
the ISIs at points B and C, respectively. The Na, K, and K–Ca
currents are in gray (INa, IK, and IK-Ca), NaP is in red (INaP), A-
current is in blue (IA), and somato-dendritic axial current (IAx)
is in green. We show the absolute value of each normalized
current. This simplifies comparison of the different currents,
but causes artifactual inflection points as currents change
sign (e.g., black arrows in Figure 10C and 10D).

At point B where the parameter �gA was low (Figure 4D;
Equation 2), IA was negligible, while both INaP and IAx were
large during the ISI. Note that IAx, the only current directly

affected by morphologic perturbations, was the largest
current over most of the ISI. The dashed lines in Figure 10
show the effect on model output of a 5% increase in Dþ SA,
which decreased axial resistance by 9.3% (Equation 8). The
increased IAx hyperpolarized the soma, perturbing membrane
currents as they interacted with IAx, and reduced firing rate
(Figure 10A and 10C). Because of the prominence of IAx, then,
firing rate sensitivity was higher to Dþ SA than to any active
parameter (Figure 10A, inset). This was true for most of the
optimized models (filled circles, Figure 4D). In contrast, at
point C, where �gA and �gNaP were large (Figure 4D), membrane
currents INaP and IA were the largest currents over most of the
ISI (Figure 10D), dominating IAx. Morphologic perturbations
therefore had little influence on the ISI (Figure 10B and 10D,
dashed lines). For this and three other optimized models
(open squares, Figure 4D), firing rate sensitivity was higher to
most active parameters than to morphologic ones (Figure
10B, inset).
This intuitive understanding of firing rate sensitivities

based on the combination of intrinsic currents explains the
sensitivity trends that we observed. For example, sensitivity to
morphologic parameters sometimes changed sign across
parameter space (e.g., Figure 4D). This occurred because
perturbations to morphologic parameters with, say, an
inhibitory effect on IAx had an excitatory effect on some
membrane currents, and the size of those membrane currents
changed across parameter space. Also, sensitivity to morpho-
logic perturbations with constant channel densities or
numbers had opposite sign when dendritic currents were
predominantly inhibitory (Figure S6A), but not when
excitatory and inhibitory currents were balanced (Figure
S6B). Finally, as noted above, the principal firing rate
sensitivity directions indicated the direction in which the
membrane currents dominating the ISI (membrane currents
IA, INaP, and IK-Ca) increased most. These currents were most
increased by variations in �gA, �gNaP , �gCa, and RCa across
conductance space, and in SA across morphologic space.
Principal sensitivity directions for gain were similar to

those for firing rates, but not identical. External current
injection altered the activation of voltage-dependent intrin-
sic currents, affecting the combination of currents during the
ISI. Because gain reflected firing rate over several levels of
injected currents, its principal sensitivity directions gave the
average direction in which intrinsic currents increased over
the different injection levels. Although principal sensitivity
directions of other output variables may be oriented differ-
ently from firing rate or gain, we expect their principal
directions to reveal how the mechanisms driving those
outputs change most.

Building upon Previous Approaches
Sensitivity analysis has previously been used to quantify the

influence of each parameter on model output in one of two
ways [33]: locally, at a single point in space; or globally,
summarizing sensitivity across the entire space. A synthesis of
these approaches, computing local sensitivity coefficients
globally across the space, allowed us to investigate the shape
of the sensitivity landscape. The wide variation in sensitivity
landscapes suggested that global sensitivity measures across
the parameter space are likely insufficient to characterize the
domain-specific interactions that we observed. The global
trends and interactions identified by our first-order sensi-
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tivity analyses provide a foundation on which higher-order
analyses [33,35] can be built.

Computational studies searching over conductance space
have discovered multiple parameter sets that represent
plausible neuronal models, highlighting the existence of
interactions within model neurons and in model circuits
[2,3,6,20,51,52]. Goldman et al. identified sensitive directions
of space along which firing changed from silent, to spiking, to
bursting [20]. Our principal firing rate sensitivity directions
were consistent with this finding, and also extended to firing
rate gain. The silence, regular spiking, and bursting we
observed across connected regions of parameter space have
also been reported by others [2,20,52]. In our model, bursting
was due to the buildup of Ca2þ and the activation of IK-Ca,
either intrinsically at the soma [2,20,53] or in a weakly coupled
dendrite that influenced somatic firing [21]. We expect that
both kinds of bursting exist over all three parameter spaces we
explored, for appropriate ranges of parameters. We did not
compute sensitivities when a model was either silent or
bursting at a given current level, to avoid the artifactually high
sensitivities that can arise at the borders of such regions. If a
model fired bursts upon depolarization but spontaneously
fired single action potentials, we assumed its spontaneous
behavior provided insight into the mechanisms that underlie
spontaneous firing. Such models were included in the analyses
of sensitivity to firing rate but not gain.

As in several prior studies [11,21,22], we interpreted
morphologic features as model parameters, allowing us to
explore how morphology influences neuronal function. The
novel insights of our work arise from our simultaneous
exploration of sensitivity landscapes defined by morphologic
and active parameters. The results from our simple model
suggest that morphology can influence firing as much as
active parameters do, through its contributions to axial and
dendritic currents that impact the soma. For example, when
intracellular Ca2þ removal rates were low (RCa , 0.33 ms�1),
Ca2þ built up in the dendrite. In such models, perturbations
of dendritic morphology strongly influenced this Ca2þ

buildup, sensitively affecting firing rate and gain. However,
these high sensitivities are certainly model dependent,
decreasing when membrane conductance is high and losing
dependence on RCa when �gK�Ca is low.

Potential Limitations of the Method
While our method provides a systematic way to evaluate

how different parameters contribute to model output, it is
subject to certain limitations when applied to complicated
models. For example, our method minimizes computational
burden by evaluating only first-order sensitivities across the
parameter space. Such sensitivities may lose their predictive
value outside a local neighborhood of each point, and cannot
probe interactions among parameters directly. Higher-order
derivatives or variance-based methods [33,35] may better
analyze the behavior of complex models, but at increased
computational cost.

In the present study, our morphologic model comprised a
soma and cylindrical dendrite. We chose a simply para-
meterized morphology to illustrate a comparison between
sensitivities to morphologic and active parameters. While it
clarified essential morphologic mechanisms that influence
somatic firing patterns, this simple model cannot reproduce
all the subtle interactions that shape neuronal function in

realistic morphologies. Fortunately, the model reduction is
not a necessary step in our analysis. As demonstrated below
(Figure 11), our method can be applied to models with more
realistic morphologies. The trends identified here may
change when analyzing sensitivity to more complex morpho-
logic features of dendrites, such as tapering, branching, and
varied dendritic lengths. Nonetheless, supported by findings
that dendritic current flow can significantly affect gain
control and excitability [54–56], our results indicate that
morphology can play a key role in functional homeostasis.
As with any analysis technique, using our method to

explore a computational model becomes more challenging as
model complexity increases. Computational demand scales
with both the number of parameters and the number of
outputs being analyzed. Moreover, it may be difficult to
parameterize some intrinsic properties of neurons, including
local morphologic features of dendrites or spines, or spatially
extended membrane properties, to allow their systematic
variation. We will examine such parameters, and efficient
methods to analyze them, in future studies.

Predicting Homeostatic Parameter Compensations in Real
Neurons
Experimental and computational studies alike have shown

that cellular mechanisms contribute to functional homeo-
stasis (see Marder and Goaillard [7] for review), but how can
we identify which of these mechanisms, and in what
proportions, actually do trade off against each other in a
given neuron? As in past studies [2,3,6,20,51], we have
identified some global tradeoff mechanisms through trends
in the parameter space locations of similarly behaving
models, including a correlation between �gA and �gNaP
supported by a recent study [50]. Identification of homeo-
static mechanisms is an active field of research, with
promising techniques beginning to emerge [6,52].
In this vein, sensitivity landscapes provide new model

information that can predict global and domain-specific
tradeoffs. Parameters with high sensitivity but opposite sign
over substantial regions of parameter space (e.g., �gNaP and
�gK�Ca) could represent global tradeoff mechanisms, similarly
with parameters that define principal sensitivity directions.
At the same time, the sensitivity landscapes also seem to
exclude �gNa, �gK, and �gK�Ca from purely domain-specific
interactions, since we found that sensitivities did not change
significantly across these dimensions of parameter space.
In individual models, the sensitivities allow quantitative

predictions of how large a change in one parameter is needed
to counteract a given change in another. These compensa-
tions could be made between two parameters, or among
groups of parameters, and could include parameters with
entirely different dimensions, like morphology and active
membrane conductances. Such compensations may be used
during development in some neuronal systems, in which
function is maintained despite morphologic changes [4,39].
Figure 11A and 11B uses sensitivities to predict how an active
parameter can compensate for a morphologic change. The
‘‘target’’ firing of an unperturbed model from subspace E
(Model 1 in Figures S5A and 11E inset) is shown in black; the
effect of a 15% decrease in Dþ SA to this model is shown in
green. To return to its target level, the firing rate of the
reduced Dþ SA model must decrease by 14.8% (from 14.2 Hz
to 12.1 Hz). From a small perturbation to �gNaP in the reduced
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Figure 11. Using Sensitivities To Predict Parameter Compensations for Firing Rate Homeostasis in the Reduced and Realistic Morphologies

(A–B) Parameter perturbations of Model 1 from subspace E (Figure S5, and inset of [E] below).
(A) A 15% reduction of Dþ SA increased firing rate to 14.2 Hz (thick green line) relative to the unperturbed model (12.1 Hz; thin black line); a 14.8%
reduction is needed to return to the unperturbed firing rate.
(B) As predicted from its firing rate sensitivity (inset barplot), a 10.5% decrease in �gNaP compensated almost exactly for the effect of the D þ SA
perturbation on firing rate in (A) (see Discussion for details). The red trace, shifted up slightly along the vertical axis for visualization, overlays the
unperturbed voltage trace very closely.
(C–F) Homeostatic parameter compensations can also be predicted in models with realistic morphology.
(C) When Model 1 from subspace E was simulated in the realistic AII morphology, a 15% reduction of Dþ SA increased firing rate by 20.3% relative to
the unperturbed value.
(D) The compensatory perturbations for Model 1 of two different active parameters (�gNaP in red, shifted vertically up; �gA in blue, shifted down) were
predicted from their firing rate sensitivities (inset barplots). The blue and red compensated traces overlie the unperturbed (black) trace very closely,
demonstrating excellent compensation.
(E–F) Compensatory perturbations predicted from sensitivities computed at a different point in parameter space: Model 3 of subspace E, implemented
in the realistic morphology with an analogous 15% reduction of Dþ SA. Inset in E shows the location of Models 1, 2, and 3 in the [�gA, �gCa , �gNaP] subspace
(also see Figure S5A). For Model 3, firing rate sensitivities to �gNaP and �gA were about twice as large as for Model 1. Accordingly, the predicted magnitudes
for Model 3 were about half of those for Model 1; compare (D) and (F). For both models, the close match of red (shifted up), blue (shifted down), and
black traces demonstrate that the predicted perturbations of either active parameter compensated almost exactly for the effect of the Dþ SA reduction
([C] and [E]), even for large predicted increases of �gA. See Discussion for details.
doi:10.1371/journal.pcbi.0040011.g011
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D þ SA model (Figure 3B and Equation 7), we found that
sensitivity of firing rate to �gNaP was þ1.4 (Figure 11B inset).
Using the equation for the normalized sensitivity coefficient
(Equation 7), we predicted that the target firing rate can be
restored by a �14.8% / þ1.4 ¼�10.5% change in �gNaP . This
compensatory perturbation is shown in red in Figure 11B,
overlaid with the unperturbed model in black (shifted slightly
to aid visualization): the predicted �gNaP perturbation com-
pensated almost exactly for the reduction in D þ SA.

Such compensatory predictions can also be made in models
with realistic neuronal morphologies. We applied the
parameter values from Model 1 of subspace E to the 3-D
Area II neuron morphology from Figure 1A. In this model, a
15% reduction in D þ SA throughout the dendritic tree
increased firing rate from 9.4 Hz to 11.8 Hz (Figure 11C,
black; unperturbed versus green traces). To return to the
target level, the firing rate of the Dþ SA–reduced model must
decrease by 20.3%. Figure 11D shows how perturbing either
of two different active parameters could achieve this
decrease. From small perturbations, the firing rate sensitivity
of the Dþ SA–reduced model to �gNaP wasþ1.8, and sensitivity
to �gA was �0.8 (Figure 11D inset). Again using Equation 7,
these sensitivities predicted that either a �20.3% / þ1.8 ¼
�11.3% change in �gNaP or a�20.3% /�0.8¼þ25.4% change in
�gA should compensate for the D þ SA reduction. Figure 11D
shows that either of these perturbations compensated almost
exactly for the Dþ SA reduction (colored versus black traces),
even though such large perturbations were predicted. The
accuracy of these two different compensations suggests that a
reasonable compensatory prediction can be made for any
parameter with high sensitivity, or even with combinations of
such parameters.

Sensitivities and compensations of realistic models else-
where in the parameter space further demonstrate the
general utility of our method. For a second model (Model 2
in Figure S5A and Figure 11E inset), the firing rate
sensitivities to �gNaP and �gA were similar to those of Model 1;
note the colorscale in the inset of Figure 11E. Accordingly,
the predicted compensations of either �gNaP or �gA to counter-
act the Dþ SA reduction in Model 2 were similar in sign and
magnitude to those for Model 1 (Figure 11D; Model 2 results
not shown). For a third realistic model (Model 3 in Figures
S5A and 11E), a 15% reduction in Dþ SA increased firing rate
from 10.0 to 12.8 Hz (Figure 11E, green versus black traces). A
21.9% decrease in firing rate of the Dþ SA–reduced Model 3
would restore the target firing level, similar to the decrease
needed for Model 1. However, firing rate sensitivities of
Model 3 to �gNaP and �gA were about twice what they were for
Model 1 (Figure 11E, colorscale in inset; compare inset
sensitivity bar graphs, Figure 11D and 11F), increasing along
the same principal sensitivity direction as the simple
morphologic model. Thus, the predicted perturbations of
either �gNaP or �gA to compensate for the Model 3 D þ SA
reduction were about half the size of those for Model 1
(Figure 11D and 11F). These examples show that the
magnitudes of compensatory predictions correspond directly
to trends identified in the sensitivity landscapes, and that the
findings from our cylindrical dendrite model are relevant to
more complex morphologies.

Sensitivity analyses are often performed on kinetic
parameters or on concentration levels of a substance; to
our knowledge, this is the first time sensitivities to morpho-

logic parameters have been evaluated. Our method enables us
to trade off morphology quantitatively against intrinsic
parameters of completely different dimensions, as shown in
Figure 11. Such quantitative predictions can elucidate
potential mechanisms of functional homeostasis used to
maintain target activity throughout the brain, despite
morphologic changes that occur with development [4] and
learning [57]. This may even suggest intrinsic mechanisms to
counteract morphologic changes underlying cognitive de-
cline in aging and neurodegenerative diseases [40]. In short,
the quantitative prediction of parameter compensations
produced by our method will be useful in many areas of
computational biology and biomedicine.

Materials and Methods

Throughout the text, firing rates are reported as mean 6 standard
deviation.

Morphologic data. A neuron from Area II of the goldfish hindbrain
was electrophysiologically characterized in vivo and injected with
biocytin to visualize its morphology (Figure 1A). Histological
processing proceeded as described in Straka et al. [30]. The neuron
was traced in 3-D using Neurolucida (MicroBrightField), then
converted into .swc format [58]. The morphologic dimensions were
corrected to account for tissue shrinkage and compression, estimated
at 10% in the X and Y dimensions, and 47% in the Z dimension from
the difference in tissue thickness before and after histology,
mounting, and coverslipping. The data were examined in 3-D using
interactive custom software (NeuroGL; NeuronStudio [59,60]) for
broken dendrites and Z-axis artifacts that can occur with manual
tracing. Artifacts were corrected manually before length and surface
area measurements were made.

Mathematical model. The NEURON simulation environment [61]
was used for this study. The compartment model included a soma
(length and diameter 29.2 lm, one compartment) and cylindrical
dendrite (length 1183.6 lm, diameter 4.38 lm, 13 compartments)
whose dimensions conserved the shrinkage-corrected maximum
length and surface area of the traced Area II neuron. It was assumed
that the somatic compartment included the spike initiation zone. A
simulation time step of 0.05 ms was used. Based on a recent single
compartment model of vestibular nucleus neurons [41,42], a passive
leak (Lk) and six active conductances were included in the soma. The
transient sodium (Na) and delayed rectifier potassium (K) currents
were described by the Fitzhugh-Nagumo model [62,63]. The remain-
ing active currents (transient A-type potassium [A], high-voltage
activated Ca2þ [Ca], K–Ca, and persistent sodium [NaP]), were
described by Hodgkin-Huxley formalism. With these currents,
specific membrane capacitance Cm (lF/cm2), dendrite diameter D
(cm), axial resistivity Ra (X � cm) and injected current (Iinj), membrane
potential V was given by

Cm
@V
@t
¼ 1
4DRa

@

@x
D2 @V

@x

� �
� INa� IK� IA� ICa� IK�Ca� INaP � ILkþIinj ;

ð1Þ

where the current Is for each ion species s was described by

INa ¼ �gNam
3
‘ðVÞð1� nÞðV � VNaÞ

IK ¼ �gKn
4ðV � VKÞ

IA ¼ �gKðAÞa‘ðVÞbðV � VKÞ
IK�Ca ¼ �gKðCaÞðC=½Kd þ C�ÞðV � VKÞ
ICa ¼ �gCaxðKc=½Kc þ C�ÞðV � VCaÞ

INaP ¼ �gNaPpðV � VNaÞ:

ð2Þ

Here, �gs was the maximal conductance of a membrane patch (mS/
cm2), with reversal potentials Vs (mV) and constants Kd¼ 0.0005 mM
and Kc ¼ 1 mM as in Av-Ron and Vidal [41]. Kinetics of the channel
activation and inactivation variables fa, b, m, n, p, xg are given by
Equations 4–6 below (Ion channel kinetics). For the passive leak
current ILk, �gLk ¼ 1=Rm where Rm was the specific membrane
resistance (kX�cm2). Passive parameters Cm ¼ 1.0 lF/cm2, Ra ¼ 150
X�cm, and �gLk ¼ 0.3 mS/cm2 (Rm ¼ 33.33 kX�cm2) were used in all
simulations [11,13,64]. The dynamics of intracellular Ca2þ concen-
tration, C (mM), were described phenomenologically by the first-
order equation
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dC
dt
¼ Kp � ð�ICaÞ � RCa � C; ð3Þ

where the influx parameter Kp (M � cm2/mC) converted Ca2þ current
to concentration, and RCa (ms�1) represented removal of Ca2þ from
the cytoplasm.

Ion channel kinetics. Equations for channel kinetics were identical
in all compartments of the model, with parameter values equal to
those of Av-Ron and Vidal’s Type B model [41]. All activation and
inactivation variables were described by a representative equation:

dz
dt
¼ ½z‘ðVÞ � z�=sz for z ¼ fb; n; p; xg; ð4Þ

where sz represented the time constant, and z‘ the steady-state
function, defined by

z‘ðVÞ ¼ 1þ exp �2aðzÞ V � V ðzÞ1=2

� �h i� ��1
for z ¼ fa; b;m; n; p; xg: ð5Þ

In each case, V ðzÞ1=2 was the half-activation voltage, and a(z) controlled
the slope of the sigmoid at this midpoint. All time constants sz were
constant parameters, except for sn:

snðVÞ ¼ kexp aðnÞ V � V ðnÞ1=2

� �h i
þ kexp �aðnÞ V � V ðnÞ1=2

� �h i� ��1
: ð6Þ

The parameter k relates to the temperature of the preparation,
which alters the peak value of sn.

Ion channel distributions in the active dendrite. Since ion channel
distributions in the dendrites of Area II neurons are unknown, we
considered two cases: a passive dendrite (e.g., �gs ¼ 0 for all ion species
except Lk; Figure 1B, left), and a dendrite supporting active
backpropagation, as observed in other neurons [65,66] (Figure 1B,
right). Each channel distribution in the active dendrite was defined by
a slope, or gradient, and an intercept that scaled the dendritic
conductance density relative to its somatic value linearly with
distance. The slopes and intercepts of dendritic conductance
densities were chosen manually to approximate the reduced
amplitudes and increased widths of backpropagating APs. Dendritic
channel distributions either remained constant (�gK�Ca and �gLk),
decreased to zero (�gNa, �gNaP , �gK , and �gCa), or increased with distance
from the soma (�gA), consistent with observations in several brain areas
[14,18,19]. Slopes and intercepts of conductance densities are shown
in the top of Figure 1E. Backpropagation of somatic APs into the
dendrite, as a result of these dendritic distributions, is shown at the
bottom of Figure 1E. Compare profiles of the somatic AP (red trace)
with the AP as it backpropagates through the dendrite (black traces).

Automated parameter optimization. Extracellular recordings have
reported spontaneous firing rates in Area II neurons of 10.4 6 5.8 Hz
in vivo [31]. In vitro intracellular recordings have identified neurons
firing spontaneously at up to 70 Hz, some with a biphasic AHP
characteristic of Type B vestibular neurons (G. Gamkrelidze, personal
communication). Starting from a single compartment model of Type
B vestibular neurons [41], we used a systematic search to identify
parameters of the maximal conductances of the ion channels and
calcium dynamics producing models best exhibiting these properties,
particularly the biphasic AHP shape. The parameters [�gNa, �gK , �gK�Ca,
�gCa, �gNaP , Kp, RCa] were varied over [30%, 60%, 100%, 130%, 160%,
200%] of the values used by Av-Ron and Vidal [41], holding �gA¼0 [41].
Of the nearly 280,000 models sampled by this systematic search, one
was selected which best reproduced firing rates and regularity of Area
II in vivo [31] (Table S1). This single compartment model, firing
spontaneously at 8 Hz, comprised the synthetic ‘‘target’’ data against
which morphologic models were matched [42].

We quantified the fits of each model to target data with a linear
combination of two kinds of errors: time-aligned AP shape error EAP
[42] (Figure S8A), and time-varying firing rate (Figure S8B). For EAP,
we calculated the root mean squared difference between voltage
traces for each target and the corresponding model AP, after aligning
their peaks in time; the average of these differences comprised EAP.
To calculate the firing rate error, we computed the instantaneous
firing rate, defined as the reciprocal of each ISI, between successive
APs of each voltage trace. Time-varying firing rate was measured by
fitting a straight line to the instantaneous firing rates versus time. The
intercept represented the neuron’s baseline firing rate, and the slope
captured a first-order time dependence to fit the spike frequency
adaptation observed in Area II neurons (G. Gamkrelidze, personal
communication). The time-varying firing rate error included one
term for the slope error (EFR(Slope)), and another for the overall error
(EFR(Area)). A full description of the fitness function, including these
and additional error terms and their associated weights, is provided
in Protocol S1. The value of the fitness function was calculated for

each of two current magnitudes (0 pA, 100 pA), injected from 200–
700 ms of simulation time; total fitness was the sum of these errors.
We found this fitness function superior to the phase-plane fitness
function [6,67] for matching AHP shapes, which are distinctive
features of Type B–like Area II firing patterns.

We used constrained simulated annealing with recentering for
accurate boundary management [42,68] to optimize values of �gNa, �gK ,
�gK�Ca, �gA, �gCa, �gNaP , Kp, and RCa, assuming a passive dendrite for
simplicity. Simulated annealing searches are controlled by an initial
annealing temperature T0 and a cooling rate r that is applied every K
iterations [69,70]. Maximal conductance and calcium dynamics
parameters were varied within constraints described below and
shown in Table 2. In 20 searches, five parameters were optimized,
with [�gA, �gNaP , �gCa] fixed at previous values [41,42], T0¼ 1,200, r¼ 0.9,
and K ¼ 1,000. In another 20 searches, seven parameters were
optimized, with �gCa fixed at 0.001 mS/cm2, T0¼12,500, r¼0.9, and K¼
1,400. In most searches, Kp and Rca were tightly bound; relaxing this
condition in 10 of the seven-parameter searches still identified
matches qualitatively similar to the target data. Models were
constrained to match the general AP shape, and approximate firing
rates, of the synthetic target data. From the points identified at the
end of the 40 independent parameter searches, the 15 optimized
models with lowest error were selected for the sensitivity analysis
(mean error, 14.9; Figures 3, 4, S2, and S3, and Dataset S1). Nine of
these models were selected from the five-parameter searches each
sampling about 164,000 points in parameter space; the best-fit models
were identified after about 75,000 iterations. The remaining six
optimized models were selected from the seven-parameter searches
each sampling about 240,000 points, with best-fit models identified
after about 105,000 iterations. A typical fit of an optimized model to
target data is shown in Figure 2B. Although these models spanned a
range of fitness values relative to the target data (Figures 2B and S8C),
their firing rates over the fitted protocols were consistent with firing
properties in Area II (spontaneous rates 8.9 6 1.9 Hz).

Parameter search constraints. Boundary constraints on parameters
optimized by the search included at least one order of magnitude
around values used for the Av-Ron and Vidal Type B model [41].
These constraints are shown in Table 2, with references to other
computational studies with parameters in this range. Since Kp and
RCa varied over orders of magnitude in the literature (e.g.,
[6,20,41,71,72]), they were loosely constrained in the optimized and
systematic searches.

To better constrain Kp and RCa in future studies, we returned to
early studies from which these parameters were derived [71,72].
Equation 3 was derived from a model to describe the Ca2þ

concentration in a thin shell near the membrane [71]. In the original
model, C / (A � d) rather than Kp multiplied the first term, where d is
the shell depth, A is the patch surface area (in lm and lm2,
respectively), and C a constant to convert current, time, and volume
into Ca2þ concentration. Applying Faraday’s constant and dimen-
sionality arguments gives C ¼ 0.0518, as derived in McCormick and
Huguenard [72]. Because NEURON accounts for compartment
surface area in its calculations [61], Kp as used here depends on d
but not A. Shell depths from 0.5 nm to 1 lm yield values of Kp from
103.6 to 0.0518 M � cm2/mC; Kp . 1 implies d , 51.8 nm.

The parameter RCa is the inverse of a Ca2þ decay time constant
[71]. Experimental time constants in several neuron types varied from
20 ms [73,74] up to 1 s [75], implying that plausible values of RCa range
from 0.001¼ 1/1000 ms�1 to 0.05 ¼ 1/20 ms�1.

Perturbed parameters. Perturbed parameters are summarized in
Table 1. Morphologic perturbations L þ SA, D þ SA, and L þ D were
performed as described above with either densities or absolute
numbers of dendritic ion channels held constant (Figure 1C and 1D).
Soma size was not perturbed. When maintaining constant channel
numbers, the active parameters Kp and RCa and passive parameter �gLk
were unchanged. Holding morphology unchanged, we also perturbed
‘‘active’’ parameters, defined as maximal ionic conductances (�gNa, �gK ,
�gA, �gK�Ca, �gCa, and �gNaP), and parameters describing Ca2þ dynamics
(Kp, RCa).

Quantifying model output. The firing properties of each model
neuron were quantified by two output measures: spontaneous firing
rate (Hz), and firing rate gain (Hz/nA). These output measures are
representative of the type of data that can be analyzed with this
method; other measures are possible. Spontaneous firing rate was
defined as the reciprocal of the mean ISIs in the absence of external
current injection. Firing rate gain was defined as the best-fit slope of
firing rate versus injected current measured over a sequence of [0,
300, 600, 1000] pA steps of injected current (Figure 2A); these ranges
were consistent with experiments in vestibular nucleus [76]. Because
many active dendrite models responded nonlinearly to large
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currents, gains across conductance space were evaluated over
injections of [0, 50, 100, 125, 150] pA. Each simulation first ran for
200 ms to allow for model initialization. Somatic current injections
were applied at 200 ms. Output measures were estimated from APs
occurring between 400–900 ms. Neuronal responses under somatic
current injections were compared to those under dendritic synaptic
input, for the 19 candidate models in subspaces A and E (Figure S5). A
total of 45 excitatory synapses were evenly distributed throughout the
dendrite, with synaptic conductances and kinetics taken from
Rudolph and Destexhe [77]. Synaptic activations were modeled as
independent Poisson processes, with mean frequencies of [1, 5, 10, 20,
30] Hz. Firing rates were computed over a simulation time of 5 s, and
synaptically activated gain was defined as the best-fit slope of these
firing rates versus synaptic frequency. The correlation coefficient of
the somatic input-driven versus synaptic gains was computed for
these 19 candidate models (r2¼ 0.992).

Sensitivity analysis. At each point P ¼ fpi, i ¼ 1,..,ng in n-
dimensional parameter space, each parameter pi was perturbed by
1% while all others were held constant. The linearity of each output
measure was confirmed for a representative set of model neurons; in
many cases, linearity was still maintained under perturbations of 30%
in each parameter. The sensitivity @M/@pi of each model output
measureM with respect to a parameter pi at the point P was estimated
by finite difference. The normalized sensitivity coefficient [33],

Spi ðM;PÞ ¼ @M=MðPÞ
@pi=pi

; ð7Þ

was approximated from these perturbations. The magnitude of
Spi ðM;PÞ measures the percentage change in M given a 1% change in
pi; its sign indicates whether this parameter perturbation has a
positive or negative effect on the output measure M. Regression
analyses over morphologic parameters showed that spontaneous
firing rate was most sensitive to D, followed by SA (results not shown);
therefore, sensitivities to morphologic perturbations were normal-
ized by D for Dþ SA and Lþ D perturbations, and by SA for Lþ SA.
Principal sensitivity directions, along which sensitivity to each
parameter varied most, were identified visually.

Systematic searches of parameter space. Parameter values fixed in
the systematic searches were representative of the locations of
optimized models in parameter space. For the passive dendrite
search, parameters �gNa, �gK , and �gK�Ca were fixed to 20, 10, and 2 mS/
cm2, respectively. Upper and lower bounds for the search are shown
in Table 3. The parameters (Kp, RCa, �gA, �gCa, and �gNaP) each assumed
one of five values equally spaced between these constraints, yielding
55 ¼ 3,125 passive dendrite models across conductance space.
Sensitivity analyses were performed on this entire dataset (Dataset
S2).

Using these same parameters in the active dendrite search of
conductance space yielded models with unrealistically deep AHPs.
Therefore, the somatic values of �gK and �gK�Ca were changed slightly
for the active dendrite search of conductance space, to 15 and 1 mS/
cm2, respectively (Table 3). To explore more of this space, the number
of grid points along �gA and the upper constraint on �gCa were doubled
relative to the passive dendrite model search; grid sizes in other
dimensions were unchanged. As a result, the active dendrite search of
conductance space visited 8 3 9 3 53 ¼ 9,000 points (Dataset S3).

Area II–like candidate models were loosely defined as those firing
spontaneously between 7–13 Hz, but with unrestricted gains. Some
candidate models spontaneously fired single action potentials but
burst upon depolarization; these were still classified as candidate
models for spontaneous firing but were not used to analyze gain
trends. The 7–13 Hz range was within the 4.6–16.2 Hz range observed
experimentally in vivo [31] without deviating too far from the mean
baseline firing rate. The active dendrite candidate model with lowest
firing rate gain over the 0–1000 pA range (281 Hz/nA), although high,
matched gains measured in vestibular nucleus neurons in vitro most
closely (mean 102.7 Hz/nA [76]). In systematic searches of morpho-
logic space, active parameters were fixed at the values from this
model (Table 3; blue triangle marked ‘M’ in Figure 6). Both L and D
were varied over wide ranges, assuming 15 equally spaced values from
zero to nearly twice their default values (Table 3). Such wide bounds
for D assume that the cylindrical dendrite approximates an
equivalent cylinder reduction of a neuron’s entire dendritic tree
[78]. These 225 models across morphologic space were visited twice,
holding either dendritic channel densities or numbers constant
(Dataset S4). The axial resistance AX between the soma and the first
dendritic compartment (with length L0) was defined by

AX ¼ L0 � 4Ra=pD2: ð8Þ

Models for homeostatic parameter compensations. Figure 11A and
11B was created using Candidate Model 1 in subspace E (Figure S5A).
Applying its active and passive parameters to the 3-D morphologic
data (Figure 1A), with dendritic channel densities as described above
(Figure 1E), gave the model shown in Figure 11C and 11D. Models 2
and 3 in subspace E were also applied to the realistic morphology,
with conductance parameters further tuned by hand to produce
spontaneous firing (e.g., Figure 11E and 11F).

Supporting Information

Dataset S1. Parameter Values of the 15 Optimized Models

Found at doi:10.1371/journal.pcbi.0040011.sd001 (16 KB GZ).

Dataset S2. Active Dendrite Models Visited During the Systematic
Search of Conductance Space

Found at doi:10.1371/journal.pcbi.0040011.sd002 (3.3 MB GZ).

Dataset S3. Passive Dendrite Models Visited During the Systematic
Search of Conductance Space

Found at doi:10.1371/journal.pcbi.0040011.sd003 (2.0 MB GZ).

Dataset S4. Active Dendrite Models Visited During the Systematic
Search of Morphologic Space

Found at doi:10.1371/journal.pcbi.0040011.sd004 (381 KB GZ).

Figure S1. Optimized Models Showed a Strong Correlation Between
�gNaP and �gA
The values of �gNaP and �gAof the 15 optimized models were positively
correlated across the entire [�gNaP , �gA] subspace.
Found at doi:10.1371/journal.pcbi.0040011.sg001 (459 KB TIF).

Figure S2. Sensitivity of Spontaneous Firing Rate to Parameter
Perturbations for Optimized Models Across Conductance Space

(A) Spontaneous firing rate of the optimized models as a function of
their location in the [�gA, �gCa, �gNaP] subspace. Each optimized model is
represented as a circle whose color represents its spontaneous firing
rate, according to the colorscale at right.
(B) Sensitivity of spontaneous firing rate to active parameters RCa
and �gA (top row, left and right) and morphologic parameters Dþ SA
and L þ D (bottom row, left and right). The principal sensitivity
directions were similar for active and morphologic parameters across
the space (compare black arrows in top and bottom rows).

Found at doi:10.1371/journal.pcbi.0040011.sg002 (859 KB TIF).

Figure S3. Negative Firing Rate Sensitivity to �gK Was Induced by the
K–Ca Current

(A) While �gK is intuitively considered an inhibitory parameter, in
these models it had an excitatory effect. Compare unperturbed (black
line) versus a 100% increase in �gK (red dashed line); firing rate
sensitivity to �gK was positive (inset).
(B) Detail of the shaded region in (A). The unperturbed model is
shown as black solid lines; the response to a doubling of �gK is shown as
dashed red lines. Top, membrane potential: the increased �gK caused a
deeper fast AHP. Middle, because of the hyperpolarized membrane
potential, the increased �gK reduced Ca2þ influx into the neuron.
Bottom, the reduced intracellular Ca2þ caused a smaller K–Ca
current, so that the medium AHP in the perturbed model was
smaller. With its membrane potential closer to AP threshold, the
model with increased �gK fired earlier than the unperturbed model.
Induced perturbations of other intrinsic currents were not sufficient
to explain the variation in firing rate (not shown).
(C) Flow chart of the mechanism underlying the positive sensitivity to
�gK , demonstrated in (B).
(D) Validation of the mechanism: when the K–Ca current was
removed from the model by setting �gKCa ¼ 0, a �gK increase reduced
firing rate. Compare black and red dashed lines. In models with little
or no K–Ca current, firing rate sensitivity to �gK was negative, as
expected intuitively (inset).

Found at doi:10.1371/journal.pcbi.0040011.sg003 (1.0 MB TIF).

Figure S4. Sensitivity of Firing Rate Gain to Parameter Perturbations
for Optimized Models Across Conductance Space

(A) Firing rate gain of the optimized models as a function of their
location in the [�gA, �gCa, �gNaP] subspace (colorscale at right).
(B) Sensitivity of gain to active parameters RCa and �gA (top row, left
and right) and morphologic parameters D þ SA and L þ D (bottom
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row, left and right). Filled circles show models for which sensitivity
was greater to morphologic parameters than to six or more active
parameters. Open squares show models for which sensitivity to
morphologic parameters was less than to three or more active
parameters. Arrows indicate similar principal sensitivity directions to
�gA and D þ SA across the space. There were no clear trends in the
sensitivities to RCa and L þ D.
Found at doi:10.1371/journal.pcbi.0040011.sg004 (828 KB TIF).

Figure S5. Spontaneous Firing Rate Sensitivity Trends Depended
Strongly on Calcium Dynamics Parameters

(A) Sensitivity of spontaneous firing rate to RCa across active dendrite
conductance space (colorscale, top right). Shown are candidate
models from subspaces E, F, A, and C (shown in [B], red dots). The
parameter Kp increases from the top row to the bottom (from
subspace E to F; and from subspace A to C). Parameter RCa increases
from the left to right (from subspace E to A; and from subspace F to
C). Arrows show the global sensitivity trend in each subspace:
sensitivity magnitude increased with RCa (thin versus thick arrows,
from subspace E to A; and from F to C) but not Kp (from subspace E
to F; and from A to C). Filled circles are models where sensitivity to a
morphologic parameter was greater than to all active parameters
except �gNaP and sometimes �gA or �gK�Ca. Open squares are models
where sensitivity to most active parameters was greater than to most
morphologic parameters. Models labeled (1,2,3) are used to predict
compensatory parameter perturbations in Figure 11.
(B) Candidate models identified during the systematic search of
passive dendrite conductance space. Values of �gNa, �gK , �gKCa, and �gLk
were the same for all candidate models; locations of Kp and RCa
(middle graph) and �gA, �gCa, and �gNaP (bottom graph) varied. Some
models were shifted slightly along the �gA axis to aid in visualization.
Subspaces A, C, E, and F were obtained by fixing Kp and RCa at the
values shown as red dots in the middle graph, while searching over
the lower 3-D subspace.
(C) Sensitivity of spontaneous firing rate to RCa for candidate models
across passive dendrite conductance space. This subpanel is
analogous to (A); arrows indicate similar global trends.

Found at doi:10.1371/journal.pcbi.0040011.sg005 (1.3 MB TIF).

Figure S6. Sensitivity to Morphologic Parameters Depended on the
Distributions of Dendritic Ion Channels

(A) Sensitivity of spontaneous firing rate to L þ SA and D þ SA with
the original distribution of dendritic channels shown in Figure 1E.
Top, schematic distribution of dendritic �gA (thick dashed line), �gKCa
(thin dashed line), �gCa (black solid line), and �gNa, �gK , and �gNaP (red
solid line). Middle and bottom rows, sensitivities to Lþ SA and Dþ SA
for the candidate models within subspace A, when either dendritic
CNs (left column, ‘‘CN’’) or CDs (right column, ‘‘CD’’) were held
constant. Color represents spontaneous firing rate sensitivities, on
the scale at top left (�4 [dark blue] toþ4 [dark red]). Arrows indicate
the principal sensitivity directions to each parameter perturbation.
Sensitivities were positive to CN morphologic perturbations, but
negative to CD morphologic perturbations.
(B) Sensitivity of spontaneous firing rate to L þ SA and D þ SA for
constant numbers (left column) and constant densities (right column)
when all channels have a low, uniform distribution throughout the
dendrite (top). Note the order-of-magnitude reduction in the
sensitivity colorscale: (�0.4 [dark blue] toþ0.4 [dark red]). Sensitivities
to all morphologic perturbations were negative. Arrows show the
principal sensitivity directions to L þ SA / CD and D þ SA / CN (top
right and bottom left, respectively).

Found at doi:10.1371/journal.pcbi.0040011.sg006 (908 KB TIF).

Figure S7. Sensitivity of Firing Rate Gain Across Conductance Space
for the Passive Dendrite Model

(A) Firing rate gain was uniformly low for passive dendrite models
within subspace A (colorscale, top right).
(B) Firing rate versus injected current for Models 1 (black) and 2 (red)
shown in (A). Gain decreased slightly as �gCa increased.
(C) Gain sensitivities to active parameters RCa and �gA (top row, left
and right) and morphologic parameters D þ SA and L þ D (bottom
row, left and right) for candidate models in subspace A, according to
colorscale at right. Arrows indicate principal sensitivity directions.

Found at doi:10.1371/journal.pcbi.0040011.sg007 (1.6 MB TIF).

Figure S8. Using the Fitness Function to Compare Model and Target
Data

(A) The AP shape error EAP. Left: A window W (gray) was centered
around each model (solid red line) and target AP (dashed black line).
Right: After shifting the model window along the time axis, the root
mean squared difference between the model and target traces was
computed.
(B) Instantaneous firing rates versus time of model (filled red
triangles, solid red line) and target data (filled black squares, dashed
line) in response to a 100 pA injection. Lines indicate the best fit of
firing rate versus time for each dataset. Gray shading represents
EFR(Area), the area between firing rate curves, computed at each of the
target AP times (open symbols).
(C) Examples of three optimized models (solid red lines) fit to the
target data (dashed line). Models were constrained to match the
general AP shape, and approximate firing rates, of the synthetic
target data. These models show the extremes of the fitness range
consistent with firing properties in Area II that were used for the
sensitivity analysis.

Found at doi:10.1371/journal.pcbi.0040011.sg008 (970 KB TIF).

Protocol S1. Computing Model Fitness

Found at doi:10.1371/journal.pcbi.0040011.sd005 (34 KB DOC).

Table S1. Parameter Values Used to Generate the Target Data

These parameters, used in the mathematical model of Equations 1–3,
generated the single compartment model output ‘‘target data’’
against which the optimized compartment models were fitted.

Found at doi:10.1371/journal.pcbi.0040011.st001 (23 KB DOC).
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