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Abstract

The acts of learning and memory are thought to emerge from the modifications of synaptic connections between neurons,
as guided by sensory feedback during behavior. However, much is unknown about how such synaptic processes can sculpt
and are sculpted by neuronal population dynamics and an interaction with the environment. Here, we embodied a
simulated network, inspired by dissociated cortical neuronal cultures, with an artificial animal (an animat) through a sensory-
motor loop consisting of structured stimuli, detailed activity metrics incorporating spatial information, and an adaptive
training algorithm that takes advantage of spike timing dependent plasticity. By using our design, we demonstrated that
the network was capable of learning associations between multiple sensory inputs and motor outputs, and the animat was
able to adapt to a new sensory mapping to restore its goal behavior: move toward and stay within a user-defined area. We
further showed that successful learning required proper selections of stimuli to encode sensory inputs and a variety of
training stimuli with adaptive selection contingent on the animat’s behavior. We also found that an individual network had
the flexibility to achieve different multi-task goals, and the same goal behavior could be exhibited with different sets of
network synaptic strengths. While lacking the characteristic layered structure of in vivo cortical tissue, the biologically
inspired simulated networks could tune their activity in behaviorally relevant manners, demonstrating that leaky integrate-
and-fire neural networks have an innate ability to process information. This closed-loop hybrid system is a useful tool to
study the network properties intermediating synaptic plasticity and behavioral adaptation. The training algorithm provides
a stepping stone towards designing future control systems, whether with artificial neural networks or biological animats
themselves.
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Introduction

One of the most important features of the brain is the ability to

adapt or learn to achieve a specific goal, which requires

continuous sensory feedback about the success of its motor output

in a specific context. We developed tools [1–3] for closing the

sensory-motor loop between a cultured network and a robot or an

artificial animal (animat) [4] in order to study learning directly

through behavior of the artificial body and its interaction with its

environment. Compared to animal models, the cultured network is

a simpler and more controllable system to investigate basic

network computations; confounding factors such as sensory inputs,

attention, and behavioral drives are absent, while diverse and

complex activity patterns remain [5–9].

Previously, an embodied cultured network’s ability to control an

animat or a mobile robot was demonstrated without a specifically

defined goal [2,10]. In another case, animats were designed to

avoid obstacles [11] or follow objects [12], but deterministically

and without learning. By using a lamprey brainstem to control a

mobile robot, Mussa-Ivaldi et al. demonstrated the embodied in

vitro network’s tendency to compensate the sensory imbalance

caused by artificially altering the sensitivity of the sensors at one

side of the robot. Without a pre-defined goal and external training

stimulation, long-term changes in behavior in response to the

sensory imbalance were found in embodied lamprey brainstems

[13], however, the changes were unpredictable [14]. In order to

further understand the learning capability of an embodied

cultured network for goal-directed behavior, we need to investigate

how the network can be shaped and rewired, and how to direct

this change.

Previous studies have demonstrated the potential for disembod-

ied cultured networks to achieve functional plasticity. This neural

plasticity provides a potential learning capability to cultured

networks. Jimbo et al. [15] used a localized tetanic stimulus to

induce long-lasting changes in the network responses that could be

either potentiated or depressed depending on the electrode used to

evoke the responses. Moreover, we and others previously found

that such tetanus-induced plasticity was spatially localized and

asymmetrically distributed [16,17]. By delivering two different

tetanic stimulation patterns, Ruaro et al. trained a cultured

network to discriminate the spatial profiles of the stimuli. These

results suggest that different stimulation patterns can shape diverse

functional connectivity in cultured networks. By incorporating

closed-loop feedback, Shahaf and Marom [18] showed unidirec-

tional learning: to induce an electrode-specific increase in

response. This simple form of learning was achieved by a binary
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training: to stop a periodic stimulation at one electrode when the

desired response level at the target electrode was obtained. In

order to scale to more complex behavior, we need to create more

structured training stimuli and detailed activity metrics to

investigate whether an embodied cultured network can learn

multiple tasks simultaneously.

Unlike in vivo systems, the sensory-motor mapping and training

algorithm in an embodied cultured network are defined by the

experimenters. In order to efficiently find an effective closed-loop

design among infinite potential mappings, we first embodied a

biologically-inspired simulated network to study an adaptive goal-

directed behavior in an animat: learning to move toward and stay

within a user-defined area in a 2-D plane. The simulated network

of 1000 leaky integrate-and-fire neurons expressed spontaneous

and evoked activity patterns similar to that of the dissociated

cortical cultures [19]. Furthermore, a similar but larger simulated

network showed that localized coherent input resulted in shifts of

receptive and projective fields similar to those observed in vivo [20].

Thus simulated networks show promise for analyzing biological

adaptation with various closed-loop designs.

The closed-loop design we discuss here consists of four unique

elements:

1. Patterned stimulation to induce network plasticity. This low-

frequency (,3 Hz) training stimulation differs from most

studies of cultured networks, where plasticity was induced by

high frequency tetanic stimulations [15,17].

2. Continuous low-frequency background stimulation (,3 Hz) to

stabilize accumulated plasticity [19], which is analogous to

continuous sensory inputs and ongoing processing in the brain.

3. Population coding for motor mapping. Population coding is

considered a robust means to represent movement directions in

the primary motor cortex [21].

4. Adaptive selection of training stimulation. Because the

connectivity in a cultured network is not predictable, the

effects of a given training stimulation cannot be known a priori.

Thus we delivered training stimulation contingent on the

animat’s performance in order to direct changes in network

connectivity that further shift the animat’s behavior toward the

desired behavior.

Here, we demonstrate adaptive goal-directed behavior in the

simulated network, where multiple tasks were learned simulta-

neously. The desired behavior could only be achieved with proper

selection of stimuli to encode sensory inputs and a variety of

training stimuli with adaptive selection contingent on the animat’s

behavior.

While lacking the characteristic layered structure of in vivo

cortical tissue, the biologically-inspired simulated network still

could be functionally shaped, and showed meaningful behavior,

demonstrating that these neural networks have an innate ability to

process information. The proposed design is not restricted to a

particular sensory-motor mapping, and could be applied with

different and more complex goal-directed behaviors, which may

provide a useful in vitro model for studying sensory-motor

mappings, learning, and memory in the nervous system.

Methods

We designed a closed-loop system consisting of an animat

and a biologically inspired simulated network, looped together

through the stimulation of virtual electrodes to encode sensory

information and to direct learning, and through recordings from

the virtual electrodes used to generate motor output. A series of

experiments was performed to validate some of the designs, to

determine the system’s ability to learn a pre-determined goal

behavior, and to verify what was essential in the system for

successful learning.

Closed-Loop System
Animat.

Environment

The animat was controlled by a simulated network (see

Biologically inspired simulated network section below) to move

in a plane within a circle of 50 units radius, which was divided into

four quadrants (Q1: northeast, Q2: northwest, Q3: southwest, and

Q4: southeast, see Figure 1A). The animat was put back to a

random location within a smaller concentric circle of 5 units radius

if it moved outside the outer circle.

Goal

The goal of the animat was to move and stay within a smaller

concentric circle of 5 units radius (see Figure 1A). Successful

behavior required that animat movement in each quadrant be

towards the origin.

Sensory system and motor capability

The animat had two sensory inputs and the neural network’s

response to the first determined animat movement (Figure 1A).

Animat location. Location was one of four discrete values representing

which quadrant the animat was in (Q1–Q4). Sensory input was

applied to the neural network every 5 seconds by stimulating a

corresponding sequence of electrodes (CPSQ1–CPSQ4; see Stimulation

protocols section below). The last electrode in the sequence was

termed ‘‘probe’’ and evoked network responses used to determine

animat movement (see Motor mapping section below).

Animat performance. If the animat was outside of the inner circle, its

performance determined whether training was required (see Training

rules section below). Patterned training stimuli (PTS; see Stimulation

protocols section below) was applied if the animat was moving away

from the inner circle in order to cause neural plasticity and induce

Author Summary

The ability of a brain to learn has been studied at various
levels. However, a large gap exists between behavioral
studies of learning and memory and studies of cellular
plasticity. In particular, much remains unknown about how
cellular plasticity scales to affect network population
dynamics. In previous studies, we have addressed this by
growing mammalian brain cells in culture and creating a
long-term, two-way interface between a cultured network
and a robot or an artificial animal. Behavior and learning
could now be observed in concert with the detailed and
long-term electrophysiology. In this work, we used
modeling/simulation of living cortical cultures to investi-
gate the network’s capability to learn goal-directed
behavior. A biologically inspired simulated network was
used to determine an effective closed-loop training
algorithm, and the system successfully exhibited multi-
task goal-directed adaptive behavior. The results suggest
that even though lacking the characteristic layered
structure of a brain, the network still could be functionally
shaped and showed meaningful behavior. Knowledge
gained from working with such closed-loop systems could
influence the design of future artificial neural networks,
more effective neuroprosthetics, and even the use of living
networks themselves as a biologically based control
system.

Training Embodied Networks
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learning. Otherwise, the goal-behavior was being achieved, and

random background stimulation (RBS; see Stimulation protocols

section below) was applied in order to maintain animat behavior. In

order to acquire sufficient training between two movements, the

sensory input of location (and thus animat movement) was evaluated

every 5 seconds.

Biologically inspired simulated network. The animat was

connected to a simulated network through a sensory-motor loop

(Figure 1A). We used the Neural Circuit SIMulator [22] to

produce three artificial neural networks, described previously [19]

with parameters detailed in Supplemental Material Text S1.

Briefly, 1,000 leaky integrate-and-fire (LIF) model neurons, with a

total of 50,000 synapses, were placed randomly in a 3 mm by

3 mm area. All synapses were frequency-dependent [20,23] to

model synaptic depression. Seventy percent of the neurons were

excitatory, with spike-timing-dependent plasticity (STDP) [24].

We included an 8 by 8 grid of electrodes, 60 of these (see

Figure 1A, red circles in the simulated network) were used for

Figure 1. Closed-loop algorithm. (A) Closed-loop design: the sensory mapping (1–2), the motor mapping (3–4), and the training rules (5–6). Refer
to Methods for a detailed explanation. (B) Motor mapping transformation. Left: In the beginning of each experiment, each CPS (CPSQ1–CPSQ4) was
continuously delivered every 5 seconds with RBS in between. After the animat reached the outer circle, it was moved back to the inner circle. Middle:
The average CAs from probe responses to each CPS were calculated (CAQ1–CAQ4). The average CAs represent the average movements from each CPS.
Right: The transformation T̂TQ1{T̂TQ4

� �
for each CPS was created so that the average movement in each quadrant would be the desired movement

with a magnitude of 1 unit (MQ1–MQ4).
doi:10.1371/journal.pcbi.1000042.g001
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recording and stimulation as in a typical real multi-electrode array

(MEA) used in our lab (from Multi Channel Systems). The

networks were run without external stimulation for 5 hours in

simulated time and then with random background stimulation

(RBS, see below) for another two hours until the synaptic weights

reached equilibrium. The set of stabilized synaptic weights was

used as the initial state for the corresponding network.

In a previous study, we showed that our 1000-neuron LIF

model and living MEA cultures expressed similar spontaneous and

evoked activity patterns, demonstrating the usefulness of the LIF

model for representing the activity of biological networks [19]. In

another study, we successfully used this simulated network to find a

statistic to detect network functional plasticity in living MEA

cultures and to demonstrate region-specific properties of stimulus-

induced network plasticity [16].
Closed-loop algorithm. The closed-loop design in this work

included (1) three different stimulation protocols encoding sensory

inputs, inducing learning, and maintaining what was learned, (2) a

simple sensory mapping, (3) a motor mapping with population

coding incorporating spatial information of network activity, and

(4) training rules with adaptive selections of training stimuli.

Stimulation protocols

We used three classes of stimulation protocols for three different

purposes: (1) Four context-control probing sequences (CPSs) (CPSQ1–

CPSQ4) were used to encode 4 sensory inputs (current location = Q1-

Q4). These also evoked neural activity used as motor commands for

the animat. (2) Four ‘‘pools’’ of patterned training stimulation (PTS)

(PTSQ1–PTSQ4), each also assigned to Q1-Q4, were used to induce

network plasticity to train the animat. (3) Random background stimulation

(RBS) was used to stabilize accumulated plasticity, and was shown

previously to stabilize network synaptic weights [19].
Context-control probing sequence (CPS). Four stimulation sequences were

used (CPSQ1–CPSQ4). Each CPS consisted of a sequence of 3

stimulation pulses from 3 randomly selected electrodes with inter-pulse

intervals randomly selected between 200 to 400 msec (Figure 1A). The

last stimulus, termed probe, was unique to each CPS. For each

experiment, the CPSs were fixed throughout.

Each CPS (CPSQ1- CPSQ4) was delivered every 5 seconds,

when the corresponding sensory input (Q1- Q4) was evaluated.

We used the evoked action potentials from the last stimulus (probe

responses) to generate motor commands to control the animat.

The context before the probe stimulus was found to influence the

probe response [25]. Therefore, in order to directly quantify

learning by changes in movement, we sought to reduce the

variability in the probe response due to recent neural activity and

stimulation history, such that changes in probe responses were due

mainly to changes in network connectivity. We found that by

controlling the stimulation context (the first two stimuli of a CPS)

before the probe with inter-pulse intervals between 200 to

400 msec, the variability of the probe responses was minimized.

Data supporting this in both simulated and living networks are

shown in Supplemental Material Text S2.
Patterned training stimulation (PTS). Four pools of PTSs (PTSQ1–

PTSQ4) were used, each associated with its corresponding quadrant. A

PTS consisted of repetitive stimulation at two electrodes. The location

of the first electrode (PTS-E1) was chosen as the probe electrode used

in the preceding CPS (for PTSQ1, it was the last stimulus in CPSQ1).

The two parameters varied among different PTSs in a pool were: the

location of second electrode (PTS-E2k), and the relative timing from

the first electrode (inter-pulse interval, PTSt) (see Figure 1A). PTS-E2k

was chosen from one of the 60 electrodes (k = 1–60), and PTSt was

chosen from one of 11 values: 2100, 280, 260, 240, 220, 0, 20, 40,

60, 80, and 100 msec. Therefore, each pool consisted of 660 ( = 60*11)

PTSs.

During training, a PTS was delivered repetitively at the pair of

electrodes with random inter-PTS-intervals between 400 to

800 msec. Paired stimulation of monosynaptically connected

neurons evokes STDP dependent on the stimulation interval

[26], and paired stimulation of two electrodes has the potential to

induce STDP throughout any shared activation pathways in the

network. In our simulated networks, we found that the network

could be shaped into a variety of possible synaptic states by using

paired stimulation with different stimulation parameters (electrode

pairs, inter-PTS-intervals, etc.) (data not shown). This validates the

use of PTSs to direct network plasticity.

Random background stimulation (RBS). RBS was delivered randomly at

60 electrodes, one at a time, with random inter-pulse-intervals ranging

from 200 to 400 msec (see Figure 1A). RBS of an aggregated

frequency of 1 Hz was shown previously to have stabilizing effects on

network synaptic weights in a simulated network after stimulus-

induced plasticity [19]. Thus we delivered RBS to maintain the

network synaptic weights if the desired behavior was observed. In this

study, the aggregated stimulation frequency of RBS was increased to

3 Hz so that amounts of stimulation in RBS and PTS were

comparable.

The closed-loop system consisted of three parts (see Figure 1A):

the sensory mapping, the motor mapping, and the training rules.

Sensory mapping

One CPS (CPSQ1, CPSQ2, CPSQ3, or CPSQ4) was delivered

every 5 seconds based on which sensory input was received (Q1,

Q2, Q3, or Q4) (1 and 2 in Figure 1A).

Motor mapping: Center of activity (CA)

After delivering a CPS, the number of spikes within 100 msec

after the probe were measured at 60 recording electrodes, and the

Center of Activity (CA) was calculated (3 in Figure 1A) [19]. CA

represents the spatial asymmetry of the activity, which is analogous

to the center of mass. Assume FR(k) represents firing rates at

recording electrode k within 100 msec after the probe, and Col(k)

and Row(k) are the column number and the row number of

electrode k, which range from 1 to 8. For example, electrode 28

has column number 2 and row number 8 (see 3 in Figure 1A).

Then CA is a two dimensional vector:

CA~ CAX ,CAY½ �~

P60

k~1

FR kð Þ: Col kð Þ{4:5,Row kð Þ{4:5½ �

P60

k~1

FR kð Þ
ð1Þ

where [4.5, 4.5] represents the center of the 8 by 8 grid of

electrodes. Previously we found that the network synaptic state

could be more effectively decoded by incorporating the spatial

information of activity distribution [16].

Motor mapping: Population coding and motor mapping transformation

We instructed incremental movement of the animat [dX, dY] by

using a population vector calculated from CA (4 in Figure 1A):

dX ,dY½ �~T̂T � CA ð2Þ

where T̂T is a transformation matrix that transformed CAs in the

four quadrants into desired movements with average 1 unit

moving distance.

In the beginning of each experiment, CPSQ1 was continuously

delivered every 5 seconds with RBS in between. After the animat

reached the outer circle, it was moved back to the inner circle, and

Training Embodied Networks
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CPSQ2 was delivered, then CPSQ3 and CPSQ4. The whole process

was repeated 5 times, and the average CAs from probe responses

to each CPS were calculated (shown as CAQ1–CAQ4 in Figure 1B).

The average CAs represent the average movements from each

CPS. The transformations T̂T for each CPS were created so that

the average movement in each quadrant would be the desired

movement (MQ1–MQ4; pointing to the center of the inner circle)

with a magnitude of 1 unit (see Figure 1B). For example, for

CAQ1 = [CAQ1,X, CAQ1,Y] and the desired movement

MQ1~ {
ffiffiffi
2
p

,{
ffiffiffi
2
ph i

, the transformation T̂TQ1 consisted of two

scaling numbers aQ1, and bQ1 that satisfied:

T̂TQ1 � CAQ1~ aQ1
:CAQ1,X ,bQ1

:CAQ1,Y

� �
~MQ1 ð3Þ

Thus, for a CPSQ1 delivered with no neural plasticity, the animat

will move on average at a 2135u angle by 1 unit distance. For

each experiment, the transformations T̂TQ1{T̂TQ4

� �
were calculat-

ed first, and then fixed for the duration of the experiment.

Training rules

If the animat’s performance was desirable (moving inward), then

RBS was delivered for 5 seconds until the next sensory input was

evaluated (5 to 2 in Figure 1A). If the animat’s performance was

not desired (moving outward), then training was applied (5 in

Figure 1A): a PTS was randomly selected from the corresponding

pool; if the previous CPS was CPSQ1, then the PTS was selected

from PTSQ1 (6 in Figure 1A) and delivered for 5 seconds (2 in

Figure 1A). If the performance of the animat was improved but

still not desirable after the PTS (still moving outward but at a

slower rate), then the same PTS would be used for the next

training. Initially, the probability of choosing a PTS from a pool

was identical (1/660). Every time a PTS improved the perfor-

mance of the animat after the next probe, a copy was added into

its pool. Thus the size of the pool increased, and the probability of

this ‘‘favorable’’ PTS being chosen later was increased. In contrast,

if that PTS worsened the performance of the animat (moving

outward faster), it was removed from the pool, unless only one

PTS of this specific type remained.

To summarize, if the animat was moving correctly, RBS was

delivered to stabilize the corresponding network synaptic state.

Otherwise, PTS was delivered to change the network synaptic

weights. Also, the probability of specific PTS patterns being

chosen was constantly updated according to the performance of

the animat.

Simulation Experiments
We used three networks with different connectivity, each with 5

different sets of CPSs (randomly selected CPSQ1–CPSQ4). These

15 setups with different network connectivity and sensory-motor

mappings were used for the following simulation experiments:
Experiment 1: Validate effects of RBS on stability of

network input-output functions. This experiment was

performed to validate the design of using RBS to maintain the

desired behavior. In a previous study, we showed that RBS helped

stabilize network synaptic weights after stimulus-induced plasticity

in a simulated network [19]. Here we further verified how this

effect on network synaptic weights affected stability of the network

input-output function, that is, stability of the animat’s movement

under the same sensory input.

The animat was run with RBS between CPSs without training

(no PTS) for one hour. We compared this to the animat’s

performance without RBS (CPSs only). The initial network state,

the random seed for fluctuations in neurons’ membrane potentials

and synaptic currents, and the sensory-motor mapping were not

varied.

We used mutual information to quantify stability of the relation

between sensory inputs (discrete values of 1, 2, 3, or 4 for Q1, Q2,

Q3, or Q4, respectively) and motor outputs (animat’s movement

angles from 2180u to 180). Mutual information is a better

quantity to measure the general dependence between stimuli

(sensory inputs) and responses (motor outputs) than the correlation

function which only measures the linear dependence [27].

Furthermore, mutual information can be applied to symbolic

sequences, such as discrete values of sensory inputs here, while the

correlation function can be only applied to numerical sequences

[27]. The animat’s sensory inputs (Q1, Q2, Q3, or Q4) and

movement angles (2180–180) were recorded and mutual

information was calculated in 5-min moving time windows with

a time step of 5 seconds using the histogram-based mutual

information methods [28]. The higher the mutual information

between sensory inputs and motor outputs, the lower the

uncertainty about the sensory input after a motor output is

observed, that is, the higher the stability of the animat’s movement

under the same sensory input.
Experiment 2: Quantify learning by switching the sensory

mapping. We investigated the networks’ ability to learn a user-

defined goal behavior by ‘‘switching’’ the sensory mapping. This

would be analogous to placing an animal into a different

environment, or imposing a new task. As described previously,

the sensory-motor mapping was set up so that the animat would

move toward the center as desired. We quantified the animat’s

ability to adapt to a switch of the sensory mapping, that is, the

ability to restore desired behavior under a different sensory

mapping.

The transformation, T̂T , allowed the animat to move correctly,

on average, and after 10 minutes the sensory mapping was

switched by exchanging CPSQ1 and CPSQ3 while CPSQ2 and

CPSQ4 remained unchanged. That is, if the animat was at Q1,

CPSQ3 was delivered instead of CPSQ1, and vice versa. The

simulation was stopped when either the simulation time exceeded

4 hours without reaching the goal or the animat stayed within the

inner circle 90% of the time (reached the goal) for 10 minutes. If

the animat was able to adapt to the new sensory mapping and

learn the desired behavior, the network was considered success-

fully rewired. The time course of this adaptation was quantified by

the learning curve, which was measured as the probability of

successful behavior within a 2-min moving time window with 5-sec

step.
Experiment 3: Avoid unsuccessful learning by selecting

CPSs with small Max(CAQ1, CAQ3) and small Max

overlap. In order to avoid unsuccessful adaptations, we

selected CPSs that evoked less localized and less overlapped

responses (see Results), instead of random selections used in

Experiment 2. The level of localization in responses was quantified

by Max(CAQ1, CAQ3), which was the maximum of CAQ1 and CAQ3

(average CAs to CPSQ1 and CPSQ3). The reason that only

responses to CPSQ1 and CPSQ3 were used are described in

Results. The degrees of overlap between the responses of different

pairs of CPSs were quantified by Max overlap. Assume that NQ1 is

the set of neurons activated by CPSQ1, and NQ2 is the set of

neurons activated by CPSQ2. Then the degree of overlap between

responses to CPSQ1 and CPSQ2 was defined as:

Overlap CPSQ1,CPSQ2

� �
~

NQ1\NQ2

�� ��
NQ2

�� �� :100% ð4Þ

where ||?|| represents the number of elements in the set. This

Training Embodied Networks

PLoS Computational Biology | www.ploscompbiol.org 5 2008 | Volume 4 | Issue 3 | e1000042



value indicates the proportion of neurons activated by CPSQ1 that

were also activated by CPSQ2, which quantifies how much the

training in Q1 (a switched quadrant) might affect the behavior in

Q2 (un-switched). The maximum of all possible overlaps between

a switched quadrant and an un-switched quadrant was found:

Max overlap~max Overlap CPSQ1, CPSQ2ð Þ,f

Overlap CPSQ1, CPSQ4ð Þ, Overlap CPSQ3, CPSQ2ð Þ,

Overlap CPSQ3, CPSQ4ð Þg

ð5Þ

We randomly generated 85 sets of CPSs, in addition to the 15

original ones, and randomly selected 10 sets that satisfied the

criteria of Max(CAQ1, CAQ3),150 and Max overlap,50%. Then we

repeated Experiment 2 with these 10 setups to see whether the

success rate of adaptations could be improved.

Experiment 4: Verify the contribution of the network to

learning in the system. The selection of PTSs was an adaptive

process. Therefore, successful adaptations in the behavior of the

system could solely be a product of the artificial adaptive training

algorithm. In order to verify whether the network had contributed

toward learning, we repeated the successful-learning simulations

found in Experiment 2 with the STDP algorithm turned off to see

whether successful adaptations remained. In each new simulation,

the same random seed, the same initial network synaptic weights,

the same sensory-motor mappings, and the same simulation

duration were used as in the corresponding original one. This was

analogous to applying neurotransmitter receptor antagonists, such

as APV, to block synaptic plasticity in the culture. If learning

degrades without the STDP algorithm, then network plasticity is

contributing to successful adaptation.

Experiment 5: Verify the importance of availability of

different PTSs. We hypothesized that the same PTS might

have different effects at different points in time, and therefore

successful adaptations would require a variety of different PTSs

(see Results). In order to verify this hypothesis, we repeated the

successful-learning simulations found in Experiment 2, but used

only one PTS pattern for training in each quadrant instead of a

pool of 660 PTSs as before. In order to increase the likelihood that

these PTSs could achieve better learning results, we selected the

four most frequently used PTSs, one for each quadrant in the

original successful-learning simulation. A new simulation was run

with the same random seed, the same initial network synaptic

weights, the same sensory-motor mappings, and the same

simulation duration, as in the original simulation.

Experiment 6: Verify the importance of behavior-

contingent training. In order to verify the importance of

behavior-based training on the performance of the animat, we

recorded the whole training stimulation sequence (PTS and RBS)

for each successfully adapted simulation in Experiment 2 and

replayed it into the same network with the same initial state and

with the same sensory-motor mapping. In the replayed-training

simulation, a different random seed for fluctuations in neurons’

membrane potentials and synaptic currents was used. Thus,

responses to CPSs in the replayed-training simulation were not

identical to those in the original successful-learning simulation,

and hence the trajectory of the animat rapidly diverged from that

of the original simulation. The replayed training stimulation was

delivered regardless of whether the movement was desired or not.

Therefore, the training stimulation soon became no longer

contingent on the network activity.

Experiment 7: Verify the uniqueness of ‘‘solutions’’. In

order to investigate whether under a specific sensory mapping, the

desired behavior could only be exhibited by a specific set of

network synaptic weights, we switched the sensory mapping back

to the original sensory mapping, after the network adapted to the

switched sensory mapping in Experiment 2, to see whether the

network could re-adapt to the original mapping. If the network

was able to re-adapt to the original mapping, we checked whether

the network synaptic weights were the same as the first time.

Results

In order to investigate how external training stimuli can shape a

network into a desired state, we used a biologically-inspired

simulated network to study multi-task goal-directed behavior by

embodying the network with an animat. We first validated the

design of using random background stimulation (RBS) to maintain

what was learned (Experiment 1). We then quantified the system’s

learning ability (Experiment 2), and investigated the reasons for

unsuccessful learning (Experiment 3). We showed that learning in

the network was responsible for successful learning in the overall

closed-loop system (Experiment 4), and further verified the

importance of using a sequence of PTS patterns for training

(Experiment 5) contingent on behavior (Experiment 6). We finish

by demonstrating that the same desired behavior could be

exhibited with different sets of network synaptic strengths

(Experiment 7). Experiment protocols are further detailed in

Methods. All acronyms are shown in Table 1. A diagram of the

closed-loop system, stimulation sequences, and motor transforma-

tions is shown in Figure 1.

Experiment 1: Random Background Stimulation (RBS)
Helped Maintain the Network Input-Output Function

In order to validate the use of RBS to maintain desired

behavior, the animat was run with RBS between context-control

probing sequences (CPSs) without training (no PTS), and the

results were compared to the animat’s performance without RBS

(CPSs only). An example of the time course of the animat’s

distance from the origin is shown in Figure 2A. The motor

mapping was transformed (by T̂TQ1{T̂TQ4, see Figure 1B) to obtain

desired movements before the simulation. Therefore, in the

beginning of both simulations with RBS and without RBS, the

animat moved in desired directions in each quadrant and stayed

within the inner circle. The animat maintained this desired

behavior for the entire hour over 90% of the time when RBS was

applied, whereas it moved outward after 10 minutes when no RBS

was applied.

Table 1. Acronym list.

Abbreviation Full Name

Stimulation protocol CPS Context-control probing sequence

PTS Patterned training stimulation

RBS Random background stimulation

PTS parameters PTSDt Inter-pulse interval of a PTS

PTS-E1 First electrode in a PTS ( = probe
electrode)

PTS-E2k Second electrode in a PTS

CA Center of activity

MEA Multi-electrode array

STDP Spike-timing-dependent plasticity

doi:10.1371/journal.pcbi.1000042.t001

Training Embodied Networks

PLoS Computational Biology | www.ploscompbiol.org 6 2008 | Volume 4 | Issue 3 | e1000042



The mutual information between the movement angle and the

sensory input is shown in Figure 2B. When the animat started

moving outward in an undesired direction, the mutual information

decreased significantly. This indicates decreasing stability of the

animat’s movement under the same sensory input. The mutual

information during the last 10 minutes (P2 period in Figure 2B)

was compared to the mutual information during the first

10 minutes (P1) in the 15 simulations (3 networks, 5 different

selections of CPSs each) (Figure 2C). With RBS, the mutual

information in P2 was 1.4260.15 bits (mean6SEM,

n = 1800 measures, 15 networks, 120 measures in 10 min per

network), which was comparable to 1.5360.09 bits in P1

(p = 0.77, Wilcoxon signed-rank test). Without RBS, the mutual

information in P2 was 0.1460.10 bits, which was significantly

lower than 1.4060.24 bits in P1 (p,1e-4). This indicates that RBS

with an aggregate frequency of 3 Hz maintained stability of the

network input-output function, validating the use of RBS to

maintain desired behavior in the animat. Furthermore, the results

also suggested that repetitive non-training stimuli (CPSs and RBS)

were unable to induce enough plasticity to systematically alter the

animat’s behavior.

Experiment 2: Adaptation to the Switched Sensory
Mapping

We investigated the networks’ ability to learn a user-defined goal

behavior by ‘‘switching’’ the sensory mapping. A motor mapping

was created (through transformations T̂TQ1{T̂TQ4) to obtain desired

movements before the experiment began (Figure 1B). The animat’s

performance was observed for 10 minutes, demonstrating robust

goal-directed behavior (Figures 3 and 4). Then the sensory

mapping was suddenly and drastically altered, so that the animat’s

behavior was no longer correct. Specifically, a CPS appropriate for

evoking movement toward the center from Q1 was now delivered

when the animat was in Q3, and vice versa. Learning was then

quantified by the animat’s ability to adapt to the new, fixed sensory

mapping and exhibit goal-seeking behavior.

Ten simulations, out of 15, showed successful adaptation to the

switch. One successful simulation is shown in Figure 3A, and the

corresponding movie is shown in Supplemental Material Movie

S1. Immediately after the switch, as expected, the animat moved

outward in the quadrants where the sensory mapping switch was

performed (Q1 and Q3). Patterned training stimulation (PTS),

paired stimulation designed to induce STDP throughout any

shared activation pathways in the network, began to shape the

network synaptic weights, and the desired behavior was restored

under the switched mapping. An unsuccessful simulation is shown

in Figure 3B. In 5 unsuccessful simulations, the animat kept

moving outward and was repeatedly put back into the inner circle

whenever it reached the outer circle. The training was unable to

restore the desired behavior throughout a 4-hr simulation. In

Figure 3B, only the first 90 minutes are shown for clarity.

Distance plots for all 15 simulations are shown in Figure 4. For

successful simulations, the average time for the adaptation was

88.6612.2 minutes (mean6SEM, n = 10 successful-learning sim-

ulations). Two different types of unsuccessful learning are also

indicated (Type I and Type II failures, see below).

Experiment 3: Avoid Unsuccessful Learning by Selecting
Stimuli to Encode Sensory Inputs

One-third of the simulations showed unsuccessful learning but

were nevertheless informative (see Figure 4). Two types of failures

were observed in these following 5 unsuccessful experiments.

Figure 2. RBS stabilized the network input-output function. (A)
An example of the time course of the distance between the animat and
the origin. The animat stayed within the desired area (the inner circle of
5 units radius) for more than 95% of an hour when RBS was applied.
When no RBS was applied, the animat moved outward after 10 minutes.
When the animat reached the outer circle of 50 units radius, it was put
back to a random location within the inner circle, which is shown as
vertical downward lines. (B) The mutual information between the
movement angle and the sensory input. When no RBS was applied, the
mutual information decreased significantly when the animat started
moving outward. (C) Comparison between the mutual information
during the last 10 minutes (light gray, P2 period shown in [B]) and that
during the first 10 minutes (dark gray, P1) for the 15 simulations (3
networks, 5 different selections of CPSs each). With RBS, the mutual
information in P2 was comparable to that in P1 (p = 0.77). Without RBS,
the mutual information in P2 was significantly lower than that in P1
(p,1e-4, shown as an asterisk).
doi:10.1371/journal.pcbi.1000042.g002
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Type I failure. The animat showed no sign of improving

behavior in the quadrant(s) where the switch of the sensory mapping

was performed (Q1 and/or Q3) (see Trajectory in Figure 5A). In

those cases, CPSQ1 and/or CPSQ3 evoked activity in neurons

localized mainly at one quadrant of the network. We hypothesized

that this localization reduced or eliminated the ability of the

responses to shift the direction of the CA, and thus movement could

not be shifted toward a different direction. Compared to more

spatially homogeneous or symmetric responses, a localized response

results in a larger magnitude in CA (see Equation 1 in Methods).

Therefore, we used Max(CAQ1, CAQ3) to quantify the level of

localization in responses to CPSQ1 and CPSQ3 (see Methods). This

measure indicates the likelihood that the directions of CAs to CPSQ1

and CPSQ3 can be ‘‘reversed’’.

Type II failure. The animat showed signs of improving by

changing moving direction(s) in the quadrant(s) where the switch

Figure 3. Adaptation to a new sensory mapping. The animat’s learning ability was quantified by its ability to restore desired behavior after a
sensory mapping switch. (A) An example of successful learning. The distance between the animat and the origin is shown in the left panel. The
animat maintained the desired behavior for the first 10 minutes (the average inward movement in each quadrant during this 10-min duration is
shown on the top), before the sensory mapping switch was performed between quadrants Q1 and Q3 at 10 minutes into the simulation. Immediately
after the switch, the animat started moving outward (the trajectory is shown in the right panel). The red arrows on the top indicate the average
outward movements in Q1 and Q3 during a 5-min time bin after the switch. Eventually, the animat adapted to the switch and restored the desired
behavior to stay within the inner circle under the new sensory mapping. The average movements in all quadrants became toward the center again
during the last 10 minutes, where the restored desired movements in Q1 and Q3 are highlighted in green. Ten simulations (out of 15) showed
successful adaptation to the switch. (B) An example of unsuccessful learning. The animat kept moving outward and was repeatedly returned to the
inner circle after reaching the outer circle. The training was unable to restore the desired behavior throughout 4 hours of experiment. Only the first
90 minutes are shown for clarity. One-third of the simulations showed unsuccessful learning.
doi:10.1371/journal.pcbi.1000042.g003
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was performed (Q1 and/or Q3). However, the movement

direction in an un-switched quadrant (Q2 and/or Q4) became

undesired (Figure 5B). In those cases, neurons activated by

different CPSs had large degrees of overlap. We hypothesized that

the training stimuli caused correlated changes in multiple CPSs.

We used Max overlap to quantify the degrees of overlap between the

responses of different pairs of CPSs (see Methods).

Max overlap is plotted versus Max(CAQ1, CAQ3) in Figure 5C,

which shows that smaller overlap, smaller CAQ1 and smaller CAQ3

were found in all 10 successful-learning experiments. Also, as

hypothesized, Type I failure showed large Max(CAQ1, CAQ3) and

Type II failure showed large Max overlap.

In order to further verify the hypotheses, we randomly generated

additional 85 sets of CPSs for the 3 networks (a total of 100 sets

Figure 4. All successful and unsuccessful learning simulations. The distances between the animat and the origin in all 15 simulations are shown.
The animat maintained the desired behavior before the sensory mapping switch (red triangle) between quadrants Q1 and Q3 at 10 minutes into the
simulation (green bar). Immediately after the switch, the animat started moving outward. In 10 simulations, the animat adapted to the switch and restored
the desired behavior to stay within the inner circle under the new sensory mapping (orange bar). For the other 5 with unsuccessful learning, the animat
kept moving outward and was repeatedly returned to the inner circle after reaching the outer circle. The training was unable to restore the desired
behavior throughout 4 hours of experiment (only the first 3 hours are shown for clarity). Type I and Type II failures are indicated (see Results).
doi:10.1371/journal.pcbi.1000042.g004
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including the 15 sets in the original simulation in Experiment 2), and

randomly chose 10 sets with small overlap, small CAQ1 and small

CAQ3 to repeat Experiment 2. The Max(CAQ1, CAQ3) and Max overlap

of these 85 sets and the 15 sets used previously are shown in

Figure 6A. A cluster with small Max(CAQ1, CAQ3) (,150) and small

Max overlap (,50%) was observed (the shaded area in Figure 6A).

Therefore, we hypothesized that Type I and Type II learning failures

could be avoided by selecting CPSs within this cluster:

Figure 5. Hypotheses about the reasons for unsuccessful learning. One-third of the experiments showed unsuccessful learning. Two types of
learning failures were found, and examples are shown. (A) Type I failure: the animat showed no sign of improving behavior in the quadrant(s) where
the switch of the sensory mapping was performed (Q1 and/or Q3). Using the trajectory in Q1 as an example, the animat kept going outward without
turning (indicated as a hollow red arrow). In those cases, CPSQ1 and/or CPSQ3 evoked activity in neurons localized mainly at one quadrant of the
network. The localization of neurons activated by CPSQ1 is illustrated in the cartoon. We hypothesize that this localization reduced or eliminated the
ability of the responses to shift the CA from the original direction (shown as a solid red arrow) toward the desired direction (shown as a black arrow).
(B) Type II failure: the animat showed signs of improving by changing movement direction(s) in the quadrant(s) where the switch was performed (Q1
and/or Q3). However, the original desired movement direction(s) in the un-switched quadrant(s) (Q2 and/or Q4) was/were changed into undesired
ones(s). Using the trajectory in Q3 and Q4 as an example, the animat was able to turn in Q3 (shown as a hollow black arrow) but the desired direction
in Q4 was later altered (shown as a hollow red arrow). In those cases, neurons activated by different CPSs had large degrees of overlap. The neurons
activated both by CPSQ3, CPSQ4, and both are illustrated in the cartoon. We hypothesize that the training stimuli in Q3 caused correlated changes in
the overlapped neurons (shown as red dots), which caused undesired change in responses to CPSQ4. (C) The degree of overlap (quantified by Max
overlap, see Methods) is plotted versus the degree of localization (quantified by Max(CAQ1, CAQ3)), which shows that smaller overlap, smaller CAQ1 and
smaller CAQ3 were found in all 10 successful cases. Also, Type I failure showed large Max(CAQ1, CAQ3) and Type II failure showed large Max overlap.
doi:10.1371/journal.pcbi.1000042.g005

Training Embodied Networks

PLoS Computational Biology | www.ploscompbiol.org 10 2008 | Volume 4 | Issue 3 | e1000042



1. Type I failure can be prevented by choosing CPSQ1 and

CPSQ3 that each evoke responses which are not too localized,

(criterion: Max(CAQ1, CAQ3),150).

2. Type II failure can be prevented by choosing CPSs that evoke

responses without too much overlap, (criterion: Max over-

lap,50%).

Sixty-four out of the 100 sets of CPSs satisfied the criteria of

Max(CAQ1, CAQ3),150 and Max overlap,50%. By using 10

randomly-selected sets of CPSs that satisfied the criteria to run

10 additional simulations, we found that successful learning could

be reliably achieved (Figure 6B). The success rate was improved

from 66.7% (from the 15 original simulations, see Figure 4) to

100% (from the 10 new simulations, Figure 6B). The chance that

randomly selecting 10 CPSs that all satisfy the criteria from the

100 randomly generated sets is less than 0.01

C64
10

�
C100

10 ~0:0088
� �

. This supports the hypotheses and indicates

that a higher success rate of adaptations can be achieved by

selecting CPSs with smaller Max(CAQ1, CAQ3) and smaller Max

overlap. The average time for the adaptation in these additional

simulations was 71.8610.7 minutes (n = 10 successful-learning

simulations), which was comparable to 88.6612.2 minutes in the

10 successful-learning simulations shown previously (p = 0.43,

Wilcoxon rank sum test). Furthermore, 64 out of 100 random

Figure 6. Improved learning by selecting CPSs based on the hypotheses. Successful adaptations can be achieved by selecting CPSs with
small Max(CAQ1, CAQ3) and small Max overlap. (A) Max(CAQ1, CAQ3) and Max overlap from 100 randomly-selected sets of CPSs in the three simulated
networks. The 15 sets of CPSs used in the previous simulations are indicated as dots and crosses with black outlines. Among the 100 sets, 64 sets
satisfied the criteria of Max(CAQ1, CAQ3),150 and Max overlap,50% (red dots). (B) Successful learning was achieved by using 10 randomly-selected
sets of CPSs that satisfied the criteria (the selections are indicated as black dots in [A]). The success rate was improved from 66.7% (10/15, see Figure 4)
to 100% (10/10). The same representations are used as in Figure 4.
doi:10.1371/journal.pcbi.1000042.g006
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selections of CPSs (64%) satisfied the criteria (see Figure 6A),

which was comparable to the success rate (66.7%) from the

previous 15 simulations with CPSs selected randomly without the

criteria.

Experiment 4: Network Plasticity Was Essential for
Successful Adaptations in the System

In order to verify that the successful adaptation in the overall

system was contributed by learning in the network, and not solely

by the adaptive process in the artificial training algorithm, we

repeated the original successful-learning simulations with the

STDP algorithm turned off. We found that the desired behavior

could not be restored without the STDP algorithm, or long-term

plasticity, in the network. This also rules out frequency-dependent

synaptic depression as the adaptation mechanism, since that

algorithm was left turned on. The comparison of the animat’s

movement in one successful-learning simulation and its corre-

sponding simulation without STDP is shown in Figure 7, and the

comparison of learning curves is shown in Figure 7B.

Among all original successful-learning simulations, the average

probability of successful behavior before the switch was 63.363.5%

(n = 10 successful-learning simulations), dropped significantly to

9.861.1% after the switch (p,5e-4, Wilcoxon signed-rank test), and

increased significantly back to 53.663.5% after 88.6612.2 minutes

when the desired behavior was restored (p,5e-4) (Figure 7C). The

probability of successful behavior after the switch was comparable to

that before the switch (p = 0.09). For all corresponding simulation

without STDP algorithm, the probability of successful behavior

before the switch was 68.464.6% (n = 10 simulations without

STDP), dropped significantly to 6.260.8% after the switch (p,5e-4),

but showed no significant increase at the end of the simulation

(6.460.9%) (p = 0.91) (Figure 7C). This indicated that network long-

term plasticity was essential for successful learning in the closed-loop

system.

Experiment 5: Successful Learning Required Different
PTSs at Different Times

Different PTSs were delivered at different times before the

desired behavior was restored. The training history from the same

successful-learning example shown in Figure 7 is shown in

Figure 8A. We hypothesized that the same PTS might have

different effects at different points in time because the network

would be in different states. Therefore, successful adaptations

would require application of PTSs in a certain sequence. In order

to test this hypothesis, we ran 10 additional simulations with only

one PTS pattern available for training in each quadrant, instead of

a pool of 660 PTSs as in the original stimulations (see Methods).

These were the four most often used PTSs in the original

Figure 7. Network plasticity was essential for successful
learning in the system. The successful adaptation in the overall
system was contributed by learning in the network, and was not solely
a product of the adaptive process in the artificial training algorithm. (A)
The distances between the animat and the origin in a successful-
learning simulation (with STDP, gray curve with gray shading for clarity)
and the corresponding simulation without STDP (blue curve). The
desired behavior could not be restored without the STDP algorithm. (B)
The comparison of learning curves, defined as the change in probability
of successful behavior over time, for simulations in (A). (C) Among 10

original successful-learning simulations, the average probability of
successful behavior before the switch was 63.363.5%, dropped
significantly to 9.861.1% after the switch (*p,5e-4, Wilcoxon signed-
rank test), and increased significantly back to 53.663.5% when the
desired behavior was restored (*, p,5e-4). These periods are shown in
(B) (Pre: the 10 minutes before the switch; Switch: the 10 minutes
immediately after the switch; and Post: the last 10 minutes). The
probabilities of successful behavior in Pre and Post were comparable
(p = 0.09). For all corresponding simulations without the STDP
algorithm, the probability of successful behavior before the switch
was 68.464.6% (n = 10 simulations without STDP), dropped significantly
to 6.260.8% after the switch (*p,5e-4), but showed non-significant
increase by the last 10 minutes of the simulation (6.460.9%; p = 0.91).
This indicates that network long-term plasticity was essential for
successful learning in the closed-loop system.
doi:10.1371/journal.pcbi.1000042.g007
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simulations, one for each quadrant. For the example shown in

Figure 8A, only PTS #575 was delivered in the new simulation

when training was required due to unsuccessful movement in Q1.

We compared the original simulation and the corresponding

new simulation by their learning curves (one example is shown in

Figure 8B). The probability of successful behavior generally kept

increasing after the switch for the original successful-learning

simulation where multiple PTS patterns were available for training

(gray curve), but not for the new simulation where only a single

PTS pattern was available (blue curve).

A significant increase of the probability of successful behavior

after the sensory mapping switch was found in the original

successful-learning simulations (p,5e-4) (Figure 8D, and also

Figure 7C). However, all 10 new simulations with only the four

most frequent PTSs available showed no significant increase of the

probability of successful behavior from immediately after the

switch (9.261.0%) to the end of the simulation (10.163.7%)

(p = 0.61, Wilcoxon signed-rank test) (Figure 8D). This shows that

not only one PTS, but a sequence of different PTSs was needed in

order to restore the desired behavior.

Experiment 6: Training Contingent on Behavior Was
Required for Successful Learning

We have demonstrated that successful adaptations to altered

sensory mappings required a sequence of different PTSs, which was

determined by the real-time feedback contingent on the animat’s

performance. In order to investigate the importance of behavior-

contingent training for successful learning, we recorded the whole

stimulation sequence (PTS and RBS) for each successfully adapted

case and replayed it into the same network with the same initial state

and same sensory-motor mapping. Different random seeds for

fluctuations in neurons’ membrane potentials and synaptic currents

were used between the successful-learning simulations and the

replayed training simulations. This difference would lead to different

network responses, and thus different movement trajectories and

different CPS sequences. However, the effect of non-training stimuli

(CPSs and RBS) on shaping the network was insignificant, as shown

in Figure 2. Therefore, whether the network could adapt to the new

sensory mapping solely depended on the effect of training

stimulation. The replayed training stimulation was no longer

contingent on whether or not desired movement occurred.

Figure 8. Successful adaptation required not only one PTS but a certain sequence of PTSs. (A) The training history of a successful-learning
simulation (the distance measure is shown on the top panel). PTSs delivered from four different pools (PTSQ1–PTSQ4) are shown as black crosses, and
the occurrences of RBS are shown as green crosses. From the 660 possible PTSs, the index of PTSs delivered most frequent in Q1, Q2, Q3, and Q4 were
575, 605, 423, and 584, respectively. The electrode locations and PTSt of these four most frequent PTS patterns are shown on the right. For each pool,
the location of the first electrode (PTS-E1, also the probe electrode, see Methods and Figure 1) is shown as a black X in the grids of 60 electrodes, and
the second electrode (PTS-E2k) is shown as a blue dot. PTSt between the PTS-E1 (black arrow) and PTS-E2k (blue arrow) is also indicated for these four
PTSs. (B) The learning curves of the successful-learning simulation shown in (A) (gray curve) and the corresponding simulation with only the most
frequent PTSs available for training (blue curve, see Methods). In this example, the PTS patterns used for training in Q1, Q2, Q3, and Q4 were PTSs
#575, 605, 423, and 584, respectively (see [A]). (C) The average probabilities of successful behavior during Switch and Pre periods (shown in [B]) in 10
original successful-learning simulations and 10 corresponding new simulations with only single PTS pattern available for training in each quadrant.
For the original simulations, the average probability of successful behavior increased significantly back after the desired behavior was restored
(*p,5e-4), while the average probability remained low for the simulations with single-PTS training (p = 0.61).
doi:10.1371/journal.pcbi.1000042.g008
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In 10 stimulation-replay experiments, the animat was unable to

show successful adaptation to the sensory mapping switch (shown

as ‘‘non-contingent’’ in the example of Figure 9A), which had been

successful with behavior-contingent training (shown as ‘‘contin-

gent’’).

A comparison of the learning curves for this example is shown in

Figure 9B. With contingent training, a significant increase of the

probability of successful behavior after the sensory mapping switch

was found (p,5e-4) (Figure 9C, and also Figure 7C). However,

with replayed training stimulation, the average probability of

successful behavior in the last 10 minutes of the simulations was

11.662.2%, which is comparable to 9.261.8% measured within

10 minutes after the switch (p = 0.47) (Figure 9C).

In order to understand how successful (closed-loop) and

replayed (open-loop) training stimulation shaped the network

differently, we visualized the changes in weights of all synapses by

using Principal Components Analysis (PCA). The first three

components (PC1 to PC3) of the network synaptic weights for the

contingent training simulation and the non-contingent training

simulation example shown in Figure 9A are plotted over time

(Figure 9D). Starting from the same initial synaptic weights, the

network diverged to different synaptic weights distributions as the

training became progressively less contingent on the network

activity and the animat’s performance.

Experiment 7: The ‘‘Solution’’ for Successful Goal-
Directed Behavior Is Not Unique

We have demonstrated that two different sets of network synaptic

weights that were responsible for the desired behavior under two

different sensory mappings (Pre and Post-contingent in Figure 9D). We

then further investigated whether under a specific sensory mapping,

the desired behavior could only be exhibited by a specific set of

Figure 9. Behavior-contingent training was necessary for successful learning. A comparison between experiments with behavior-
contingent training and with replayed training stimulation (non-contingent). (A) With real-time behavior-contingent training, the animat in this
example was able to adapt to a sensory mapping switch and reach the desired behavior: moving in desired directions in each quadrant and staying
within the inner circle (gray curve with gray shading for clarity). The adaptation was absent in the non-contingent experiment (blue curve). (B) The
comparison of the learning curves corresponding for the example in (A). (C) The average probabilities of successful behavior in the 10 successful-
learning experiments and the corresponding non-contingent experiments. With behavior-contingent training, the average probability of successful
behavior in the last 10 minutes of the simulations (Post period shown in [B]) was significantly greater than that measured within 10 minutes after the
switch (Switch) (*p,5e-4). In non-contingent experiments, the average probability of successful behavior in Post was comparable to that in Switch
(p = 0.47). (D) The changes in all synaptic weights were visualized by Principal Components Analysis (PCA). The first three components (PC1 to PC3) of
the network synaptic weights in the same example as (A) and (B) are plotted over time. Starting from the same initial synaptic weights, the network
diverged to different synaptic weight distributions as the training became progressively less contingent on the network activity and the animat’s
performance. The circled periods, Pre and Post, are indicated at the bottom of (A).
doi:10.1371/journal.pcbi.1000042.g009
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network synaptic weights. After the network adapted to the switched

sensory mapping, we switched the sensory mapping back to the

original sensory mapping to see whether the network could re-adapt

to the original mapping (Figure 10). After the switch-back, the

behavior-contingent patterned training stimulation was able to

restore the desired behavior under the original sensory mapping

(Figure 10A), but with a different set of network synaptic weights

(Figure 10B). This indicates that multiple synaptic configurations, or

‘‘solutions’’, existed for the desired behavior.

Discussion

We demonstrated that an embodied simulated network could be

shaped by patterned training stimulation into desirable states

capable of expressing meaningful behavior. We applied a

switching of the sensory mapping and measured the network’s

ability to rewire itself in order to restore the desired behavior

under a new mapping. Previous studies have shown that functional

visual projections routed into non-visual structures can change the

modality of the cortex [29,30]. This rewiring process was also

found to restore function in the olfactory bulb following injury or

neurological disease [31]. Successful rewiring observed in the

random network suggests that cultured networks could be a useful

model to investigate functional reorganization in cortical circuits

after deafferentation or changes in sensory contingencies.

We exploited structured stimuli and detailed activity metrics [16]

incorporating spatial information to show that with training

contingent on the animat’s behavior, the network was capable of

learning associations between multiple sensory inputs and motor

outputs (Experiment 2). We further showed that successful learning

required proper selection of stimuli to encode sensory inputs

(Experiment 3), and a variety of training stimuli (Experiment 5)

with adaptive selection contingent on the animat’s behavior

(Experiment 6). We also found that the solution for a desired

behavior was not unique (Experiment 7) and could be achieved

through different paths of training. These results shed light on the

complexity and flexibility of the learning process in neural networks.

Effects of RBS in Simulated and Living Cortical Networks
RBS was hypothesized to negate ‘‘attractors’’ in network synaptic

weight distributions caused by spontaneous activity (mainly network-

wide synchronized bursts of activity called barrages), and to prevent

network synaptic weights from drifting to such attractors after

inducing plasticity with electrical stimulation [19]. RBS with an

aggregate frequency of 1 Hz reduced the occurrence of spontaneous

barrages by at least 10 times in the simulated network and

dissociated cortical cultures [19]. By reducing the occurrence of

spontaneous barrages, the network synaptic weights were mainly

affected by activity evoked by RBS. Since RBS was random spatially

and temporally, the evoked activity had an unbiased randomizing

effect on changing network synaptic weights. In a different approach,

a barrage-control stimulation protocol consisting of a group of

electrodes cyclically stimulated with an aggregated frequency of

50 Hz was found to completely eliminate spontaneous barrages [32].

Similar to RBS, the barrage-control stimulation stabilized tetanus-

induced plasticity in dissociated cortical cultures (Madhavan R,

Chao ZC, Potter SM, unpublished data). However, different

mechanisms might be involved. RBS evoked network-wide responses

with unbiased spatiotemporal structure, while the barrage-control

stimulation desynchronized spontaneous activity into spatially

localized and temporally dispersed responses.

In this study, the aggregate stimulation frequency of RBS was

increased from 1 to 3 Hz so that the amount of stimulation in RBS

and PTS were comparable. RBS did stabilize network synaptic

weights (the network synaptic weights were clustered in Pre period

Figure 10. The ‘‘solution’’ for successful goal-directed behavior is not unique. The network re-adapted to reapplication of the original
sensory mapping via a different state of network synaptic weights. (A) After the network adapted to a switch of the sensory mapping (Post1 period),
the sensory mapping was switched back to see whether the network could re-adapt to the original sensory mapping. One example is shown. The
animat was able to restore the desired behavior (Post2) after the switch-back. (B) After adaptation to the switch-back, the animat showed the same
desired behavior under the same sensory mapping, but with a different set of network synaptic weights. Multiple solutions existed for the desired
behavior.
doi:10.1371/journal.pcbi.1000042.g010
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in Figure 9D) and also stabilized the network input-output

function (see Figure 2).

Selection of Stimuli for Sensory Encoding
Even though sharing the same network connectivity and the same

PTS pools, some simulations showed successful learning and others

were unsuccessful. Therefore, we concluded that the selection of

CPSs for sensory encoding, which was the only remaining difference,

was crucial for determining the success of adaptation. We found that

the stimulations used to encode sensory inputs should evoke neither

overly localized nor largely overlapped responses. Too much

localization reduced the possibility to improve movement directions

in switched quadrants, and too much overlap caused unwanted

changes in un-switched quadrants. These results suggest a certain

level of independence is required between responses to stimulations

used to encode different sensory inputs, which could be achieved by

using smaller and distinct recording areas to determine movement,

or by offsetting the CA through the motor mapping transformation

so that the probability of a CA to point in different directions is more

uniform. Furthermore, correlated changes in responses to different

sensory inputs could also be avoided by using training stimulation

that only causes localized plastic changes. These findings could

instruct the designs of implant electrode geometries and feedback

stimulation patterns in prosthetics to achieve a more efficient and

effective adaptation.

Long-Term Plasticity and Successful Adaptation
We showed that long-term plasticity in the network (STDP) was

essential for the adaptation in the overall system (see Figure 7).

Short-term plasticity (frequency-dependent synaptic depression,

see Methods and Supplemental Material Text S1) alone was not

able to achieve successful adaptation (Figure 7). Furthermore,

learning curves indicate that fewer training stimuli were required

to maintain the desired behavior after the system had adapted (see

Figure 7B and Figure 8B). These suggest that the improved

performance was not due to short-term elastic responses to the

stimulation. Elastic change was observed in dissociated cultures

where the neurons’ responsiveness adapted to very low frequency

stimulation but relaxed back within minutes after stimulation was

removed [33,34].

Different Training Schemes
Using paired pulses with different stimulation electrodes and

different inter-pulse intervals was one possible design for training.

More optimal training algorithms likely exist. Using stimulation

sequences with more than two stimuli could help shape the

network synaptic weights to a desired state, since they might evoke

a greater variety of response patterns and produce different

behaviors. However, the tradeoff is that a larger pool of possible

training stimuli could lead to a longer training duration before

successful adaptation. Furthermore, a different algorithm to

adaptively update the probability of selecting PTSs might better

find appropriate PTSs and remove unhelpful ones in the pool.

The simulated network was used to explore many different

possible sensory-motor mappings and training algorithms (not

described here) because of savings in preparation time and an

ability to monitor all synaptic weights. The described algorithm

successfully demonstrated adaptive goal-directed behavior with

multiple sensory-motor mappings. This closed-loop algorithm is

not restricted to a particular type or a particular number of

sensory-motor mappings. Integrate-and-fire networks have been

used previously for demonstrating goal-directed learning [35,36].

In this work, we constructed a simulated network, specifically to

mimic living MEA cultures, in order to find a closed-loop design

that might be applicable to show goal-directed learning living

cultures. In another study, we tested our closed-loop algorithm in a

cortical network cultured over an MEA, where we successfully

avoid Type I and Type II failure to train a living network to

control the movement of an animat in a desired direction (Chao

ZC, Bakkum DJ, Potter SM, unpublished data). Studying neural

networks’ basic computational properties, such as parallel signal

processing and learning, by working with simulated/living in vitro

networks could lead to direct development of more advanced

artificial neural networks, more robust computing methods, and

even the use of neurally controlled animats themselves as

biologically-based control systems.

Supporting Information

Text S1

Found at: doi:10.1371/journal.pcbi.1000042.s001 (5.41 MB

DOC)

Text S2

Found at: doi:10.1371/journal.pcbi.1000042.s002 (0.24 MB

DOC)

Movie S1 Movie of a successful-learning simulation. The

trajectory, the trajectory around the inner circle (zoom-in), and the

animat’s distance from the origin in a successful-learning simulation

are shown. A switching of the sensory mappings in Q1 and Q3 was

applied after 10 minutes into the simulation. The animat’s position is

indicated as a blue dot. The trajectory in the zoom-in panel is

indicated in different colors for different quadrants after the switch.

The animat moved outward in Q1 and Q3 immediately after the

switch, and restored the desired behavior after t = 20 min.

Found at: doi:10.1371/journal.pcbi.1000042.s003 (6.78 MB

MOV)
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