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Abstract: Experiments in systems neuroscience can be
seen as consisting of three steps: (1) selecting the signals
we are interested in, (2) probing the system with carefully
chosen stimuli, and (3) getting data out of the brain. Here
I discuss how emerging techniques in molecular biology
are starting to improve these three steps. To estimate its
future impact on experimental neuroscience, I will stress
the analogy of ongoing progress with that of micropro-
cessor production techniques. These techniques have
allowed computers to simplify countless problems;
because they are easier to use than mechanical timers,
they are even built into toasters. Molecular biology may
advance even faster than computer speeds and has made
immense progress in understanding and designing
molecules. These advancements may in turn produce
impressive improvements to each of the three steps,
ultimately shifting the bottleneck from obtaining data to
interpreting it.

This is an ‘‘Editors’ Outlook’’ article for PLoS

Computational Biology

Moore’s law has characterized progress in microprocessor

techniques (see Figure 1, dashed). In very good approximation,

computers have doubled in speed every 2 years. At the same time,

computing has progressively gotten cheaper, and we can now

successfully solve many computing problems that once seemed

hard, such as speech recognition. We are also solving entirely new

computational problems, such as searching billions of web pages

for information on neuroscience or molecular biology. Such

exponential growth makes solutions to seemingly insurmountable

problems seem trivial given a bit of time.

Meanwhile, simple computers have gotten cheaper over time.

This decrease in costs was so dramatic that many of today’s

toasters contain microprocessors for time-keeping, switching on or

off heat, light feedback of heating state, and the handling of key

presses. This makes building toasters simpler and ultimately

cheaper. When computers were invented, toasters were certainly

not an expected application of computing.

Importantly, the speed of computers has increased dramatically

faster than the number of neurons that can be simultaneously

recorded [1] (Figure 1, dotted). Still, the increase of the number of

simultaneously recorded neurons has allowed the development of

advanced algorithms that take advantage of this growing number.

Indeed, the field that analyzes multivariate neural data is large

now and can analyze complicated interactions between large

numbers of neurons [2–4], electroencephalography (EEG) or

magnetoencephalography (MEG) recordings, optical recordings,

or functional magnetic resonance imaging (fMRI) voxels [5,6].

However, as the amount of data increases, so does the complexity

of the questions. For example, many current studies of neural data

analysis ask how neurons interact, but as the number of neurons

grows, the number of potential connections grows quadratically as

each neuron may interact with each other neuron. This, in turn,

leads to models with many free parameters, which requires new

statistical methods of fitting these parameters.

Molecular biology has seen accelerating progress over the last

decades. One readily quantifiable cost in molecular biology is that

of sequencing DNA. The development of a host of different

methods has allowed the cost of sequencing each base pair to

dramatically decrease over time (Figure 1, solid). The rate of

improvement is much faster than that of neuron recording

techniques or even Moore’s law. This development allowed

sequencing the entire human genome at a price of billions of

dollars in the year 2003, and sequencing the same genome at

higher quality now costs less than $2,000. The current push is to

sequence an entire genome for less than $1,000 [7]. This

development allows solving many problems of obvious impor-

tance, such as the search for gene-related markers of disease [8].

From a computational perspective, a central objective of

neuroscience is to understand how neurons convert their inputs

into outputs and collectively produce action based on stimuli and

internal processes, such as memory and attention. This leads to

what I would call the three central steps of experimental

approaches in systems neuroscience. (1) Select the signals that

are important for a given neuroscience question. As long as we

cannot approach understanding the entire brain at the same time,

it is highly useful to select what to stimulate and what to measure.

(2) Get stimuli into the brain. To understand what neurons do,

inputs need to be defined or known. (3) Get data out of the brain.

Only large amounts of data allow meaningful statistical inferences.

Virtually all experimental approaches to systems neuroscience can

be phrased in these terms.

It is interesting to ponder a few well-known examples. In a

typical single-cell visual cortex experiment [9] that studies how the

visual cortex encodes visual stimuli, we would put an electrode into

primary visual cortex (1), show various visual stimuli on a monitor

in front of the animal (2), and record neural activity from the

electrode (3). In a typical fMRI experiment about visual cortex

[10], we would choose a contrast that tells us about changes in

blood flow in the brain (which is a proxy for average firing rate) (1),

stimulate subjects by using a set of fixed visual stimuli (2), and read
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out data using resonance signals (3). In a typical slice work

experiment [11], we might identify a specific cell type under the

microscope (1), activate other cells using glutamate uncaging (2),

and then record signals from the intracellular electrode to find out

how the other cells affect the recorded cell (3). In all these cases,

selection, stimulation, and reading the data (‘‘data out’’) are crucial

aspects of the work.

Each of these steps has its own criteria for being maximally

useful. For the selection step (1), we would like to select all the

relevant signals and nothing else. For the stimulation step (2), we

Figure 1. Comparison of the scaling laws between neuroscience (exponential fit from [1]), computer science (exponential fit of
years 2000–2007 from [29]), and DNA sequencing, see [30]. Remarkably, the steepness of the curves is worth comparing while the offset on
the y-axis is arbitrary.
doi:10.1371/journal.pcbi.1002291.g001

Figure 2. The three central steps that define experiments in systems neuroscience. The question mark denotes areas where the author
expects exciting developments. (A) Methods for selecting where neural signals come from. (B) Methods for stimulating neurons. (C) Methods for
reading out the data. See text for detail.
doi:10.1371/journal.pcbi.1002291.g002
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want to be able to get in large amounts of well defined data with

high information bandwidth and low noise [12]. Lastly, for the

‘‘data out’’ step (3), we want to get a lot of data out with low noise

and high bandwidth. Lastly, given limited budgets, we want the

techniques to be cheap. Certainly, as we scale up the analysis

towards understanding larger systems, the price per unit of

information must be limited.

Each of the currently used approaches has limitations along the

three steps. For example, fMRI has a huge number of channels,

and can select essentially any brain area. Yet, it seems unlikely that

it could be used to record only from certain cell types, such as

interneurons [13], noise levels are high, and spatiotemporal

resolution is low. Single-cell slice physiology is good at selecting

neurons based on observable features like brain region and cell

morphology, and it is low noise, but data out bandwidth is quite

low and there may be biases in the selection of the recorded cells.

Similarly, other current techniques are all rather limited on at least

one of the three axes.

Molecular biology is starting to offer powerful solutions to

overcome limitations of the three steps [14], and I want to start by

reviewing past progress.

(1) The selection step. There are many different levels of

selection. We might want to select individuals that have certain

diseases for which there are genetic markers. In this case, we can

select these individuals through genetic tests [15]. We might want

to select neurons but not other cells (Figure 2A, upper), and this is

possible through a set of well-established genetic methods that

enable or disable gene expression using tissue-specific promoters

[16,17]. We might want to select only a subset of all the cells

(Figure 2A, middle) [18]. Lastly, we might only want to only select

certain neurons that have defined physiological properties

(Figure 2A, lower). Interestingly, it is even possible to select each

cell individually and assign it a random color that is visible under

the microscope [19]. Importantly, genetically selecting neurons

enables certain ways of stimulating just those neurons and reading

out only from those neurons (see below).

Figure 3. Molecular ticker tapes. Neural activity affects an intracellular concentration. DNA polymerase copies a template with a fidelity that is
regulated by an indicator for neural activity. Sequencing thus yields the indicator concentration as a function of time, and therefore the activity.
doi:10.1371/journal.pcbi.1002291.g003
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(2) The stimulation step. Neurons are traditionally probed with

external stimuli (e.g., images on computer monitors), or through

electrical or magnetic stimulation methods. Molecular approaches,

though relatively new and less frequently employed, allow several

clear advantages. First, they can be utilized far more selectively.

For example, specific ligands can selectively activate or inactivate

certain cellular mechanisms, including those that only exist in

certain types of neurons (Figure 2B, upper). They allow activating

neurons upon light stimulation, e.g., through glutamate uncaging

[20] (Figure 2B, middle). The selection techniques (see above)

allow making it so that stimulation will only affect neurons or even

only selective subsets of neurons. For example, standard genetic

techniques allow inactivating certain neurons [21] or activating

them later in life upon injection of a drug [22]. More recently,

optogenetic techniques (Figure 2B, lower) have allowed selectively

activating or inactivating specific neuron types at specific points in

time [23,24].

(3) The ‘‘data out’’ step. Getting data out of neurons is

traditionally done using either existing signals (as in intrinsic

imaging), secondary signals like blood flow (as in fMRI), dyes (as in

calcium imaging), or electrical or magnetic recording (as in

microelectrodes and MEG signals). Using molecular techniques, it

is possible to have neurons express the dye used to monitor them.

Molecular approaches promise some advantages due to the

possibility of ‘‘clean’’ selection (see above (1)). For example, it is

possible to express a dye only in those neurons of interest

(Figure 2C, upper). Improving upon the basic functionality of dyes,

it is possible to use the concentration of activity-dependent

molecules to estimate activities. For example, it is known that

immediate early genes’ RNAs change their distribution within

each neuron over time after activation [25]. This allows

distinguishing the neural activity immediately preceding the end

of the experiment from neural activity that happened earlier in the

experiment. It thus provides some indication of neural activation

patterns over time (Figure 2C, middle) and allows the visualiza-

tion, within a single brain, of different neuronal populations

engaged by two distinct experiences.

All these developments in molecular biology already make it a

major driving force in neuroscience. However, in the same way

that exponential growth in computer science has brought us better

toasters, I expect that molecular biology will provide refinements

of the three steps that are currently hard to imagine. Some past

predictions of computer abilities (e.g., robot control) have been

rather unimpressive, whereas others have been rather precise (e.g.,

Moore’s law). While I am a computational neuroscientist with

limited background in molecular biology, I still want to go out on a

limb and make some predictions of developments we may see.

The readout of data is currently done using physics, thin wires,

and optics, and it may be expected that molecular approaches,

aided by the decay in cost of DNA sequencing, may offer new

approaches. I can see two major classes of experimental questions.

Connectivity: I want to know how neurons and brain areas are

wired up [26]. Activity: I want to know how each neuron’s firing

relates to outside variables such as movement or perceptual stimuli

and to other neurons. If these two problems could be reduced to

DNA sequencing, then progress in molecular approaches may well

lead to a new class of approaches to the data-out step. In

particular, these approaches seem desirable because of synergies

with ongoing molecular improvements over the other two steps.

To solve the connectivity problem, Tony Zador [27] proposed a

sequencing-based solution. Every neuron would have its own

unique, random DNA sequence barcode tag transportable to all

post-synaptic neurons using a transsynaptic virus. All the tags of

presynaptic neurons would then be fused into a long string of DNA

that would be read through DNA sequencing. If every neuron has

a unique tag (i.e., the tag is random and long enough) and the

trans-synaptic transport works without faults, then a unique

identification of the brain’s connectivity would be possible;

otherwise, statistics will allow a probabilistic identification.

Lastly, it seems that the step of recording neural activity can also

be reduced to DNA sequencing. When a cell divides, it naturally

copies its entire DNA using DNA polymerase. The movement of

the polymerase along the DNA template could be engineered to be

essentially a molecular ticker tape, such that the environment at

that point in time is recorded in the DNA sequence (for details on

potential molecular implementations, see [28]). This could be

achieved by engineering a polymerase that would make errors

when neural activities are high, for example, such errors could be

modulated by calcium concentration. While copying a template,

DNA polymerase could thus write the temporal trace of activity as

error patterns onto DNA molecules (see Figure 3). Of course, these

would be difficult steps, and neither DNA polymerase that

depends on neural activity nor steady template copying in

quiescent neurons has been established. Still, the sketched

approach could in principle allow high temporal resolution

combined with very high spatial resolution.

Molecular biology is making rapid progress at becoming useful

for systems neuroscience. So far, there have been outstanding

approaches at improving the selection step—many types of

neurons can be selected individually. The stimulation step has

been affected by techniques that allow impressive precision. Data

out is a promising field, and it seems that molecular biology will

have its strongest impact if it combines strong solutions to all three

steps. From a systems neuroscience perspective, molecular

developments are going to produce large amounts of highly

relevant information. In the same way that microprocessors made

their way into our toasters and made them better and cheaper, we

now can see how custom-designed molecular machines may make

experiments in system neuroscience cheaper and more powerful.

However, it seems important to realize that the development of all

these tools has high promise—but ultimately, data does not suffice

to understand how we perceive, think, and act. If molecular

techniques allow massive amounts of data about the brain to be

obtained, the central problem will be how to interpret and make

sense of this data, a problem similar to other Omics approaches.

Cheaper experiments will lead to massive amounts of data

furthering an ongoing shift from obtaining data to interpreting it.
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