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Abstract

Drug-target interaction (DTI) is the basis of drug discovery and design. It is time consuming and costly to determine DTI
experimentally. Hence, it is necessary to develop computational methods for the prediction of potential DTI. Based on
complex network theory, three supervised inference methods were developed here to predict DTI and used for drug
repositioning, namely drug-based similarity inference (DBSI), target-based similarity inference (TBSI) and network-based
inference (NBI). Among them, NBI performed best on four benchmark data sets. Then a drug-target network was created
with NBI based on 12,483 FDA-approved and experimental drug-target binary links, and some new DTIs were further
predicted. In vitro assays confirmed that five old drugs, namely montelukast, diclofenac, simvastatin, ketoconazole, and
itraconazole, showed polypharmacological features on estrogen receptors or dipeptidyl peptidase-IV with half maximal
inhibitory or effective concentration ranged from 0.2 to 10 mM. Moreover, simvastatin and ketoconazole showed potent
antiproliferative activities on human MDA-MB-231 breast cancer cell line in MTT assays. The results indicated that these
methods could be powerful tools in prediction of DTIs and drug repositioning.
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Introduction

Over the past decade, the rate of new chemical entities tran-

sferred to therapeutic agents has been significantly decreased [1].

Interestingly, this phenomenon is concurrent with the dominant

assumption that the goal of drug discovery is to design exquisitely

selective ligands against a single target. However, this ‘one gene,

one drug, one disease’ paradigm was challenged in many cases,

and the concept of polypharmacology was hence proposed for

those drugs acting on multiple targets rather than one target [1].

For example, serotonin and serotonergic drugs not only bind to G

protein-coupled receptors (GPCRs) such as 5-hydroxytryptamine

receptors 1, 2 and 4–7 (5-HT1,2,4–7), but also might bind to an ion

channel, i.e. 5-HT3 [2,3]. Such polypharmacological features of

drugs enable us to understand drug side effects or find their new

uses, namely drug repositioning [4]. Some good examples are

thalidomide, sildenafil, bupropion and fluoxetine [4,5].

To date, several in silico methods have been developed to

address the issues of drug-target interaction (DTI) prediction and

drug repositioning [6–11]. The conventional methods can be

either ligand-based or receptor-based. Ligand-based methods like

quantitative structure-activity relationships (QSAR) and similarity

search are very useful in this context. For example, Keiser et al.

predicted new molecular targets for known drugs using chemical

two-dimensional (2D) structural similarity, namely similarity

ensemble approach [6,7]. Twenty-three new DTIs were confirmed

and five of which were potent with Ki values,100 nM. Recently,

Humberto et al. developed a multi-target QSAR (mt-QSAR)

classifier and built a web server for DTI prediction [8]. Receptor-

based methods like reverse docking have also been applied in drug-

target (DT) binding affinity prediction, DTI prediction and drug

repositioning [9–11]. However, those methods could not be used for

targets whose three-dimensional (3D) structures are unknown.

More recently, several network-based and phenotype-based

methods were developed for such purposes. Yildirim et al. constructed

a bipartite graph composed of US Food and Drug Administration

(FDA)-approved drugs and proteins linked by DT binary associations

[12]. This method quantitatively showed an overabundance of

‘follow-on’ drugs. Campillos et al. identified new DTIs using side-

effect similarity [13]. They tested 20 of unexpected DTIs and

validated 13 ones by in vitro binding assays. Iorio et al. predicted and

validated new drug modes of action and drug repositioning from

transcriptional responses [14]. Recently Butte group also reported

two successful examples of drug repositioning based on public gene

expression data [15,16]. Furthermore, Yamanishi et al. developed a

bipartite graph learning method to predict DTI by integrating

chemical and genomic spaces [17]. Though high overall predictive

accuracy was obtained in Yamanishi’s work, the sensitivity was

anomaly low and the method was not validated experimentally.
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In this study, three inference methods were developed to predict

new DTI: drug-based similarity inference (DBSI), target-based

similarity inference (TBSI) and network-based inference (NBI), all

derived from complex network theory [18–21]. Four benchmark

data sets with known drugs targeting enzymes, ion channels,

GPCRs, and nuclear receptors respectively, were used to assess the

performance of the methods in comparison with literature reports.

The best-performed method was then selected to create a drug-

target network of FDA-approved and experimental drugs and to

predict new DTIs subsequently. Some of the predictions were

further validated by in vitro assays. This work would provide new

powerful tools for DTI prediction and drug repositioning.

Results

The methods developed here were derived from the recom-

mendation algorithms of complex network theory, and proposed

for DTI prediction and hence drug repositioning. In principle, the

DBSI method (Figure 1A) is very similar to the item-based

collaborative filtering method in recommendation algorithms [20],

while TBSI (Figure 1B) is similar to the user-based collaborative

filtering method [21]. Different from DBSI and TBSI, the NBI

method (Figure 1C) only uses known DT bipartite network

topology similarity to predict unknown DTI, which employs a

process analogous to mass diffusion in physics across the DT

network [18,19]. In NBI method, predictive scores are calculated

for each given drug (pink circle) and each unlinked target, and a

recommendation list of drugs was created for a given target (pink

square) in a descending order after the diffusion process.

Performance of the methods on benchmark data sets
Four benchmark data sets were used to assess the performance

of the methods. The data sets were named after four major drug

targets, i.e. enzymes, ion channels, GPCRs, and nuclear receptors.

At first, all known DTIs (Table S1) involved in the data sets were

used to generate a DT bipartite network (Figure S1), in which a

drug (circle) and a target (square) were connected if the target was

known to the drug according to experimental evidence.

Figure 2 illustrated the receiver operating characteristic (ROC)

curves calculated by the methods on the benchmark data sets using

the 30 simulation times of 10-fold cross validation, from which it is

easy to see that all methods performed well with high true positive

rate (TPR) against low false positive rate (FPR) at any threshold.

As shown in Figure 2, NBI always gave the best TPR values at any

FPR value, suggesting that the NBI method would have the

highest predictive ability among them. The average area under

ROC curve (AUC) values of NBI method by the 30 simulation

times of 10-fold cross validation were 0.97560.006, 0.97660.007,

0.94660.019 and 0.83860.087 for enzymes, ion channels,

GPCRs and nuclear receptors, respectively (Table S2).

Figure S2 illustrated precision (P) as a function of predicted

length (L) with different methods. For enzymes, ion channels and

GPCRs, the curves from up to down were yielded for NBI (dash

curve in the figure), TBSI (solid curve) and DBSI (dot dash curve)

subsequently, which coincided with the performance of AUC. For

nuclear receptors, the relation of the three curves was not so

regular as in the former three data sets, which suggested that data

completeness [22] should be important for DTI prediction because

there were only 90 DTI pairs in the nuclear receptor data set and

the average of known targets for a drug was less than 2 (Table S1).

Figure S3 illustrated recall (R) as a function of L with different

methods. The R value from NBI was much better than those from

TBSI and DBSI (Table S3). It should be highlighted that the R

value is the most important parameter in DTI modeling. A low R

value indicated the low ability of a model to recognize known

DTIs from complex DT networks.

Prediction of drug-target interactions
At first, a DT bipartite network was constructed with known

DTI data extracted from DrugBank [23]. As shown in Figure 3,

there were obviously polypharmacological features for many

approved drugs. For example, the promiscuous drug NADH was

connected with 95 proteins, while the promiscuous target a1A

adrenergic receptor was linked with 52 drugs. This comprehensive

mapping of pharmacological space enables us to predict new

indications for old drugs by our methods.

NBI method was then used to predict new DTI in the DT

bipartite network. To test the feasibility of NBI on DrugBank, the

performance was assessed by the 30 simulation times of 10-fold

cross validation. As shown in Figure S4, high AUC values of

0.86560.009 and 0.84960.012 were yielded with NBI for the

approved drugs and the global data set containing approved and

experimental drugs, respectively, which indicated that NBI

method is valid for DrugBank.

In order to validate the predictions experimentally, one enzyme,

DPP-IV, and two receptors, ERa and ERb, were selected as the

targets, just because the drug screening systems of these targets are

available in our laboratory. By applying NBI method on the global

DrugBank database, all new potential drugs targeted with DPP-

IV, ERa and ERb were predicted. Nine purchasable old drugs

were selected from top 50 recommended potential DPP-IV

inhibitors (Table S4), whereas 31 purchasable old drugs were

selected from top 80 recommended potential ER ligands (Tables

S5 and S6) for experimental assays.

Experimental validation of drug repositioning
All the 40 old drugs were purchased and tested by in vitro assays

accordingly. As shown in Figures 4 and 5, one approved drug, i.e.

montelukast, was identified from the 9 purchased compounds as

an unreported DPP-IV inhibitor with half maximal inhibitory

concentration (IC50) = 9.79 mM. For ERa and ERb, four ap-

proved drugs, namely diclofenac, simvastatin, ketoconazole, and

Author Summary

Study of drug-target interaction is an important topic
toward elucidation of protein functions and understanding
of molecular mechanisms inside cells. Traditional methods
to predict new targets for known drugs were based on
small molecules, protein targets or phenotype features.
Here, we proposed a network-based inference (NBI)
method which only used drug-target bipartite network
topology similarity to infer new targets for known drugs.
The performance of NBI outperformed the drug-based
similarity inference and target-based similarity inference
methods as well as other published methods. Via the NBI
method five old drugs, namely montelukast, diclofenac,
simvastatin, ketoconazole, and itraconazole, were identi-
fied to have polypharmacological effects on human
estrogen receptors or dipeptidyl peptidase-IV with half
maximal inhibitory or effective concentration from sub-
micromolar to micromolar by in vitro assays. Moreover,
simvastatin and ketoconazole showed potent antiprolifer-
ative activities on human MDA-MB-231 breast cancer cell
line in MTT assays. The results indicated that the drug-
target bipartite network-based inference method could be
a useful tool for fishing novel drug-target interactions in
molecular polypharmacological space.

Drug Repositioning via Network-Based Inference
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Figure 1. Schematic diagram of (A) drug-based similarity inference (DBSI), (B) target-based similarity inference (TBSI) and (C)
network-based inference (NBI) methods. The entire workflow includes five steps: (i) collection of known drug-target interaction data and
construction of bipartite drug-target graphs; (ii) calculation of drug-drug two dimensional structural similarity (SC), target-target genomic sequence
similarity (Sg) and drug-target topology network similarity; (iii) application of new methods in prediction of new drugs for a given target (pink square)
or new targets for a given drug (pink circle); (iv) validation of new drug-target interactions by experimental assays (D); (v) visualization of
experimental results using drug-target-disease associations network analysis (E). In A–C, given drug node (pink circle) denotes the drug which we
want to predict new target for, given target node (pink square) denotes the target which we want to predict new drug for, drug with resource (green
circle) denotes that this drug have resource, target with resource (green square) denotes that this target have resource, the more resource a node
possesses, the darker the color is, blue edges denote the drug-target interactions with known experimental evidence, black arrows denote the
resource diffusion direction. In E, green circle: drug node, red square: on-target node, blue square: off-target node, yellow square: new off-target
node, violet square: disease node.
doi:10.1371/journal.pcbi.1002503.g001

Drug Repositioning via Network-Based Inference
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itraconazole, were identified out of the 31 compounds as novel ER

ligands with IC50 or half maximal effective concentration (EC50)

values less than 10 mM. Itraconazole was a dual-profile com-

pound, which showed agonistic activity with EC50 of 200 nM on

ERa but a higher antagonistic activity with IC50 of 280 nM on

ERb than tamoxifen, a classical anti-breast cancer drug.

Moreover, the antiproliferative potencies of diclofenac, simvasta-

tin, ketoconazole, and itraconazole were evaluated on human MDA-

MB-231 breast cancer cell line by MTT assays. As shown in Figure 6,

simvastatin and ketoconazole showed potent antiproliferative ac-

tivities with IC50 values of 1.49 mM and 8.95 mM, respectively.

Network visualization of validated drug-target
interactions

Network visualization of drug-target, target-disease and disease-

gene associations could provide helpful information for discovery

of new therapeutic indications or adverse effects of old drugs. As

illustrated in Figure 7, where disease-related genes and disorder-

disease gene associations (given in Table S7) were extracted from

Online Mendelian Inheritance in Man (OMIM) Morbid Map

[24], it is easy to see polypharmacological effects of the five old

drugs (cyan). For example, simvastatin originally inhibits HMG-

CoA reductase (on-target labeled with red square box) [23,25], but

it has more than 20 off-targets (gray square box) in Figure 7 [24].

In this study, simvastatin was validated to have antagonistic effects

on ERb with IC50 value at 3.12 mM and showed good anti-

proliferative activity on human MDA-MB-231 breast cancer cell

line with IC50 value of 1.49 mM (Figures 5 and 6).

Although some drugs act by binding to specific proteins, most of

FDA-approved drugs were developed without knowledge of

molecular mechanisms responsible for their indicated diseases.

For example, ketoconazole inhibits the production of testosterone,

and has been used by urologists to treat refractory bone pain and

impending neurologic injury in patients with advanced metastatic

prostate cancer [26,27], but the molecular mechanism is

unknown. In this study, ketoconazole was found to selectively

inhibit ERb with IC50 value of 0.79 mM and showed good

antiproliferative activity on human MDA-MB-231 breast cancer

cell line with IC50 value of 8.95 mM, which indicated that

ketoconazole may have more broad-spectrum anti-cancer indica-

tions with therapeutic effects of breast cancer in clinic.

Discussion

Comparison of the methods
In this study, three supervised inference methods, i.e. DBSI,

TBSI and NBI, were developed to predict new DTI. Excellent

performance was obtained for these methods on four benchmark

data sets, which outperformed some methods reported elsewhere

[17,28,29]. The essential difference of the three methods is the

definition of similarity. DBSI is based on chemical 2D structural

similarity, and TBSI is based on genomic sequence similarity,

whereas NBI is only based on DT bipartite network topology

similarity (Figure 1). The worse AUC values of DBSI on the

benchmark data sets indicated that the prediction based on

chemical structure similarity alone was poor (Figure 2). This may

be caused by the redundancy in the similarity. For example, in the

enzyme data set, though chemical structure similarity can present

drug similarity very accurately, similar structures without binding

to enzymes should be redundant to reduce the predictive accuracy.

There is a similar redundancy problem in TBSI. Although NBI is

the simplest one for ignoring structural information of drugs and

targets, the prediction is the most reliable (see box plot in Figure

Figure 2. The receiver operating characteristic (ROC) curves of the three different methods to predict new known drugs for a given
target on the four benchmark data sets by simulation 30 times of 10-fold cross validation test, (a) enzymes, (b) ion channels, (c)
GPCRs and (d) nuclear receptors, drug-based similarity inference (DBSI): dot dash curve, target-based similarity inference (TBSI):
solid curve, network-based inference (NBI): dash curve, FPR: false positive rate and TPR: true positive rate.
doi:10.1371/journal.pcbi.1002503.g002

Drug Repositioning via Network-Based Inference
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S5). And NBI only used DTI topology network similarity for

inferring new potential DTI, which did not need any 3D structural

information of targets and drugs. Therefore, NBI performed better

than DBSI, TBSI and other reverse docking methods [10,11].

Recently, Hansen et al. created four features from gene-drug

network and built a logistic classifier for drug-gene association

prediction [30]. Although high predictive performance were

obtained, an inherent problem in Hansen’s work is that the negative

drug-gene pairs were randomly constructed (selected on the basis of

unknown drug-gene associations), which easily brought noise in a

logistic classifier building by the inaccurate negative sample selection.

Yamanishi et al. predicted new DTIs by integration of chemical and

genomic spaces. Reasonable AUC value was obtained, but the R

values were extremely poor, only 0.574, 0.271, 0.234 and 0.148 for

enzymes, ion channels, GPCRs, and nuclear receptors respectively

[17], and the predicted results were not validated experimentally.

Compared with those reported methods, NBI only used the simple

DT association information and yielded high predictive performance

(R more than 0.9, Table S3). Chiang and Butte developed a guilt-by-

association method for disease-gene association prediction and drug

repositioning [31]. This method only used gene-disease linkage

information. In present study, NBI takes fully advantage of the

labeled and unlabeled information encoded in the full DT network

topology (Figure 1), thereby simultaneously exploiting both topolog-

ical and functional modularity.

Potential application of NBI in drug repositioning
Usually there are two major methods for DTI prediction and

drug repositioning: traditional drug discovery method, in which

new drugs or hits are predicted for a certain target; and chemical

biology method, where new potential targets are predicted for a

given drug or chemical [17]. In this study, NBI method inherited

the advantages of both methods. It can prioritize candidate drugs

for a given target or prioritize candidate targets for a given drug

simultaneously by personal recommendation [18,19]. With matrix

transposition, we could also prioritize new potential targets for a

given drug. As shown in Figure S6, the high performance was

yielded for our three methods in prediction of new candidate

targets for a given drug, and NBI exhibited the highest predictive

accuracy. Therefore, NBI could be a powerful tool in drug

repositioning.

Since NBI only utilized known DTI information, for a new drug

without known target information in the training set, NBI could

not predict targets for this new drug. This is a weakness of the

method. However, potential targets of a new drug can be pre-

dicted by integrating DBSI, TBSI and NBI together. We are

actively developing new network inference method by integrating

drugs, proteins and phenotype features based on diffusion theory

[32]. Our methods could also be used in prediction of other

biological networks, such as protein-protein interactions, drug-

gene, gene-disease, and drug-disease networks, by integrating

additional similarity measures among diseases, genes, and drugs

[33–35].

Polypharmacological features of new DPP-IV inhibitor
Montelukast, antagonist of cysteinyl leukotriene 1 receptor,

was marketed in the US and other countries by Merck with the

brand name SingulairH. Although Langlois et al. reported that

Figure 3. The drug–target (DT) bipartite network, in which a drug node (circle) and a target node (square) are connected to each
other by grey edge if the target is annotated to have known experimental interactions with the drug in DrugBank. The DT network
was generated using known FDA-approved small molecule DT interactions. The size of the drug node is the fraction of the number of targets that the
drug linked in DrugBank. The size of the target node is the fraction of the number of drugs that the target linked in DrugBank. Color codes are given
in the legend. Drug nodes (circles) are colored according to their Anatomical Therapeutic Chemical Classification. The graph was prepared by
Cytoscape (http://www.cytoscape.org/).
doi:10.1371/journal.pcbi.1002503.g003

Drug Repositioning via Network-Based Inference
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montelukast regulates eosinophil protease activity through a

leukotriene-independent mechanism recently [36], there is no

report about its binding with DPP-IV so far. Herein, montelukast

was predicted and validated as a new DPP-IV inhibitor with

IC50 = 9.79 mM. Recently, Faul et al. found that oral administra-

tion of montelukast could change the weak level of Insulin in small

scale clinical experiment [37]. Therefore, it is reasonable to

deduce that montelukast might have new potential indication in

anti-diabetic treatment via inhibiting DPP-IV (Figure 7). Com-

paring the structural similarity between montelukast and sitaglip-

tin, a classical DPP-IV inhibitor, the Tanimoto similarity based on

MACCS keys [38] was only 0.38, which confirmed that NBI could

successfully predict novel structural skeleton molecules for a given

target.

Polypharmacological features of new ER ligands
Diclofenac is an acetic acid nonsteroidal antiinflammatory

drug (NSAID) with analgesic and antipyretic properties, and

widely used to treat pain, dysmenorrhea, ocular inflammation, and

so on. In the past decades, the anti-inflammatory effects of diclo-

fenac were thought to be linked with inhibition of both leukocyte

migration and cyclooxygenase (COX-1 and COX-2), leading to

the peripheral inhibition of prostaglandin synthesis [23]. Herein,

we reported that diclofenac targeted ERa and ERb with IC50

values of 7.59 and 2.32 mM, respectively for the first time

(Figure 4). There were a few similar examples to show NSAIDs

targeting nuclear receptors recently. Zhou et al. reported that

sulindac could induce apoptosis by binding to retinoid X receptor

a (RXRa) [39], while Lehmann et al. found that indomethacin

could activate the peroxisome proliferator-activated receptors a
and b [40]. There were also several reports to show that oral

administration of ER ligands had neuroprotective and anti-

inflammatory effects [41]. Since ERa and ERb are widely

expressed in several tissues including central nervous system,

cardiovascular system, gastrointestinal system, and immune system

[42], therefore the anti-inflammatory and neuroprotective effects

of diclofenac might be resulted from the novel biological pathways

of inhibition to ERa and ERb (Figure 7).

Simvastatin, the methylated form of lovastatin, is an

antilipemic agent which inhibits HMG-CoA reductase [23].

Here we identified that simvastatin could inhibit ERb with

IC50 = 3.12 mM. There is some evidence to support our finding.

For example, Wolozin et al. reported that simvastatin was

associated with a strong reduction in the incidence of dementia,

Alzheimer’s disease (AD) and Parkinson’s disease (PD) [43,44];

several studies proved that estrogen treatment was effective in

many neurodegenerative disease models [41,45]; and statins were

also found to have inhibitory effects on the proliferation of human

breast cancer cells [46]. Therefore, the strong reduction in the

incidence of dementia and PD and the inhibitory effects of the

Figure 4. Predicted and bioassay results of new identified drug-target indications for five known approved drugs. Data shown are the
mean for at least triplicate measurements. aOriginal pharmacological target information was extracted from DrugBank (http://www.DrugBank.ca/).
b50% relatively effective concentration is the concentration of the tested chemical showing 50% of agonistic activity of the maximum activity of E2.
REC50 provides the estrogenic activity relative to that of E2. cAntiproliferative activities were assayed on human MDA-MB-231 breast cancer cell line
by MTT assays. IC50: half maximal inhibitory concentration, EC50: half maximal effective concentration, ER: Estrogen Receptors, DPP-IV: dipeptidyl
peptidase-IV.
doi:10.1371/journal.pcbi.1002503.g004

Drug Repositioning via Network-Based Inference
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proliferation of human breast cancer cells could be explained by

the potential novel biological pathway of inhibition to ERb by

simvastatin in Figure 7.

Ketoconazole and Itraconazole, as 14-a demethylase

(CYP51A1) inhibitors, are synthetic antifungal drugs [23] and

could be used to treat refractory bone pain and neurologic injury

in patients with advanced metastatic prostate cancer [26,27]. In

this study, both drugs were identified to bind to ERa and ERb
with IC50 or EC50 value less than 1 mM (Figure 5). 14-a
demethylase and ER did not share any common features in

structures or functions, but they were deduced to have the same

ligands by NBI method. The data showed that the therapeutic

Figure 5. Dose-response curves of experimentally validated polypharmacology activities on estrogen receptor (ER) and dipeptidyl
peptidase-IV (DPP-IV). Dose-response curves for inhibitive activation: montelukast to DPP-IV (A), for transcriptional activation: tamoxifen (Tam) to
ERa (black solid line) and ERb (red dash line) (B), diclofenac to ERa (black solid line) and ERb (red dash line) (C), simvastatin to ERb (D), ketoconazole to
ERb (E), itraconazole to ERa (F), itraconazole to ERb (G). In A–G, error bars were presented as the mean +SD (standard deviation) of three duplicate
determinations.
doi:10.1371/journal.pcbi.1002503.g005

Drug Repositioning via Network-Based Inference
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effect of ketoconazole in prostate cancer could be explained by the

selective inhibition of ERb by ketoconazole.

In last decades, tissue- or subtype-selective ER modulators

(SERM) showed great advantages in clinic due to less adverse side

effects [47,48]. As shown in Figure 4, ketoconazole selectively

inhibit ERb with IC50 = 0.79 mM, and it did not show any

antagonistic or agonistic activity to ERa. However, itraconazole

was a dual-profile compound, which showed agonistic activity on

ERa but a higher antagonistic activity on ERb than the classical

anti-breast cancer drug tamoxifen (Figure 5). Both ketoconazole

and itraconazole could serve as leads for the discovery of novel

oral SERM.

Materials and Methods

Data preparation
Benchmark data sets. All DTI data in the benchmark data

sets were collected from KEGG BRITE [49], BRENDA [50],

SuperTarget [51] and DrugBank [23]. As listed in Table S1, the

numbers of known drugs in each data set were 445, 210, 223 and

54; while the numbers of targets in the data sets were 664, 204, 95

and 26 for enzymes, ion channels, GPCRs and nuclear receptors,

respectively. The corresponding numbers of known interactions

were 2926, 1476, 635 and 90. Further description about the data

sets can be found in the original paper [17].

DrugBank database. The DrugBank database (accessed on

August 25, 2010) was downloaded from the website: http://www.

drugbank.ca/ [23]. The initial database contained 6,796 drug

entries including 1,437 FDA-approved drugs and 5,174 experi-

mental drugs. Entries containing inorganic compounds, non-

covalent complexes, biotechnology drugs and mixtures were

excluded. The refined database contained 12,483 DTIs, among

which 2,988 ones were based on FDA-approved drugs.

All data sets used in this study are available online: http://www.

lmmd.org/database/dti/.

Method description
Denoting the drug set as D~fd1,d2, . . . ,dng and target set as

T~ft1,t2, . . . ,tmg, the DTI can be described as a bipartite DT

graph G(D,T ,E), where E~feij : di[D,tj[Tg. A link is drawn

between di and tj when the drug di is associated with the target tj .

The DT bipartite network can be presented by an n|m adjacent

matrix faijg, where aij~1 if di and tj is linked, otherwise aij~0.

Drug-based similarity inference (DBSI). The basic idea of

this method is: if a drug interacts with a target, then other drugs

similar to the drug will be recommended to the target (Figure 1A).

For a DT pair di{tj , a linkage between di and tj is determined by

the following predicted score:

vD
ij ~

Pn
l~1,l=i

SC(di,dl)alj

Pn
l~1,l=i

SC(di,dl)

, ð1Þ

where SC(di,dl) is 2D chemical similarity between drugs di and dl ,

which was calculated by SIMCOMP [52] here.

Target-based similarity inference (TBSI). The main idea

of this method is: if a drug interacts with a target, then the drug

will be recommended to other targets with similar sequences to the

target (Figure 1B). For a DT pair di{tj , a linkage between di and

tj is determined by the following predicted score:

vT

ij
~

Pm
l~1,l=j

Sg(tj ,tl)ail

Pm
l~1,l=j

Sg(tj ,tl)

ð2Þ

Where Sg(tj ,tl) indicates the genomic sequence similarity between

targets tj and tl , which was calculated by a normalized version of

Smith-Waterman scores [17] here. All primary sequences of the

targets were obtained from the KEGG GENES database.

Network-based inference (NBI). Denoting f0(o)~aoj ,

o[f1,2, � � � ,ng as the initial resource of drug do, for a target tj ,

and f (i) as the final resource of drug di. As shown in Figure 1C,

for a general DT bipartite network, the final resource (score) f (i)
after two-step diffusion is:

f (i)~
Xm

l~1

ail

k(tl)

Xn

o~1

aolf0(o)

k(do)
ð3Þ

Figure 6. Dose-response curves of the antiproliferative poten-
cies for ketoconazole (A) and simvastatin (B) on human MDA-
MB-231 breast cancer cell lines by MTT assay. Error bars are
presented as the +SD (standard deviation) of three duplicate
determinations.
doi:10.1371/journal.pcbi.1002503.g006
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where k(do)~
Pm
s~1

aos denotes the number of the targets that

interact with do, and k(tl)~
Pn
s~1

asl represents the number of the

drugs that interact with tl .

The resource allocation process can be written as the matrix

form as f
I

j~Wf
I

0j , where, f
I

0j is the column vector of f0, and

W~fwpqgn|n~
1

k(d q)

Pm
l~1

aplaql

k(tl)

� �
n|n

could be considered as

the transfer matrix. f
I

j is the final configuration of resource on

drugs.

For three methods, all tj ’s unconnected drugs which are sorted

in a descending order, constitute the recommendation list of the

target tj . The drugs with the high predictive score in the list are

more likely to interact with target tj .

Performance assessment
To test the performance of the methods, 10-fold cross-validation

approach was applied and each result was yielded by recalculating

30 times. For each data set, all the DTIs were randomly divided into

10 parts with equal size. Each part was taken in turn as the test set,

while the remaining nine parts were served as the training set. With

the randomly splitting, some targets (or drugs) may be just in the test

set and the corresponding links without any information in the

training set could not be predicted with the NBI method. Such links

were not considered in the performance assessment.

Three parameters, AUC, precision (P) and recall (R), were

calculated to assess the performance. The AUC value is obtained

by calculating ranking score, which can be denoted as rij~
qij

n{kj

,

where n{kj is the length of the recommendation list. And the

average ranking score of the links in the test set is:

r~ 1
EPj j

P
ij[EP

qij

n{kj
, where EP is the test set. And the AUC value

is just equal to 1{r. Since the links in the test set are actual DTIs,

a good algorithm is expected to give good prediction for them,

thus leading to large AUC.

P can be obtained from P~
1

m

Pm
j~1 NjL

L
, where NjL is the

number of true positive predictions in the top L drugs in the

recommendation list of target tj . And R is defined as R~ 1
m
Pm
j~1

NjL

lj
,

where lj is the number of target tj ’s missing links. Large P and R mean

that more links in the gold standard interactions are predicted out.

Prediction of drug-target interactions
Considering all DTI as known information, we calculated the

recommendation list with top predictive scores via NBI method for

Figure 7. Discovered drug-target, target-disease and disease-gene associations network. Grey arrows denote the old drug-target
interactions, grey edges denote the old target-disease associations and blue edges denote the known disease-gene associations, which were
extracted from DrugBank, Online Mendelian Inheritance in Man (OMIM) Morbid Map and literature reports (The further data were given in Table
S7). Red arrows among approved drug nodes (cyan circle) and target nodes (yellow squares) denote the new discovered drug-target
interactions in this study. Red dotted edges denote new target-disease associations discovered in this study. Cyan circle: drug node, red square:
on-target (Primary targets annotated in DrugBank), grey square: off-target, yellow square: new off-target (new discovered target for a given
drug validated in this study), violet square: disease node, green regular hexagon: gene. The graph was prepared by Cytoscape (http://www.
cytoscape.org/).
doi:10.1371/journal.pcbi.1002503.g007
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all data sets. With the score ranking from high to low, the drugs in

the topside of the list should be more likely to interact with the

given targets, and the corresponding new DTIs were predicted.

The full predicted lists of all data sets mentioned above are free

available online: http://www.lmmd.org/database/dti/.

Experimental validation
Compound purchase. Totally 40 purchasable approved drugs

(Tables S4, S5, S6) were selected from the top recommendation lists

for ERs and DPP-IV and purchased from the National Center for

Drug Screening (http://www.screen.org.cn/), Shanghai, China.

Dipeptidyl peptidase-IV inhibition assay. The inhibitory

effects of compounds on human recombinant DPP-IV was

determined using a DPP-IV Drug Discovery Kit (Biomol, USA)

according to the manufacturer’s instructions. The activity of DPP-

IV was detected in a SynergyTM 2 Multi-Mode Microplate Reader

(BioTek) at an excitation wavelength of 380 nm and an emission

wavelength of 460 nm. P32/98 (10 mM) was used as a positive

compound. IC50 values were determined using the GraphPad

Prism 4 software with three independent determinations.

Yeast two-hybrid system-based assay. To evaluate the

agonistic or antagonistic activities of the compounds on ER, a

yeast two-hybrid system was constructed by yeast co-transforma-

tion with pGBKT7-ERa/bLBD and pGADT7-SRC1 according

to the lithium acetate method [53]. The combination plasmid

pGBKT7-ERa/bLBD (amino acid residues 301–553 of ERa and

248–510 of ERb) and pGADT7-SRC1 (amino acid residues 613–

773) was prepared as described previously [54]. Butyl 4-

(butyryloxy) benzoate functions as a new selective ERb agonist

and induces GLUT4 expression in CHO-K1 cells. After co-

transforming the two constructs into yeast strain AH109, we

successfully evaluated ER/SRC1 interactions by conducting a

convenient a-galactosidase assay. Yeast transformants were

incubated with either a control vehicle (DMSO) or the indicated

compounds for 24 h in hERa/b agonist testing, and in antagonist

assays 1 nM E2 was added. The a-galactosidase activity was then

measured using p-nitrophenyl a-D-galactopyranoside as the

substrate, according to the Clontech Yeast Protocol. The a-

galactosidase activity was calculated according to equation 4:

a� galactosidase activity ½milliunits=(mL|cell)�

~
OD410|Vf |1000

(e|b)|t|Vi|OD600
ð4Þ

where t is the elapsed time of incubation (min), Vf is the final

volume of assay (200 mL), Vi is the volume of culture medium

supernatant added (16 mL), OD600 is the optical density of

overnight culture, and e6b is the p-nitrophenol molar absorptivity

at 410 nm6the light path (cm) = 10.5 mL/mmol.

MTT assays. Cell proliferation was quantified by MTT assay.

MDA-MB-231 cells were seeded at a density of 1.56104 in a 96-well

plate with DMEM/F12 supplemented with 10% charcoal stripped

FBS without phenol red, and then incubated with the tested

compounds in humidified air containing 5% CO2 at 37uC. After

incubation for 24 h, 20 mL of 5 mg/mL MTT was added and

incubated for another 4 h. Then the converted dye was dissolved in

100 mL of DMSO and the absorbance was measured at 570 nm.

Supporting Information

Figure S1 The bipartite Drug–target network (DT network)

graph for four benchmark data sets: enzymes (red), ion channels

(orange), GPCRs (blue), nuclear receptors (black). Circles and

rectangles correspond to drug and target nodes, respectively. A

link is placed between a drug node and a target node if the protein

is a known target of that drug. The size of the drug node is the

fraction of the number of targets that the drug have with known

experimental evidence. The size of the target node is the fraction

of the number of drugs that the target have with known ex-

perimental evidence. The graph was prepared by Cytoscape

(http://www.cytoscape.org/).

(TIF)

Figure S2 The precision (P) versus the predicted drugs length (L)

with the three different methods by 30 simulation times of 10-fold

cross-validation test to predict new approved drugs to a given

target (protein) for four benchmark data sets: (a) enzymes, (b) ion

channels, (c) GPCRs and (d) nuclear receptors, (e) the log-log plot

of P versus L for the enzyme data. DBSI: Drug-Based Similarity

Inference (dot dash curve), TBSI: Target-Based Similarity

Inference (solid curve), NBI: Network-based Inference (dash

curve).

(TIF)

Figure S3 The recall (R) versus the predicted drugs length (L)

with the three different methods by 30 simulation times of 10-fold

cross-validation test to predict new approved drugs to a given

target (protein) for four benchmark data sets: (a) enzymes, (b) ion

channels, (c) GPCRs, (d) nuclear receptors. DBSI: Drug-Based

Similarity Inference (dot dash curve), TBSI: Target-Based

Similarity Inference (solid curve), NBI: Network-based Inference

(dash curve).

(TIF)

Figure S4 The performance of the network-based inference

(NBI) method on the DrugBank data sets by 30 simulation times of

10-fold cross-validation test. (a) the receiver operating character-

istic (ROC) curve, (b) precision (P) versus the predicted drugs length

(L), (c) recall (R) versus the predicted drugs length (L), approved:

data set of approved small molecular drugs in DrugBank, global:

data set of approved and experimentally investigated small

molecular drugs in DrugBank, FPR: false positive rate and TPR:

true positive rate.

(TIF)

Figure S5 The box-plot of recalls (with the prediction list length

L~10) in the case of predicting new approved drugs for a given

target by 30 simulation times of 10-fold cross-validation test. The

green dash are plotted to distinguish the data sets, and three

different methods are marked on the figure. DBSI: Drug-Based

Similarity Inference, TBSI: Target-Based Similarity Inference,

NBI: Network-based Inference, R: recall.

(TIF)

Figure S6 The receiver operating characteristic (ROC) curve

with the three different methods by 30 simulation times of 10-fold

cross-validation test to predict new targets to a given drug, testing

on four benchmark data sets: (a) enzymes, (b) ion channels, (c)

GPCRs and (d) nuclear receptors. DBSI: Drug-Based Similarity

Inference (dot dash curve), TBSI: Target-Based Similarity

Inference (solid curve), NBI: Network-based Inference (dash

curve).

(TIF)

Table S1 Statistic results of all known drug-target interaction

(DTI) data sets used in this study.

(PDF)

Table S2 The performance of the area under receiver operating

characteristic (AUC) for four benchmark data sets using three
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different methods by simulation 30 times of 10-fold cross

validation test.

(PDF)

Table S3 Recall on the valid recommendation list length for all

data sets using the NBI method by simulation 30 times of 10-fold

cross validation test.

(PDF)

Table S4 The inhibitory activities of 9 approved drugs on

dipeptidyl peptidase-IV.

(PDF)

Table S5 The agonistic and antagonistic activities of approved

drugs for estrogen receptor a.

(PDF)

Table S6 The agonistic and antagonistic activities of approved

drugs for estrogen receptor b.

(PDF)

Table S7 The detailed description of drug-gene-disease associ-

ations for five approved drugs (which were extracted from

DrugBank and Online Mendelian Inheritance in Man (OMIM)

Morbid Map on May, 2011).

(PDF)
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