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Abstract

Determining distances to objects is one of the most ubiquitous perceptual tasks in everyday life. Nevertheless, it is
challenging because the information from a single image confounds object size and distance. Though our brains frequently
judge distances accurately, the underlying computations employed by the brain are not well understood. Our work
illuminates these computions by formulating a family of probabilistic models that encompass a variety of distinct
hypotheses about distance and size perception. We compare these models’ predictions to a set of human distance
judgments in an interception experiment and use Bayesian analysis tools to quantitatively select the best hypothesis on the
basis of its explanatory power and robustness over experimental data. The central question is: whether, and how, human
distance perception incorporates size cues to improve accuracy. Our conclusions are: 1) humans incorporate haptic object
size sensations for distance perception, 2) the incorporation of haptic sensations is suboptimal given their reliability, 3)
humans use environmentally accurate size and distance priors, 4) distance judgments are produced by perceptual
‘‘posterior sampling’’. In addition, we compared our model’s estimated sensory and motor noise parameters with previously
reported measurements in the perceptual literature and found good correspondence between them. Taken together, these
results represent a major step forward in establishing the computational underpinnings of human distance perception and
the role of size information.
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Introduction

The perception of distances by monocular vision is fundamen-

tally ambiguous: an object that is small and near may create the

same image as an object that is large and far (Figure 1A). More

precisely, the monocular image size of the object (h, visual angle)

does not uniquely specify the physical distance (D), because D and

the object’s physical size (S, diameter) are confounded, h& S
D

.

Subjectively we are not usually aware of this visual ambiguity

because we perceive object distances unambiguously across a

variety of conditions – this work examines how humans perform

distance disambiguation by studying whether and how haptic size

information is applied to these judgments. Despite previous

evidence that adults [1] and infants [2] use object size information,

like familiar size, to disambiguate (Figure 1B) the otherwise

ambiguous visual information, debate exists [3], summarized by

[2]. Recently, Battaglia et al. [4] reported that the brain merges

image and haptic sensations in a principled fashion to unambig-

uously infer distance. Incorporating haptic size information is

particularly interesting because it requires sophisticated causal

knowledge of the relationship between distance, size, and the

multisensory sensations available to the brain to overcome size/

distance ambiguity.

Bayesian models provide the exact machinery needed to capture

the size-distance perceptual ambiguity, the knowledge required to

interpret noisy sensations, and how noisy sensations should be

merged with prior knowledge to draw statistically sound

perceptual estimates of object distances. This work uses Bayesian

models to explicate, test, and confirm/deny a variety of hypotheses

about the role of size information in human distance perception.

Our results provide a significantly more comprehensive, quanti-

tative account of the underlying computational processes respon-

sible for incorporating size information into distance perception

than any previous report.

We formulated a family of Bayesian perception/action models,

whose model structure and parameters encoded different

assumptions about observer’s internal knowledge and computa-

tions. We analyzed Battaglia et al.’s [4] data within this context,

and used statistical model-selection methods to infer the most

probable model and associated parameters for explaining their

data.

By committing to a full probabilistic model of observers’

sensation, perception, and decision-making processes, we lever-

aged Battaglia et al.’s [4] data to uncover properties of: 1) the

image and haptic sensory noise, 2) the observer’s prior knowledge

about size and distance, their causal relationship with the

sensations, and how they are applied during perceptual processing,

and 3) the decision-making strategy by which observers’ perceptual

inferences yielded psychophysical measurements. Important

elements obscured from Battaglia et al.’s [4] original analyses

were revealed: the present findings answer four key questions

about how size influences human distance perception (described in
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Model section). Using a full observer model allows us to transcend

simplistic debates about whether humans are ‘‘optimal vs. sub-

optimal’’ by providing a more textured account of perceptual

phenomena that quantifies the sensory quality, what internal

knowledge is involved, how they are merged and exploited, and

how decisions result. This allows vague questions like ‘‘Is

perception Bayesian?’’ to be reformulated into more precise ones

like ‘‘To what degree does the brain encode uncertainty and apply

structured knowledge to perceptual inference?’’

Our family of candidate observer models treat the world,

observer, and observer’s responses as one coherent interrelated

physical system, which are represented in the models’ structures and

parameters using formal probabilistic notation. The fundamental

assumptions are that world properties (D and S) generate pieces of

sensory evidence, or cues, (h, and the haptic size information H),

and the observer’s perceptual process uses probabilistic (i.e. sensitive

to various sources of noise and uncertainty) inference to compute

the posterior distribution over the distance given sensory cues,

Pr(Djh) and Pr(Djh,H) (Figure 1). The literature [5–8] reports

many similarities between behavior prescribed by optimal

Bayesian inference models, and humans’ use of sensory cues, prior

knowledge, and decision-making for perceptual inference. The

perceptual task used by [4] is well-suited to Bayesian modeling

because of important effects of uncertainty and especially the use of

auxiliary information (in this case, H) for disambiguating hidden

causes (i.e. D). In fact, disambiguation of hidden causes using

indirectly-related data is a key, beneficial feature of Bayesian

inference, termed ‘‘explaining-away’’ [9]; we hypothesize that

human distance perception in the presence of auxiliary size cues is

consistent with probabilistic explaining-away.

Battaglia et al.’s [4] experimental task asked participants to

intercept a moving ball, and treated their interception distances as

perceptual distance judgments. Specifically, participants intercepted

the ball as it moved at some distance, after a brief exposure to the ball

that in some cases offered the ability touch the ball and feel its

physical size and in other cases did not provide explicit size sensations.

Our candidate observer models also make distance judgments using

the sensory input available to human participants, so a direct

comparison between human and model behaviors is possible.

We derived all our candidate models from a base, ideal observer

model (IO) that contains internal knowledge about the distribu-

tions of sensory noise that corrupt the sensations h and H , has

knowledge about the prior distributions over D and S, the

relationship between D, S, and h, and the relationship between S
and H (Figure 1, lower-right insets, black arrows). In Bayesian

parlance these pieces of knowledge fall under the rubric of generative

knowledge, or background information about the data’s generative

process that can aid in inferring the underlying causes. The IO

estimates D by computing Pr(Djh,H) and selecting the D that

maximizes it (‘‘maximum a posteriori’’, MAP, decision rule). This

computation requires merging image-size and haptic cues, as well

as prior distance and size knowledge, in a manner Bayes’ rule

prescribes to yield optimal information about D (Figure 1’s caption

illustrates the inference process). We formulated this IO, as well as

the other candidate observer models by enumerating all

combinations of the following hypothetical questions: 1) Does

the observer use the haptic size cue?, 2) Does the observer know

the haptic cue’s reliability, and integrate the cue appropriately?, 3)

Does the observer know the image-size cue’s reliability, and

integrate the cue appropriately?, 4) Does the observer perform

MAP estimation, or rather estimate the distance by averaging a

limited number of samples drawn from the posterior? The models

were designed to allow standard model-selection methods to

decide which hypothetical candidate model, and associated

parameters, were best-supported by the experimental human

data. Thus we were able to select the most accurate hypothesis,

among the field we pre-specified, as the best explanation for how

human distance processing uses size information. Moreover, we

compared the resultant parameter estimates with measurements

reported by other studies, and found they conform with previous

findings regarding perception’s computational dynamics, which

provides independent verification of our conclusions’ validity.

Our results indicate humans incorporate haptic size information

for distance perception, consistent with Bayesian explaining-away.

We also found that all but one participant underestimated the

haptic cue’s reliability (specifically, they overestimated its sensory

noise variance) and integrated the haptic information to a lesser

degree than the IO prescribed, similar to the human underuse of

auditory information for spatial localization reported by [10]. We

found that participants’ priors over size and distance were

comparable to the experiment’s actual random size and distance

parameter distributions, implying participants applied knowledge

of probable stimulus parameters in their perceptual processing

(possibly learned or assumed during the experiment). Last, the

sample-averaging estimation model, as opposed to the MAP-

estimator, best-accounted for participants’ distance judgments, a

finding consistent with a growing body of results from perceptual

studies that suggest perceptual judgments result from posterior

sampling processes [11–13].

Model

The observer models have three components: 1) the sensation

model describes how the distal stimulus determines the proximal

stimulus, 2) the perception model describes how the distal stimulus is

inferred from the proximal stimulus, 3) the decision-making model

describes how the inferred distal representation guides action.

Sensation model
The scene properties relevant for object distance perception are

the object’s physical distance and physical size; the relevant

Author Summary

Perceiving the distance to an object can be difficult
because a monocular visual image is influenced by the
object’s distance and size, so the object’s image size alone
cannot uniquely determine the distance. However, be-
cause object distance is so important in everyday life, our
brains have developed various strategies to overcome this
difficulty and enable accurate perceptual distance esti-
mates. A key strategy the brain employs is to use touched
size sensations, as well as background information
regarding the object’s size, to rule out incorrect size/
distance combinations; our work studies the brain’s
computations that underpin this strategy. We modified a
sophisticated model that prescribes how humans should
estimate object distance to encompass a broad set of
hypotheses about how humans do estimate distance in
actuality. We then used data from a distance perception
experiment to select which modified model best accounts
for human performance. Our analysis reveals how people
use touch sensations and how they bias their distance
judgments to conform with true object statistics in the
enviroment. Our results provide a comprehensive account
of human distance perception and the role of size
information, which significantly improves cognitive scien-
tists’ understanding of this fundamental, important, and
ubiquitous behavior.

How Haptic Size Improves Distance Perception
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Figure 1. Task, model, and inference. A. No-haptic condition. The schematic shows a scene that contains a ball at some distance, and an
observer who monocularly views a projected image of the ball (eye on left of image plane). In the absence of size information, the object’s distance is
ambiguous; e.g. the ball may be small and near (D1,S1), medium-sized and mid-range (D2,S2), large and far (D3,S3), or anywhere in between, but still
project to the same h. The lower-right inset is the no-haptic condition Bayes’ net that shows the generative direction (black arrows), and information
flow during inference (dotted arrows). D and S both influence h (black arrows), the likelihood of h given (D,S) is the plot labeled ‘‘Pr(hjD,S)’’ on the
left. Inferring the ball’s distance means propagating prior information about S (‘‘Pr(S)’’ plot on top-right) and h to form a posterior over D (labeled
‘‘Pr(Djh)’’). Notice that regardless of the true D (i.e. D1, D2 , D3 , black vertical lines in posterior plot), the posterior over D is the same, and is often
positioned quite far from the true D. B. Haptic condition. The observer monocularly views an image of the scene and touches the ball beforehand
to receive haptic size information, H . Though the image only constrains possible (D,S) values to those consistent with h, because H varies with S it
constrains (D,S) more and can disambiguate D. The lower-right inset is the haptic condition Bayes’ net that shows the generative direction (black
arrows), and the information flow (dotted arrows). The D and S both influence h (black arrows), again the likelihood of h given (D,S) is the plot
labeled ‘‘Pr(hjD,S)’’ on the left, but now the marginal posterior of S given H (plot labeled ‘‘Pr(SjH)’’) captures information about S. Inferring the

How Haptic Size Improves Distance Perception
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sensory cues they generate are visual angle and felt (‘‘haptic’’) size.

As noted in the Introduction, visual angle is proportional to the

ratio of size and distance; so, taking the log of each of these

variables transforms this relationship into a linear sum (below).

Our sensation model uses this log-transformed representation for

two reasons: 1) Weber-Fechner phenomena support a noise model

in which the standard deviation linearly scales with signal

magnitude (which can be accomplished with independent noise

in log-coordinates), and 2) this log-linear approximation is

analytically tractable, as we will show. So we assume a linear

Gaussian model, meaning the scene properties are a priori

Gaussian distributed, and the sensory and motor noise are

additive, zero-mean Gaussian, and the sensory generative process

is linear, in the log domain.

Log-distance, log-size, log-visual angle, and log-haptic size are

represented as: D, S, h, H, respectively. The relationship

between D, S, and h (by ‘‘small angle approximation’’ to arctan)

is:

h~S{Dzvh

and between S and H is:

H~SzvH

where vh and vH represent image-size and haptic sensory noise

with standard deviations (SDs) ~ssh and ~ssH , respectively. The ~::

notation indicates that the parameter represents a property of the

scene; this is distinct from the observer’s knowledge about the

scene, defined in the next section with no tilde.

It follows that the distribution of sensory cues conditioned on

the scene properties are:

Pr(hjS,D)~N h; S{D,~sshð Þ ð1Þ

Pr(HjS)~N H; S,~ssHð Þ ð2Þ

We assume observers’ internal prior probabilities over D and S

are:

Pr(D)~N D; mD,sDð Þ

Pr(S)~N S; mS,sSð Þ

Perceptual model
Battaglia [14] derives model observers for perceptual inference

in linear Gaussian contexts under a variety of assumptions – we

co-opt the ‘‘explaining-away’’ derivations (Sec. 3.4 in [14]) for the

current size/distance perception context. All model observers are

assumed to use their knowledge of the world, i.e. the sensory noise

(sh and sH ) and prior distributions (mD, mS , sD, and sS ), to

compute beliefs about D. These beliefs are represented as the

posterior distribution, Pr(Djh,H) (which is Gaussian):

Pr(Djh,H)~N D; mpost,spost

� �
mpost~wDmDzwSmSzwhhzwHH

s2
post~wDs2

D

ð3Þ

where,

wD~
s2

H s2
Szs2

H s2
hzs2

Ss2
h

s2
Ds2

Hzs2
Ds2

Szs2
Hs2

Szs2
H s2

hzs2
Ss2

h

wS~
s2

Ds2
H

s2
Ds2

Hzs2
Ds2

Szs2
Hs2

Szs2
H s2

hzs2
Ss2

h

wh~
{(s2

Ds2
Hzs2

Ds2
S)

s2
Ds2

Hzs2
Ds2

Szs2
Hs2

Szs2
H s2

hzs2
Ss2

h

wH~
s2

Ds2
S

s2
Ds2

Hzs2
Ds2

Szs2
H s2

Szs2
H s2

hzs2
Ss2

h

ð4Þ

For those familiar with ‘‘standard’’ cue combination, Eqs. 3 and

4 are similar to the ‘‘optimal cue combination’’ formulae in [15],

and in fact by looking closely at the Bayes’ net in the lower right of

Fig. 1B, one can see that the subgraph composed of variables H,

S, and h represents the standard two-cue ‘‘cue combination’’

situation. However, our present situation is distinct from [15]

because we focus on data fusion in conditions where one cue (H) is

only indirectly related to the desired property (D) by its ability to

disambiguate another cue (h). The intuition for the weights in Eq.

4 is as follows. Because H provides information about S to

improve inference of D, the numerator of wH assigns sensory cue

H more influence when prior knowledge of S and D are weaker

(higher s2
S and s2

D). Similarly, wS ’s numerator dictates that mS is

more influential when information about H is weaker (higher s2
H ).

Interpreting wh is less straightfoward, but essentially holds that

when information about S is poor, because both the prior over S
and sensory cue H are weak (higher s2

S and s2
H ), then h is more

exclusively influential for inferring D, whereas if either prior

knowledge about S or sensory cue H are strong, h and that S
information jointly guide inference of D. Last, wD’s numerator

assigns stronger influence to prior knowledge of D only when the

sensory cues and prior knowledge of S are weak.

Human observers who do use H for distance perception are

modeled above by Eq. 4. The hypothesis that observers do not use

H , either because H is unavailable or because they are not

capable, is formulated:

Pr(Djh)~N D; m
0
post,s

0
post

� �
m
0
post~w

0
DmDzw

0
SmSzw

0
hh

s
02
post~w

0
Ds2

D

ð5Þ

where,

ball’s distance means propagating H information, prior information about S, and h to form a posterior over D (labeled ‘‘Pr(Djh,H)’’). Notice that now
different D (i.e. D1 , D2 , D3 , black vertical lines in Pr(Djh,H)) induce different posterior distributions (different curves in Pr(Djh,H)), and each is
positioned much nearer to the respective true D.
doi:10.1371/journal.pcbi.1002080.g001
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w
0
D~

s2
Szs2

h

s2
Dzs2

Szs2
h

w
0
S~

s2
D

s2
Dzs2

Szs2
h

w
0
h~

{s2
D

s2
Dzs2

Szs2
h

ð6Þ

Eq. 5 is algebraically equivalent to taking sH?? in the

formulation in Eq. 4. Whether humans do (Eq. 3) or do not (Eq. 5)

use H to make distance judgments is the first of our hypothesis

questions (see Table 1). Also, whether humans know the true

sensory noise magnitude i.e. whether they use sH~~ssH vs.

sH=~ssH , and/or sh~~ssh vs. sh=~ssh, are the second and third of

our hypothesis questions (Table 1).

Decision-making model
The model observer uses beliefs about D to select a position at

which to intercept the moving ball. We assume that participants

attempt to minimize the difference between their judged distance

and the true distance, which for Gaussian distributions may

equivalently correspond to minimizing a MAP, mean-squared, or

symmetric Heaviside loss functions. However accessing their

perceptually-inferred information about D is not necessarily

trivial: we consider that they may select the maximum probability

D, i.e. argD max(Pr(Djh,H)) (or argD max(Pr(Djh))), as their

judgment of distance, or instead draw a number, k, of independent

samples from Pr(Djh,H) or Pr(Djh) and compute their sample

mean as a D judgment, is the fourth (and last) of our hypothesis

questions (Table 1). These distinct models may imply different

neural representations for posterior beliefs about distance, which

we address in the Discussion.

Additionally our models all include an element of motor noise,

the small degree of error between judged D and the experimen-

tally-measured Dresponse, due to motor imprecision when perform-

ing an interception. For consistency with known parameters of

motor control, we selected an additive, Gaussian motor noise term

vM*N vM ; 0,sMð Þ, that was added to the distance judgment to

form Dresponse.

Full observer models
We combine the sensation, perception, and decision-making

models described above to define a set of coherent model

observers that input sensations, combine them with internal

knowledge to form beliefs about distance, and form decisions that

are output as interception responses in the experimental task.

By varying the models’ structure and parameters we encoded

the four hypothesis questions in the Introduction (subsequently

referred to as ‘‘Q I, II, II, IV’’) to form the candidate observer

models (Table 1):

I) Does the brain integrate haptic size information for

distance perception (i.e. do they use Pr(Djh,H) when

possible, or Pr(Djh) exclusively)?

II) Does the brain have accurate knowledge of the haptic

cue’s noise magnitude and incorporate H in proportion

to its reliability? (i.e. do they use sH~~ssH or sH=~ssH )?

III) Does the brain have accurate knowledge of the

visual image-size cue’s noise magnitude and incorporate

h in proportion to its reliability (i.e. do they use sh~~ssh

or sh=~ssh)?

IV) Does the brain select MAP distance estimates, or

average k samples from Pr(Djh,H) or Pr(Djh)?

In total 12 distinct candidate models spanned the possible

combinations of the four questions (the reason the total is 12,

instead of 16, is because for candidate models that do not include

the use of haptic information [Q I], the question of whether the

observer knows the haptic cue noise magnitude or not [Q II] is

inconsequential and those models are redundant).

Human data methods
Ethics statement. All participants gave informed consent in

accordance with the University of Minnesota’s IRB standards.

Stimuli and task. Participants sat in a virtual reality

workbench capable of presenting monocular visual (h) and

haptic (H ) stimuli (Figure 2 shows a stimulus screenshot). They

held a small, stylus probe connected to a robot arm that presented

forces and recorded their hand movements; the hand/stylus

position was graphically depicted in the visual scene as a small

3 mm stylus sphere (see [4] for full experimental details). They

performed 1280 trials across 4 days, where each day was

composed of 4 blocks of 80 trials; the first day of trials was

treated as training, and excluded from further analysis, resulting in

960 total experimental trials. There were two types of trials, no-

haptic and haptic, randomly interleaved in equal proportions

(480+480 = 960), which determined the type of exploration

phase (described next).

Each trial was divided into two phases: exploration and interception.

During the exploration phase, a ball with random diameter

between 14 and 42 mm appeared at a random position in the

virtual scene between 300 and 640 mm distance, at an angle

between 28.5 and 8.5 degrees visual angle on the horizontal plane

that intersected the eyes, and remained still. On no-haptic trials,

Table 1. Candidate model list.

Model # Q I Q II Q III Q IV

1 Pr(Djh) n/a s2
h=~ss2

h
k

2 Pr(Djh) n/a s2
h=~ss2

h
MAP

3 Pr(Djh) n/a s2
h~~ss2

h
k

4 Pr(Djh) n/a s2
h~~ss2

h
MAP

5 Pr(Djh,H) s2
H=~ss2

H s2
h=~ss2

h
k

6 Pr(Djh,H) s2
H=~ss2

H s2
h=~ss2

h
MAP

7 Pr(Djh,H) s2
H=~ss2

H s2
h~~ss2

h
k

8 Pr(Djh,H) s2
H=~ss2

H s2
h~~ss2

h
MAP

9 Pr(Djh,H) s2
H~~ss2

H s2
h=~ss2

h
k

10 Pr(Djh,H) s2
H~~ss2

H s2
h=~ss2

h
MAP

11 Pr(Djh,H) s2
H~~ss2

H s2
h~~ss2

h
k

12 Pr(Djh,H) s2
H~~ss2

H s2
h~~ss2

h
MAP

The candidate models encode possible answers to the four questions as
follows. Q I: ‘‘Pr(Djh)’’, haptic information is never integrated vs. ‘‘Pr(Djh,H)’’,
haptic information is integrated when available. Q II (which is only applicable to
the Pr(Djh,H) answer for Q I): ‘‘s2

H=~ss2
H ’’, internal knowledge of haptic

reliability is incorrect vs. ‘‘s2
H~~ss2

H ’’, internal knowledge of haptic reliability is
correct. Q III: ‘‘s2

h=~ss2
h ’’, internal knowledge of image-size reliability is incorrect

vs. ‘‘s2
h~~ss2

h ’’, internal knowledge of image-size reliability is correct. Q IV: ‘‘k’’,
posterior samples are averaged to form distance judgments vs. ‘‘MAP’’, MAP
estimates are used to form distance judgments.
doi:10.1371/journal.pcbi.1002080.t001
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participants viewed the ball but were not able to touch it, on haptic

trials they touched the ball with the stylus and received haptic

force feedback consistent with the ball’s physical diameter [4].

Once they were satisfied with the exploration they depressed a

mouse button to complete the exploration phase and begin the

interception phase; the exploration phase was forced to last a

minimum of 1 second, and additionally in haptic trials participants

had to touch the ball to end the exploration phase.

Both trial types’ interception phases proceeded identically. First

the robot arm moved the hand to a position on the right side of the

scene, and began to impose a continuous constraining force that

limited the hand’s position to a fixed ray that began at their eye

and extended toward the ball’s (future) movement path.

Simultaneously the ball was repositioned at a random position

on the left of the scene at a distance between 1000 and 1500 mm

and an angle between 217 and 25 degrees on the horizontal

plane. This rendered any distance information gained during the

exploration phase irrelevant (and thus non-useful for subsequent

distance judgments), but the ball’s size was kept the same. Once

ready, the participant again depressed the mouse button and the

ball began to move toward the constraining line with a random

speed between 250 and 375 mm/s. The ball’s trajectory crossed

the constraining line at a random point between 300 and 640 mm

from the participant’s eye (termed the crossing distance) and

continued out of the scene; the total travel time was between 1.3

and 4.8 seconds. Participants were instructed to place the stylus’

tip at the crossing distance, and we recorded this position at the

time the ball crossed the constraining line as the judged distance,

which was used for the subsequent data analysis as an indication of

the participant’s perceived distance. Participants received haptic

feedback regarding their accuracy: if the judged distance was

within 32 mm of the crossing distance the stylus received an

impulse consistent with a momentus collision and the finger visual

stylus sphere pulsed green momentarily, otherwise no collision was

felt and the stylus sphere pulsed red. At this point the trial ended

and a new trial began immediately.

Participants. 6 university students, ages 21 to 30, participated

in the study. All had normal or corrected-to-normal vision, and

normal motor abilities. 5 participants were naive to the purpose of

the study, 1 was an author; the author’s data was statistically

Figure 2. Experimental stimulus screenshot. The overlaid lines were not visible to the experimental participant, but depict various task
elements; they are not drawn from the participant’s viewpoint, but rather from a viewpoint elevated above the observer’s head so they can be
distinguished from each other the participant’s viewpoint intersected the constraint line). They are: the constraint line (yellow dotted line), the ball’s
true movement path (green solid arrow), and ambiguous movement paths in the no-haptic condition (blue dotted arrows). The point at which the
green arrow intersects the constraint line is the crossing distance. The points at which the blue arrows intersect the constraint line represent distance
misjudgments. The participant’s hand position was indicated by a 3 mm diameter blue sphere.
doi:10.1371/journal.pcbi.1002080.g002
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indistinguishable from the others’. All participants gave informed

consent in accordance with the University of Minnesota’s IRB

standards.

Analysis
First, we describe how the model observers predict responses in

the experimental interception task and illustrate responses

produced by each model. Second, we describe how the model’s

parameters were inferred given each participants’ response data.

Third, we show how we computed the human data likelihood

under each model and how we quantitatively compare them to

determine which model provides the best account of the human

data.

Generating model predictions. We can simulate the

sensory model by fixing D and S and sampling predicted h and

H values. Beliefs about D are represented by Gaussian posterior

distributions in our model (Eqs. 4 and 5), whose means and

variances depend on the assumptions encoded by Q I-III. Figure 3

shows posteriors over (D,S) (contours) and D (density functions on

bottom) given h when haptic information is not integrated (red)

and (h,H), when haptic information is integrated (blue). When

prior information is weak (top row), the sensory cues dominate,

Figure 3. Perceptual model. Posterior distributions over (D,S) given sensory input (h,H) are depicted. The true values of D and S are 6.0 and 3.0,
respectively. The red curves are when the haptic information is not incorporated, the blue curves are when it is incorporated. The curves on the
bottom are the joint distributions marginalized over S, to yield marginal posteriors over D. The dotted vertical lines are the posterior means. The
black dot is the true (D,S) values, the purple dot is the (D,S) prior mean. The top row is an observer who uses weak priors (high s2

S and s2
D) and the

bottom row is an observer who uses accurate priors (lower s2
S and s2

D). The left column is an observer with accurate knowledge of the haptic noise
(sH~~ssH ) and the right column is an observer with inaccurate knowledge (overestimated) of haptic noise (sH=~ssH ). Notice that by using haptic
information, the mean of the posterior becomes more accurate and the variance decreases. When prior information used, bias is introduced in that
the means become less accurate, however the posterior variance decreases. Also notice that when the haptic cue noise is inaccurate the observer’s
posterior shifts toward the no-haptic integration observer.
doi:10.1371/journal.pcbi.1002080.g003
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and the posterior variance is high; when no haptic information is

incorporated the posterior is ambiguous, many (D,S) values are

consistent with h. When prior information is strong (bottom row),

prior bias is introduced (ie. black and blue posterior mean lines

separate) but on average D judgments are more accurate because

sensory noise is mitigated by prior knowledge, and the posterior

distribution’s variance shrinks. Weak priors are approximated by

Gaussians with very high variance.

Each model observer’s responses can be predicted given input D
and S values. Q IV distinguishes between decision-making

strategies. Figure 4 depicts an empirical distribution of model

observers’ responses, under MAP estimation as well as sample-

averaging estimation (with k~5 and k~1).

Posterior over model parameters. To test each model’s

account of the human data, our analysis inferred each model’s

parameters, y~(~ssh,~ssH ,sh,sH ,mD,mS,sD,sS,sM ,k), given the

participants’ experimental responses, Dresponse; the posterior

distribution is Pr(yjDresponse,D,S). (Note, y varies depending on

the model, for instance the MAP decision-maker does not have

a k term, the observer that does not use haptic information

does not have ~ssH or sH terms, etc.) The likelihood functions

were straightforward to compute: because we defined our model

observers’ entire sensation-perception-decision sequence as a

probabilistic generative process, we could compute the partici-

pants’ response likelihoods given the input stimuli, D and S, for each

model.

We constructed the model observers’ response likelihood

functions by first considering the observers’ inferences about D,

which are summarized by the model’s posterior parameters, mpost

and spost. So, h and H were treated as random variables with

distributions in Eqs. 1 and 2, and the likelihood of posterior means

given D and S when haptic size information is used is

Figure 4. Decision-making model. The left column shows model observers’ response distributions given input D and S values 6.0 and 3.0,
respectively. The top row is when accurate haptic noise knowledge is used, the bottom row is when inaccurate haptic noise is used. The solid vertical
lines are the true values of D. The solid distribution is an observer that uses the MAP estimate to make a distance judgment, the dashed distribution is
an observer that draws k~5 posterior D samples and averages their values, the dotted distribution is an observer that draws k~1 D sample. The
right column shows the corresponding SDs of the distributions in the left column. Notice that the sampling observers have less precise response
distributions than the MAP-responder, and averaging over fewer samples yields less precise responses.
doi:10.1371/journal.pcbi.1002080.g004
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Pr(mpostjD,S,y)~N mpost; mB,sB

� �
mB~wh(S{D)zwH SzwDmDzwSmS

sB~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2

hs2
hzw2

H s2
H

q
with wh, wH , wD, and wS from Eq. 4. The likelihood of posterior

means when haptic information is not used is

Pr(m
0
postjD,S,y)~N m

0
post; m

0
B,s
0
B

� �
m
0
B~w

0
hhzw

0
DmDzw

0
SmS

s
0
B~w

0
hsh

where w
0
h, w

0
D, and w

0
S are from Eq. 6.

Model observers’ Dresponse were based on their posterior

distributions: for MAP, only mpost is needed, but for sample-

averaging, spost is also involved. And, motor noise vM was always

added.

A MAP observer’s Dresponse likelihood is,

PrMAP(DresponsejD,S,y)~N Dresponse; mR,sR

� �
mR~mB

sR~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

Bzs2
M

q
And a sample-averaging observer’s likelihood is,

Prk(DresponsejD,S,y)~N Dresponse; �mmR,�ssR

� �
�mmR~mB

�ssR~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

Bzs2
Mz

s2
post

k

s

where k is the number of samples that were averaged.

The prior over y, Pr(yjD,S), was chosen to be uniformative,

we assumed uniform prior distributions over a very large range of

possible parameter values.

Comparing models with humans. For each model, for

each participant, we wished to find the most probable parameters

given the data we measured. However, because the models have

numerous parameters and are nonlinear, optimizing for the

parameters is difficult. Also, knowing the posterior distribution of

parameter values is preferred to optimizing the parameters,

because optimizing is subject to overfitting, while the posterior

distribution implicitly captures the quality of the fit. We used

Markov Chain Monte Carlo (MCMC) [16] to approximate

samples from the posterior, then within each participant compared

how well each model explains the data by computing a standard

model ‘‘goodness’’ metric called DIC [16]. DIC rewards predictive

power and penalizes model complexity; lower DIC scores mean

better fits. DIC is similar to related model goodness metrics, like

Akaike Information Criterion and Bayesian Information Criterion,

but is especially suited to MCMC output. So, for each participant

the model with the lowest DIC score provided the best account of

the data, in terms of explanatory power and parsimony.

Battaglia et al.’s [4] interception experiment collected each

participants’ Dresponse measurements given D and S in two

conditions, no-haptic and haptic. In the no-haptic trials, all models

used Eq. 5 to draw perceptual inferences. In the haptic trials,

models that integrate haptic information (Q I) used Eq. 3 while

models that did not integrate haptic information again used Eq. 5.

Different trials were treated as independent, and we computed the

total experimental likelihood, Lm, for each model m as the product

of each trial’s likelihood, Lm~Pi Pr(Dresponse,ijDi,Si,ym), where i
is the trial number.

The likelihood (Lm) and prior (Pr(yjD,S)) terms allowed us to

draw MCMC-simulated y parameter samples from the posterior

Pr(yjDresponse,D,S) (Metropolis-Hastings specifically). For each

model, m, for each participant, we drew a set of n simulated

MCMC parameter samples, Ym~(ym,1, . . . ,ym,n); we ran 360

parallel chains with 15,000 ‘‘burn-in’’, throwaway samples followed

by 6,000 stored, valid samples (n~2:16 million valid samples).

DIC scores are based on the deviance, D(y)~{2log Pr(Dresponsej
y), of the MCMC posterior model parameter samples, Ym. DIC

sums two terms, the expected deviance �DDm~
1

n

Xn

i~1
D(ym,i),

and the model complexity cm~�DDm{D(ŷym), resulting in DICm~
�DDmzcm. Here ŷym is a ‘‘good’’ parameter estimate for the model,

usually computed as the mean, median, or other central tendency

statistic, of the set Ym; we used a robust mean to compute ŷym,

which eliminated outlier parameter values. Significance metrics

with respect to DIC scores, in the traditional frequentist sense, has

not been exhaustively studied, however DIC is a Bayesian analog

to Akaike Information Criterion (AIC), and [17] suggest that

models with AIC/DIC greater than 3–7 above the ‘‘best’’ model

are ‘‘considerably less support[ed]’’. We chose to report DIC

differences greater than 10 as significant, and 15 as ‘‘highly

significant’’. We computed each model’s DIC score separately for

each participant, to quantitatively select the best explanation of the

participant’s pattern of responses.

Results

Human performance
The central result of our study is quantitative selection of the

model that best explains the data, which we determine by

comparing the models’ DIC scores, to answer the four hypothetical

questions posed above. Figure 5A shows raw DIC scores, and

Figure 5B shows the difference between the best model’s DIC

(indicated by circle on x-axis) and the other models’ DIC scores. We

defined DIC significance as described in the previous subsection:

models whose DIC differed by greater than 10 were deemed

‘‘sigificantly’’ different (dashed horizontal line and * in Figure 5B)

and greater than 15 deemed ‘‘highly significantly different’’ (solid

horizontal line and ** in Figure 5B); this is a conservative

modification of the criteria mentioned in [17].

We found that all participants incorporate haptic size

information to make their distance judgments (Q I). Also, we

found 5 of 6 participants misestimated their haptic size noise and

thus incorporated the haptic information less than optimally

prescribed, while one participant applied the haptic cue in

proportion to its reliability (Q II); the following section addresses

the nature of the misestimation. All participants incorporated the

visual image-size cue optimally, in accordance with its noise

magnitude (Q III). All participants used a sample-averaging

strategy over MAP decision-making (Q IV). With respect to Q IV,

the DIC scores were always worse for the MAP model versus the

sample-averaging model, by an average DIC difference of 129

(Figure 5), so we exclusively focus on the sample-averaging models

(odd numbers) for the remaining discussion. Figure 5 depicts each

participant’s DIC scores for each sample-averaging model, the left

graph shows the absolute DIC values and the right graph shows
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the differences between best model DICs and the other models’

DICs. Participant 6 was an author. Participant 3’s DIC differences

between Model 7 and Models 5 and 11 was not significant under

our conservative criteria, however Model 7 was still better by DICs

of 3:0 and 2:9, respectively, which is considered marginally

significant under typical uses of AIC/DIC [17].

Participant 5, the only participant whose DIC favored the

hypothesis that the haptic noise magnitude was correctly known (Q

II), had the worst DIC scores across participants, as well as

substantially different parameter value estimates from the other

participants (see next paragraphs). Upon closer inspection of

participant 5’s data, it was qualitatively the noisiest: in Battaglia

et al.’s [4] simple regression analysis of this data their statistical

analysis determined participant 5’s data was so significantly different

from the other participants’ that it ought to be excluded as an

outlier. The reason we included it in the current analysis was to

determine whether there was still some patterns the previous

analysis had not detected. Though the parameters still yield

meaningful values, because of the major differences between raw

DIC scores, the DIC-favored model, the parameter value estimates,

and the general noisiness of the response data, we strongly suspect

this participant either was not focusing on performing this task, was

randomly selecting answers on a large fraction of the trials, and in

general should be distinguished in further analysis due to these

aberrations: so, we report participant 5’s parameter estimates

separately from the other ‘‘inlier’’ participants.

Figure 6 shows Participant 1’s model-predicted Dresponse com-

pared against the actual Dresponse values, for the best model, 7, as

well as several that differ by one assumption (Table 1). The spread

in the dots is due to sensory noise and the random posterior

sampling process, how neatly the actual data falls within the ranges

predicted by a particular model (black error bars) is indicative of

the model’s explanatory quality. Notice the pattern of more varied

no-haptic vs. haptic Dresponse in Models 7, 11, 5, a direct prediction

of the sampling models over MAP. Though MAP decisions incur

more bias in the no-haptic condition, they actually have less trial-

to-trial variance than in the haptic condition. This is due to the

fact that the prior does not vary between trials, while the more

informative haptic cue does.

A possible concern is that participants learned to use the haptic

cue during the course of the experiment, and that the weak DIC

scores of Models 1–4 in comparison to Models 5–12 actually

reflect the effects of associative learning rather than knowledge the

participants brought into the experiment. We evaluated this

possibility by performing the same DIC analysis on data from only

the first day to test whether Models 5–12 were still favored over

their 1–4 counterparts. The results unequivocally confirm the

results on the data from the final 3 days above: for every

participant, the DIC analysis across the models shows that the no-

haptic models (1–4) have worse DIC scores than their haptic

model counterparts (5–12). The best no-haptic models’ DICs are

below the best haptic models’ DICs by margins of {647, 133, 258,

326, 65, 372} for Participants 1 through 6, respectively. In fact,

removing the sampling models, even the no-haptic models (1 and

3) with the best DIC scores still have worse scores than the haptic

models (5, 7, 9, and 11) with the worst DIC scores. This firmly

supports conclusion that the haptic cue is used even on the first

day of trials.

Though it might seem that given the 6 to 10 ‘‘free’’ parameters

in our general observer model, we could ‘‘fit’’ any data, we are

actually inferring the best parameters and using the posterior’s

expected values rather than the most probable a posteriori

parameters. Moreover DIC acknowledges the possibility for

overfitting and counters it by penalizing overfits through the

complexity term, thus affirming that the chosen model’s structure

and parameters are accurate and robust explanations of the

humans’ judgments. Moreover because we encoded different

hypotheses within the models we could clearly distinguish those

hypotheses best-supported by the data. Lastly, despite the

possibility that we could fit a variety of data, the remainder of

this section shows that the individual inferred parameter values are

consistent with known perceptual parameters measured in other

studies.

Inferred model parameters
A secondary result of this work, beyond providing answers to

the 4 hypothetical questions, is that the inferred parameter values

(ŷym) our analysis yielded can be meaningfully interpreted. Though

Figure 5. Models’ DICs. A. DIC scores for each sample-averaging model for each participant (lower is better); significance (*) is defined as 10 DIC
difference, high significance (**) is 15 DIC difference. Each cluster of 6 bars are models’ 1, 3, 5, 7, 9, 11 DIC; the 6 clusters of bars are the 6 participants.
B. Differences in DIC between the best model (indicated by circle on x-axis) and the other models for that participant (higher values mean closer DIC
score to the best model). The reason only the odd models, which correspond to the sample-averaging decision-making procedures, are shown is
because their DICs are substantially better than their MAP counterparts.
doi:10.1371/journal.pcbi.1002080.g005
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there is no guarantee that the inferred parameters are unique, they

offer an indication of what the analysis finds probable. All reported

parameters are MCMC expections, from which we compute

means+SEs across participants and report the values in log

coordinates. First, we present the SDs in terms of Weber fractions

for the sensory noise, with discrimination thresholds corresponding

to
ffiffiffi
2
p

s.

The image-size noise SD, ~ssh, and assumed noise SD, sh, were

coupled in the best-fit models (7 and 11) for all participants. Their

values correspond to Weber fractions of 0:028 to 0:122 (mean-

+SE of 0:071+0:016) for the inlier participants, and 0:18 for

participant 5. This is comparable to the Weber fractions of 0:06
measured in humans by [18] for parallel line separation

discrimination, and 0:029 by [19] for line length discrimination.

Because our task did not involve interval-wise discrimination of

pairs of stimuli, but rather absolute perception, it is to be expected

that our noise magnitudes will be slightly higher.

The haptic noise SDs, ~ssH , and assumed haptic noise SD, sH ,

were uncoupled in the inlier participants’ best-fit model (7), and

coupled for participant 5’s best fit model. The inlier participants’

haptic noise SDs correspond to Weber fractions of between 0:039
and 0:12 (mean+SE of 0:074+0:020), and 0:50 for participant 5.

A Weber fraction of 0:016 was measured in humans by [20] for

haptic size discrimination of objects between 50 and 60 mm in

width using a similar haptic stimulus presentation apparatus, but

with two fingers gripping the object rather than one finger probing

the size. Because two fingers are likely to provide a more precise

size measurement and because their participants performed

interval discriminations of pairs of objects, our somewhat elevated

Weber fraction are reasonable values. The inlier participants

overestimated their haptic noise SDs, with their assumptions

corresponding to Weber fractions of 0:31 to 0:52 (mean+SE of

0:39+0:041). The consequences of overestimating haptic noise

are that the observers do not achieve the level of disambiguation

possible by fully incorporating the haptic cue, and apply prior

knowledge about the ball’s size and distance relatively more

heavily (Figure 3).

Our analysis provided information about the observer models’

prior knowledge, and found it strikingly similar to the sample

statistics of the experimental stimuli’s distances and sizes, with

slightly higher SDs (remember the stimuli were uniformly

distributed in the mm domain). The mean+SE estimated prior

distance mean and SD parameters, mD and sD, across all

participants were 6:3+0:16 and 0:21+0:016 log-mm, respective-

ly; the experimental distance mean and SD were 6:15 and 0:14
log-mm, respectively. The mean estimated prior size mean and SD

parameters, mS and sS , across participants were 2:7+0:52 and

0:37+0:0090 log-mm, respectively; the experimental size mean

and SD were 3:3 and 0:31 log-mm, respectively. This indicates

participants learned the range of possible stimuli presented in the

experiment and applied that knowledge toward improving their

judgments, to the effect of lowering the posterior variance

(Figure 3). To further investigate the source of participants’ prior

knowledge, we ran our full analysis on only the first day of

participants’ trials, to measure what difference between inferred

parameters exist between early and later in the experiment. We

found that participants’ first-day priors for mD and sD were

6:0+0:29 and 0:27+0:015 log-mm, respectively; and, partici-

pants’ first-day priors for mS and sS were 3:6+0:61 and

0:45+0:022 log-mm, respectively. So, the prior means did not

shift significantly (in terms of SE interval overlap), but the prior SD

values did. It appears that participants rapidly learned the prior

Figure 6. Effect of model on predicted vs. actual Dresponse. Each plot shows the predicted Dresponse (x-axis) versus the actual Dresponse (y-axis)
across several different models for Participant 1. The black diagonal line represents perfect correspondence between mean predicted and actual
Dresponse values; the black error bars represent the 95% confidence interval of the model’s predicted Dresponse. The colored dots represent all the actual
measured Dresponse values; the top row represents no-haptic trials (red, labeled H{), the bottom row represents haptic trials (blue, labeled Hz). Each
column is a different model (numbered along top row, see Table 1), all predicted Dresponse are based on the inferred, MCMC-expected parameters for
that model. Model 7 (column 1) is the best model for the inlier participants, and the others are variations of Model 7 with one difference: Model 3
(column 2) does not use haptic cues; Model 10 (column 3) uses MAP estimation instead of sampling; Model 11 (column 4) describes an observer that
knows the haptic noise accurately; Model 5 (column 5) describes an observer that uses inaccurate knowledge of the image noise. When comparing
Model 7 to the worse-fit models, consider the correspondences between predicted and actual Dresponse means and variances, ie. how neatly the actual
data falls within the predicted bounds. Also, for Model 3 note that the Hz predictions are not as constrained as Model 7. And, notice Model 10
cannot jointly predict the higher variance in the H{ actual Dresponse and the lower variance in the Hz actual Dresponse. Models 11 and 5 have
predictive accuracy nearer that of Model 7, but still have worse fits as summarized by the DIC scores (Figure 5). (Slight differences between Models 7
and 3’s H{ predictions are due to stochasticity in the MCMC sampling procedure.)
doi:10.1371/journal.pcbi.1002080.g006
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means, which are more easily estimable from experience and also

may be assumed to some extent (the true prior distance mean is at

the center of the virtual workbench, and the balls’ sizes were

directly observable in haptic condition trials). However, partici-

pants appeared to use more diffuse prior sD and sS parameters

early in the experiment, which is consistent with making weaker

prior assumptions about the range of distance/size variation (top

row of Figure 3).

Our analysis provided estimates of participants’ motor noise

SD, whose mean+SE across participants was 0:024+0:00042
log-mm, which amounts to a SD of 7:3 mm at a reach distance of

300 mm, and 15:6 mm at reach distance of 640 mm, the extremal

distances presented in the experiment. A value of 0:027 log-mm

was reported [21] under similar reaching conditions.

The sample-averaging models generally outperformed the MAP

estimate models (Q IV) with respect to DIC scores. The inlier

participants had k values between 3:5 and 6:8 (mean+SE of

5:1+0:58), and participant 5’s k estimate was k~1:2. Of course

in our model k must be integer-valued, but these real valued

estimates are robust means across our MCMC analysis samples.

An alternative interpretation of k is that it is an exponent applied

to the posterior distribution, from which one sample is then drawn

after renormalizing. For a Gaussian distribution, because

(exp(
{(x{m)2

2s2
))k~exp(

{(x{m)2

2(
sffiffiffi
k
p )2

), drawing 1 sample, s, from

exp(
{(x{m)2

2(
sffiffiffi
k
p )2

) yields a Gaussian-distributed: s*N (s; m,
sffiffiffi
k
p ).

And, drawing k samples, s1 . . . sk, from the unexponentiated

exp(
{(x{m)2

2s2
) and averaging yields a sample mean with the

same distribution:

1

k

Xk

i~1
si*N (

1

k

Xk

i~1
si; m,

sffiffiffi
k
p ):

Between the DIC analysis and the validity of the inferred

parameters, we conclude that model 7 is both structurally and

parametrically accurate. This strongly supports model 7 and its

encoded hypotheses as a coherent computational account of the

underlying processes responsible for size-aided distance percep-

tion.

Discussion

We conclude that humans can use haptic size cues to

disambiguate and improve distance perception, but that the

degree to which they incorporate haptic size information is lower

than the ideal observer prescribes. We also conclude that the

distance responses are best explained as a process of drawing

several samples from the posterior distribution over distance given

sensations, and averaging them to form a distance estimate. This

behavior is broadly consistent with a Bayesian perceptual

inference model in which mistaken generative knowledge about

haptic cues is used, and beliefs about distance are accessed by

drawing samples from an internal posterior distribution.

The brain’s use of sensory cues for disambiguating others has

been reported in a variety of perceptual domains, and broadly falls

under the category ‘‘perceptual constancy’’. Constancy effects, like

the present distance constancy, involve situations in which an

observer cannot unambiguously estimate a scene property due to

confounding influences from other ‘‘nuisance’’ properties, and so

leverages ‘‘auxiliary’’ cues (in this study, haptic size) to rule out

inconsistent possibilities. Auxiliary disambiguation effects, like

constancy, have other names in the literature, like ‘‘cue promotion’’

[22], ‘‘simultaneous contrast’’ [23], and ‘‘taking-into-account’’ [24].

Many studies have reported ‘‘size constancy’’, distance cues

disambiguating object size perception [25–32], so it is not entirely

surprising that size cues can conversely disambiguate distance

perception.

Humans underestimating non-visual cue reliabilities and thus

integrating them less strongly has been measured before by

[10,32]. There are several potential reasons for this phenomenon,

one idea that has recently garnered support [33–36] is that sensory

cues are used in accordance with their causal relationships to the

unobserved scene properties: when the brain believes cues are

unrelated to the desired scene property, it down-weights or

outright ignores them. In the present study, this would mean the

brain is unwilling to fully apply the haptic size cues because they

might originate from a source independent of the ball, for instance

imagine the hand touched a ball behind a photograph of a

different ball; of course, such miscorrespondences are uncommon

in nature, but examples like ‘‘prism adaptation’’ demonstrate the

brain can accommodate and recalibrate in such situations.

Another possibility is non-visual cues to spatial properties may

be experienced far less frequently in life, and had fewer

opportunities on which to be calibrated, so they are mistrusted.

Our finding that all our observers’ responses are best modeled

as sampling the posterior is consistent with recent studies and ideas

about the representation and computation of probability in the

brain. Using posterior sampling to generate responses in a choice

task should manifest as probability matching of the options, a

common finding in many behavioral tasks, including a perceptual

audio-visual cue-combination task [13]. Sampling has also been

used to provide a novel explanation for perceptual switching to

multistable displays [11,37]. Moreover, sampling provides an

interpretation of neural activity in population codes and makes

difficult probabilistic computations simple to neurally implement

(see review by [38]).

Although Bayesian decisions are usually modeled as maximizing

the posterior, maximization is not the best decision rule in all

instances. MAP’s optimality depends on both the task and the

veridicality of the decision maker’s posterior distribution. MAP

assumes the decision maker’s goal is to maximize the number of

correct responses and that the posterior is based on the correct

generative model for the data. When the posterior is not correct,

basing responses on sampling provides exploration that can be

used to improve the decision maker’s policy. This idea has been

extensively explored within reinforcement learning, where explo-

ration is frequently implemented using a softmax decision strategy

[39] where choices are stochastically sampled from an exponen-

tiated distribution over the values of a set of discrete options. This

idea can be generalized to the case of continuous decision

variables. The value of an estimate is based on the reward function

for the task. In our decision task, participants were ‘‘correct’’

whenever their choices fell within a narrow region relative to their

posterior distribution. Approximating the experimental reward

function as a delta function, the optimal strategy is to maximize

the posterior. However, if we need to improve our estimate of the

posterior, then it is important to estimate the error. Sampling from

the posterior gives a set of values that can be used to compute any

performance statistic, making it a reasonable strategy when an

observer is needs information needed to learn - i.e. to assess and

improve performance.

Though our models posit observers draw k samples directly

from the posterior and averaging, any decision rule that is sensitive
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to the posterior variance may produce similar predictions – for

instance, it is possible that participants internally exponentiate the

posterior and draw exactly one sample (detailed in Results). This

means that for greater exponents, the posterior is more greatly

sharpened; as the exponent approaches infinity, the posterior

approaches a delta function located at the MAP estimate (after re-

normalizing). This is a general strategy used in many machine

learning domains to transition neatly between posteriors, MAP

estimates, and ‘‘watered down’’ versions of the posterior. However

we find this account unappealing because it implies that drawing

more than one samples is less attractive to the observer’s

underlying perceptual mechanics than performing posterior

exponentiation. Also, though our models assume posterior

sample-averaging is a source for behavioral response variance

(Figure 4), another possibility is that observers have uncertainty in

the parameter values that characterize their generative knowledge

itself, and actually draw samples of generative parameters instead

of using deterministic parameter estimates. For instance, when

combining haptic cues they may sample from an internal

distribution over haptic reliability (wH ). This could be a strategy

for learning when the brain is uncertain about internal generative

model parameters; because the observer receives feedback, and

presumably wishes to calibrate the internal perceptual model,

varying behavior by using different samples of internal model

parameters avoids redundant feedback associated with similar

behavioral responses to similar input stimuli.

Using a full probabilistic model of observers’ sensation,

perception, and decision-making processes provide us with

answers to the four key questions we posed in the Model section.

This study’s analysis of data reported by [4] resulted in a much

more comprehensive account of the computations responsible for

distance and size perception. By formally characterizing a set of

principled computational perception hypotheses, and choosing the

best theoretical account of the measured phenomenology using

Bayesian model selection tools, we demonstrated the power,

robustness, and flexibility of this coherent framework for studying

human cognition, and obtained deeper understanding of distance

perception.
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