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Abstract

Fundamental properties of phasic firing neurons are usually characterized in a noise-free condition. In the absence of noise,
phasic neurons exhibit Class 3 excitability, which is a lack of repetitive firing to steady current injections. For time-varying
inputs, phasic neurons are band-pass filters or slope detectors, because they do not respond to inputs containing
exclusively low frequencies or shallow slopes. However, we show that in noisy conditions, response properties of phasic
neuron models are distinctly altered. Noise enables a phasic model to encode low-frequency inputs that are outside of the
response range of the associated deterministic model. Interestingly, this seemingly stochastic-resonance (SR) like effect
differs significantly from the classical SR behavior of spiking systems in both the signal-to-noise ratio and the temporal
response pattern. Instead of being most sensitive to the peak of a subthreshold signal, as is typical in a classical SR system,
phasic models are most sensitive to the signal’s rising and falling phases where the slopes are steep. This finding is
consistent with the fact that there is not an absolute input threshold in terms of amplitude; rather, a response threshold is
more properly defined as a stimulus slope/frequency. We call the encoding of low-frequency signals with noise by phasic
models a slope-based SR, because noise can lower or diminish the slope threshold for ramp stimuli. We demonstrate here
similar behaviors in three mechanistic models with Class 3 excitability in the presence of slow-varying noise and we suggest
that the slope-based SR is a fundamental behavior associated with general phasic properties rather than with a particular
biological mechanism.
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Introduction

Stochastic resonance (SR) has been extensively described in

both bi-stable and excitable systems and is a classic example of

noise enhanced processing [1–9]. Briefly, SR involves noise

facilitating dynamic state transitions or threshold crossing, while

permitting phase-locked response to a subthreshold signal. The

interaction of signal, noise, and response nonlinearity maximizes

signal encoding at a nonzero value of noise intensity. Here, we

characterize the novel manner in which SR-like phenomena occur

in phasic neuron models. Phasic neurons are characterized by the

absence of repetitive firing to steady current injection and low-

frequency input, yet show faithful responses to brief pulsatile and

high-frequency signals [10–13]. In a classical SR system, often

exemplified by non-phasic neurons, a signal can be detected

without noise simply by making its amplitude adequately large. In

contrast, deterministic phasic neurons will not respond to low-

frequency input even if the signal amplitude is very large, making

phasic neurons an ideal framework to study noise-gated coding

[14]. We convey our insights by presenting detailed results for a

phasic model [15] that has been widely used in modeling various

auditory brainstem phasic neurons [16–18] that perform precise

temporal processing and respond only to rapid transients and

coincidences. We then examine other types of phasic models,

showing that our findings are general.

The Class 3 excitability, which is commonly used to define

phasic responses [12], can be created by different cellular

mechanisms, such as recruiting a low-threshold potassium current

(IKLT) [19–22], inactivating the sodium current (INa) [12,23–24],

or steepening the activation of the high-threshold fast potassium

current (IKHT) [25]. The phasic neuron model that is our primary

focus here is a Hodgkin-Huxley (HH) type model with IKLT [15].

Combining the same phasic neuron model and whole-cell

recordings in the medial superior olive (MSO) in gerbil, we have

previously shown that adding noise enables phasic neurons to

detect low-frequency inputs, which, alone, cause no spiking

response [14]. Although this behavior seems to be consistent with

SR, it is fundamentally different from SR for the reasons listed

below.

In a classical SR system, adding a small amount of noise to a

subthreshold signal facilitates threshold crossing, such as a spike

emission upon crossing a membrane voltage (Vm) threshold. When

the intensity of the noise is properly chosen, the signal can be

encoded by eliciting more spikes around the signal’s peak and

fewer spikes around its trough. The larger the amplitude of the

subthreshold signal, the better the noise-gated encoding becomes;
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whereas, for supra-threshold signals noise will only degrade signal

encoding. In this sense, we call the classical SR system an

‘‘amplitude-based stochastic resonance’’. However, we discovered

that phasic MSO neurons and a phasic neuron model [15]

responded to the rising, falling, or trough phases, depending on the

spectrum of the noise, but not to the signal’s peak except for very

large noise [14]. Here, we report that an essential feature of phasic

neurons is that response ‘‘threshold’’ is better defined in terms of

the slope rather than the amplitude of the input. We further show

that the noise-gated signal encoding is sensitive to the slope of the

signal, as opposed to its amplitude. For this reason, we label SR-

like phenomena in phasic neurons as a ‘‘slope-based stochastic

resonance’’.

In this study, we highlight the novelty of a phasic neuron’s slope-

based SR behavior by contrasting it with the qualitatively distinct

amplitude-based SR and coding properties of tonic neurons. To

this end, we first compare the dependence of the signal-to-noise

ratio (SNR) on noise intensity obtained from a tonic model to that

from a phasic model. In addition to analyzing SNRs, we pay

attention to the temporal firing patterns, which are often

overlooked when SR systems are concerned. Next, we show that

the slope-based SR behavior of the phasic model can be reflected

in a highly non-monotonic f-I (firing rate vs. stimulus mean)

relation with the compelling feature that firing rate falls

continuously to zero with increasing I. Such f-I curves have been

reported for phasic neurons and models [24,26,27]. Finally, the

slope threshold in response to a ramp stimulus, as is observed in

noise-free conditions [28], is reduced or diminished by the

addition of noise. In total, we report that the influence of noise

and any noise-assisted coding performed by phasic neurons is

significantly distinct from that of tonic neurons.

The occurrence of Class 3 excitability is often associated with

outward currents, i.e., IKLT or IKHT [25,29]. It is far less realized

that strong inactivation of INa can also create Class 3 excitability

[23]. We show that the slope-based SR behavior is observed with

phasic models created by manipulating the voltage dependency of

either IKHT or INa when the noise spectrum favors low frequencies.

Our present study, complemented by our previous experimental

results [14], reveals that phasic neurons can have substantially

different behaviors in noisy conditions compared to their behaviors

in non-noisy conditions. The conventional views of phasic neurons

being band-pass filters or slope detectors, which are all acquired in

idealized conditions with no noise present, should be re-evaluated

in noisy conditions.

Results

Tonic and Phasic Models Behave Differently in a Noise-
Free Condition

The response or bifurcation diagram of the tonic model shows

repetitive firing over a range of steady current input, IDC (Fig. 1A,

left, green). An example time course (IDC = 0.6 nA) is plotted as an

inset. In contrast, the phasic model shows typical Class 3

excitability (Fig. 1A, right) by having a unique stable steady state

for all IDC. Note that the ‘‘phasicness’’ of the phasic model is

relatively strong [14] so that no repetitive firing is observed even

for large steady input current, unlike in some previous studies

[29–31].

The phasic and tonic models also show different firing

preferences for sinusoidal input with varying frequency and

amplitude (Fig. 1B and C; replotted from Fig. 1 in [14]). For the

tonic model, the input threshold (the lowest amplitude of a

sinusoid that causes firing) remains relatively constant for low

frequencies. In contrast, the input threshold of the phasic model

rises sharply on the low-frequency side. For this reason, phasic

neurons are commonly viewed as band-pass filters, and conse-

quently it is difficult to define a universal input threshold in terms

of input amplitude. The threshold rise is not completely amplitude

independent because 1) increasing the amplitude of a sinusoid

steepens the zero-crossing slope, and 2) increasing the amplitude of

a sinusoid is similar to decreasing the pre-ramp holding current of

a ramp stimulus, which leads to decreased slope threshold.

Nevertheless, for phasic neurons it is more natural to define the

threshold in terms of an input slope/frequency.

Another distinction between tonic and phasic firing is the

spiking ratio (the number of spikes per stimulus cycle) for low-

frequency sinusoidal inputs (Fig. 1C). The tonic model fires more

than one spike for low-frequency inputs (left), whereas the phasic

model fires only one spike in each cycle for most of the input

conditions (right). Representative time courses are plotted in

Fig. 1B. Therefore, even if the phasic model responds to low-

frequency inputs with extremely large input amplitude, the firing

rate is low (e.g., 20 spikes/sec for a 20-Hz sinusoid with 4-nA peak

amplitude). Based on this feature, later we show that the intensity

of noise that optimizes signal encoding is different for the tonic and

phasic models.

Phasic neurons are often called slope detectors because they

respond to fast-rising, but not to slow-rising, ramps [28]. Fig. 2

shows the Vm of the phasic model (right) in response to ramp

current with different slopes (left). The ramp elicits an action

potential only when its slope (dI/dt) exceeds 0.55 nA/ms. In

contrast, the tonic model fires action potentials to ramps with any

slope, as long as the input amplitude reaches 0.3 nA (not shown).

Noise Can Gate the Encoding of Low-Frequency Signals
Average firing rate and SNR are presented first to provide a

general measure of the model behaviors, followed by detailed

frequency and temporal responses. Fig. 3A shows that the average

firing rate of both models increased monotonically with noise

intensity (s). When the signal amplitude increased from 0.1 to

0.2 nA, the firing rate of the tonic model remained constant except

at very low noise intensities. In contrast, when the amplitude of the

signal increased from 1 to 2 nA, the firing rate of the phasic model

decreased substantially. The relationship between firing rate and

signal amplitude will be explored more thoroughly later.

Fig. 3B shows the SNR obtained with the larger (black) and

smaller (gray) signal amplitudes for both models. The SNR of the

tonic model resembled the SNR of a classical SR system, showing

an abrupt rise before a peak and a gradual decay after the peak

Author Summary

Principal brain cells, called neurons, show a tremendous
amount of diversity in their responses to driving stimuli. A
widely present but understudied class of neurons prefers
to respond to high-frequency inputs and neglect slow
variations; these cells are called phasic neurons. Although
phasic neurons do not normally respond to slow signals,
we show that noise, a ubiquitous neural input, can enable
them to respond to distinct features of slow signals. We
emphasize the fact that, in the presence of noise, they are
still sensitive to the change in stimulus, rather than to the
constant part of the slow inputs, just as they are for fast
inputs without noise. This feature distinguishes the
response of phasic neurons from those of other neurons,
which show more sensitivity to the amplitude of their
inputs. We believe that our study has significantly
broadened the understanding about the information-
processing ability and functional roles of phasic neurons.

Slope-Based Stochastic Resonance
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[4,32]. In addition, the peaks of the SNRs for both signal

amplitudes were obtained at the same noise intensity (s = 5 pA),

consistent with an asymptotic theory of SR for weak signals

(see Equation 4). The red dotted line is a fit to the SNR for the

smaller signal amplitude (black) using Equation 4. Although the

SNR decayed faster than the fit, they had essentially the same

Figure 1. Basic property of the tonic and the phasic models in response to simple current injections. (A) Bifurcation diagrams of the
tonic (left) and phasic (right) models obtained with steady-state current (IDC). Solid lines represent stable equilibrium. The tonic model displays
repetitive firing over a range of IDC (green). The inset marked with * is a 20-ms voltage trace obtained when IDC = 0.6 nA. (B) and (C) Responses of the
tonic (left) and phasic (right) models to sinusoidal inputs with zero mean replotted from [14]. (B), two voltage traces over three stimulus cycles for
input amplitude and frequency marked in the lower panels (*). (C) frequency-response maps of the models. Gray-scale colors represent spiking ratios
(number of spikes over number of cycles) to a sinusoid current input with varying frequency (x axis) and amplitude (y axis).
doi:10.1371/journal.pcbi.1000825.g001

Figure 2. Voltage traces of the phasic model (right) in response to ramp stimulus with different slopes (left).
doi:10.1371/journal.pcbi.1000825.g002

Slope-Based Stochastic Resonance
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shape. In contrast, the SNRs obtained with the phasic model did

not show classical SR-like behavior (Fig. 3B, right). For both signal

amplitudes, the SNRs did not decrease significantly at high noise

intensities. Presumably, the SNR will drop for very large noise

intensity, however the membrane fluctuation caused by the largest

noise intensity used here (s = 30 pA) already reached 30 mV for

the phasic model (Fig. 3A, right, top horizontal axis). For the larger

signal amplitude (black), a distinct dip occurred in the SNR

around s = 17 pA (marked with c), which yielded a SNR even

lower than the SNR obtained with the smaller signal amplitude

(gray). Thus it is impossible to fit the SNR of the phasic model

using Equation 4. To understand why the SNRs of the phasic

model had such unusual shapes, later we show more detailed

frequency and temporal response patterns for the larger signal

amplitude. Responses at several representative noise intensities

(marked in the SNR plots) were chosen for demonstration.

Here the SNR reflects at the system’s output the signal power

with respect to the noise power. Another frequently used metric in

studies of SR is the spectral power amplification (SPA) [9]: the

peak power at the signal’s fundamental frequency normalized by

the total signal power (see Methods), a measure of gain of the

subthreshold signal. For the tonic model, the SPA behaved similar

to the SNR in that an optimal value of noise intensity can be

identified to yield the highest signal gain (Fig. 3C, left). Moreover,

the amplification of the signal was approximately constant with

respect to signal amplitude, as increasing the signal amplitude

from 0.1 (gray) to 0.2 nA (black) did not noticeably change the

gain. In contrast, the SPA for the phasic model kept increasing for

a fixed signal amplitude up to the highest noise level tested

(Fig. 3C, right). In other words, with increasing noise intensity, the

signal’s gain was also increasing, leaving a relatively flat SNR

(Fig. 3B, right); there was no optimal noise intensity to achieve the

highest signal’s gain. Another striking feature was that, as the

signal amplitude increased from 1 (gray) to 2 nA (black), the SPA

as a measure of the signal’s gain decreased significantly (Fig. 3C,

right). As will be described below, this was because for the larger

signal amplitude, more output power was shifted from the signal’s

fundamental frequency to the first harmonic. Finally, it should be

noted that because the phasic model did not favor low-frequency

signals, the SPA as a measure of the signal’s gain was considerably

smaller than the SPA for the tonic model (Fig. 3C). For the tonic

model, the power-spectrum density (PSD) plots agreed with PSDs

from classical SR systems with weak signals [4] in that a large peak

occurred at the signal frequency (20 Hz) with smaller peaks at the

harmonics for low-intensity noise (Fig. 4, left, 1st column). The

period histograms showed highest sensitivity to the signal’s peak at

all noise intensities with more uniformly distributed spikes

occurring at high noise intensities (Fig. 4, left, 2nd column). The

interspike-interval (ISI) histograms indicated that missing signal

cycles only occurred on the rising phase of the SNR curve (a); once

the SNR reached its peak (b), there were always one or more

spikes in each cycle (b and d) (Fig. 4, left, 3rd column). All of these

Figure 3. Average firing rate (A), SNR (B), and SPA (C) vs. standard deviations of noise (bottom horizontal axis) and of Vm (top axis)
for the tonic (left) and phasic (right) models. The red dotted line is a fit to the SNR for the smaller signal amplitude using Equation 4. The voltage
s was obtained separately when the spiking mechanism was disabled by setting the activation/inactivation variables of the INa and IKHT to their
resting values. The points and letters marked in the lower panels indicate the noise s values (tonic model, s = 2, 5, and 14 pA for a, b, and d; phasic
model, s = 5, 10, 17 and 25 pA for a, b, c, and d) that are used in Fig. 4. The legends show signal amplitude. Signal frequency was 20 Hz.
doi:10.1371/journal.pcbi.1000825.g003

Slope-Based Stochastic Resonance
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behaviors were consistent with what are expected for neurons

exhibiting classical SR behaviors [1].

In contrast, the phasic model was mostly sensitive to the signal’s

rising phase, indicated by the period histograms (Fig. 4, right, 2nd

column). After SNR reached its peak (b), the phasic model also

responded to the signal’s falling phase with a lower firing

probability compared to the responses in the rising phase (c and

d). This preference for two distinct phases explained why the

power at the first harmonic can be larger than the power at the

fundamental frequency for certain noise intensities (Fig. 4, right, 1st

column, c). This also explained why there was a peak at half signal

cycle in the ISI histogram for certain noise intensities (b and c). In

addition, for very high noise intensities (d), the phasic model still

showed no response in the signal’s trough, which is consistent with

high SNR persisting at high noise intensities (Fig. 3B, right).

Note that these distinct features were observed with the phasic

model for low-frequency signals. As the signal frequency increased,

the SNR behaved more similar to the SNR of a classical SR

system, and responses occurred around only one phase of each

signal cycle (e.g., for 100 Hz, not shown). The above descriptions

for the tonic model were generally independent of frequency.

To make a more detailed comparison between the signal coding

at the fundamental frequency and the first harmonic, the SNRs

computed at the first harmonic are plotted in Fig. 5. For the tonic

model (left), the SNRs at the first harmonic (solid) were always

lower than the SNRs at the fundamental frequency (dotted). This

was also the case for the phasic model with the lower signal

amplitude, except around the peak of the SNR (Fig. 5, right, gray).

With the higher signal amplitude, there was a range of noise level

(,15 to 25 pA) that yielded a higher response power value at the

first harmonic than at the fundamental frequency (Fig. 5, right,

black).

In summary, the impact of noise on the encoding of low-

frequency signals was different between the phasic and tonic

models. In classical SR studies SNR is normally measured at the

fundamental frequency of the signal and therefore does not

capture how stimuli shape the temporal pattern of responses in

other frequency bands. In particular, for large-amplitude stimuli

there can be significant stimulus-response interactions at frequen-

cies outside the stimulus spectrum, a hallmark of a nonlinear

stimulus-response transfer function. The unusual SNR curves

produced by the phasic model (Fig. 3B, right) are caused by

significant firing at double the signal frequency for some noise

intensities. Thus, the dip of the SNR computed from the

fundamental frequency (marked with c) did not mean that the

signal was badly encoded, but meant that it was encoded at a

harmonic frequency of the fundamental. Although in some

previous studies [9,33–35], nonlinear SR has been considered

and quantified at higher harmonics, those studies did not associate

such measurements with a clear temporal pattern, e.g., firing at the

rising and/or falling phases, as shown in the present study.

We gain insight into the phasic model’s unusual response

properties by applying reverse correlation analysis and examining

the spike-triggered averages (STA) of several dynamic quantities:

the stimulus (Fig. 6A), Vm (Fig. 6B), the fast gating variable, w, of

IKLT (Fig. 6C), and the system’s trajectory in the Vm-w phase plane

(Fig. 6D and E) for condition c (Fig. 4). We select from a brief time

window (4 ms) centered on the rising or falling phases of the signal

(Fig. 6F).

The stimulus STA indicates that, on average, a modest

hyperpolarizing dip preceded the strong brief depolarizing

component just prior to spike initiation (Fig. 6A), consistent with

previous findings [14,22,23]. As seen in the period histograms

above (Fig. 4, right, 2nd column), the phasic model barely

responded to the signal’s peak for a wide range of noise intensity.

This lack of response was due to the activation of IKLT, indicated

by the high values of w (Fig. 6C, black) and the nearly flat voltage

traces (Fig. 6B, black) during the positive half of the sinusoid. For

Figure 4. Comparisons of the tonic and phasic models for power-spectrum density (PSD), period histogram, and inter-spike interval
(ISI) histogram at different representative noise levels (specified in Fig. 3). The amplitude of the signal was 0.2 and 2 nA for the tonic and
phasic models, respectively. Signal frequency was 20 Hz. The dotted lines in the period histogram plots represent the time course of the sinusoidal
signal for illustration purpose. Two identical cycles of period histograms are plotted. The scale of the vertical axes of the PSD and period histogram
plots are fixed over all the panels. The scale of the vertical axes of the ISI histogram plots are not fixed due to a large variation of values across panels.
The average firing rate (sp/s) is marked in the upper right corner of each panel.
doi:10.1371/journal.pcbi.1000825.g004
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spikes occurring on the signal’s rising phase, the rises in Vm and w

just before spike initiation were significantly slowed by the noise

(gray) in comparison to the Vm and w responses to signal without

noise (green). For spikes occurring on the signal’s falling phase, the

hyperpolarizing noise dip led, on average, to a faster decrease in w

before a spike (black) compared to the decrease of w caused solely

by the signal (green) (Fig. 6C).

These observations can be rationalized by phase plane analysis,

by comparing features and trajectories in the STA of Vm-w phase

plane (Fig. 6D and E, right), with those of the deterministic phase

trajectory of the signal-induced (noise-free) response (Fig. 6D and

E, left). Due to the presence of IKLT, there is not a fixed voltage

threshold for the phasic model [36,37]. Rather, the firing

threshold is dynamic and involves Vm and w together, as affected

by the input current. The full model (Equation 1) is multi-

dimensional; however, by considering a reduced two-dimensional

model [38], we reveal the dynamic threshold geometrically, as a

separatrix curve in the Vm-w plane. For this reduction, we suppose

that the sodium current (INa) activates instantaneously, i.e. we set m

to m? Vð Þ. The nullclines and separatrixes are dynamic and move

in this two-variable projection, depending on the stimulus and

other dynamic variables. In order to demonstrate the dynamic

aspects, we consider, first, the rising phase case and choose two

points on the STA time course and trajectory (gray in Fig. 6 A–C,

D, right): one slightly before (red circle) and one slightly after

(purple circle) the initiation of a spike. The corresponding phase

points in the signal’s trajectory are also marked (Fig. 6D, left,

triangles). In Fig. 6D, the nullclines and separatrixes were

constructed with the variables h, n, p, z, and r set to their

individual instantaneous values at the times chosen for the two

‘‘snapshots’’ (the circles/squares). For the STA-driven case, these

values were obtained from trial-averaging of the respective

variables over the spike-generating trajectories.

In the noise-free case, the threshold separatrix driven by signal

alone moved upward as the signal increased (Fig. 6D, left, red to

purple). However, the phase point for the signal alone (triangles)

also moved upward and ahead of the separatrix; no threshold-

crossing occurred and the system remained subthreshold. In

contrast, the mean spike-triggering noise, first hyperpolarizing,

pushed the trajectory (Fig. 6D, right, gray) toward the w-nullcline

(blue solid). This push and proximity to the w-nullcline slowed the

motion along the trajectory (i.e., dw/dt is small close to the

nullcline), accounting for the slowed rise of the Vm and w time

courses; while in the noise-free case (Fig. 6D, left) the trajectory was

not slowed or close to the w nullcline. With this slowed growth of

the IKLT the phasic model was hyperexcitable compared to that in

the noise-free case for the same signal values. When the STA noise

became depolarizing, the separatrix moved upwards rapidly

(Fig. 6D, right, red to purple), sweeping through the slowed phase

point, thereby creating a threshold crossing.

The geometrical analysis for the threshold and response

dynamics during the signal’s falling phase is analogous, showing

how the STA-noise accelerated the trajectory to enable spike

generation. Just before a spike, the hyperpolarizing noise pushed

the STA phase point down and leftward to become farther away

from the w nullcline (Fig. 6E, right, squares) than in the noise-free

case (Fig. 6E, left, triangles). This increased distance indicates that

dw/dt was more negative in the STA-case, hence speeding up the

motion and the decrease of IKLT. This accelerated decrease leads

to a timely window for depolarizing fluctuations that, on average,

swept the separatrix upwards through the phase point, creating a

threshold crossing and spike.

Movies that show the dynamic phase planes (involving

separatrixes, nullclines, and Vm-w phase points) are included in

the supplemental materials (Video S1). Although IKLT played a

major role in creating the above behavior, the inactivation of INa,

denoted by h, also made a small contribution in a way similar to w.

For example, the hyperpolarizing noise slowed down the decrease

of h in the rising phase and speeded up the increase of h in the

falling phase. The phase-plane analysis in the Vm-h plane is also

included in the supplemental materials (Video S2).

Input-Output Signatures of Slope-Based Stochastic
Resonance

The above simulations showed that noise can enable the phasic

model to encode low-frequency signals, which alone cause no

response, in a way essentially different from the classical SR. In

Figure 5. SNR computed at the first harmonic of the signal frequency (thick solid lines in the bottom panels) for condition c in Fig. 4.
The small top panel shows the PSD at the noise level marked with the star in the SNR plot on the right. For comparison, SNR computed at the
fundamental of the signal frequency (thin dotted lines) are re-plotted from Fig. 3. F, fundamental (20 Hz). H, harmonic (40 Hz).
doi:10.1371/journal.pcbi.1000825.g005

Slope-Based Stochastic Resonance
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fact, the slope-based SR behavior might be inferred from other

properties of the phasic model, such as the f-I, f-A (signal

amplitude) and f-slope curves obtained in the presence of noise.

These properties are usually studied in noise-free conditions;

however, in reality more or less noise is always present for a

neuron. Below we will compare these properties for the tonic and

the phasic models in noisy conditions, and explain why they are

related to the behavior of SR.

a) f-I curves. Because phasic neurons do not show sustained

responses to steady input current, an f-I curve cannot be obtained

in a noise-free condition. However, f-I curves, which turn out to be

highly non-monotonic, can be obtained with the phasic model

when noise is added [24,26,27]. A typical f-I curve for white noise

s = 15 pA is plotted in Fig. 7B (black solid). Here I was the input

mean, which was kept constant over 10 s during simulations. The

maximum firing rate of the phasic model was reached at some

intermediate I value (,0.8 nA) rather than at the highest I value,

in contrast to the f-I curve of the tonic model which increased

monotonically with I (Fig. 7A). We believe that such a highly non-

monotonic f-I curve exhibited by the phasic model (Fig. 7B)

correlates with slope-based SR responses, because the monotonic

curve exhibited by the tonic model (Fig. 7A) will inevitably lead to

amplitude-based responses. We will test this hypothesis with other

types of phasic models (see the last section of the Results).

According to the period histograms of the phasic model in

responses to a 20-Hz signal with noise (Fig. 4, right, 2nd column),

temporal variation of I can affect the f-I curve, even when the

variation is relatively slow (e.g., 20 Hz); otherwise, responses to the

Figure 6. Spike-triggered averages (STAs) for spikes occurring in a 4-ms window centering at the rising (gray) and falling (black)
phases of the 20-Hz signal (As = 2 nA) for the phasic model. The signal alone and its responses are plotted in green. (A) STA of stimulus. (B)
STA of Vm. (C) STA of w, which is the fast gating variable of the IKLT. (D) and (E) Voltage-w phase-plane analysis. Two phase points, one before and one
after the initiation of the averaged action potential (AP) for the rising or falling phase are marked with circles and squares, respectively. The
corresponding phase points in the signal’s trajectory are marked with triangles (I = 2150 and 225 pA for the rising phase; I = 150 and 25 pA for the
falling phase). Blue dotted, Vm nullcline. Blue solid, w nullcline. Red and purple, threshold separatrix. (F) Period histogram showing the selection of
spikes. Note that only spikes with a previous inter-spike interval longer than half of the signal cycle were included to avoid averaging action
potentials with subthreshold Vm. The stimulus condition is as marked with c in Fig. 3. Stimulus duration was 500 s. Noise s was 15 pA.
doi:10.1371/journal.pcbi.1000825.g006
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signal’s rising and falling phases would be equal. Fig. 7B plots the

f-I curve separated for spikes occurring at the signal’s rising (solid)

and falling phases (dotted) for the same noise s (15 pA) for a 20-

(red) or a 30-Hz (blue) signal. Differences can be observed between

the f-I curves for constant I (black) and time-varying I (red or blue).

Some of the differences were caused by different degree of the

activation of slow cation current (Ih) or the inactivation of the IKLT

comparing constant vs. time-varying I; others were caused by

fundamental properties of the phasic model. We will separate these

two factors below.

Differences caused by Ih and the inactivation of IKLT: When I was

constant (Fig. 7B, black), the peak firing rate occurred at a positive

I value (,0.8 nA) and the phasic model showed some amount of

spiking activity to the highest I value (i.e., 2 nA). The upper

horizontal axis shows the average Vm for each I value when the

spiking mechanism was disabled. The peak of the steady f-I curve

corresponds to a Vm that was approximately 4 mV above the

resting Vm (264 mV). When I was periodic (red and blue), the

model fired less to depolarizing I values and the peak firing rates

occurred at negative I values (20.4 to 20.1 nA). The STA of Vm

shows that spikes were initiated when the Vm was approximately

270 mV. This difference was mostly caused by a higher input

resistance with steady I due to deactivation of Ih when the Vm was

continuously depolarized with I.0 (e.g., activation variable

r%0.02 for I = 2 nA). When I was varying at 20 or 30 Hz, Ih

was too slow to deactivate for positive I values. In addition, z, the

slow inactivation of IKLT, for constant positive input (black) leads

to easier spiking because of the smaller IKLT. Additional simulation

results showed that when z and r were fixed, the peak firing rates

for constant and for time-varying I occurred at the same I value

(not shown).

Differences caused by fundamental properties of the phasic model: First,

when the periodic I increased from hyperpolarizing to depolar-

izing values during the rising phase, more spikes occurred (Fig. 7B,

red or blue solid) than the responses for constant I (black), because

a previous hyperpolarization reduced the amount of IKLT. When

the periodic I swept from depolarizing to hyperpolarizing values

during the falling phase, the firing rate was always lower (red or

blue dotted) than the responses for constant I (black) due to a

higher amount of recruited IKLT. Second, the 30-Hz signal elicited

a higher peak firing rate (blue solid) compared to the 20-Hz signal

(red solid) for the signal’s rising phase, indicating that the phasic

model was indeed sensitive to the rising slope of the input mean.

This result is better illustrated when dI/dt is also included as a

parameter (Fig. 7D). The peak firing rate of the phasic model

(indicated by the warm color) increased with dI/dt (y-axis). In

contrast, the firing rate of the tonic model was not sensitive to dI/

dt (Fig. 7C). The insensitivity of the tonic model to input slope

explains why all the f-I curves obtained with different dynamics of

the input mean lined up with each other (Fig. 7A).

b) f-A curves. As described above, the phasic model shows a

non-monotonic f-I curve, either for steady I or for slowly varying I.

The peak of the f-I curve may vary with the dynamic of I, but it is

generally true that intermediate I values yield higher firing rates

than low or high I values. If a time-varying signal, such as a 20-Hz

sinusoid, has a mean that is close to the peak of the f-I curve, it can

Figure 7. Firing rate as a function of input mean or input slope. (A) and (B) Firing rates vs. input mean (I, lower horizontal axis) in the presence
of noise. Colored lines, instantaneous firing rate converted from period histograms when the input was white noise plus a 20 or 30 Hz sinusoid
(A = 0.2 and 2 nA for the tonic and phasic models, respectively), which provided a noisy input with time-varying I. Spikes were separated for the
signal’s rising (solid) and falling (dotted) phases. Each phase covered a half cycle of the sinusoid. The curves were smoothed with Gaussian functions
with a standard deviation of 0.5 ms. Black solid lines, average firing rate when I was fixed for 10 s. The top horizontal axis indicates the average Vm for
fixed I values when the spiking mechanism was disabled by setting the activation/inactivation variables of the INa and IKHT to their resting values. (C)
and (D) Firing rates vs. I and slope (dI/dt) in the presence of noise. The firing rate is represented by the color. Noise s was 10 and 15 pA for the tonic
(left) and phasic (right) models, respectively.
doi:10.1371/journal.pcbi.1000825.g007
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be predicted that increasing the amplitude of the signal will lead to

decreased firing rate. This trend was observed with the phasic

model when comparing the responses to noise alone, 1-nA, and 2-

nA signals (Fig. 3A, right). Here we further study this issue by

creating the f-A curves, where A is the peak amplitude of the 20-Hz

sinusoid. In the Discussion, we will explore the practical meanings

of these curves in terms of the linearization effect of noise and the

maximization of input/output dynamic range.

Fig. 8 shows the f-A curves obtained with different amount of

noise. The tonic model had increasing f-A curves for low-level

noise (e.g., black lines marked with a and b) and almost constant f-

A curves for high-intensity noise (Fig. 8, left). The near constant f-A

curves for strong noise was due to the almost linear f-I curves

(Fig. 7A). When I varies in a larger range surrounding 0 nA, the

increase of firing rate with positive I values (e.g., at the signal’s

peak) was approximately the same as the decrease of firing rate

with negative I values (e.g., at the signal’s trough). In contrast, the

phasic model showed increasing f-A curves only for weak noise,

and the change of the firing rate was small (Fig. 8, right, black lines

marked with a and b), because the phasic model fires one spike in

each signal cycle for most of its input conditions (Fig. 1B, right). It

typically did not fire to a 20-Hz signal unless the signal amplitude

was extremely large (.4 nA), and even in this case the firing rate

only reached 20 sp/s (Fig. 8, right, a). At medium and high noise

intensities, the f-A curves became monotonically decreasing, and

the decrease was large (c).

c) f-slope curves for ramp stimuli. In the above

simulations we used sinusoidal signals. We believed that the

slope-based SR can also be observed with other types of time-

varying signals that have only low-frequency components. As

shown in Fig. 2, the phasic model does not respond to ramp

stimuli with slopes shallower than 0.55 nA/ms. In other words,

there is an input threshold in terms of slope that yields a step-like f-

dI/dt curve (Fig. 9, black solid). With noise added, the f-dI/dt

curves were smoothed (Fig. 9, colored lines). For weak noise

(s#6 nA), the firing rate increased with input slope, similar to

what was observed with periodic signals (Fig. 7D).

Here we computed the average number of spikes (200

repetitions) in response to a rising ramp with white noise added.

Since the slopes around the threshold (0.55 nA/ms) were steep, no

more than one spike can occur. We arbitrarily picked up a

criterion of 0.5 number of spikes (for 50% of the trials there was a

spike; Fig. 9, dotted), for defining the slope threshold. With

increasing amount of noise the slope threshold decreased and

eventually disappeared for s$6 pA (Fig. 9).

Generalization of Findings to Other Phasic Models
The phasic model used in the above simulations derives its Class

3 excitability through a negative feedback current, the IKLT, which

activates below spike threshold. Here, we tested whether another

two types of phasic models show similar slope-based SR behavior.

First, we tested a phasic HH model with a steeper activation of

the IK [25] compared to the original HH model [39]. The

modification of IK is to achieve the Class 3 excitability, which was

observed with squid giant axons but not with the original HH

model. With a simulation temperature of 18.5uC, the phasic HH

model showed a slope threshold around dI/dt = 3.5 (mA/ms)/cm2

for ramp inputs increasing from 0 to 50 mA/cm2. When noise of

different intensities was added, the slope threshold decreased and

further disappeared (for noise s$50 nA/cm2) in a way similar to

the behavior of the phasic model (Fig. 9), except that multiple

spikes occurred during the ramp (not shown).

The phasic HH model also showed a band-pass filtering

property for noise-free sinusoidal input (not shown) similar to that

of the phasic auditory brainstem model (Fig. 1C, right), except that

multiple spikes can occur in each signal cycle at medium-low

frequencies. The phasic HH model did not fire to a 5-Hz

sinusoidal signal up to 28 mA/cm2 and the voltage trace showed

similar rectification as exhibited by the auditory brainstem model

(Fig. 1B, right). When white noise was added to a subthreshold

signal (As = 15 mA/cm2), the negative feedback created by the IK

was not strong or fast enough to prevent spikes at the signal’s peak

(not shown). However, after the white noise was low-pass filtered

with a cutoff frequency of ,100 Hz, the phasic HH model also

showed highest sensitivity to the signal’s rising and falling phases

and low response to the peak (Fig. 10A), which resembled the

temporal pattern obtained from the phasic auditory brainstem

model (Fig. 4, right). Correspondingly, the f-I curve of the phasic

HH model was monotonically increasing with white noise

(Fig. 10D, solid) but started becoming non-monotonic when fcut

was lowered to 100–150 Hz. Fig. 10D (dotted) shows an example

non-monotonic f-I curve with the peak at 0 and minimal firing at

615 mA/cm2 (fcut = 63 Hz). The change of the f-I curve with

noise spectrum confirmed that a non-monotonic f-I curve

correlates with the slope-based SR for a certain noise profile.

It should be pointed out that in previous physiological and

computational studies showing the non-monotonic f-I curves

[24,26,27], Gaussian white noise was smoothed by exponential

filters with t = 1–3 ms. The spectrum of noise created this way is a

decreasing function of frequency. Repeating the phasic HH model

Figure 8. Average firing rate vs. signal amplitude for different noise intensity (s). The signal is a 20-Hz sinusoid. The two orange arrows
indicate the signal amplitudes used in the previous simulations for the noise-gated signal encoding. Duration of the stimulus was 10 s.
doi:10.1371/journal.pcbi.1000825.g008
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with smoothed white noise showed non-monotonic f-I curves for

t = 1–3 ms.

A third cellular mechanism that can create Class 3 excitability is

the inactivation of INa [23,24]. To test the role of INa inactivation

alone in creating phasicness and the slope-based SR behavior, we

shifted the sodium inactivation voltage sensitivity (h?) leftward by

15 mV [23], while freezing the conductance of the IKLT to its

resting value as we did for the tonic model. These manipulations

created the Class 3 excitability and the slope-detecting ability (a

slope threshold around dI/dt = 0.22 nA/ms for ramp inputs

increasing from 0 to 2 nA in a noise-free condition). When white

noise was added to a 20-Hz subthreshold signal (As = 2 nA), the

model fired most at the signal’s rising and falling phases, with less

activity at the peak (not shown). Lowering the cutoff frequency of

the noise decreased the activity at the peak (an example plotted in

Fig. 10B for fcut = 1 kHz). Correspondingly, the f-I curve with

white noise was increasing for most I values and decreased slightly

for I.1.5 nA, while the f-I curve with low-pass filtered noise was

highly non-monotonic (not shown). In addition, a previous

computational study [24] showed that by lowering the conduc-

tance of INa from 120 to 83 mS/cm2, the standard HH model can

also exhibit Class 3 excitability and non-monotonic f-I curves for

exponentially smoothed noise (t = 1 ms). We simulated this model

with low-pass filtered noise and found behaviors similar to what

was described above for the phasic HH model with modified IK.

Principal neurons in the MSO are shown to have both low-

voltage inactivation of INa [23] and IKLT. With blockade of the

IKLT, the inactivation of INa alone can cause MSO neurons to

show phasic response for gerbils of postnatal day (P) 14 or 15 and

older, but becomes more prominent for neurons .P17 [23]. In

our previous study [14], we showed that IKLT plays a major role in

creating the slope-based SR response for MSO neurons of P14–

16. Here we repeated the experiments with three neurons from

older animals (P18–20), for which INa is known to be highly

inactivated. Fig. 10C (left) shows that in response to a 20-Hz signal

(As = 1.5 nA), the neuron (P18) fired mostly to the signal’s rising,

falling phases and the trough. Low-pass filtered noise

(fcut = 1 kHz), instead of white noise, was used in the recordings

because the electrode was not fast enough to generate white noise

[14]. The neuron fired in the signal’s trough because its membrane

time constant (0.3 ms) was so fast that it can integrate slow noise

fluctuations even when the neuron was somehow hyperpolarized

[14]. After the application of dendrotoxin-K (DTX-K, a blocking

agent selective for IKLT), the neuron started responding to lower

noise intensities at the signal’s rising phase (Fig. 10C, right) and

clear firing preferences to the rising and falling phases can be seen

for all noise intensities. Less firing in the trough was observed due

to a steeper V-I relationship after DTX-K was applied [23]. For

example, in the control condition at the signal’s minimum the

neuron was hyperpolarized by 25 mV from the resting potential,

while the hyperpolarization increased to 215 mV by the same

signal after DTX-K was applied, too far from spike threshold for

noise to elicit spikes in the trough. Note that in the recordings the

signal’s negative part was scaled by a factor of 0.5 to prevent large

hyperpolarizations. Similar results were obtained in the other two

neurons recorded.

Discussion

Phasic neurons do not respond to constant or slowly varying

inputs in the absence of noise [10–12]. Recently we showed

experimental and computational evidence that noise enables

Figure 9. Number of spikes vs. slope of the ramp stimulus for the phasic model when white noise of different intensity (s) was
added to the ramp. Intersections between the solid lines and the black dotted line define the slope threshold. The small plot on the lower right
shows the ramp stimulus without noise. Number of spikes was measured during the sloping part of the stimulus and was averaged over 200
repetitions. Note that the duration of the sloping part for spike counting varies with the slope. The large number of spikes when strong noise was
added to a ramp with shallow slopes was caused by responses to the noise within a long spike-counting window.
doi:10.1371/journal.pcbi.1000825.g009
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phasic neurons to encode low-frequency signals [14]. Here we

introduce the notion of a slope-based stochastic-resonance (SR) for

low-frequency signals and characterize it with three types of phasic

neuron models [15,23–25]. Our work extends the classical,

amplitude-based, SR theory to include noise-gated responses of

phasic (i.e., Class 3) neurons.

Slope-Based SR with Phasic Neurons vs. Amplitude-Based
SR with Tonic Neurons

Tonic neurons show classical SR behavior; that is, noise helps

the detection of a subthreshold signal by generating spikes when

the signal is near its peak, i.e., when the Vm is closest to the firing

threshold. This type of noise-controlled signal encoding is

qualitatively similar to enlarging the amplitude of the signal.

Indeed, the amplitude-frequency plot for sinusoidal input (Fig. 1C,

left) shows a relatively constant input threshold (,0.3 nA) except

at the high-frequency end. Thus enlarging the signal amplitude

sufficiently can make the model respond to the signal even in the

absence of noise. In contrast, such an input threshold in terms of

input amplitude does not exist for the phasic model (Fig. 1C,

right); for sufficiently low-frequency signals, enlarging the signal

amplitude does not make the model fire. Consequently, classical

SR theory does not capture the signal response of noisy phasic

models.

It is more appropriate to define the input threshold for a phasic

model in terms of input slope or frequency. Adding noise to a

signal with a frequency/slope below this threshold makes the

phasic model fire, not because adding noise effectively enlarges the

signal amplitude, but because noise transiently increases the slope/

speed of the signal, or equivalently diminishes the slope/frequency

threshold (Fig. 9). In this sense, it is not surprising to see that the

phasic model is most sensitive to the signal’s rising phase, where

the slope of the signal is steep, rather than to the signal’s peak,

where the slope is zero (Fig. 4, right).

Based on our findings, we call the noise-gated encoding of a

low-frequency signal by phasic models a ‘‘slope-based SR’’, in

Figure 10. Responses of other models and neuron to a subthreshold signal with noise. (A–C) Period histograms in response to
subthreshold signals with different amount of noise added. (A) The phasic Hodgkin and Huxley (HH) model (Clay et al. 2008) at 18.5uC. The signal was
a sinusoid with As = 15 nA/cm2. (B) A new phasic model created from the tonic model (IKLT was frozen) by shifting the voltage dependency of the
sodium inactivation by 215 mV at 32uC. The signal was a sinusoid with As = 2 nA. (C) An MSO neuron recorded in a brain slice from a gerbil aged P18
before and after 60 nM DTX-K was bath applied at 32uC. The signal was a modified sinusoid (the negative part of the sinusoid was multiplied by a
factor of 0.5) with As = 1.5 nA. The dotted lines are superimposed signals scaled to illustrate the response phase. (D) f-I curves of the phasic HH model
obtained with white noise (s = 100 pA/cm2) and low-pass filtered noise (s = 500 pA/cm2). f, signal frequency. fcut, cutoff frequency of the low-pass
filtered noise. Noise s [in pA/cm2 in (A) and pA in (B) and (C)] is measured with the white noise before low-pass filtering.
doi:10.1371/journal.pcbi.1000825.g010
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contrast to the general (amplitude-based) SR observed in tonic

models. Classical SR theory for weak and slow signals fails to

explain both the SNR curve and the temporal firing patterns

for the phasic model. This failure is because the SNR,

computed either at the signal’s fundamental frequency or

harmonics, does not capture the full firing properties of the

phasic model.

A Non-Monotonic f-I Curve Correlates with Slope-Based
SR

Previous studies [24,26,27] have shown that, in the presence of

noise, tonic-firing neurons have monotonically increasing f-I

curves, while phasic-firing neurons (i.e., Class 3) have highly

non-monotonic f-I curves (Fig. 7). Because a monotonically

increasing f-I curve predicts that the neuron will respond mostly

to the peak of a low-frequency signal, we hypothesize that a non-

monotonic f-I curve with peak firing rate at moderate I is

suggestive of a slope-based SR. This hypothesis is supported by the

phasic HH model and the phasic model with low-voltage

inactivation of INa, for which by varying the cutoff frequency of

the low-pass filtered noise, the monotonicity of the f-I curve is

correlated to the slope-based SR behavior (Fig. 10).

Some predictions for the phasic models can be derived from the

f-I curves obtained with steady and time-varying I. First, in the

quasi-static limit, the amount of firing in the falling phase should

be equal to the firing in the rising phase. In contrast, with

increasing signal frequency, firing in the rising phase should

increase, while firing in the falling phase should decrease and

eventually disappear. This trend was shown by the phasic model

with the IKLT in response to the 20- vs. the 30-Hz signals (Fig. 7).

Second, when the signal amplitude was small (i.e., a smaller range

of I), the slope-based SR behavior will be less distinct compared to

the response with large signal amplitude. Consistent with this

prediction, we showed in our previous study [14] that the

responses of the phasic auditory brainstem model to the signal’s

rising and falling phases were less distinct when the signal

amplitude decreased from 2 to 1 nA.

Previous studies describing non-monotonic f-I curves have not

addressed the influence of the noise spectrum on firing rate

[24,26,27]. In general, the fact that phasic models can remain

sensitive to the slope of subthreshold (low-frequency) signals in the

presence of noise is a continuity of phasicness as defined in a

deterministic setting. Although all the phasic models tested here

showed Class 3 excitability, we propose different degrees of

‘‘phasicness’’ characterized by a model’s resistance of losing the

non-monotonicity of the f-I curves when the noisy fluctuations

become faster. For example, the phasic model with IKLT has the

strongest phasicness among all phasic models studied because it

maintained its phasicness (detecting slopes and onsets) even if the

noise fluctuated as fast as a 25-kHz white noise. The other phasic

models can maintain their phasicness only when the noise was

relatively slow. However, low-pass filtered noise is a better model

of neural fluctuations than white noise, because noisy input to

neurons, in the form of random background synaptic events, is

naturally spectrally limited due to synaptic filtering [40].

Therefore, the slope-based SR may be widely present with phasic

neurons, and that a highly non-monotonic f-I relation can serve as

an indicator. Note that here the degree of phasicness is different

from the definitions used in other studies [29,31]. In those studies

the term is used to describe the firing properties of a phasic neuron

to noise-free step input when multiple spikes can occur at the

onset, whereas in our study all the phasic models fired only one

spike at the onset.

Phasic Neurons as Slope Detectors
Phasic neurons are labeled slope-detectors based on their

sensitivity to the slope of a ramp current. That is, they do not

respond to a current input that has a slope shallower than a

threshold value even if the input amplitude is large [12,28].

Although this concept was developed for auditory brainstem

neurons [28], it is a characteristic of all phasic neurons, because if

a steady current input causes no response, by continuity there will

be no spiking for sufficiently slow ramp input. We showed that the

slope threshold is lowered in the presence of weak noise, and

further diminished when noise is strong enough to cause significant

spiking in the absence of a signal (Fig. 9). When the slope threshold

is lowered, a phasic neuron can respond to inputs that are below

the threshold obtained without noise. In a classical amplitude-

based SR system, noise brings the system above its amplitude

threshold, effectively mimicking an upward shift in the response-

area plot in Fig. 1C (left). Correspondingly, in a slope-based SR

system, noise brings the system above its slope threshold, which

effectively moves in the rightward direction in the response-area plot

in Fig. 1C (right).

The sensitivity of phasic models to input slopes can also be

clearly observed in the f-I-dI/dt plots obtained with time-varying I

(Fig. 7D). The peak firing rate of the phasic models increased with

dI/dt, while the firing rate of the tonic model was insensitive to dI/

dt. The higher firing rate on the rising phase of the 30-Hz signal

compared to the firing rate to the 20-Hz signal indicated that the

30-Hz signal was closer to the input threshold in terms of the

frequency of a sinusoid (i.e., 32 Hz for As = 2).

Noise Enlarges Input/Output Dynamic Range Differently
for Tonic and Phasic Models

Based on the non-monotonic noise-based f-I curves obtained

with the phasic auditory brainstem model (Fig. 7B), we predicted

that the firing rate will decrease with increasing amplitude of a

sinusoidal signal for moderate and strong noise (Fig. 8, right). In

contrast, the tonic model showed increasing f-A curves at low noise

intensities and relatively constant curves at high noise intensities

(Fig. 8, left). These differences in the f-A curves indicate that noise

plays a different role in affecting input-output relationships for

tonic vs. phasic neurons.

When firing rate encodes the amplitude of a periodic input (A),

the input dynamic range that evokes spikes is limited, since the

firing rate remained zero when A varies below threshold (Fig. 8,

black lines marked with a). Adding noise to the input linearizes the

f-A curve, thereby achieving a larger input dynamic range [1,41–

43]. For the tonic model, adding a small amount of noise (e.g.,

4 pA) can achieve this type of linearization, so that the firing rate

increases with a relatively constant rate even in the subthreshold

regime (Fig. 8, left, b). When the noise intensity further increases,

the output dynamic range decreases as the firing rate becomes

insensitive to A.

For the phasic model, although a similar trend exists for weak

noise (e.g., s = 3 pA), the input dynamic range increased only

around the input threshold (4 nA). The output dynamic range was

also limited because the maximum firing rate was close to the

signal frequency even with a small amount of noise added (Fig. 8,

right, b). However, with strong noise added, the firing rate

decreased relatively smoothly with A (Fig. 8, right, c) and a large

range of A can be encoded by the firing rate. In addition, because

a large amount of noise can cause multiple spikes in each signal

cycle, a large output dynamic range was also achieved (Fig. 8,

right, c).

It should be noted that although the firing rate decreases, the

temporal precision increases with A. The two groups of spikes on
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the signal’s rising and falling phases were less distinct for As = 1 nA

compared to the 2-nA case [14], although the SNRs were

comparable (Fig. 3B, right). The maximum slope of the input

increases when signal frequency is kept constant and the signal

amplitude is enlarged; however, the fraction of time spent around

the maximum slope decreases, leading to a narrower time-window

for the first crossing of the slope threshold.

Significance of Slope-Based SR in Nervous System
Phasic neurons are widely present in different sensory systems

(for review, see [29]). These neurons are thought to detect onset

events, encode fast changes of its input, and maintain response

temporal precision [28,29]. Our results suggest that in the

presence of noise, phasic neurons can encode slow inputs and

remain sensitive to changes of an input (e.g., the beginning and

end of the positive cycle of a sinusoid), thereby extending their

phasicness into the low-frequency region. The slope-based SR

behavior reflects the tendency of phasic neurons to maintain its

phasicness when moderate noisy fluctuations are applied; large

intensity noise will, of course, reduce slope detection. In summary,

slope-based SR is a continuity of phasic neurons’ response

properties over large input dynamics.

Noise-gated or noise-assisted coding, of which SR is a classic

example, is a popular topic in neural applications and other

physical systems, where simple threshold models serve as a

canonical model for SR [4,44]. Phasic systems offer a new avenue

of research in noise-assisted coding, where the distinction of signal

threshold is based on the slope of the signal, rather than the more

traditional scenario of an amplitude threshold. We expect that new

noise induced phenomena, qualitatively distinct from those

previously described, will emerge as noise-driven phasic systems

are studied further.

Methods

Neuron Models
Details of the phasic neuron model are described in [14].

Briefly, the auditory brainstem neuron model [15] contains a fast

sodium current (INa), a high-threshold (IKHT) and a low-threshold

(IKLT) potassium currents, a hyperpolarization-activated cation

current (Ih), and a leak current (Ilk).

Cm

dVm

dt
~{INa{IKHT{IKLT{Ih{Ilkzs tð Þ

~2: {�ggNam3h Vm{ENað Þ
�

{�ggKHT 0:85n2z0:15p
� �

Vm{EKð Þ

{�ggKLT w4z Vm{EKð Þ{�gghr Vm{Ehð Þ

{�gglk Vm{Elkð Þ�zs tð Þ

ð1Þ

Vm is the membrane voltage. s tð Þ is the current input.

Membrane capacitance, Cm = 12 pF; maximal channel conduc-

tances, �ggNa = 1000 nS, �ggKHT = 150 nS, �ggKLT = 200 nS,

�ggh = 20 nS, and �gglk = 2 nS; reversal potentials, ENa = +55 mV,

EK = 270 mV, Eh = 243 mV, and Elk = 265 mV. All the

conductances and channel time constants are multiplied by a

factor of 2 and 0.33, respectively, to mimic the condition at 32uC,

because our previous study [14] had slice recordings at 32uC.

Although there are several currents with time-varying conduc-

tances, only the fast component of the IKLT, w, was playing a

major role in the simulations with sinusoidal and noisy inputs [14].

The tonic model is created by fixing the gating variables, w and

z, to the values obtained at resting potential [45]. A further

modification of the Day’s frozen model is to increase the �ggNa from

1000 to 1500 nS, which enables a larger amplitude of the limit

cycle and a broader input range for repetitive firing [14]. The

tonic model created this way has the same membrane resting

potential and input resistance as the phasic model does.

Input Stimulus for Noise-Gated Encoding of Signal
The signal was a 20-Hz sinusoidal current (unless otherwise

specified), As sin 2pftð Þ, with zero mean. The signal was kept

subthreshold, and white noise (0–25 kHz) was added to make the

model spike.

s tð Þ~As sin 2pftð ÞzN sð Þ ð2Þ

Note that in our previous study [14] and the present physiological

recordings, the negative part of the signal is multiplied by a factor

of 0.5 to avoid excessive hyperpolarization of the neuron in whole-

cell recordings. Here we used the unmodified sinusoid in the

simulations because we were trying to make a direct comparison

with classical SR systems where pure sinusoidal inputs are

commonly used as signals.

Two signal amplitudes were chosen (As = 0.1 and 0.2 nA for the

tonic model and As = 1 and 2 nA for the phasic model) so that the

detectability of signal from noise (quantified by the signal-to-noise

ratio) was comparable between the two models. Our choice of the

input amplitude for the phasic model is reasonable because MSO

neurons, the phasic neurons that demonstrated similar properties

compared to the phasic model [14], have an average input

threshold of 3–4 nA for step input [46]. The sampling frequency

was 50 kHz. For each noise intensity, ,5000 spikes were obtained

unless stimulus duration reached 200 s. Fig. 11 shows an example

of input stimulus (top) and the corresponding response of the tonic

model (middle).

Signal-to-Noise Ratio (SNR)
The detectability of the signal from the added noise was

quantified by computing the signal-to-noise ratio (SNR) from the

power spectrum of the spike train. Fig. 11 (bottom) shows an

example of power-spectrum density (PSD) computed from the

spike times of the tonic model. Spike times were re-sampled with a

lower time resolution, 2 ms, producing a Nyquist of 250 Hz in the

PSD plot (higher frequency was unnecessary since the signal

frequency was low). Two peaks are visible in the PSD plot, one at

the signal frequency (marked as Pf) and another at the first

harmonic (marked as Ph). The SNR is computed as

SNR~10 log Px=Pbxð Þ ð3Þ

where x is either the fundamental frequency (x = f), or the first

harmonic frequency (x = h). Pbf is the baseline for the fundamental,

computed as the average of a small range near Pf, and Pbh is the

baseline for the first harmonic, computed as the average of a small

range near Ph. In the following text, SNR will refer to the signal-to-

noise ratio at the fundamental frequency unless otherwise

specified.

For simple spiking systems an adiabatic theory (slow signal) with

weak signal amplitude approximates SNR as [4]

SNR!
eDU

D

� �2

e{DU=D ð4Þ
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where e is the signal amplitude, D is the noise intensity

(corresponding to the s2/2 in the present study), and DU is the

potential barrier separating the deterministic rest state and firing

threshold. When Equation 4 was used to fit a SNR curve, D is

chosen so that the peak of Equation 4 overlaps the peak of the

SNR. Specifically, because Equation 4 reaches its peak when

D = DU/2, DU is chosen as twice the noise intensity where the

peak of the SNR is obtained. Then the whole equation is scaled to

match the peak SNR value. Note that Equation 4 predicts that the

peak of the SNR is obtained with a fixed noise intensity invariant

of the signal amplitude [32].

Another frequently used quantification of SR is the spectral

power amplification (SPA) [9]. It is the output power at the signal

frequency normalized by the input signal power,

SPA~10 log Pf

�
A2

� �
: ð5Þ

Note that here the output power was the power of a discrete signal

(i.e., spike times), while the input power was the power of a

continuous signal (i.e., a sinusoidal current).

Whole-Cell Recordings
In vitro data presented here is to confirm that strong sodium

inactivation can replace IKLT to create phasic responses. Detailed

experimental procedures are described in [14]. Briefly, gerbils

(Meriones unguiculatus) aged P17–18 were used to obtain 150-mm

brainstem slices. The internal patch solution contained (in mM)

127.5 potassium gluconate, 0.6 EGTA, 10 HEPES, 2 MgCl2, 5

KCL, 2 ATP, 10 phosphocreatinine, and 0.3 GTP (pH 7.2).

During recordings, sliceswere placed in a chamber with artificial

cerebrospinal fluid (ACSF) containing (in mM) 125 NaCl, 4 KCl,

1.2 KH2PO4, 1.3 MgSO4, 26 NaHCO3, 15 glucose, 2.4 CaCl2,

and 0.4 L-ascorbic acid (pH 7.3 when bubbled with 95% O2 and

5% CO2) at 3261uC. DTX-K (60 nM) was added to the bath to

block the IKLT. The perfusing rate of the oxygenated ACSF in the

recording chamber was 2ml/min. An Axoclamp2A amplifier, in

combination with Labview (National Instruments), was used for

stimulus generation, balance of series resistance, and data

acquisition at 10 kHz.

Supporting Information

Video S1 Movie of Vm-w phase plane. Top, STA of stimulus.

Lower, STAs of Vm-w phase planes for spikes occurring in a 4-ms

window centering at the rising (gray) and falling (black) phases of

the 20-Hz signal (As = 2 nA) for the phasic model. The signal alone

and its responses are plotted in green. A representative phase point

is marked with a circle (for rising phase) or a square (for falling

phase). The corresponding phase point in the signal’s trajectory is

marked with triangle. V-null (blue solid), Vm nullcline. w-null (blue

dotted), w nullcline. Red, threshold separatrix. The stimulus

condition is as marked with c in Fig. 3. Stimulus duration was

500 s. Noise s was 15 pA.

Found at: doi:10.1371/journal.pcbi.1000825.s001 (2.53 MB

WMV)

Figure 11. An example of power-spectrum density (PSD). Top, the signal (black) and the signal plus noise (gray). Middle, Vm (solid) and the
voltage level that identified a spike (dotted). Bottom, PSD for the tonic model in response to a 20-Hz signal (A = 0.2 nA) with white noise (s= 5 pA). Pf,
peak of the fundamental. Ph, peak of the first harmonic. Pbf, baseline for the fundamental. Pbh, baseline for the harmonic. Frequency
resolution = 0.5 Hz. Total duration = 100 s. Only the first 100 ms of stimulus and response are shown in top and middle panels.
doi:10.1371/journal.pcbi.1000825.g011
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Video S2 Movie of Vm-h phase plane. Top, STA of stimulus.

Lower, STAs of Vm-h phase planes for spikes occurring in a 4-ms

window centering at the rising (gray) and falling (black) phases of

the 20-Hz signal (As = 2 nA) for the phasic model. The signal alone

and its responses are plotted in green. A representative phase point

is marked with a circle (for rising phase) or a square (for falling

phase). The corresponding phase point in the signal’s trajectory is

marked with triangle. V-null (blue solid), Vm nullcline. h-null (blue

dotted), h nullcline. The stimulus condition is as marked with c in

Fig. 3. Stimulus duration was 500 s. Noise s was 15 pA.

Found at: doi:10.1371/journal.pcbi.1000825.s002 (1.99 MB

WMV)
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