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Abstract

Genome-scale metabolic reconstructions are typically validated by comparing in silico growth predictions across different
mutants utilizing different carbon sources with in vivo growth data. This comparison results in two types of model-
prediction inconsistencies; either the model predicts growth when no growth is observed in the experiment (GNG
inconsistencies) or the model predicts no growth when the experiment reveals growth (NGG inconsistencies). Here we
propose an optimization-based framework, GrowMatch, to automatically reconcile GNG predictions (by suppressing
functionalities in the model) and NGG predictions (by adding functionalities to the model). We use GrowMatch to resolve
inconsistencies between the predictions of the latest in silico Escherichia coli (iAF1260) model and the in vivo data available
in the Keio collection and improved the consistency of in silico with in vivo predictions from 90.6% to 96.7%. Specifically, we
were able to suggest consistency-restoring hypotheses for 56/72 GNG mutants and 13/38 NGG mutants. GrowMatch
resolved 18 GNG inconsistencies by suggesting suppressions in the mutant metabolic networks. Fifteen inconsistencies
were resolved by suppressing isozymes in the metabolic network, and the remaining 23 GNG mutants corresponding to
blocked genes were resolved by suitably modifying the biomass equation of iAF1260. GrowMatch suggested consistency-
restoring hypotheses for five NGG mutants by adding functionalities to the model whereas the remaining eight
inconsistencies were resolved by pinpointing possible alternate genes that carry out the function of the deleted gene. For
many cases, GrowMatch identified fairly nonintuitive model modification hypotheses that would have been difficult to
pinpoint through inspection alone. In addition, GrowMatch can be used during the construction phase of new, as opposed
to existing, genome-scale metabolic models, leading to more expedient and accurate reconstructions.
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Introduction

There are currently 700 completely sequenced genomes along

with extensive compilations of data [1] assembled after decades of

experimental studies on the metabolic behavior of organisms. This

has enabled the reconstruction of stoichiometric models of

metabolism for about twenty [2] organisms. This process began

with the metabolic characterization of prokaryotic organisms such

as Escherichia coli [1], moved to the reconstruction of eukaryotic

organisms such as Saccharomyces cerevisiae [3] and, more recently, to

the first reconstruction of the more complex Homo Sapiens

metabolic map [4]. The completeness and accuracy of microbial

metabolic reconstructions are typically assessed by comparing the

model growth predictions (i.e., presence or absence) of single and/

or multiple knockout mutants for a variety of substrates against

experimental data [5–7].

As shown in Figure 1, these comparisons lead to four possible

outcomes: GG when both model and experimental point at

growth, GNG when the model predicts growth but the experiment

does not, NGG when the model fails to predict the experimentally

observed growth, and finally NGNG when both model and

experiment show no growth. Cases GG and NGNG are indicative

of agreement between model predictions and experimental data

whereas cases GNG and NGG signify disagreement. Specifically,

in GNG cases the model over-predicts the metabolic capabilities of

the organism due to the use of reactions that are absent in vivo,

down-regulation or inhibition of genes/enzymes under the

experimental conditions, or absence of biomass constituents from

the in silico biomass description. Conversely in NGG cases, the

model under-predicts the metabolic capabilities of the organism

due to the absence of relevant functionalities/reactions in the

model. In this study, we introduce optimization-based techniques

to systematically suggest modifications (conditionally add/delete

reactions, restrict/expand directionalities or add/suppress uptake/

secretion mechanisms for NGG/GNG inconsistencies) in genome-

scale metabolic reconstructions in order to reconcile experimental

and computational growth predictions across different mutants.

The proposed method makes use of gene essentiality data sets

currently available for many microorganisms [8–17]. For example,

the Keio collection [17] catalogues the optical density (OD), under

different substrate conditions, of the single gene deletion mutants

of all 3,985 non essential genes in the E. coli K-12 BW25113.

Several studies are already available that use gene essentiality data

available at the Keio database and other sources to suggest

targeted improvements in existing metabolic reconstructions

[3,5,7,18–20]. As seen in Figure 2, in these studies, in silico models
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of increasing complexity were successively contrasted against in vivo

datasets of differing size to correct the predictive capabilities of the

models. Recently, Joyce et al. [7] used the Keio mutant collection

[17] to pinpoint conditionally essential genes in vivo in a glycerol

supplemented minimal medium and then compared them with the

corresponding in silico predictions to suggest improvements in the

model [7]. In another study, Harrison and co-workers identified

computationally predicted synthetic lethal gene deletion pairs in

yeast and then proceeded to test the growth characteristics of these

double deletion mutants in vivo [21]. While these studies have

successfully used gene deletion datasets in many different contexts

to pinpoint gaps in in silico models, the key step of resolving these

gaps was performed manually.

The need to develop automated procedures to improve the

accuracy of existing metabolic reconstructions has been recog-

nized and has led to the development of a number of

computational procedures. To this end, Reed et al. [22] recently

described a systems based approach to modify an existing genome-

scale metabolic reconstruction of E. coli [1] by adding new

reactions that ensured growth in NGG cases by enabling in silico

growth consistent with in vivo data across various carbon/nitrogen

substrates. Alternatively, methods to identify and fill gaps in

metabolic models based on connectivity information have also

been described and applied to the genome scale models of E. coli

and S. cerevisiae [23]. These studies represent only the beginning of

efforts geared towards methods that automatically resolve network

inconsistencies using a variety of metrics [22–28] ranging from

unreachable metabolites, DNA microarray data and gene

essentiality data. It is becoming increasingly clear that it is

necessary to bring to bear all types of experimental data to achieve

the aim of a high quality metabolic model.

In this paper, we supplement previous efforts [23] on identifying

(i.e., GapFind) and filling (i.e., GapFill) gaps in metabolic

reconstructions with an automated procedure for resolving growth

prediction inconsistencies while minimally perturbing the original

model. Briefly, we resolve GNG inconsistencies by converting

them into NGNG one-by-one by identifying the minimal set of

restrictions that need to be imposed (i.e., through reaction or

transport mechanism suppression or reaction reversibility prohi-

bition) on the model describing the GNG mutant so that biomass

formation is negated (or reduced below a pre-specified cutoff). If a

particular identified restriction does not invalidate any correct GG

predictions then we refer to it as global suppression meaning that it

can be imposed universally for all experimental perturbations (e.g.,

single gene deletion mutants and wild type). Alternatively, if an

identified restriction clashes with one or more GG predictions then

it is referred to as a conditional suppression meaning that it is imposed

only in the mutant strain associated with the GNG prediction for

which it is correcting.

Similarly, NGG inconsistencies are corrected one-by-one to GG

by identifying the minimal set of model modifications (i.e., through

reaction or transport mechanism addition or reaction reversibility

allowance) that enable biomass formation (above a pre-specified

cutoff). If none of these modifications affect any of the consistent

NGNG cases, we refer to them as global additions; otherwise, we

refer to them as conditional additions. In the next section we discuss

the results obtained by applying GrowMatch to the most recent

genome-scale model of E. coli, iAF1260 [20]. We note here that we

can also use GrowMatch to reconcile growth prediction

inconsistencies across different substrates. The E. coli reconstruc-

tion was chosen as the focus of this study to benchmark the ability

of GrowMatch to identify model corrections even for a very well

curated model. Using GrowMatch, we improved the growth

prediction consistency of the iAF1260 model with the data

available at the Keio database from 90.6% to 94.6% when

considering only globally valid corrections and to 96.7% when

additionally considering conditional corrections.

Results

Here, we demonstrate the use of GrowMatch to resolve growth

prediction inconsistencies between the latest in silico model of E. coli

[20], and single gene-deletion mutants available at the Keio

collection [17]. Specifically, we compare in silico growth on

minimal glucose medium with the in vivo OD measured after

48 hours on minimal glucose. To account for the genetic

differences between MG1655 (the strain used to construct the in

silico model) and BW25113 (the strain used in the in vivo study), we

eliminated five reactions from the in silico model (L-arabinose

isomerase, L-ribulokinase, rhamnulokinase, L-rhamnose isomerase

and rhamnulose1-phosphate aldolase) that are associated with

genes (araBAD and rhaBAD) not present in the BW25113 strain.

Characterizing a single gene-deletion mutant as a ‘Grow’ (G) or a

‘No-Grow’ (NG) mutant requires a cutoff for the computed (for the

in silico model) and observed (for the in vivo experiment) values of

growth. In this study, we adopted as the growth cutoff (i.e. vbiomass
min

Figure 1. Classification of single-gene deletion mutants based
on comparison of in silico predictions vs in vivo data.
doi:10.1371/journal.pcbi.1000308.g001

Author Summary

Over the past decade, mathematical models of cellular
metabolism have been constructed for describing existing
metabolic processes. The gold standard for testing the
accuracy and completeness of these models is to compare
their cellular growth predictions (i.e., cell life/death) across
different scenarios with available experimental data.
Although these comparisons have been used to suggest
model modifications, the key step of identifying these
modifications has often been performed manually. Here,
we describe an automated procedure GrowMatch that
addresses this challenge. When the model overpredicts the
metabolic capabilities of the organism by predicting
growth in contrast with experimental data, we use
GrowMatch to restore consistency by suppressing growth
enabling biotransformations in the model. Alternatively,
when the model underpredicts the metabolic capabilities
of the organism by predicting no growth (i.e., cell death) in
contrast with available data, we use GrowMatch to restore
consistency by adding growth-enabling biotransforma-
tions to the model. We demonstrate the use of GrowMatch
by reconciling growth prediction inconsistencies of the
latest Escherichia coli model with data available at the Keio
database. Despite the highly curated nature of the
Escherichia coli model, GrowMatch identified and resolved
a large number of model prediction inconsistencies by
taking advantage of available compilations of experimen-
tal data.

GrowMatch: Automatic Model Reconciliation
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on the in silico side and ODmin on the in vivo side) the one proposed

in the recent study by Joyce and co-workers [7] defined as one–

third of the average growth exhibited by all the single gene deletions

under consideration. We use the same growth cutoff definition for

both in vivo and in silico mutant classifications. For the in vivo growth

classifications, we determined the growth cutoff using the data in

the Keio database. For mutants with no OD measurements

available, we checked the essentiality scores (available in the

supplementary material for [17]) to classify them as in vivo

essential/non-essential. Mutants with scores of greater that zero

were classified as essential and those with scores less than or equal

to zero were deemed non-essential. For the remaining mutants, we

determined ODmin as described above and classified the gene

deletion as in vivo essential/non-essential. Note that for computing

the average OD, we assumed a value of zero OD for essential

mutants with no data. As shown in Table 1, the classification of

single gene-deletion mutants into one of the four categories is

sensitive to the chosen cutoff (especially for the in vivo case).

Figure 3 depicts the model predictions and experimental

observations for growth on a minimal glucose medium. As shown,

out of 1,260 single gene deletion mutants under consideration,

only 110 of them have inconsistent in silico/in vivo growth

predictions. Almost 70% of these inconsistencies are GNG

implying that the iAF1260 model, when in error, tends to over

rather than under-predict the metabolic capabilities of E. coli. Note

that all the abbreviations used in this section are identical to the

ones used in the in silico model of E. coli [20]. All the GNG and

NGG mutants identified in this study are available in the

supplementary material in Tables S1 and S2, respectively.

Resolving GNG Inconsistencies
Figure 4A shows the distribution across pathways of the deleted

genes in GNG single-gene deletion mutants. As shown, the

majority of these genes are in tRNA charging and cofactor

Figure 2. Evolution of comparisons between growth predictions of in silico models and observed growth in in vivo datasets.
doi:10.1371/journal.pcbi.1000308.g002

Table 1. Classification of mutants depending on cutoff values
chosen to distinguish between growth and no growth.

Cutoff Value Type of Mutant

GNG NGNG NGG GG

1% 45 112 96 1027

10% 55 135 53 1017

33% 72 150 38 1000

50% 107 160 28 965

Values are a percentage of average in vivo growth observed. In this study, we
choose a 33% cutoff value based on previous studies.
doi:10.1371/journal.pcbi.1000308.t001

GrowMatch: Automatic Model Reconciliation
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biosynthesis pathways. The presence of genes associated with

GNG mutants in these pathways indicates that alternative biomass

production mechanisms are implied in silico that are unavailable in

vivo. Figure 5 groups these deleted genes into three categories

depending on the effect of their deletion on the metabolic network.

The first group (i.e., 22 GNG mutants) accounts for deleted genes

whose gene-products are isozymes for reactions in the metabolic

network. The presence of isozymes implies that the gene deletions

do not affect the model predicted flux distributions even though in

vivo these deletions are fatal. In these cases, we hypothesize that the

in silico growth can be negated by simply deactivating the reaction

that is catalyzed by the corresponding isozymes. In fifteen out of

the twenty-two cases, the suppression of the isozymes (and the

corresponding catalyzed reactions) negates growth thus converting

the GNG mutants into NGNG mutants. It appears that in vivo,

under the specific experimental conditions (aerobic glucose), the

alternative isozyme does not exhibit sufficient activity to restore

the activity of the deleted isozyme. Note that all these reaction

suppressions are conditional suppressions as the reactions are essential

for growth in all GG mutants. Table 2 summarizes the identified

conditional suppressions. It should be noted here that these

generated hypotheses may not be the only way to resolve GNG

mutants associated with isozymes.

We define complementary (non-complementary) isozymes as

pairs of isozymes that satisfy the following two conditions: (a) at

least one of the isozymes is encoded by a gene associated with a

GG (GNG) mutant and (b) the isozymes catalyze an essential

reaction (under aerobic glucose conditions). We checked the

sequence similarity of complementary and non-complementary

isozymes using the BlastP algorithm. The results are available in

Table S3 Interestingly, we found that complementary isozymes

have, on average, greater sequence similarity (average BLAST

score ,148 bits) than non-complementary isozymes (average

BLAST score ,69 bits).

To see if the genes that code for non-complementary isozymes

are inactive under aerobic minimal glucose, we checked their

expression levels. Specifically, we examined the relative expression

levels for these pairs of genes (deleted gene and gene associated

with non-complementing isozyme) available at Covert et al., [19].

For cases with more than one non-complementing isozyme, we

checked expression data of all genes encoding non-complementing

isozymes. We excluded from consideration two pairs of genes

([thrA, metL] and [mrdA, ftsI]) as all these genes are associated with

GNG mutants. The 95% confidence intervals (assuming a normal

distribution) for this expression data are tabulated in Table S3. In

eight of the eleven cases, the deleted gene is expressed at least

twice as much (using average expression as a metric) as the gene(s)

associated with the non-complementing isozyme(s) (Table S3).

This suggests that, in these eight cases, the genes as are expressed

in very low amounts (relative to the deleted gene) in aerobic

glucose conditions which indicates that the corresponding

isozymes may not be at sufficient levels to insure compensation.

Figure 6 shows an example of GNG mutants associated with

isozymes. Biomass formation for both single gene-deletion

mutants, DmetL and DthrA, can be eliminated by suppressing any

of the two associated essential reactions, aspartate kinase (ASPK)

or homoserine dehydrogenase (HSDy) (see Table 2). Therefore,

whenever one of the genes is deleted the other gene appears to be

unable to complement the mutation and activate the two essential

reactions. This implies that, as identified by GrowMatch, HSDy is

inactive in both DmetL and DthrA mutants thus preventing biomass

formation. Notably, HSDy is a conditional suppression as it is

essential for growth in the wild-type metabolic network.

The deleted genes in the second group (i.e., 26 GNG mutants)

encode for enzymes that catalyze blocked reactions in the

metabolic network. Blocked reactions are defined as reactions

that cannot carry any flux under given substrate conditions [29].

Twenty-four of these mutants correspond to reactions that are

unconditionally blocked (i.e., for all possible substrate choices).

One such example (reaction A) is shown in Figure 5. The

remaining two mutants (DubiG, DuxaB) correspond to reactions

that are conditionally blocked for a glucose minimal medium (e.g.,

reaction B in Figure 5).

GrowMatch resolved 23 of these 26 inconsistencies by suitably

adding biomass components to the biomass equation. Specifically,

consistency to six GNG mutants (DbioB, DbioD, DbioF, DcaiT,

DalsB, Dint) can be restored by adding components produced by

the corresponding reactions to the biomass equation (see Table

S4). Modifications that restore consistency to DbioB, DbioD, DbioF

are by definition conditional modifications since they affect the

prediction for GG mutant DbioA. However, we note here that the

in vivo OD for DbioA is very close to the cutoff (i.e., ODmin~OD600

of 0.116) and it is likely that these hypotheses can be implemented

as global modifications. The remaining mutants (DcaiT, DalsB, Dint)

are resolved by making global modifications. Also, seventeen of these

26 GNG mutants correspond to reactions involved in tRNA

charging reactions. GrowMatch converted these seventeen GNG

mutants into NGNG mutants by modifying the biomass equation

by explicitly including the charged and the uncharged tRNA

molecules in place of the amino acids. For example, in the GNG

mutant DleuS, the deleted reaction LEUTRS (Equation: atp+leu-

L+trnaleuRamp+leutrna+ppi) is blocked. This reaction is un-

blocked by including leutrna (charged tRNA) and trnaleu

(uncharged tRNA) as a reactant and product in the biomass

equation, respectively. This restores flux through the reaction

LEUTRS and converts DleuS into an NGNG mutant. We note

that the consistency of these seventeen GNG mutants is restored

by making global modifications, as adding these components to

biomass does not affect any correct model predictions. For the

remaining three GNG mutants, we first attempted to restore flow

connectivity using (GapFill) before using GrowMatch. However,

GapFill was unable to restore flow through any of these reactions

by filling functionalities using reactions from the multi-organism

databases of MetaCyc [30] and KEGG [31] (see Materials and

Methods) thus preventing the use of GrowMatch.

The third group of GNG mutants involves deleted genes that do

not encode isozymes and are not associated exclusively with

blocked reactions. We used GrowMatch to identify reaction

suppressions that drop the biomass production below the

Figure 3. Classification of mutants based on comparison of in
silico vs. in vivo data used in this study.
doi:10.1371/journal.pcbi.1000308.g003

GrowMatch: Automatic Model Reconciliation
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Figure 4. Distribution of genes associated with inconsistent (GNG (A) and NGG (B)) mutants across pathways in the model.
doi:10.1371/journal.pcbi.1000308.g004

GrowMatch: Automatic Model Reconciliation
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predefined growth cutoff. We allowed for up to three simultaneous

suppressions per GNG mutant to ensure parsimony of correction

and maintain computational tractability. As summarized in

Table 3, we were able to restore consistency for eighteen of the

24 mutants. Here, ten of the identified sets of suppressions

(CBMKr and OXAMTC, PPM, R15BPK, R1PK, GTHOr,

GRXR. HXAND, XPPT, NACODA, R15BK) are global

suppressions, as they did not prohibit growth in any GG mutants

or wild-type strain while the remaining suppressions are conditional.

As shown in Table 3, thirteen of the inconsistencies are resolved by

suppressing one additional reaction whereas five (i.e., DcarA, DcarB,

DcydC, DptsI, DpyrH) are resolved by suppressing two additional

reactions in the network. Also, for ten of these GNG mutants,

GrowMatch identified alternative suppression candidates (see

Table 3).

We tested the sensitivity of the identified suppressions to the

growth medium by changing the medium from minimal glucose to

minimal glycerol. Based on the data available in [7], all the

mutants in Table 3 maintain their GNG characterization when

the cell grows on minimal glycerol. As shown in Table 3, many of

the identified conditional suppressions (shown in bold) needed to

correct GNG predictions remain the same upon the medium

change alluding to conserved regulation even under different

substrates.

Figure 7A shows how GrowMatch restores consistency to three

GNG mutants, DglyA, DserA and DserB. As shown, the gene

products are involved in serine and 5,10-methylenetetrahydrofo-

late (mlthf) biosynthesis, both of which are essential metabolites for

biomass formation. GrowMatch restores consistency in DglyA

either by suppressing serine production (by deleting reactions

associated with serA, serB or serC) or alternatively by disabling mlthf

production (by suppressing the Glycine Cleavage System). In DserA

and DserB, GrowMatch suggests blocking serine production by

disallowing the reversibility of glycine hydroxymethyltransferase

(glyA) (Table 3). Alternatively, as in DglyA, suppressing the Glycine

Cleavage System prevents mlthf formation and thereby prohibits

Figure 5. Characterization of GNG mutants identified in this study.
doi:10.1371/journal.pcbi.1000308.g005

Table 2. Resolution of GNG mutants in which deleted genes
encoding for isozymes.

GNG Mutant Associated Essential Reaction (Pathway)

DaroE SHK3Dr (Tyrosine, Tryptophan and Phenylalanine metabolism)

Dcan HCO3E (Unassigned)

DddlB ALAAlAr (Cell Envelope Biosynthesis)

DfabZ 12 reactions (Cell Envelope Biosynthesis)

DfolA DHFR (Cofactor and Prosthetic Group Biosynthesis)

DftsI MCTP1App (Murein Biosynthesis)

DglnA GLNS (Glutamate metabolism)

DilvA THRD_L (Valine, Leucine and Isoleucine metabolism)

DmetC CYSTL (Methionine Metabolism)

DmetE METS (Methionine metabolism)

DmetL ASPK or HSDY (Threonine and Lysine metabolism)

DmrdA MCTP1App (Murein Biosynthesis)

DthrA ASPK or HSDY (Threonine and Lysine metabolism)

DubiD OPHBDC (Cofactor and Prosthetic Group Biosynthesis)

DyshA H2Otex (Transport, Outer Membrane)

doi:10.1371/journal.pcbi.1000308.t002

GrowMatch: Automatic Model Reconciliation
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biomass formation. All three GNG mutants are resolved by

suppressing reactions that are in the same linear pathway as the

deleted reaction which is in line with evidence that genes

catalyzing linear pathways of reactions tend to be co-expressed

[32].

Figure 7B shows the restoration of GNG mutants, DcarA and

DcarB. These genes encode for a multi-domain protein that

catalyzes the reaction carbamoyl phosphate synthase (CBPS)

(glutamine-hydrolysing), which is involved in the production of

carbamoyl-phosphate. As shown in Figure 7B, carbamoyl

Figure 6. GNG mutants in which deleted genes encode for isozymes. All abbreviations are taken from the iAF1260 metabolic reconstruction
of E. coli.
doi:10.1371/journal.pcbi.1000308.g006

Table 3. Resolution of GNG mutants in which flux distribution is perturbed.

GNG Mutant Deleted Reaction(s) Additionally Suppressed Reaction(s)

DglyA GHMT2r PSP_l or PSERT or PGCD or GLYCL

DguaB IMPD XPPT or HXAND

DserA PGCD GHMT2r or GLYCL

DserB PSP_l GHMT2r or GLYCL or EX_ttdcea(e)

DproA G5SD NACODA

DproB GLU5K NACODA

DcarA CBPS CBMKr (unassigned) and OXAMTC (unassigned)

DcarB CBPS CBMKr (unassigned) and OXAMTC (unassigned)

Dadk 13 reactions (8 with isozyme) PPM or PRPPS or R15BPK

DcydC CYSabc2pp, GTHRDabc2pp (GLYAT AND GLYCL) or (AACTOOR and GLYCL)

Dprs PRPPS PPM or R15BPK or R1PK

DgapA GAPD PPS

DnrdA RNDR1, RNDR2, RNDR3, RNDR4 TRDR or GTHOr or GRXR

DnrdB RNDR1, RNDR2, RNDR3, RNDR4 TRDR or GTHOr or GRXR

Deno ENO PPS

Dpgk PGK PPS

DptsI 14 reactions FBA and TPI

DpyrH URIDK2r (DURIK1 and DUTPDP) or (DURIPP and DUTPDP)

Suppressions in bold are valid when the growth medium is changed from minimal glucose to minimal glycerol.
doi:10.1371/journal.pcbi.1000308.t003

GrowMatch: Automatic Model Reconciliation
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phosphate (CBP) production is required for the downstream

production of the biomass precursors such as L-arginine and

pyrimidine ribonucleotides. GrowMatch restores consistency to

these two mutants by prohibiting formation of CBP by suppressing

the reactions OXAMTC and CBMKr in these mutants. In

another example, GrowMatch restores consistency to the GNG

mutant DcydC by suppressing GLYAT and GLYCL (Glycine

Cleavage System) to prohibit biomass formation (Table 3). Note

that these are conditional suppressions valid only in DcydC.

Suppressing these reactions ensures that the biomass precursor

metabolites, siroheme (shem) and S-Adenosyl-L-methionine

(amet), are not produced in this mutant network. Closer

investigation reveals that the reaction uroporphyrinogen methyl-

transferase, which is a reaction that consumes amet and is involved

in the siroheme biosynthesis pathway, cannot carry any flux when

these suppressions are carried out in DcydC. This results in no

production of these biomass precursors resulting in zero biomass

formation in silico. All the examples highlighted above lead to

model modification that would have been difficult to come up with

by inspection without the aid the alternatives provided by

GrowMatch.

Resolving NGG Inconsistencies
Restoring growth for the NGG predictions requires that

production routes be established in the metabolic model for all

63 precursor metabolites to biomass. Figure 4B shows the location

of the deleted genes across all NGG mutants. A majority of these

genes are located in cofactor, cell envelope and amino acid

biosynthesis pathways. As a pre-processing step, we first check if

there are alternative genes that carry out the deleted function by

conducting a self-BLAST search of the deleted gene against the E.

coli K12 genome. These results are summarized in Table S5

available in the supplementary material. As seen, eight of these

genes have a high sequence similarity (i.e., a protein-protein

BLAST expectation value of less than 10213) with other open

reading frames in E. coli. For example, the gene argD whose

deletion results in a NGG mutant, shares high sequence similarity

with astC (protein-protein BLAST E-value = 5?102146). Also, the

Figure 7. Examples showing GrowMatch’s resolutions of GNG mutants where suppressions are in the same linear pathway (A) and
not in the same linear pathway (B) as the deleted gene. All abbreviations are taken from the iAF1260 metabolic reconstruction of E. coli. Here
reactions in blue indicate suppressions that restore consistency to the respective GNG mutant. Alternative suppressions are indicated by using the
word ‘or’ above their names.
doi:10.1371/journal.pcbi.1000308.g007

GrowMatch: Automatic Model Reconciliation
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gene aspC whose deletion results in a NGG mutant, shares a high

sequence similarity (protein-protein BLAST E-value = 4?10294)

with tyrB, which transcribes to form a subunit of tyrosine

aminotransferase. Hence, it is possible that it encodes for the

activities of these genes in the respective NGG mutants in vivo

thereby preserving growth.

We next use GrowMatch to resolve the NGG inconsistencies by

adding pathways using one or more of the three mechanisms

discussed previously. GrowMatch identified consistency-restoring

hypotheses for 5/38 mutants. Interestingly, one NGG mutant

DluxS, had alternative means of consistency restoration, one by

adding reactions and the other by allowing the secretion of a

metabolite. Three (including DluxS) were resolved by adding

reactions from KEGG and MetaCyc [30,31] and three (including

DluxS) by allowing the secretion of metabolites from the cell into

the extracellular space. None of the inconsistencies could be

resolved by modifying the directionality of existing reactions in the

model.

The first three NGG resolutions were corrected by adding single

reactions from the multi-organism databases of KEGG and

MetaCyc. Specifically, DluxS is corrected by adding the reaction

putative adenosylhomocysteinase (from the organism Rhizobium

leguminosarum) and Dasd is corrected by adding the reaction

catalyzed by Protein APA1 (from the organism Saccaromyces

cerevisiae). We note, however, that proteins catalyzing these

reactions have low sequence similarity with the E. coli K12

genome (BLAST score = 28.1 bits with gene product of ybcK and

29.6 bits with gene product of yshA respectively) and that the

validity of these hypotheses, like all those generated by

GrowMatch, must be explored experimentally. Consistency in

one NGG mutant (DcysN) is achieved by adding the reaction

catalyzed by sulfate adenylyltransferase, the activity of which is

documented in EcoCyc but was not included in the iAF1260

reconstruction [20,33]. Note that adding these reactions does not

disrupt any of the consistent NGNG mutants, thus these additions

are referred to as global additions.

The other three resolutions (see Table 4) are all achieved by

allowing the secretion of metabolites from the cytosol into the

periplasm and out into the extracellular space. As shown, the

NGG mutant DfolD is resolved by allowing the secretion of 3,4-

dihydroxy-2-butanone 4-phosphate that serves as the biosynthetic

precursor for the xylene ring of riboflavin. Glycolaldehyde and S-

ribosyl-L-homocysteine are reactants in the reactions catalyzed by

aldA and luxS respectively. To resolve the NGG mutants DaldA and

DluxS, GrowMatch hypothesizes the presence of secretion

mechanisms (currently absent from the model) for glycolaldehyde

and S-ribosyl-L-homocysteine, respectively (Table 4). Interesting-

ly, there is evidence that suggests that homocysteines are toxic for

E. coli [34]. Also, as the flux value in the added secretion reaction

for glycolaldehyde is very low (i.e., 2.661024 mmol/gDW hr), it is

possible that its toxic accumulation is prevented either by the

(possibly non-specific) activity of a transporter that is already

present or by its diffusion out of the cell.

Discussion

Here we have developed an automated procedure, GrowMatch,

to resolve in silico/in vivo growth prediction inconsistencies in single

gene-deletion mutants. In GNG mutants, GrowMatch restores

consistency by suppressing reactions to prohibit growth. In NGG

mutants, GrowMatch restores consistency by adding growth-

enabling pathways. We demonstrated this procedure by reconcil-

ing the growth prediction inconsistencies between the most recent

in silico model of E. coli, iAF1260 [20], with the in vivo growth data

available at the Keio mutant collection [17]. Using GrowMatch,

we suggested consistency-restoring hypotheses for 56/72 GNG

mutants and 13/38 NGG mutants. The inconsistencies in 26

GNG mutants were resolved by carrying out conditional

suppressions. In the case of NGG mutants, all the suggested

modifications were global modifications. By carrying out only

global modifications in wild-type E. coli, we were able to improve

the consistency from 90.6% to 94.6%. In addition, by carrying out

conditional modifications in the specific mutants, we further

improve the overall consistency in growth predictions to 96.7%.

Moreover, specificity has been recently proposed to be an

important measure to determine the effectiveness of in silico

simulations as a screen in computational gene essentiality

predictions [35]. Notably, we improved the specificity from

67.6% to 79.3% (considering only global corrections) using

GrowMatch. This value further improves to 92.8% when we also

consider conditional corrections.

GrowMatch resolved eighteen GNG inconsistencies by suggest-

ing suppressions in the mutant metabolic networks whereas fifteen

inconsistencies were resolved by suppressing isozymes in the

metabolic network. The remaining 23 inconsistencies correspond-

ing to blocked genes were repaired by simply adding component(s)

of the associated blocked reactions to the biomass equation (Table

S4). GrowMatch suggested consistency-restoring hypotheses for

five of the NGG mutants by adding functionalities to the model

whereas eight inconsistencies were resolved by pinpointing

alternate genes that have a high likelihood of carrying out the

deleted function. Note that one NGG mutant (DluxS) had

alternative means of consistency restoration.

In this study, we were able to pinpoint missing functionalities

that may have been overlooked during model reconstruction. In

one such example, were able to resolve a NGG mutant by adding

a reaction (i.e., sulfate adenylyltransferase) with documented

evidence of its being present in E. coli but absent in the in silico

model iAF1260 [20]. Furthermore, when checking for alternative

genes that restore consistency to NGG mutants, we identified

possible alternative activities for aldA and epd that were not

associated with them in the iAF1260 model (succinate semialde-

hyde dehydrogenase and glyceraldehyde-3-phosphate dehydroge-

nase, respectively). GrowMatch also resolved two NGG mutants

by indirectly preventing the toxic accumulation of metabolites.

Surprisingly, in the case of NGG mutants, none of the resolutions

were achieved by allowing the reversibility of irreversible reactions

in the model. This result is in contrast to previous results in which

a large proportion of connectivity problems in the previous version

of the E. coli genome-scale model were resolved by expanding

reversibility of reactions in the model [23]. This finding may be

due to the increased accuracy in the characterization of reversible

reactions in the latest E. coli model [20] brought about by making

use of DG values during the reconstruction process.

Table 4. Resolution of NGG mutants by allowing secretion of
metabolites.

NGG Secreted Metabolite

Mutant

DaldA glycoaldehyde

DluxS S-Ribosyl-L-homocysteine

DfolD 3,4-dihydroxy-2-butanone 4-phosphate

doi:10.1371/journal.pcbi.1000308.t004
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In line with recent explanations for GNG inconsistencies in in

silico models [35], we find that about 33% of the GNG mutants

correspond to genes associated with blocked reactions in the

metabolic network. Using GapFill, we were unable to identify any

flow restoring hypotheses for blocked reactions corresponding to

three NGG mutants using reactions from the multi-organism

databases of MetaCyc and KEGG. Also, these databases of

reactions were also unable to contribute growth-enabling func-

tionalities in 25 NGG mutants, which is likely due to the recent

systematic reconciliation of the latest reconstruction of E. coli with

data available in the MetaCyc and EcoCyc databases [30,33].

This motivates the need to further expand the size of catalogued

functionalities (e.g., the increase of experimentally determined

enzyme functionalities), and also to supplement these reaction

compilations with hypothetical reactions that will serve as missing

links to bridge pathway gaps. There is already a large body of

research focusing on deriving hypothetical reactions by iteratively

changing the substrate specificity or cofactor dependence of well-

characterized enzymes [36–40].

It is important to note that GrowMatch makes use of parsimony

criteria to prioritize alternative model correcting hypotheses.

Therefore, biologically relevant hypotheses that involve more than

the selected maximum allowed limit of model modifications will be

missed. Also, using alternate cellular objectives such as MOMA

[41] or ROOM [42] instead of maximizing biomass as the

objective function may help correct some GNG mutants into

NGNG mutants. A recent study by Motter et al., [43] addresses

this concern and defines the corresponding genes as suboptimally

essential genes. It would be worthwhile to explore whether, in

addition to model modifications, if more elaborate (re)definitions

of objective functions [44] may be needed to improve consistency

with experimental data. Furthermore, GrowMatch can also be

used to reconcile growth prediction inconsistencies across various

substrates. To this end, Biolog data [20] for substrate utilization

(e.g., carbon, nitrogen, phosphorous and sulphur sources) can be

used to propose model modifications that will ensure in silico

growth prediction consistency with the available data.

In summary, we believe that GrowMatch, in conjunction with

GapFill, are useful model-refinement tools during the reconstruc-

tion of new metabolic models or testing/curation of existing ones.

In addition to the use of GrowMatch to restore growth

inconsistencies for the latest E. coli model presented here, our

group has recently used it (Suthers 2008, accepted) during the

construction phase of the genome-scale metabolic model of

Mycoplasma genitalium iPS189.

Materials and Methods

Definitions
First, we define the sets, parameters and variables that are

common to the mathematical procedures formulated to resolve

NGG and GNG inconsistencies. To this end, we define the index

sets, {i|i = 1, 2… M},{j|j = 1, 2… N} and {k|k = 1, 2… K} that

span the M metabolites, N reactions and K genes, respectively

present in the metabolic network. Furthermore, we define the

index set {l|l = 1, 2… L} to represent the L in vivo experiments

under consideration. Set KOl is defined to include genes that are

knocked out in experiment l. We define a set Model to include all

reactions in the existing genome-scale metabolic reconstruction.

We maximize the formation of biomass subject to the available

substrate feed and mass balance constraints implied by the

stoichiometric model. . The in silico predictions are then compared

with in vivo data. Sij is the stoichiometric coefficient of metabolite i

in reaction j and parameters Gnec
kj , G

suf
kj link reactions j to genes k as

follows:

Gnec
kj ~

1 if gene k is necessary for reaction j to be active

0 otherwise

(

G
suf
kj ~

1 if gene k is sufficient for reaction j to be active

0 otherwise

(

These definitions imply that if there exists two isozymes k1 and

k2 for reaction j then Gnec
k1j~Gnec

k2j~0 whereas G
suf
k1j ~G

suf
k2j ~1.

Alternatively, if the enzyme catalyzing reaction j is multimeric

requiring both genes k1 and k2 then Gnec
k1j~Gnec

k2j ~1 whereas

G
suf
k1j ~G

suf
k2j ~0.

Upper and lower bounds, UBj and LBj, were chosen not to

exclude any physiologically relevant metabolic flux values. The

upper bound for all reactions was set to 1,000. Unless specified

otherwise, the lower bound was set equal to zero for irreversible

reactions and to 21,000 for reversible reactions. The flux in

reaction j is denoted by variable vj and is restricted to vary between

lower and upper bounds LBj and UBj, respectively. Using these

definitions,we will now discuss the mathematical procedures

developed to resolve GNG and NGG inconsistencies.

Resolution of GNG Inconsistencies
A GNG single gene deletion mutant occurs when the model

predicts growth whereas no growth is observed in vivo. This could

be due to the erroneous presence in the model of pathways that

produce biomass precursor metabolites. The aim here is to identify

the minimum number of suppressions that need to be imposed for

a given experiment l* corresponding to a GNG mutant to ensure

that the maximum biomass formation is zero. These suppressions

are carried out by either (a) restricting flux in transport/

intracellular reactions or (b) restricting the reversibility of reactions

defined as reversible in the model. The description of these

suppressions requires the definition of the binary variable yj to

pinpoint them in the network.

yj~
1 if reaction j is not suppressed

0 otherwise

�

The suppressions required to ensure that the maximum biomass

formation is below the imposed cut-off vbiomass
min for a GNG mutant

corresponding to in vivo experiment l* are identified by solving the

following bilevel optimization problem GrowMatch:

Minimize vbiomass

s:t Maximize vbiomass Inner½ �P
j

Sijvj~0 i~1 . . . M

vatp~vatp

vuptake~vuptake

LBjyjƒvjƒUBjyj Vj[Model

2
6666664

3
7777775

yj~0, Vj Gnec
kj ~1&k[KOl�

���X
j

1{yj

� �
ƒn�

yj~ 0,1f g Vj[Model

The aim of GrowMatch is to identify the minimal number of

reaction suppressions needed to zero the maximum biomass

GrowMatch: Automatic Model Reconciliation
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formation. We do this by ensuring that there is no biomass

formation even when fluxes in the network are systematically re-

apportioned so as biomass formation is maximized. This leads to

a min-max formulation. Specifically, the inner optimization

problem identifies the maximum possible amount of biomass

formation by redirecting metabolic fluxes subject to stoichiom-

etry, uptake and ATP maintenance. The outer optimization

problem minimizes biomass formation by choosing a pre-

specified number n* of reactions in the network to suppress. A

zero objective function value implies that the n* selected reaction

suppressions (i.e., yj = 0) successfully prevent the network from

forming biomass. This converts the GNG occurrence for in vivo

experiment l* into NGNG restoring consistency of prediction.

Alternative ways of restoring prediction consistency can be

obtained by imposing successive integer cuts [45] to exclude

previously identified solutions until all possible feasible solutions

are exhausted. Reaction suppressions that do not inadvertently

affect biomass formation in any of consistent GG prediction are

referred to as global suppressions. On the other hand, if any of these

suppressions restrict biomass production in any of the GG

mutants, they are referred to as conditional suppressions. The

identified set of suppressions (including alternative ones) is finally

tested by contrasting them against literature evidence regarding

the presence or absence of activity of the suppressed reaction

under the experimental conditions.

For GNG mutants associated with genes encoding isozymes, we

check if simply deleting the associated reaction prohibits in silico

growth thereby restoring consistency to the mutant. For GNG

mutants associated with blocked genes, we check if adding a

component from the corresponding reaction to the biomass

equation converts it into an NGNG mutant.

Resolution of NGG Inconsistencies
NGG mutants are characterized by the lack of growth in silico

despite growth in vivo. This means that at least one precursor

metabolite in the biomass equation cannot be produced. The

aim is to modify the existing genome-scale model by adding

pathways so as to restore biomass production that may achieve

this. To this end, we first construct a database of reactions

consisting of (a) reactions from an external database of reactions,

(b) irreversible reactions from the original genome-scale model

with their directionalities reversed, and (c) transport reactions

that enable secretion pathways for metabolites. We define the

set Database to represent the reactions that populate this

database. For the external databases of reactions, we use the

multi-organism databases, MetaCyc [46] and KEGG [47], as

sources of non-native functionalities. We attempt to resolve

inconsistencies by adding reactions from these databases

sequentially since we were unable to integrate them into a

single database due to their different naming conventions. The

following binary variables are defined to describe the addition of

to the model.

yj~

1 if reaction j from the set Database

is added to the model

0 otherwise

8><
>:

Based on these definitions, we next identify the minimal number

of modifications required to correct a single NGG mutant

corresponding to the in vivo experiment l* using the following

optimization formulation GrowMatch:

Minimize
X

j[Database

yj

s:t

vj~0, V Gnec
kj~1&k[KOl�

��X
j

Sijvj~0i, i~1 . . . M

vbiomasswvmin
biomass

vatp~vatp

vuptake~vuptake

LBjƒvjƒUBj Vj[Model

LBjyjƒvjƒUBjyj Vj[Database

yj~ 0,1f g Vj[Database

In GrowMatch, the objective function minimizes the number of

modifications (addition of reactions or activation of secretion of

metabolites) in the metabolic model. The first constraint enforces

zero flux through reactions that are rendered absent through the

elimination of the genes that are knocked out in experiment l*.

The next constraint imposes stoichiometric balance on all

metabolites in the model. The requirement of meeting a minimum

amount of biomass, quantified by parameter vbiomass
min , to ensure

growth is imposed in the next constraint while energy require-

ments and uptake restrictions are imposed in the next two

constraints. The final constraint ensures that if yj = 1 for a reaction

j from the database, then there is a non-zero flux through it. The

optimal solution to GrowMatch identifies the reactions that need

to be added from the database and/or the metabolites that need to

be secreted from the metabolic network to ensure a minimum

necessary biomass production in the NGG mutant. As in the case

of GNG mutants, GrowMatch can be used to identify exhaustively

all sets of reactions that need to be added to resolve a particular

NGG mutant using integer cuts.

We test the hypotheses generated to resolve the NGG mutant

using the following two criteria. For reactions added from the

database, we check the two-way protein-protein BLAST expec-

tation value between the enzyme that catalyzes that reaction and

the genome of interest (in this case E. coli). For irreversible

reactions selected to be made reversible, we query for such

evidence in the literature and also estimate the DG values [48]

whenever available for the biotransformation in question. Finally,

for secretion pathways, we query the TransportDB database [49].

A similar set of criteria were followed before in GapFill [23].

In our simulations, we set the glucose uptake rate to 10 mmol/

gDW hr, ATP maintenance to 8.39 mmol/gDW and oxygen

uptake rate to 15 mmol/gDW hr. We also turn off the reactions

given in [20] that are down regulated in aerobic glucose

conditions. We use the core biomass composition available in

iAF1260 [20] as the in silico biomass description. In summary, by

using the GNG and NGG GrowMatch optimization formulations,

the following procedure is put forth for correcting model growth

predictions:

Step 1: Compare in silico (e.g.; iAF1260 E. coli model [20])

and in vivo (e.g. Keio single gene-deletion collection [17])

growth predictions of all mutants. Classify mutants as GG,

GNG, NGNG or NGG accordingly.

GrowMatch: Automatic Model Reconciliation
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Step 2: Resolve GNG mutants one-at-a-time using Grow-

Match by searching for suppressions (of intracellular/transport

reactions and/or reversibility of reversible reactions) in

restricted domains of reactions that reduce biomass production

(below cutoff vbiomass
min ). Check if these suppressions prohibit

growth in any of the GG mutants. If they do not, then they are

denoted as global. Otherwise, they are treated as conditional.

Step 3: Resolve each NGG mutant one-at-a-time by adding

pathways (using external databases such as MetaCyc/KEGG

[30,31], allowing reversibility of irreversible reactions in the

model, or adding secretion pathways to metabolites) to ensure

biomass production using GrowMatch. Check if any of the

added pathways allow for growth in any of NGNG mutants. If

they do not, the additions are denoted as global. Otherwise,

they are denoted as conditional.
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