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Abstract

Different data types can offer complementary perspectives on the same biological phenomenon. In cancer studies, for
example, data on copy number alterations indicate losses and amplifications of genomic regions in tumours, while
transcriptomic data point to the impact of genomic and environmental events on the internal wiring of the cell. Fusing
different data provides a more comprehensive model of the cancer cell than that offered by any single type. However,
biological signals in different patients exhibit diverse degrees of concordance due to cancer heterogeneity and inherent
noise in the measurements. This is a particularly important issue in cancer subtype discovery, where personalised strategies
to guide therapy are of vital importance. We present a nonparametric Bayesian model for discovering prognostic cancer
subtypes by integrating gene expression and copy number variation data. Our model is constructed from a hierarchy of
Dirichlet Processes and addresses three key challenges in data fusion: (i) To separate concordant from discordant signals, (ii)
to select informative features, (iii) to estimate the number of disease subtypes. Concordance of signals is assessed
individually for each patient, giving us an additional level of insight into the underlying disease structure. We exemplify the
power of our model in prostate cancer and breast cancer and show that it outperforms competing methods. In the prostate
cancer data, we identify an entirely new subtype with extremely poor survival outcome and show how other analyses fail to
detect it. In the breast cancer data, we find subtypes with superior prognostic value by using the concordant results. These
discoveries were crucially dependent on our model’s ability to distinguish concordant and discordant signals within each
patient sample, and would otherwise have been missed. We therefore demonstrate the importance of taking a patient-
specific approach, using highly-flexible nonparametric Bayesian methods.
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Introduction

Molecular data show great promise to stratify patients into

distinct subgroups that are indicative of disease development,

response to medication and overall survival prospects [1]. Such

subgroups are highly useful in informing treatment decisions [2,3].

Most current computational diagnostic approaches are based on

gene expression data and cluster patients by co-expression of

genes. For example, multivariate gene expression signatures have

been shown to discriminate between disease subtypes, such as

recurrent and non-recurrent cancer types or tumour progression

stages [3–6].

In addition to expression data there are also many other data

types that can be informative about a patient’s disease status. For

example, somatic copy number alterations provide good biomark-

ers for cancer subtype classification [7]. For this reason, the focus

of research has recently shifted towards integrative clustering of

complementary data types, e.g. [8]. The goal of integrative

analysis is to identify clusters of samples that share not only

expression profiles, but also other molecular characteristics such as

copy number alterations. The subtypes of tumours identified in

this way are more likely to share the same regulatory programs

and underlying genomic alterations.

Data integration for subtype discovery poses several challenges

that we address in this paper.

Challenge 1: Separating concordant from contradictory signals.

While different molecular data are expected to share complemen-

tary information on common cellular processes, they can also

contain contradictory signals because of the complexity of living

cells and noise in the data. For example, genomic gains and losses

may or may not be accompanied by concordant expression changes

of the genes in the altered regions. The level of concordance

may differ dramatically from patient to patient due to cancer

heterogeneity. However, most existing integrative methods force

different data types to be fused in all samples without reference to

whether the data are concordant or contradictory in each patient.

Challenge 2: Selecting informative features. Identifying which

measurements are informative about the underlying subtypes is

particularly important when using genomic data because the

number of measurements can be very large, e.g. in the tens of

thousands or more in the case of microarrays. Because a priori we

expect only a fraction of measurements to contain useful clustering
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information, extracting these features accurately will improve the

quality and stability of clustering outcome. Additionally, identify-

ing the relevant biological features can inform us about the

underlying processes driving the disease.

Challenge 3: Estimating the number of subtypes. In many

clustering algorithms this number is a parameter that needs to be

set by the user [8]. Afterwards, the quality of the clusterings need

to be compared, e.g. using stability indices [9]. However, jointly

estimating the clusters together with their optimal number in a

unified framework can improve results, because the most likely

number of clusters can be inferred directly from the data.

These three challenges are not independent of each other:

Whether or not the data show concordant signals for a subgroup of

patients has a direct effect on which features should be selected as

informative, which in turn has a direct influence on the estimate of

the number of clusters. Thus, all three challenges need to be

treated in an unified model.

Our approach is Patient-specific Data Fusion (PSDF) by

Bayesian nonparametric modeling. In this paper, we propose a

statistical model based on a two-level hierarchy of Dirichlet

Process (infinite mixture) models (DPMs) [10,11] that integrates

copy number and expression data to jointly classify patients into

cancer sub-groups. This model is an extension of the model

presented in [12], modified to include a method of feature

selection and adjusted to address a different problem with a

number of advantages:

1. Different data types are fused (or not fused) on a sample-by-

sample basis depending on the degree of concordance between

two data types;

2. Input features are selected only if they are informative to

clustering;

3. The most likely number of clusters are inferred automatically

given the data.

Thus, the model not only identifies copy number alterations

driving gene expression changes but simultaneously finds differ-

ences in regulation that distinguish one cancer subtype from the

other. In doing so it explores the basic scientific question to which

extend copy number data can be fused with expression data in

integrative cancer studies.

everal integrative clustering approaches have been proposed in

the literature [8,13,14]. A recent method is iCluster [8]. iCluster is

based on a k-means approach that is extended to include more

than one data type and performs feature selection in each data

type independently. iCluster is fast and easily applied to more than

two data types. However, compared to iCluster we have a more

flexible mixture model underlying our own approach that in

particular does not need the number of clusters (the ‘k’ in ‘k-means’)

to be specified beforehand. In contrast to our model, iCluster

assumes that both data are informative for all patients without

checking for patient-specific consistency. In two case studies with

cancer data sets [7,15], we will show what impact these differences

have and that our model compares favourably with iCluster in

clinically important analysis results.

Results

We introduce PSDF as an unified model to address the above

three key challenges in patient subtype discovery. To demonstrate

the power of this patient-specific integrative method, we analyse a

breast cancer data set and a prostate cancer data set. High degree

of concomitant changes has been observed in copy number and

expression changes in breast cancer [15,16]. In contrast, prostate

cancer data display entirely different characteristics with relatively

few co-ordinated genomic-transcriptomic changes [7,17]. There-

fore, these two cancer types represent two very different cases in

terms of fusion ability, making them ideal for validating PSDF.

Both the Matlab code for PSDF and pseudo-code for our work

flow of data preprocessing and downstream analysis are available

at https://sites.google.com/site/patientspecificdatafusion/.

Patient-specific Data Fusion (PSDF) model
Bayesian nonparametric modeling provides a principled way to

learn unknown structure in the data. Dirichlet Process (infinite

mixture) models (DPMs) [10,11] are Bayesian nonparametric

models that have been widely used for clustering [18–25]. DPMs

give us a sound interpretation of common cluster membership,

that the data for those samples are drawn from the same

underlying distribution. They also allow us to infer the most likely

number of clusters given the data as part of the unified model.

PSDF groups patient samples on the basis of both gene

expression and copy number alteration data. It also simultaneously

distinguishes, on a sample-by-sample basis, between samples that

can share concordant signal across the data types (fused) and

those for which there is contradiction (unfused). We note that

throughout this paper we will use the following terminology,

relating to the concordance (or otherwise) of the two data sets for a

given patient.

Fused. The patient sample belongs to one clustering

partition, which is the same in both data sets. The clustering

structure for this patient across the two data sets is said to be

concordant.

Unfused. The patient sample belongs to different clustering

partitions in each data set. The clustering structure for this patient

across the two data sets is said to be contradictory.

By introducing a binary indicator parameter (ri, see the

Methods section) for each sample, we can infer its fused/unfused

state and because PSDF uses Markov Chain Monte Carlo

(MCMC) sampling, this means we can determine for each sample

the probability that it is fused (i.e. P(ri~1jdata)).

By treating the data on a sample-by-sample basis, we can

identify which samples are likely to belong in a fused state and

which are likely to belong in an unfused state. This gives us a

principled way of finding subgroups of samples with concordant or

Author Summary

The goal of personalised medicine is to develop accurate
diagnostic tests that identify patients who can benefit
from targeted therapies. To achieve this goal it is necessary
to stratify cancer patients into homogeneous subtypes
according to which molecular aberrations their tumours
exhibit. Prominent approaches for subtype definition
combine information from different molecular levels, for
example data on DNA copy number changes with data on
mRNA expression changes. This is called data fusion. We
contribute to this field by proposing a unified model that
fuses different data types, finds informative features and
estimates the number of subtypes in the data. The main
strength of our model comes from the fact that we assess
for each patient whether the different data agree on a
subtype or not. Competing methods combine the data
without checking for concordance of signals. On a breast
cancer and a prostate cancer data set we show that
concordance of signals has strong influence on subtype
definition and that our model allows to define prognostic
subtypes that would have been missed otherwise.

Patient-Specific Data Fusion
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heterogeneous structure which, as we show below, leads to new

insights about the disease and its subtypes.

Feature selection (biomarker discovery) is also built-in to PSDF,

using two sets of binary indicator parameters, Ia1 and Ia2. These

switch off/on features in each data set, so we can infer as part of

the modelling process which features are contributing to the

analysis. Again, because PSDF uses MCMC sampling, this allows

us to determine P(Biomarkerjdata) for each feature, the

probability that it is an informative biomarker in the analysis.

This both improves the quality of the subtypes by discarding

‘‘noisy’’ features, plus allows us to identify which features in the

data are biologically informative and may hence be biomarkers for

the disease.

Fuller details on this can be found in the Methods section.

Case study 1: Fusion clusters reveal prognostic breast
cancer subtypes

The breast cancer data from [15] contains both copy number

and expression data for 106 tumour samples, with 26,755 copy

number probes and 37,411 expression probes. Even for a

clustering method with feature selection capability, it is convenient

to remove the mostly obviously uninformative ‘‘noise’’ features. To

preselect features with functional implications in a principled,

controlled manner, we take the following steps.

First, copy number data are filtered based on whether there is a

concomitant change between a locus’s copy number and its own

expression. This is to exclude passenger events without explicit

downstream effects. Each expression probe is matched to its

nearest copy number probe allowing for multiple matches, i.e. a

copy number probe can be matched to multiple expression probe.

This resultes in 37,411 matched pairs of copy number and

expression data annotated by expression probes. We then calculate

the adjusted p-values of the correlations of each pairs of copy

number and expression probes, and a copy number probe is

selected if the corresponding p-value is smaller than 0.1. Still there

are highly similar copy number profiles among the selected copy

number probes. To remove redundancy, copy number data of the

selected probes are then merged based on their similarity using

CGHregions [26], which results in 379 regions. Finally, both of the

copy number signatures from the merged regions and all

expression profiles passing the above p-value threshold are ranked

by the Wald test in predicting breast-cancer-specific survivals. The

best 200 of each type of data are used for clustering.
Distinguishing concordant from contradictory signal.

PSDF yields 4 clusters for all 106 breast cancer samples and 3

fused clusters, containing only samples for which P(fusion)w0:5.

We then use k~4 as input to iCluster to obtain the iCluster

partition. These results, together with the PAM50 partition as a

popular breast cancer subtype classification in the literature

generated using the breast cancer gene expression signatures in

[2], are shown together with the input data in Fig. 1(a). Fig. 1(b–d)

show the posterior probability matrices of two given samples being

in the same cluster. The posterior is averaged over both data sets.

The case study results show the power of patient-specific data

fusion. The similarity matrix for all items (Fig. 1(b)) shows that

Cluster 2 has some levels of substructure. From the heatmap in

Fig. 1(a), the expression features have distinctly different value for

that cluster, while the copy number are primarily neutral. This is

the reason why only part of this cluster is fused by both data. The

Figure 1. (a) Breast cancer data heatmap sorted by PSDF outcome compared with another integration method iCluster, and the
PAM50 subtypes based on expression alone. Features are ranked by their probability of uses in the MCMC sampling from high to low
respectively for copy number and expression features, as indicated on the left. (b–d) Posterior similarity matrices (red: high posterior probability
between patient samples; blue: low posterior probability).
doi:10.1371/journal.pcbi.1002227.g001
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fused samples in this cluster, as shown by its simlarity matrix in

Fig. 1(c), have well defined structure, indicating that the data are

fused by concordant features from two data types.

The unfused samples are also interesting. Part of Cluster 1, 2,

and 4, as well as the entire Cluster 3 are unfused, for which lots of

ambiguity exists in the similarity matrix (Fig. 1(d)). The unfused

samples in these clusters, although having similar copy number

alterations, are with a range of different expression values,

suggesting that there may be insufficient gene expression signal-

to-noise for those samples to fuse. These samples are good

examples of a case where the two data sources should not be

forced to fuse, because part of the signals are contradictory.

The case study results also demonstrate the power of feature

selection. For the informative features selected by PSDF, there are

60% of copy number and 40% of expression features. Copy

number features from 8q (Chromosome 8 q arm), 17p (Chromo-

some 17 p arm), 17q, 20q are among the most frequently used.

These regions harbor some of the most well known genes in breast

cancer. For example, 8q contains MYC, 17q has BRCA1, 17p

encodes TP53, and 20q harbors NCOA3. Interestingly, 1q features

are not selected by our model but iCluster. This is likely to be due

to the low concordance between the copy number alterations of

this region and the expression features.

Prognostic breast cancer subtype discovery. Clinical follow-

up for this data set facilitates the assessment of data-driven subtype

discovery with respects to their prognostic outcome. For PSDF, the

Kaplan-Meier breast cancer specific survival curves for all samples

reveal a low survival group (PSDF 1), a good outcome group (PSDF 4),

and two intermediate groups (PSDF2 and 3), as shown in Fig. 2(a).

Log-rank p-value shows test result of the null hypothesis that each

cluster in the partition is drawn from the same underlying survival

distribution. The same are plotted for the fused samples from PSDF,

iCluster and PAM50 results (Fig. 2(c)). The p-value for PSDF is much

lower than the other two. It also has a group with significantly worse

outcomes (the dark blue group) which is bigger and contains more

events (deaths) than the worst group from iCluster (purple). Another

interesting observation is that PSDF partition is able to separate early

events (PSDF 1) from late events (PSDF 2, 3, 4), while these events are

mixed up among the iCluster groups.

Fused subtypes are prognostic in both events and timing. For

the three fused clusters in Fig. 2(b), the poor outcome fused group

has only 18 members but 13 deaths in the early stage (16–69

months), while PSDF fused 2 has events from 5 to 88 months and

PSDF fused 3 with only 1 at 111 months. The iCluster partition

for these fused samples do not exhibit such behaviour. This may

suggest that the concordant copy number and expression changes

may help predict both events and their timing.

Subtype-specific features reveal functional implications. With

respect to the genetic features that characterise these subtypes, the

poor prognosis subtype (dark blue) has 8q copy number gains and

Figure 2. Kaplan-Meier survival curves of PSDF, iCluster, and PAM50 results with their p-values (log-rank test) for breast cancer
specific survivals.
doi:10.1371/journal.pcbi.1002227.g002
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over-expressions (see Fig. 1). Meanwhile, the good outcome group

(yellow), although also has 8q gains, do not have the over-

expressions. This implies that the combination of copy number

gain together with functional over-expressions can be associated

with increased risk in breast cancer. Since these subtypes are

defined by these genetic features and their functions are likely to be

linked to the disease outcome, we further explore the functional

implication of the unique features for each subtype.

For each of the cluster/subtype, we extract its cluster/subtype-

specific genes based on both copy number and expression data.

Limma [27] is used to score all genes on the microarray by

comparing the expressions or copy number data in a cluster with

the rest. As a result, genes with significantly differential copy

number or expression changes are assigned a low p-value (Pcn or

Pge). Log fold change score for copy number Fcn or expression Fge

is also computed. A gene’s copy number change or expression

change is termed subtype-specific if the corresponding p-value are

smaller than 0.1 and absolute log fold change larger than 0.2. This

enables detection of genes associated with a specific cancer subtype

on either the genomic or transcriptomic level. With the subtype-

specific genes, we can then explore the functional implications of

the genetic alterations associated with a particular cancer subtype.

We are particularly interested in the poor outcome groups from

our model (dark blue and purple) and focus on these two subtypes

in the subsequent analysis.

Subtype-specific network modules. The subtype-specific

genes are combined with a Protein-Protein Interaction (PPI)

network to extract functional network modules. The PPI network

is downloaded from HPRD, release 9, April 2010 [28]. The R

package BioNet [29] can extract an optimal network module with

highest overall node scores, which, in this case, are the Limma p-

values for the subtype-specific genes.

The network module of PSDF 1 in Fig. 3(A) is characterised

with the over-expressions of cyclin genes such as CCNE2, CCNB2,

CCNA2, CDC25C, CDC20, as well as copy number gains of several

genes on Chromosome 8. The connection between the poor

outcome and over-expression of cyclin genes is in line with the

literature, some of which are known prognostic markers in breast

cancer [30,31]. The functional interactions between subtype-

specific genes are also interesting, for example, CHEK2 checkpoint

homolog is a putative tumour suppressor. When activated, the

encoded protein is known to inhibit CDC25C phosphatase,

preventing entry into mitosis, and has been shown to stabilize

the tumour suppressor protein p53, leading to cell cycle arrest

in G1.

The subtype-specific module 2 in Fig. 3(A) is featured with

predominantly copy number losses of genes centering at TP53.

TP53 is an important tumour suppressor and marker in breast

cancer [32]. Its protein product p53 regulates a large number of

genes that control a number of key tumour suppressing functions

such as cell cycle arrest, DNA repair, senescence and apoptosis.

This module also features relatively low copy number of several

important genes in cancer such as NCOA3, a nuclear receptor co-

activator that interacts with nuclear hormone receptors to enhance

their transcriptional activator functions, and CCND1 whose copy

number gain and over-expression can alter cell cycle progression

and may contribute to tumorigenesis, as well as MYBL2 which has

been shown to activate the cell division cycle 2, cyclin D1.

Subtype-specific KEGG pathways. Meanwhile, KEGG [33]

pathway enrichment analysis can be applied to the top 800 subtype-

specific genes for the discovery of subtype-specific signaling

pathways as potential targets for treatment. We use the enrich-

ment map [34] in R package HTSanalyzer [35] for visualizing the

functional enrichment of the two subtypes associated with poor

prognosis. Using a hypergeometric test on the subtype-specific

genes, we search for deregulated KEGG pathways specific to a

given cancer subtype. The pathway maps in Fig. 3(B) show the

enriched pathways in the two PSDF subtypes with an adjusted

p-value cutoff at 0.05. The node color indicates the significance by

the hypergeometric test p-value, and edge widths corresponding to

the amount of overlaps between pathways.

The PSDF-specific pathways for PSDF 1 include Cell Cycle,

Oxidative Phosphorylation, Pyrimidine metabolism, which are

known to be deregulated in breast cancer [36,37]. It also further

supports that the cyclin over-expression module of this subtype is

the functional component in this subtype. We noted before that

the gain of the same genomic region without over-expression in

PSDF 4 corresponds to a favorable outcome. This module is

actively involved in the signaling pathway and likely to be the key

to this subtype.

PSDF 2 is characterised by deregulations in the Apoptosis

pathway which includes several important genes such as TP53.

Combined with the network module in Fig. 3(A), the pathway

analysis result leads to the conclusion that this subtype is featured

with genes losses centered at TP53 in the Apoptosis pathway.

Therefore, while over-expression of the Cell Cycle pathway points

to early stage breast cancer deaths in the worst outcome subtype,

copy number loss of p53 signaling pathway characterises the

subtype with intermedia survival outcome.

Case study 2: New prostate cancer subtype of very poor
survival outcome

For the prostate cancer data set, there are 150 tumour samples

with both copy number and expression data [7]. The expression

data were profiled with Affymatrix Human Exon 1.0 ST array

which contains 229,581 probes after quality filtering. For the copy

number data, there are 43,416 probes on Agilent 244K array

comparative genomic hybridization array.

To extract features, we use a slightly different approach since

the scale of this data set is much larger than that of the breast

cancer data. Substantially larger number of probes compared to

the breast cancer study means that the probe-centric method is not

suitable, hence we take a gene-centric method by aggregating copy

number and expression data to 12,718 genes based on array

annotation. For copy number data, the aggregation is done by

taking the median for probes within a gene. For the expression, the

probe most highly correlated with the copy number profile of a

gene is chosen to represent this gene. Even if so, only modest

correlations are observed between the two data types. Finally, 286

genes with highly correlated copy number and expression

(adjusted pv0:1) from the two data sets are used as clustering

input.

Prognostic prostate cancer subtype discovery. To

compare with PSDF outcome, we take the original subtype

classification for this data set [7], referred to as ‘‘TS subtype’’, and

the iCluster outcome. Previously, seven subtypes (Cluster 1–6 and

a ‘‘flat’’ cluster [7]) were found based on unsupervised hierarchical

clustering using copy number data alone as the authors found that

the expression data seem to have weaker prediction power for

biochemical recurrence. Interestingly, without prior knowledge of

cluster numbers, PSDF also yields seven clusters, supporting that

there are seven distinct subtypes in the data. All copy number

features were selected as well as a subset of expression features as

indicated by the biomarker probability curves in Fig. 4, supporting

the findings in [7] that copy number data are more informative in

prostate cancer. To enable fair comparison, we use iCluster to

obtain a seven-cluster outcome. All different clustering and the

input features are visualised in Fig. 4. Their Kaplan-Meier curves

Patient-Specific Data Fusion
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for biochemical recurrence and the distributions of Gleason grade

are plotted in Fig. 5.

Significant differences of recurrence outcome was found among

the PSDF clusters (log-rank test pv10{17), which can be

categorised to three outcome categories: poor outcome (PSDF

7), moderate (PSDF 4 and 5), and good (PSDF 1, 2, 3, and 6).

Strikingly, a unique cluster to the PSDF clusters is the poor

outcome cluster PSDF 7 which contains 9 patients all with

recurrences. Like with the breast cancer case, this poor outcome

cluster contains mainly early-stage recurrences, all of which occur

before 30 months of diagnosis, highlighting its aggressiveness. It is

worth noting that this cluster persists even when we run PSDF

with a different set of features (data not shown), indicating its

robustness. With respects to the Gleason grade, this worst outcome

group is larger than those of the other two clustering outcome

(Fig. 5(d–f)). Notably, this group contains a mixture of grade 7, 8

and 9 tumours but all with early deaths, suggesting that PSDF

might captures information missed by the Gleason grade.

Interestingly, although PSDF and iCluster share two clusters,

PSDF/iCluster 2 and 3, this poor outcome cluster PSDF 7 is lost

among the iCluster clusters. PSDF 7 is also not identified by the

original TS subtypes. This is because if only copy number data are

used, PSDF 4 and PSDF 7 would be clustered together. If only

expression data are used, PSDF 5 and PSDF 7 are likely to be

jointed. Thus, clustering on a single data type is not able to recover

this subtype, highlighting the strength of data fusion. Additionally,

integrative clustering methods that force all samples to be fused,

such as iCluster, will tend not to recover PSDF 7, instead dividing

Figure 3. Network modules and enrichment maps as part of the functional follow-up analysis for the breast cancer subtypes: (A)
Subtype-specific network modules for PSDF 1 and 2. The node color in the network modules indicates the type of alterations relative to this
cluster: red - copy number gain or over-expression, green - copy number loss or under-expression. The shape of nodes indicates the type of data:
square - copy number, round - expression. (B) the KEGG pathway enrichment maps for PSDF 1 and 2. The node colors indicate the significance of
enrichment result and the thickness of the edges indicates the amount of overlaps between pathways.
doi:10.1371/journal.pcbi.1002227.g003
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those samples between PSDF-4- and PSDF-5-like clusters. This is

evidenced by that fact that PSDF 7 is largely unfused (Fusion status

in Fig. 4(a)). Hence, taking a patient-specific approach here is vital

to discovering this poor outcome group, again supporting the

importance of distinguishing between concordant and discordant

signals in subset of samples.

Subtype-specific network modules and their pathways.

We focus on the two worst outcome groups PSDF 7 and PSDF 5

and examine their subtype-specific genes in the same manner as

done before for the breast cancer data set. Interestingly, PSDF 7 is

characterised by the under-expression of many functionally-related

growth factors, such as GRB2 and FGFR2, as well as cancer-

generic genes such as cyclin CCNB1, hypothesized tumour

suppressor TP73 and mixed-lineage leukemia MLL. The

enrichment map of PSDF 7 in Fig. 6(B) shows that its subtype-

specific genes are enriched with many cancer pathways, among

which the most significant are Chemokine signaling pathway and

Endocytosis. Studies on chemokine signaling pathways not only

confirm their roles in regulating immune responses [38], but also

suggest that chemokines are critical for cancer progression with

their impacts on the tumor microenvironment [39]. There are

increasing evidences that endocytosis plays a central role in control

of the cell cycle, mitosis, apoptosis and cell fate determination,

which projects to hyper-proliferative conditions like cancer

[40,41]. In keeping to these studies, our results here collectively

suggest the contribution of down-regulation of these pathways to

poor clinical outcome in prostate cancer.

On the other hand, PSDF 5 features copy number losses of the

functional network module centered at RB1, a negative regulator

of the cell cycle and a tumor suppressor. RB1 encodes a protein

which stabilises constitutive heterochromatin to maintain the

overall chromatin structure. The active, hypophosphorylated form

of the protein binds transcription factor E2F1 which may induce

suppression of apoptosis in prostate cancer [42]. Hence copy

number mutations in RB1 may lead to large-scale transcriptional

deregulations. Other genes in this module include cell cycle gene

CCNA1, Nuclear receptor coactivator SNW1, and CASP7. CASP7

encodes a protein in the caspase family, which plays a central role

in the execution-phase of cell apoptosis. CCNA1 was found to bind

to important cell cycle regulators, such as RB family proteins,

transcription factor E2F1, and the p21 family proteins. With only

16 genes, the network module of PSDF5 is enriched with Cell

cycle and TGF-beta signaling pathway genes (Fig. 6(d)). DNA

copy number losses of many important genes in these pathways

indicate the potential roles of these genes in this cancer subtype.

Discussion

This paper explores the potential of patient-specific data fusion

to enhance prediction power in cancer subtype discovery. Cancer

subtype discovery combining both genomics and transcriptomics

leads to a more comprehensive understanding of the heterogenous

cellular contexts. By using a flexible, nonparametric model such as

the model presented in this paper, we can learn both the

concordant and contradictory structures underlying those multiple

data types. This structure leads to an improved understanding

of the functional components and pathway regulations for

each cancer subtype, something that is essential for the future

Figure 4. (a) Prostate cancer data heatmap sorted by PSDF outcome comparing with another integrative clusteringmethod iCluster
and the TS subtypes based on copy number data alone. Features are ranked by their probability of uses in the MCMC sampling from high to
low respectively for copy number and expression features, as indicated on the left. Color codes for the heatmap are the same as in Fig.1(b–d)
Posterior similarity matrices (red: high posterior; blue: low posterior).
doi:10.1371/journal.pcbi.1002227.g004
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development of targeted therapeutics. Our contributions are
therefore as follows.

N We propose a model that is able to separate concordant and

discordant signals and find sub-structures based on either one

data type or both. This is in contrast to most previous

approaches, where samples are typically forced to cluster

together based on both data types

N We demonstrate that by identifying the concordant/fused or

otherwise/unfused samples, we can identify cancer subtypes that

give superior prognostic value for both outcome and time to

events/death

N Functional analysis on subtype-specific genes reveals the

genetic components that may lead to the poor outcome cancer

subtypes. These are worthy of future investigation and may

lead to therapeutic benefits.

With both breast cancer and prostate cancer data, PSDF is able

to discover poor outcome subtypes with early-stage, highly

frequent recurrences/deaths. These subtypes are not identified

by other methods which either force to fuse data on all samples, or

cluster patients based on single data type. We show that there exist

both concordant and contradictory signals in these data, which,

when forced to cluster together, can result in inferior subtype

identification. Moreover, data fusion is necessary in predicting

both events and timing of cancer survivals/recurrrences. Hence,

taking this approach is vital in the discovery of new disease subtype

consisting of early-stage events.

A promising aspect of studying cancer subtypes is the

identification of key pathways altered unique to this subtype.

Our network analyses show functionally interacting genes in the

subtype-specific network modules whose deregulations may

contribute to the poor outcome of a cancer subtype. The pathway

enrichment analysis facilitates functional interpretation of the new

clusters/subtypes in a coherent manner with the network modules.

Under-lying driver events for poor outcome may be revealed

during this process, such as the over-expression of the Cell Cycle

pathway in breast cancer, and the under-expression of Endocytosis

and Chemokine signaling pathway in prostate cancer. Further

exploration of these results may lead to the discovery of new genes

participating in the cancer-related pathways, as well as the

identification of treatment target and the development of pathway

inhibitors.

Our analysis results also highlight the difference between different

cancer types. Previously, relatively low concordance between

prostate cancer copy number and expression has been reported

[17], in contrast to the high-level correlations generally observed in

breast cancer. In addition, unlike breast cancer where RNA

expression are predictive of recurrence, copy number changes in

prostate cancer have been found to outperform expression in

prediction [7]. Different degrees of concordance in the data lead to

significantly different clustering results – while fused clusters in

highly concordant breast cancer data are prognostic, an unfused

subtype in prostate cancer turns out to be extremely aggressive. The

results from the breast and prostate cancer data sets are in fact

strong statements that different cancer types should be treated

Figure 5. Comparison of prostate cancer data clustering result from our method to that from iCluster and TS subtypes using
survival curves and p-values (log-rank test) for biochemical recurrence, as well as the distribution of Gleason grade (GG) as an
important prognostic factor of prostate cancer.
doi:10.1371/journal.pcbi.1002227.g005
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differently by statistical methods. Hence, a versatile tool such as

PSDF is particularly suitable for this field.

Methods

PSDF extends the model of [12] to include feature selection.

The model is motivated by the need to address three main

challenges in data-fusion-based clustering, namely (i) to separate

concordant from contradictory signals, (ii) to identify which

features are informative and (iii) to estimate the number of disease

subtypes.

PSDF is constructed from a two-level hierarchy of Dirichlet

Processes, as shown in Fig. 7. Each patient has a binary state (ri)

that defines whether their data are concordant across the data sets,

either fused (ri~1) or unfused (ri~0).

Within any given mixture component from the Dirichlet Processes,

we model the (discretised) data as being drawn from a multinomial

distribution with a weakly informative multinomial prior. The features

are assumed to be independent, giving rise to a naive Bayes data model

for each data set. We use this data model for both gene expression and

copy number data sets. Since our method use discretised data as input,

copy number calls are made with R package CGHcall [43]. Without

match normal expression data, we use quantile discretisation to deem

the top 10% log2 ratio data as over-expressions and bottom 10% data

as under-expressions, similar to [44,45]. In cases when match normals

are available, appropriate methods such as the one in [46] can be used

for discretising the expression data. As a result, the copy number data

are discretised into three levels of loss, neutral, and gain, and the

expression data are discretised into three levels corresponding to

under-, normally- and over-expressed.

Figure 6. Prostate cancer subtype-specific network modules and enrichment maps: (a–b) Subtype-specific network modules for
PSDF 7 and 5. The node color in the network modules indicates the type of alterations relative to this cluster: red - copy number gain or over-
expression, green - copy number loss or under-expression. The shape of nodes indicates the type of data: square - copy number, round - expression.
(c–d) KEGG pathway enrichment maps for PSDF 7 and 5 module genes. The node colors indicate the enrichment significance and the thickness of the
edges indicates the amount of overlaps between pathways.
doi:10.1371/journal.pcbi.1002227.g006
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We note that in principle, this model could be extended to 3+
data sources. In practice however, this will become unwieldy, and so

we restrict ourselves in this paper to considering fusion between two

data sources. We are currently developing a related model that will

scale much better with increasing numbers of data sources.

Feature selection
The naive Bayes data model used in [12] models data for a

given feature as being drawn from a multinomial distribution with

unknown class probabilities. Choosing a conjugate (Dirichlet)

prior, these unknown class probabilities can be marginalised out to

give a marginal likelihood for each feature in each cluster.

F1~P
a

C(Ba)

C(NazBa)
P
b

C(nabzbab)

C(bab)
ð1Þ

Where Ba~
P

bab and Na~
P

nab, a is the index over features

and b is the index over discrete data values. The bab are the

Dirchlet prior hyperparameters, which in this case are set to match

the known proportions of each data value in the data set (which is

prior knowledge here, as we define the data discretisation). These

proportions are scaled to sum to 1.5, which is the sum of the

Jeffreys’ value (0.5) over the three possible data values, hence

representing only a weakly-informative constraint.

To perform feature selection, we will consider two different

likelihoods for a given feature, corresponding to the feature being

off/on, as denoted by an indicator variable Ia. For Ia~1, we simply

use the multinomial-Dirichlet marginal likelihood, as before. For

Ia~0, we fix the class probabilities to the expected prior values,

given the spread of discrete input values for the given feature.

F1~P
a
P
b

P
nabzbab
ab ð2Þ

Where again a is the index over features and b is the index over

discrete data values. The Pab are simply taken as the proportion of

each data value in a given feature across the whole data set, with a

minimum count of one assigned to each data value.

Pab~
n’ab

N ’a
ð3Þ

Where n’ab and N ’a are required to have minimum of one count

per class.

This has the effect of defining an ‘indifference’ likelihood, where

it makes no difference to the overall posterior (for the given

feature) to which cluster any given sample is assigned. It is

straightforward to write down the conditional distribution for a

single indicator variable Ia, so we Gibbs sample each in turn when

producing a new MCMC sample.

The switching on/off of a given feature can be regarded as a

kind of model selection. Considering the limit of many samples

(and hence negligible uncertainty in the value of the class

probabilities for Ia~1), the ‘indifference’ likelihood is simply the

expected case if the samples are randomly assigned to clusters. For

finite numbers of samples, the ‘indifference’ likelihood is inherently

simpler (in the sense that the class probabilities are known), so the

feature selection becomes a competition between this simplicity

and the greater ability of the Ia~1 case to explain non-random

cluster assignments.

MCMC performance
To give improved mixing, we run 50 MCMC chains for each

analysis. The chains are 105 samples long, with the first 2:5|104

removed as a burn-in. The remainder are sparse-sampled by a

factor of 10 for computational convenience and then used to

produce the outputs.

All chains are examined using the R package CODA. In

particular, the time-series and histograms for each parameter/

chain pair are examined by eye for any obvious anomolies that

would indicate incomplete mixing.

The multiple MCMC chains are used to compute uncertainties

in statistics of interest (for example, the probability that a given

feature is selected). This gives us a direct measure of chain mixing

quality.

Each chain runs to completion in less than 48 hours on nodes of

the University of Warwick’s high performance computer cluster.

Simulation study
In order to validate our model, we performed a simulation

study. We constructed a pair of synthetic data sets. For each

synthetic data set, we started with the 106 signal items and 200 signal

features in the copy number variation data from [15] (which is also

analysed in Section. These items will therefore (by construction) be

fused as they share identical clustering structure across the two

synthetic data sets. We note that this is a reasonable test of the

method because in the real analyses both copy number and gene

expression data sets are discretised into three levels. These

synthetic data represent a good way of constructing items that

share concordant signals across the two data sets.

To each synthetic data set, we then added 50 noise items. These

items are drawn by replacement from the signal items and are

drawn separately for each synthetic data set. For example, a given

noise item may be a copy of signal item 15 in the first synthetic

data set, and signal item 59 in the second synthetic data set. These

noise items are therefore drawn from the existing clustering

structure of each synthetic data set, but in general they will not be

fused (excepting the case where by coincidence they are both

Figure 7. Graphical representation of the PSDF model presented
in this paper. The ri indicator variables allow the model to perform data
fusion on a sample-by-sample basis, defining the states fused (ri~1) and
unfused (ri~0). The prior probability of fusion is defined by w and is set in
all cases to w~0:5 for the results in this paper. The Ia parameters are
binary switches that select individual features in each data set. The
number of clusters is given by the number of unique values assigned to
the zi variables, which denote cluster membership in a given context. The
P parameters are mixture weights for the Dirichlet Processes and are
marginalised analytically. a0 and c are concentration hyperparameters for
the Dirichlet Processes and are sampled as part of the MCMC procedure.
doi:10.1371/journal.pcbi.1002227.g007
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drawn from the same underlying cluster). This then gives us 156

items in total.

Finally, we added to each synthetic data set 200 noise features.

The data for these features are drawn with replacement from the

original data. Therefore, while they reflect the distribution of data

values in the signal features, they are entirely random and without

clustering structure. As such, we expect them o be rejected by

feature selection.

Table 1 shows the results of an analysis of these synthetic data.

The method successfully rejects all 400 noise features across the

two data sets. 8 signal features are also rejected at this level, but we

note that some level of feature rejection is expected of signal

features, as some of them will be uninformative.

The method successfully finds 105 of the 106 fused items. It also

identifies 17 of the noise items as being fused. We note that we

expect some level of coincidental fusion for the noise items, where

they happen to have been drawn from the same cluster. For

example, if we assume there are 5 (equally-sized) underlying

clusters in the copy number data, we expect (
1

5
|50~10)

coincidentally fused noise items. We note that here, 25 MCMC

chains of length 1:5|104 samples are sufficient to achieve

reasonable convergence. We conclude that our method performs

well in identifying both fused/unfused items and selecting

appropriate features in each data set.
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