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Abstract: It is a common and
good practice in experimental sci-
ences to assess the statistical sig-
nificance of measured outcomes.
For this, the probability of obtain-
ing the actual results is estimated
under the assumption of an appro-
priately chosen null-hypothesis. If
this probability is smaller than
some threshold, the results are
deemed statistically significant
and the researchers are content in
having revealed, within their own
experimental domain, a ‘‘surpris-
ing’’ anomaly, possibly indicative
of a hitherto hidden fragment of
the underlying ‘‘ground-truth’’.
What is often neglected, though,
is the actual importance of these
experimental outcomes for under-
standing the system under investi-
gation. We illustrate this point by
giving practical and intuitive exam-
ples from the field of systems
neuroscience. Specifically, we use
the notion of embeddedness to
quantify the impact of a neuron’s
activity on its downstream neurons
in the network. We show that the
network response strongly de-
pends on the embeddedness of
stimulated neurons and that em-
beddedness is a key determinant of
the importance of neuronal activity
on local and downstream process-
ing. We extrapolate these results to
other fields in which networks are
used as a theoretical framework.

Introduction

Nothing defines the function of a neuron

more than its connections with other

neurons [1].

Systems neuroscience aims at gaining

an understanding of how neural networks

process information to implement specific

functions in sensory, motor, and cognitive

processing. To this end, the activities of

multiple neurons are recorded simulta-

neously and analyzed to extract potentially

relevant aspects about the task-related

interactions among these neurons. If the

analysis reveals statistically significant

modulations of the recorded neuronal

activity [2], then it is assumed that these

spatio-temporal activity patterns are likely

to play a role for processing and compu-

tation in the network.

However, the methods used to identify

and measure the statistical significance of

these patterns do actually not justify any

claim regarding their impact on network

dynamics or function. That is, statistical

methods can demonstrate that a certain

activity pattern appears beyond chance

level or not. This in itself, however, does

not suffice to stipulate that the recorded

activity patterns are actually involved in

processing or computation. In fact, in the

following we argue that knowledge of the

statistical significance of the recorded events is

incomplete and needs to be complemented

by additional information concerning the

structural and functional significance of the

neurons participating in these events.

Simulation of a
‘‘Gedankenexperiment’’

Let us consider a hypothetical experi-

ment, in which neuronal activity is record-

ed from a certain brain area and the data

is preprocessed to extract spike trains of

900 single neurons over a period of a few

seconds (Figure 1A). The data are then

analyzed to retrieve potential non-statio-

narities in the firing rates and correlations

among the spikes of the recorded neurons.

Indeed, in this simple example, 150 neu-

rons out of the 900 recorded increased their

firing rates in a correlated manner during

short epochs of time (Figure 1B). Different

statistical tests can be applied to demon-

strate that the emergence of correlations

among these neurons, during specific

epochs, is indeed higher than expected by

chance. However, this particular ‘‘Gedank-

enexperiment’’ enables us to go beyond

merely establishing statistical significance of

the activity modulations, by actually esti-

mating the impact of these events on the

brain area under consideration.

It is tempting, at first sight, to conclude

that the statistically significant elevations

of firing rates and increased correlations

among the recorded neurons will have an

impact on the dynamics and function of the

network. To test whether this is justified, we

investigated the topology of the network

from which the spiking activity was record-

ed (Figure 1C). Indeed, having complete

knowledge of the connectivity matrix allow-

ed us to extract a graphical representation

in which inter-connected neurons appear

mutually closer in space (Figure 1D; cf.

Methods). In this transformed representa-

tion it becomes evident that the network is

in fact modular, consisting of two subnet-

works, interconnected via a few nodes

acting as hubs. Note here that vicinity in

topological space does not imply actual

physical vicinity. Relevantly, motifs and

other ingredients necessary for such topo-

logical network arrangements have been

identified in the brain [3–7].

The subpopulation of neurons exhibit-

ing correlated activity in our example, in

fact, stems from the smaller subnetwork.

The transient increase in firing rates and

correlation strengths during certain epochs

is the result of a brief activation of the hubs

that were designed to have strong uni-

Citation: Vlachos I, Aertsen A, Kumar A (2012) Beyond Statistical Significance: Implications of Network
Structure on Neuronal Activity. PLoS Comput Biol 8(1): e1002311. doi:10.1371/journal.pcbi.1002311

Editor: Olaf Sporns, Indiana University, United States of America

Published January 26, 2012

Copyright: � 2012 Vlachos et al. This is an open-access article distributed under the terms of the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium,
provided the original author and source are credited.

Funding: Funding by the German Federal Ministry of Education and Research (BMBF grant 01GQ0420 to the
BCCN Freiburg, BMBF GW0542 Cognition, and BMBF 01GW0730 Impulse Control). The funders had no role in
study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: vlachos@bcf.uni-freiburg.de (IV); aertsen@biologie.uni-freiburg  (AA); arvind.kumar@biologie.uni- 

PLoS Computational Biology | www.ploscompbiol.org 1 January 2012 | Volume 8 | Issue 1 | e1002311

                                             , Arvind Kumar

freiburg.de (AK)
.de



Figure 1. Statistically significant activity events in a modular network. (A) Rasterplot of excitatory (1–700) and inhibitory (701–900) neurons
recorded in the simulation experiment. (B) Rows are sorted such that neurons with similar rate modulations appear together. Evidently, a subgroup of
neurons fires action-potentials in a correlated manner during certain epochs in time (short black lines near bottom of the frame). (C) Schematic
depiction of the underlying network from which neural activity was sampled. (D) The same network reorganized graphically using a force vector
algorithm (cf. Methods) to reveal its modular structure. Note that in this Gedankenexperiment the big subnetwork controls the arm movement.
doi:10.1371/journal.pcbi.1002311.g001
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directional projections to the smaller

subnetwork. Therefore, by construction,

the activity of this subnetwork per se does

not have any impact on the dynamics of

the larger network or the hubs. Thus,

knowledge of the network structure reveals

that the observed statistically significant

events are essentially an epiphenomenon, in

the same way that the shadow of a moving

person is an epiphenomenon of the move-

ment; the observed events are the down-

stream result of the activation of some

central nodes in the larger network,

without these events themselves influenc-

ing the larger network at all.

Note that this is not meant to say that the

activity of the small subnetwork is irrelevant

or epiphenomenal in general. Rather, the

message is that not all observed activity

modulations of neurons in a task are

relevant for the specific task itself, i.e., the

subject’s performance in the task and the

neural computations underlying it (here,

the task reduced to the desired hand

movement required from the subject). Of

course, the activity modulations in the small

subnetwork could be relevant for some

other aspect, not essential for the task

itself—e.g., vision, memory, etc.

This observation has important impli-

cations for the understanding of the local

network computations. If we assume, for

example, that the larger network is part of

an area in the motor cortex that controls

a limb movement (Figure 1D), then

investigating the dynamics of the smaller

subnetwork would not be useful in any

way to understand how the movement is

encoded in the network, for the simple

reason that the small subnetwork is not

involved in the computations underlying

the motor task. If, by contrast, it were

the small subnetwork that controls the

limb, then precisely this network should

be investigated further, although, of

course, it does not have any impact on

the dynamics of the network it is embed-

ded in.

In fact, the above scenario is not just a

Gedankenexperiment. In human subjects

performing a hand motor task, we recently

observed that head movement was corre-

lated with hand movement ([8]; S. Wal-

dert, L. Tueshaus, A. Aertsen, C, Mehr-

ing, unpublished data). When the goal is to

decode the hand movement from neural

activity, then indeed the activity of the

neurons encoding the head movement

could be used for the decoding. However,

when the goal is to explain the actual neural

computations performed for executing the

hand movement, then the activity of the

motor neurons controlling the hand and

not the head needs to be analyzed.

Another revealing example comes from

studies by Riehle and colleagues investi-

gating neural activity in the monkey motor

cortex [9]. Specifically, they found that

beyond the expected task-related motor

responses, there were also neurons in the

motor cortex that primarily responded to

the visual cue in the motor task. Yet, they

decided that, presumably, those responses

did not primarily encode physical proper-

ties of the visual cue, but were, instead,

involved in sensory-motor transformations

[9]. That is, these stimulus-related events,

although statistically significant, were ‘‘epi-

phenomenal’’ for visual processing.

These three examples clearly illustrate

that statistical significance of recorded

neural events is only a necessary but not

sufficient condition for making inferences

regarding the functional importance of these

events for the computations performed by

the investigated brain area. That is, knowl-

edge of the way the recorded neurons are

embedded in their local environment and of

the structure of their projections onto

downstream networks—denoted here by

‘‘structural significance’’—is also important.

Neuron Embeddedness

Here, we provide a formal definition

of embeddedness. For this we distinguish

between structural and effective embedd-

edness:

‘‘Structural embeddedness’’ indicates

the way neurons are physically embedded

in their surrounding network. It can be

characterized by graph-theoretical mea-

sures such as centrality, betweenness, k-

shell index, etc.

‘‘Effective embeddedness’’ is the influ-

ence neurons have on the activity of the

surrounding network. Effective embedd-

edness is determined by structural em-

beddedness as well as by synaptic and

cellular properties, ongoing activity, pres-

ence of neuromodulators, etc.

The concept of embeddedness has been

initially used for socio-economic networks

[10]. Within the context of systems neurosci-

ence it extends the concepts of structural and

effective connectivity by taking into account

not only first-order but also all higher-order

connections and neural interactions.

Neuron Embeddedness and
Population Response

The importance of the relative position

of task-related neurons in the topological

space of the network is not restricted to

networks with a specific wiring. To test

this, we performed a systematic analysis

in which we investigated 100 different

networks covering a wide range of topol-

ogies with variable characteristics ([11]; cf.

Methods). To quantify the network topo-

logical properties, we calculated the small-

world index (SWI) [12,13] for all networks

(1:31+0:52; range 0.1 to 3).

All networks with SWI above unity were

indicative of small-worldness. Small-world

networks found in the brain have compa-

rable SWI values [12]. Thus, to the extent

to which SWI characterizes a network’s

topology, a high number of the model

networks analyzed here (76 out of 100)

had comparable topologies to those found

in real brain networks.

For each network we performed multiple

simulations, selectively applying a stimulus

to a different subpopulation of 250 excit-

atory neurons to artificially render the

correlations among them statistically signif-

icant. Subsequently, we estimated the effect

of these statistically significant events on the

entire network activity in terms of the peri-

stimulus-time-histogram (PSTH) of the

network activity (Figure 2A). Evidently,

different groups of correlated events in-

duced highly dissimilar responses in the

network activity. For instance, there was a

more than 10-fold difference between the

weakest and the strongest response. Thus,

although all events were statistically signif-

icant, their impact on the entire network

differed substantially (Figure 2B and 2C).

This finding demonstrates that it mat-

ters which neurons in the network partic-

ipate in the correlated events. In the

networks used here, all stimulated neurons

had identical intrinsic properties. More-

over, all their outgoing connections were

of equal strength. Thus, the decisive factor

determining the impact of a particular

neuron on the overall network activity was

the way it was embedded in the network.

This degree of embeddedness of a node in

the network can be quantified by different

metrics from graph theory [14,15], includ-

ing the out-degree and k-shell-out index

used here (cf. Methods).

To investigate the relationship between

out-degree and network activity, we com-

puted for each network the population

response as a function of the average out-

degree of all stimulated groups and all

networks pooled together (Figure 2D). We

found that, for any given network, the

population response was stronger when

neurons with higher out-degree participat-

ed in a statistically significant event (see

Figure 2D). On average, the out-degree of

the stimulated neurons was highly corre-

lated with their impact on the overall

network activity (rout{degree~0:84+0:18).

Apart from the out-degree, however,

other topological properties also affected
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the response. This is evident in cases

where groups of neurons with comparable

out-degrees had a quite different impact

on the network activity (Figure 2D).

Therefore, we also correlated the k-shell-

out index of the stimulated neurons with

the network response-strength (Figure 2E).

We found that also the k-shell-out index

was informative about the influence of a

stimulated subgroup on the resulting

population activity, albeit, generally, less

than the out-degree (rk{shell{out~0:55+
0:22; however, see below).

It may not be surprising that both the out-

degree and the k-shell-out index of the

stimulated neurons more or less adequately

describe the neurons’ impact on network

activity. After all, both descriptors quantify

the outreach of a neuron within the network.

At the same time, our findings demonstrate

that the combination of activated nodes

(neurons) and topological properties of the

network, irrespective of the method used to

quantify them, do influence the network

response and, therefore, should be consid-

ered in the analysis and interpretation of the

recorded network activity.

Interaction of Node Properties with
Higher-Order Network Topology
Descriptors

In the networks investigated here, we

observed that the out-degree of a neuron

was highly correlated with the impact this

neuron had on the network activity. In this

case, where neurons with regular-firing

properties were used, the out-degree pre-

dicted a neuron’s influence on the overall

network dynamics quite well. However, in

certain other, also biologically plausible

scenarios, higher-order network metrics,

such as the k-shell-out index mentioned

above, could be a better estimator of

neuron embeddedness.

We illustrate this scenario with a simple

toy-network (Figure 3). Here, neuron 5 has

a higher out-degree than neuron 1. That

is, if neuron 5 is active, it will activate

neurons 7–14 (Figure 3A). By contrast,

neuron 1 will only activate neurons 2–4

Figure 2. Structural embeddedness and population response. (A) Network response (PSTH) for identical stimulation of 30 different
subpopulations of 250 neurons each (thin blue lines) in one example network. Observe that peak, onset, and rise times of responses of each
subpopulation differ greatly. The thick blue lines depict the smallest and the biggest response, respectively. (B) Rasterplot of the network when the
subpopulation of neurons with the lowest degree of embeddedness was stimulated. Light blue dots denote spikes from all neurons, dark blue dots
those from stimulated ones. Inset: Magnified cut-out around 600 ms for neurons 4000–6000. Activation of weakly embedded neurons does not
spread much in the network. (C) As in (B), but now the subpopulation with the highest average degree of embeddedness was stimulated, leading to a
much bigger impact on the network activity. Activation of these strongly embedded neurons lead to a spreading of activity throughout the network.
Moreover, feedforward inhibition suppressed the network activity entirely. (D) Response of all stimulated subpopulations (250 neurons each) and all
networks pooled together (pale blue dots). On average, there was a positive correlation between out-degree and total network activity
(rout{degree = 0.84). Two networks with small-world properties are highlighted (dark blue, light amber dots). The five random networks (filled gray
triangles) did not exhibit high out-degree variance, and therefore the variance of their population response was small compared to that of the small-
world networks. (E) Average correlation coefficient (sorted) between population response and degree of embeddedness as measured by out-degree
and k-shell-out index. Both metrics had a high predictive power, with out-degree maintaining high prediction rates for most of the graphs. However,
the predictive power of topology measures depended also on additional criteria (cf. main text and Figure 3).
doi:10.1371/journal.pcbi.1002311.g002
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and 6 (Figure 3B), thus having a smaller

effect on the total network activity.

However, if the neurons exhibit properties

that facilitate spreading of activity, e.g.,

bursting behavior, then the activity of

neuron 1 will first spread to neurons 2–4

and 6, and from there it will further

propagate into the entire network

(Figure 3C), whereas for neuron 5 such

spreading will not occur.

In this example, simple out-degree-

based methods would fail to predict the

impact of a neuron. By contrast, the k-

shell-out index would be more informa-

tive, because it is designed to address cases

like the one illustrated here [16]. This

suggests that the choice of the method to

estimate neuron embeddedness should

ideally incorporate knowledge concerning

additional neuronal properties, such as

their firing profile.

Implications for the Interpretation of
Neuronal Activity

One of the dominant approaches in

systems neuroscience to understand the

functioning of the brain is to record the

activity of neurons under different stimulus

and/or behavioral conditions, and to

correlate the recorded activity with details

of the task (stimuli, behavior). Indeed,

since the seminal work of Adrian [17],

Mountcastle [18,19], Hubel and Wiesel

[20], Barlow [21], Georgopoulos [22],

etc., this approach has been successful in

revealing neural correlates of various

sensory, motor, and cognitive tasks, as

well as in uncovering functional properties

of neuronal networks in the brain. Re-

cently, in the field of brain-machine

interfaces, this approach has led to re-

markable advances in decoding neuronal

population activity [23,24]. For these

success, it was crucial to be able to

demonstrate statistical significance of stim-

ulus- or task-related neuronal activity.

Thus, much emphasis has been given in

devising appropriate null-hypotheses and

performing adequate statistical tests [2].

However, successfully decoding neuro-

nal activity does not imply an understand-

Figure 3. Interplay between node properties and higher-order network features. Example of a toy-network illustrating that the degree to
which any given metric of neuron embeddedness predicts the neurons’ impact on the population response may depend on single neuron properties.
The small numbers next to each node indicate the corresponding k-shell-out index. (A,B) Neurons exhibited regular firing behavior. (A) A sufficiently
strong input activating neuron 5 will yield propagation of activity to neurons 7–14. (B) If the same stimulus arrives in neuron 1, activity will only
spread to neurons 2–4 and 6. In this case, the out-degree correctly predicts that the impact of neuron 5 is bigger than that of neuron 1. (C) Neurons
exhibited bursting behavior. As previously, neuron 1 will activate neurons 2–4 and 6. However, the bursting response of these neurons may be
sufficient to activate their post-synaptic targets as well, leading to spreading of activity over the entire network. Here, the impact of neuron 1 is clearly
larger than that of neuron 5. This effect is not grasped by the widely used out-degree measure. However, higher-order network metrics, like the k-
shell-out index, correctly assign a higher value to neuron 1, as compared to neuron 5. (D) Total network response in the three cases depicted in
panels A–C. Note the higher impact of neuron 1 under some conditions (curve C), compared to that of neuron 5 (curve A).
doi:10.1371/journal.pcbi.1002311.g003
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ing of the actual computations performed

by the underlying network. That is,

statistical significance may be a sufficient

condition for correctly decoding neuronal

activity, but it is only a necessary one for

understanding the computations per-

formed by the network.

Here, we argue that an additional step

towards unraveling the neural code, albeit

not a sufficient one either as was elegantly

demonstrated by Marom et al. [25], is to

take into account the specific network

topology of the investigated brain area.

This knowledge may also provide a

different perspective in the interpretation

of the network activity. For instance, it is

well known that when a stimulus is

presented repeatedly, the variability of

evoked cortical responses is often as large

as the response itself. The origin of this

large trial-by-trial variability has been

suggested to be ongoing brain activity

[26]. In our simulations, we observed that

for the same input stimulus, the variability

of the network response was strongly

correlated with the embeddedness of the

stimulated neurons. Thus, the high trial-

by-trial variability in neural responses

during the identical task could be partially

explained by the activation, in each trial,

of diverse subsets of neurons, with different

degrees of embeddedness. Similarly, dif-

ferent degrees of ‘‘embeddedness’’ could

also underly the highly variable behavioral

responses elicited by single neuron stimu-

lation in vivo [27].

Finally, we point out that calculated

distributions, spectra, or various other mea-

sures of network activity, such as pairwise

and higher-order correlations [28], infor-

mation content [29,30], frequencies of

neural activity motifs [31,32], precise spike

patterns [33], unitary events [34], serial

correlations [35], and population codes

[36], should all be interpreted in light of

the underlying network topology. Likewise,

model-based data analysis methods such as

generalized linear models [37] should also

take the underlying network topology into

account.

In addition, knowledge of network topo-

logy can be used to determine whether

increased activity in a neuron is a conse-

quence of local network activity or wheth-

er it is simply input driven. Furthermore,

the stimulus response shown in Figure 2

could be tested for its statistical signifi-

cance of the expected activity modulation,

given a particular network topology.

Our results and their implications are

not restricted to a particular measure of

network response (here: population rate,

measured by PSTH). Other descriptors

of network activity, e.g., pairwise and

higher-order correlations, would have led

to similar conclusions. Although we exam-

ined a variety of network topologies, we

used homogeneous synaptic weights and

neuron properties for each network. Study-

ing these properties in topologically diverse

networks is an interesting endeavor in its

own right and worth exploring further. For

instance, as we have discussed above, the

spiking behavior of neurons affects how

well any specific measure of embeddedness

predicts a neuron’s impact on the network

activity (Figure 3). Depending on these

aspects, one measure of embeddedness may

be preferable over another. Moreover,

inhomogeneities in neuron and synapse

properties may affect the embeddedness of

a neuron per se, irrespective of the metric

used. Thus, specific neuron properties

could well modulate a neuron’s impact on

network activity.

In turn, the degree of embeddedness of

any given neuron could restrict the impact

specific neuron properties may have on

the network. That is, although some

neurons could exhibit ‘‘exotic’’ firing

patterns, these may not have any effect

on the network activity, if the associated

neurons’ embeddedness is low. This sug-

gests that additional knowledge about

single neuron properties becomes only

meaningful once the degree of embedded-

ness of the neurons is known.

Embeddedness may be less important in

classical random networks with a homo-

geneous topological space (Figure 2D,

filled gray triangles) [38]. However, as

soon as the topological space becomes

inhomogeneous, it is vital to consider the

structural properties of neurons and the

networks they build. This is even more

crucial for topologies in which the degree

of embeddedness of neurons follows a

heavy-tail distribution, such as in scale-free

networks [39].

Measures of Embeddedness
A number of properties of network

connectivity have been shown to be

important determinants for network activ-

ity dynamics [14,15,40–42]. Here, we

used the out-degree and the k-shell-out

index to predict the impact of stimulated

neurons on overall network activity. We

found that both metrics were correlated

with the amplitude of the network re-

sponse (Figure 2E); however, an exact

prediction of this amplitude was not

possible. In fact, it is very likely that

multiple topology descriptors (e.g., be-

tweenness centrality, eigenvalue centrality

[14,43]) may be both correlated amongst

themselves and with the network response

([44]; S. Cardanobile, V. Pernice, M.

Deger, S. Rotter, http://arxiv.org/abs/

1112.3475). In fact, we found that be-

tweenness centrality correlated well with

the network response, at least for small

networks (1,000 neurons; data not shown).

That is, not any single metric, but rather a

combination of different metrics might

provide a better measure of embedded-

ness. Therefore, we need to extend

previous work by defining a multi-dimen-

sional descriptor of embeddedness, com-

bining available measures with new ones

that capture key features of network

topology not considered thus far. In

particular, there is a need for methods

that can estimate neuron embeddedness

from partial connectivity data to overcome

the problem that the full connectivity

matrix for neuronal networks [45] is not

likely to be available in the near future.

Moreover, properties of individual neu-

rons, e.g., those defining their firing

patterns, may influence the effective con-

nectivity in the network (Figure 3) and,

thereby, affect the global network dynam-

ics. In addition, synaptic properties—

delays, time constants, type of neurotrans-

mitter (excitatory or inhibitory)—and also

ongoing network activity will contribute to

the impact of a neuron on its embedding

network. Hence, structural data on net-

work topology, which only estimates

‘‘structural embeddedness’’, need to be

augmented by network activity data to

obtain ‘‘effective embeddedness’’ of neu-

rons.

We already mentioned k-shell decom-

position as an example of a metric that

goes beyond standard in- and out-degree

measures. Other algorithms have been

proposed to incorporate negative interac-

tions between nodes [13,43,46], thereby

rendering them more suitable for investi-

gations of real brain networks. The

inclusion of ongoing activity [26], stimu-

lus-response relations [47,48], response

variability [49], and dynamic activity

correlations [50,51] will eventually lead

to a dynamic measure of neurons’ em-

beddedness.

This theoretical work needs to be

paralleled by experimental approaches

aiming at ways to measure the structural

embeddedness of neurons in vivo. Evi-

dently, knowledge of the full ‘‘connec-

tome’’ [45] of the brain region in which

activity is being recorded would be needed

to ascertain the embeddedness of the

neurons being recorded. In vivo measure-

ment of the ‘‘connectome’’, however, even

of a small brain region, will not be feasible

in the near future. Nevertheless, with

existing methods it may be possible to

indirectly estimate the embeddedness of
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neurons by selectively stimulating parts of

the network and by measuring both

extracellular and intracellular network

responses to such stimuli.

In such experiments, modulation of

extracellular activity (spikes and LFP) in a

network would provide an estimate of the

postsynaptic (suprathreshold) embedded-

ness of the stimulated neurons. In fact, such

selective stimulation experiments would be

similar to the ones we have shown and

discussed in Figure 2. Similarly, measuring

the subthreshold membrane potential of a

neuron in response to stimulation of a

subpopulation in the surrounding network

could provide an estimate of the presynaptic

(subthreshold) embeddedness of the intra-

cellularly recorded neurons. Combining

this approach with selectively visualizing

the presynaptic neighbors of a given neuron

[52,53] might put the estimation of a

neuron’s embeddedness within reach. In

addition, identifying the upstream or down-

stream connectivity [54] of recorded neu-

rons will also contribute in estimating the

neurons’ embeddedness. An alternative

approach has recently been applied to

estimate the ‘‘structural’’ embeddedness of

a neuron in vivo in its local microcircuit by

juxtacellularly recording its activity and

labeling it after the experiment [55].

In an ideal scenario, the brain area

under examination could be scanned,

before performing the actual experiment,

to identify potential neurons to be record-

ed, based on their structural embedded-

ness. This would increase the chances of

recording from those neurons that are

involved in the local network computa-

tions in the investigated brain area.

Alternatively, in an experiment where

calcium imaging is possible, a wide array

of stimuli could be used to obtain an

average effective connectivity map of the

area being recorded [5]. These and

derived methods will also contribute in

estimating embeddedness.

Concluding Remarks

In neurophysiological experiments we see

a continuing debate on the choice of

appropriate null-hypotheses for testing the

statistical significance of recorded spatiotem-

poral activity patterns [2,31,32,56]. Adding

another layer of complexity by estimating

structural and effective embeddedness may

appear to impede progress. However, as we

have argued here, knowledge of embedded-

ness is indispensable to understand the

functional role of neurons participating in

statistically significant events.

To infer the function of networks in the

brain from recorded activity of their member

neurons, we need to differentiate between

two issues: (1) how network structure and

network activity affects a neuron’s activity,

and (2) how a neuron’s activity affects

network activity (and, perhaps, structure).

The first of these two is increasingly

becoming a research issue (see e.g., the

Research Topic on ‘‘Structure, dynamics

and function of brains: Exploring relations

and constraints’’ in Frontiers in Computational

Neuroscience [57]. Nevertheless, this increasing

awareness has not (yet) influenced either the

way data are typically analyzed or the way

conclusions are drawn in large numbers of

studies, in which recorded neuronal activity

is primarily assessed for statistical signifi-

cance.

Here, we argue that fulfilling statistical

significance alone is not enough to stipu-

late a role of the recorded neurons in the

computations performed by the network in

the experimental task. This is precisely the

point in the second issue mentioned above.

It is here that we argue that structural and

functional significance cannot be ignored.

In fact, as our examples demonstrate,

knowledge of the structural significance

of the neurons participating in statistically

significant activity events is indispensable.

Thus, developing tools and methods to

extract such information will in the long

run facilitate our understanding of neural

network functioning. This may eventually

lead to the development of more appro-

priate null-hypotheses, where the statistical

significance of expected activity modula-

tions can be estimated, taking the network

topology and its activity dynamics into

account.

Finally, we emphasize that our results

are not restricted to systems neuroscience.

Rather, their implications permeate into

every scientific discipline where networks

are used as a conceptual and mathemat-

ical tool to examine and understand the

observed activation phenomena. For in-

stance, in epidemic research, the spread of

diseases will be significantly influenced by

the structural embeddedness of infected

(humans) nodes. Here, the spread could be

controlled by identifying and isolating

highly embedded nodes, thereby removing

the potentially high impact of these nodes

on the evolution of the spread. Likewise,

embeddedness could actually be used in

controlling the dynamics of complex

networks [58], and for other practical

applications such as in controlling the

spread of viruses in computer networks, of

news and rumors in social networks, of

power surges and load (im)balances in

electricity networks and, turning now to

clinical neuroscience, in efforts to regain

control over pathological, uncontrollable

neural networks (as in epilepsy and

Parkinson’s disease) by appropriate deep

brain stimulation [59]. The further devel-

opment of mathematical and experimental

tools to estimate the embeddedness of

network nodes will enhance our compre-

hension of various complex phenomena

occurring in these types of networks

[16,60,61].

Methods

For the generation of the different

network topologies, we used an in-house

Python implementation of the multifractal

network generator proposed by [11]. The

graphical representation of the network in

Figure 1 was designed using Gephi, an

open-source graph visualization and anal-

ysis tool [62]. For the extraction of the

modular structure of this network, we used

the Gephi Force Atlas algorithm, a

modified version of the Fruchterman-

Reingold force-vector method [63].

The k-shell-out index of nodes in our

networks was calculated by using the k-shell

(also known as k-core) decomposition algo-

rithm [16,64]. The k-shell (or k-core) of a

graph is the largest subgraph with minimum

degree of ‘‘k’’. The k-shell decomposition of a

network involves systematically pruning it

down to the nodes with k or more neighbors

[16,64,65]. For the calculation of the small-

world index (SWI), we computed the average

shortest-path length L and the average

cluster coefficient C for each network. We

normalized these values by the ones arising

in the corresponding random network (Lr

and Cr, respectively). The corresponding

random network was constructed with the

Erdös-Rényi randomization model, which

preserves the numbers of nodes, edges, and

average connectivity, but not the specific

network topology. The SWI is defined as the

ratio of the two normalized metrics:

SWI~(C=Cr)=(L=Lr). If SWIw1, the

network is said to exhibit small-world

features.

The network simulations were per-

formed with NEST [66]. Each network

was composed of 8,000 excitatory and

2,000 inhibitory leaky-integrate-and-fire

neurons with current-bases synapses. For

each network, 30 different subpopulations

were selected, each one with a different

average degree of embeddedness as mea-

sured by the out-degree or k-shell-out

index. In each simulation, stimulation was

implemented by applying external Poisson

input to all neurons in a subpopulation for

30 ms. The corresponding network re-

sponse was measured by computing the

peak of the population time histogram

(Figure 2A).
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