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Abstract

This work introduces a coordinate-independent method to analyse movement variability of tasks performed with hand-held
tools, such as a pen or a surgical scalpel. We extend the classical uncontrolled manifold (UCM) approach by exploiting the
geometry of rigid body motions, used to describe tool configurations. In particular, we analyse variability during a static
pointing task with a hand-held tool, where subjects are asked to keep the tool tip in steady contact with another object. In
this case the tool is redundant with respect to the task, as subjects control position/orientation of the tool, i.e. 6 degrees-of-
freedom (dof), to maintain the tool tip position (3dof) steady. To test the new method, subjects performed a pointing task
with and without arm support. The additional dof introduced in the unsupported condition, injecting more variability into
the system, represented a resource to minimise variability in the task space via coordinated motion. The results show that all
of the seven subjects channeled more variability along directions not directly affecting the task (UCM), consistent with
previous literature but now shown in a coordinate-independent way. Variability in the unsupported condition was only
slightly larger at the endpoint but much larger in the UCM.
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Introduction

Although highly stereotyped, human movements performed

with the same intention are never exactly the same, displaying

large variability in consecutive trials. Rather than just ‘biological

noise’, many studies have pointed out how variability may in fact

provide important clues on the underlying neural strategies.

Analysis of structure in variability, and its changes, has therefore

become an important tool for researchers in neuromotor control

and learning, especially in presence of redundancy [1]. Here, we

are interested in the analysis of accuracy of pointing tasks

performed with hand-held tools, for applications such as surgery.

The problem of variability in redundant motor tasks was

formulated by Bernstein [2], who studied the kinematics of skilled

movements performed by professional blacksmiths while striking a

chisel with a hammer. Bernstein observed how the variability of

the trajectory of the hammer, at its tip, was in fact smaller than the

variability of the trajectory of each of the joints of the arm holding

the hammer. This suggests that the individual joints are not

controlled independently and that the brain exploits kinematic

redundancy to accurately control the endpoint.

Redundancy and motion variability are important not only for

blacksmiths but characterize virtually every daily activity, from

grasping a cup to signing off a letter, where we typically have many

more degrees-of-freedom (dof) than necessary to fulfil the task. We

are particularly interested in tasks involving hand-held tools such

as microsurgery, where noise induced by tremor, amplified by the

visual magnification provided by the optical microscope, is a

critical factor of performance [3].

In this work, we consider static pointing tasks, such as the one in

Fig. 1, where a subject is asked to keep the tip of a pen-like tool,

e.g. a surgical scalpel, in steady contact with another object. In

other words, the position of the tip, characterized by m~3 dof of

mobility, is prescribed while the subject is free to choose among

different postures, which include positioning of the torso, joint

angles of the arm (i.e. shoulder, elbow and wrist) as well as

grasping pattern of the hand. For postures away from biome-

chanical limits, there exists a task-equivalent manifold consisting of

distinct postures which do not affect the task. A major challenge

with real-world scenarios is that, due to the large number of

degrees of freedom involved in the task, biomechanical analysis

would be either intractable or oversimplified.

A key aspect of our study is that the tool itself has redundant degrees

of freedom with respect to the task, i.e. subjects are asked to control

position and orientation of the tool (6dof) while maintaining a

steady tool tip position (3dof). On the one hand, this allows one to

focus on the low-dimensional space of tool configurations, rather

than the high-dimensional space of possible postures. On the

other hand, by focusing on the tool, we can make use of the

geometric properties of rigid bodies, as detailed in the following

sections.
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Scholz and Schoner [4] hypothesized that movement variance

across task repetitions projects differently onto the task-equivalent

manifold than it does onto the orthogonal complement directly

affecting the task. A larger variance projected in the task-

equivalent space (or nullspace) is indicative of neural control and

the task-equivalent manifold (where larger variance is expected for

skilled movements) was named uncontrolled manifold (UCM).

Despite its appeal, the computational procedures behind UCM

(and principal component analysis in general) have been recently

criticized for being coordinate-sensitive [5]. A fundamental issue

with UCM is that the orthogonal space is typically defined via the

standard Euclidean metric applied to the space of joint angles.

Such an implicit choice is coordinate-dependent and the results of

the UCM analysis would change if, for example, we decide to

represent postures via joint angles instead of a normalized angle

(e.g. the joint angle divided by the biomechanical range of motion).

More importantly, covariance-based analysis may reach differ-

ent results if the coordinates are transformed. Even the linear

transformation of joint angle coordinates from absolute to relative

leads to different conclusions [5].

More than a century ago, Physics undertook a geometrization

process of its main theories in the effort to achieve descriptions of

phenomena in a coordinate-independent way, using differential

geometry. Computational modelling in motor control is still at an

early stage although some attempts have been made in this

direction, e.g. [6], [7], [8], [9]. It is not clear which coordinate

system might be adopted by the brain to represent postures,

therefore any specific selection rests on an arbitrary choice of the

researcher. In situations where the configuration space is the set

postures determined by several joint angles, it is not clear how to

introduce an appropriate metric structure which relates angles

relative to different joints, with very different ranges of motion. For

example, starting from a reference posture, can we say that two

new postures achieved, respectively, via a 1o of ankle rotation and

1o of knee rotation are equally ‘distant’ from the reference

posture?

Although internal representations are largely unknown, it is

clear that the brain does take into account the geometry and

physics of the external world. Early studies on reaching tasks in the

horizontal plane showed how we consistently move along straight

lines in the extrinsic, end-point space [10]. In the last three

decades, similar studies have been conducted under different

conditions, including visual distortion [11] and force perturbations

[12], producing evidence that the brain is able to learn and adapt

in order to produce straight lines in the visually perceived space

(so, sometimes slightly curved in the actual space). Computational

studies showed how this large body of experimental observations is

compatible with optimization of kinematic and/or dynamic costs

which are related to the dynamics of the task, e.g. inertial and

geometric properties of the human limbs [13], [14], [15]. These

studies make use of methods traditionally applied in Mechanics

and Robotics.

Furthermore, a very recent study by Danziger and Mussa-Ivaldi

[16] supports the hypothesis that movement trajectories are based

on the perceived geometrical properties of the object (such as the

hand-held tool, in our paper) that is being controlled by the brain.

The novelty of their approach is in the use of a virtual object

controlled via the (hyper-redundant) posture of the fingers, an

experimental paradigm designed to eliminate any bias due to limb

dynamics and experience in reaching. The findings of Danziger

and Mussa-Ivaldi [16], along with the work of Biess et al. [8], [9],

suggest that metric properties such as distance measures and geodesics (i.e.

‘straight lines’) of the operational space (be it virtual or real) play an important

role in shaping our motor strategies. In this sense, Riemmanian geometry

represents the appropriate theoretical framework for analytical

investigation in motor control.

In this paper we study accuracy during pointing via a

coordinate-independent analysis of variance based on a choice of

metric structure suggested by the specific application, in our case

manipulation via hand-held tools. The paper outline is as follows.

Next section will present all the steps involved in the classical

UCM approach, based on vector calculus. Then an overview of

the Riemannian geometric framework required to extend such

vector calculus steps to more general settings is presented, along

with the detailed formulation required to compute intrinsic

Figure 1. Static pointing task performed with a hand-held tool.
The tool is grasped at a fixed position Pgrip , at distance l from the tool
tip Ptip. The pose g of the hand-held tool, with respect to a fixed frame
S, can be specified as the position Pgrip and orientation R of a moving
frame B attached to the tool at the gripping point.
doi:10.1371/journal.pcbi.1002978.g001

Author Summary

Daily motor tasks typically involve more degrees-of-
freedom than strictly required. For instance, pressing a
button in the elevator only requires positioning the
fingertip at a three-dimensional location in space. Howev-
er, to move the arm we need to control many more
degrees-of-freedom (at least seven, only considering the
shoulder, elbow and wrist) than required by the task, each
with its own variability due to physiological factors such as
tremor. Variability at proximal joints (e.g. shoulder or
elbow) is expected to be amplified and projected at the
distal end (fingertip). Remarkably, inter-joint coordination
reduces the final variability at the fingertip position. Recent
theories, such as the uncontrolled manifold (UCM),
distinguished between inter-joint variability that would
not affect the finger position and variability that would
affect the final task. A major issue is that traditional UCM
methods rely on the coordinate system chosen to analyse
the arm motion. Therefore, we introduce a coordinate
independent UCM method for tasks performed with
handheld tools, e.g. surgery. This paper describes a new
method and demonstrates that it enables an accurate
analysis of static pointing. The results clearly show that the
subjects can channel variability in dimensions that do not
affect the task outcome.

Coordinate-Independent UCM Analysis
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variance based on metric properties of rigid bodies motions. This

approach is then applied to the analysis of data of healthy subjects

performing static pointing tasks. Results from the experiments are

presented and discussed.

Materials and Methods

Classical UCM approach
The starting point for classical uncontrolled manifold (UCM)

analysis is the definition of a forward kinematic model

y~f (h) ð1Þ

relating n-dimensional human joint variables h~½h1, . . . ,hn�T to a

particular m-dimensional variable y~½y1, . . . ,ym�T which is

hypothesized to be directly controlled by the brain. For example,

to investigate how the center of mass (COM) is controlled by

children during quiet stance, Wu et al. [17] derived a forward

kinematic model mapping seven joint angles (i.e. the angles formed

between the foot, shank, thigh, trunk, head/neck, forearm, and

upper arm segments with the horizontal) onto the anterior-

posterior position of the center, a one-dimensional variable. The

task is kinematically redundant as a 7D joint configuration space is

mapped onto a 1D task space (anterior-posterior sway of the

center of mass).

The UCM analysis is simplified by linearizing the nonlinear

forward kinematics about the average posture, hereafter reference

posture, computed across N measurements:

h0 :~
1

N

XN

i~1

hi ð2Þ

Linearization around the reference posture via the m|n Jacobian

J : ~Lf
Lh

���
0
, a matrix mapping joint-space velocities into velocities of

the COM, is used to map ‘small variations’ in the joint space into

‘small variations’ in the controlled variable space:

y{f (h0)&
Lf

Lh

����
0

(h{h0) ð3Þ

As an approximation of the UCM, the nullspace (N ) of the

Jacobian is used, i.e. a linear subspace of the configuration space

for which deviations from the reference posture produce no

motion in the task space.

N~spanfn1, . . . ,nn{mg, J ni~0 ð4Þ

At the same time a linear subspace ‘orthogonal’ to UCM

(O :~N\
) is also computed as the orthogonal complement to

the nullspace

O~spanfo1, . . . ,omg ð5Þ

Experimental deviations from the reference posture Di~hi{h0

are projected onto the two orthogonal subspaces named,

respectively, UCM (‘null’) and orthogonal (‘orth’) component.

Dnull
i ~

Xn{m

j~1

(nT
j Di)nj , Dorth

i ~
Xm

j~1

(oT
j Di)oj ð6Þ

Variance is computed for each component and normalized by the

dimension of each subspace

s2
null~

1

(n{m)

1

N

XN

i~1

EDnull
i E2, s2

orth~
1

m

1

N

XN

i~1

EDorth
i E2 ð7Þ

where E:E represents the Euclidean norm. The so called UCM ratio

is then computed as the logarithm of the ratio of the variance of

the UCM and orthogonal components.

A Riemannian framework for intrinsic statistical analysis
Riemannian geometry allows generalizing to nonlinear spaces

traditional concepts and tools from vector calculus, e.g all the steps

behind the classical UCM approach. In this section, we shall try to

build some intuition to help relating these new geometric tools

with the classical ones. For a more comprehensive and detailed

description, the reader is referred to [8], [9] and references

therein. To motivate this need of generalization, one can think of

cartography: our rigid rulers and goniometers work well on flat

sheets of papers but not on a globe. Therefore cartographers draw

charts by mapping points on the globe onto a sheet of paper.

Clearly, patching the globe requires multiple charts, each with its

own coordinate system (‘squared’ paper), and some rule to

reconcile overlapping charts.

With reference to Fig. 2, the starting point is to define a n-

dimensional configuration manifold (Q) and to patch it with

coordinate charts. Any chart of coordinates q~½q1 q2 . . . qn�T
is sufficient to describe the behavior of the system locally, i.e.

around a reference point (or posture) q0 in the configuration

manifold. Around such a reference point, we can approximate the

manifold with its tangent space (Tq0
Q), an n-dimensional linear

(vector) space, tangent to the manifold at the reference position.

The tangent space will be also tangent, at q0, to any trajectory

q(t)~½q1(t) q2(t) . . . qn(t)�T on the manifold passing through q0

itself. For this, elements of the tangent space are naturally

identified with velocity vectors _qq~½ _qq1 _qq2 . . . _qqn�
T

, at q0.

The central element in Riemannian geometry is the introduc-

tion of a metric, i.e. a symmetric, positive definite bilinear function

(or quadratic form) S:,:T. As a generalization of the inner product

of Euclidean spaces, a Riemannian metric acts on pairs of vectors

( _qqa, _qqb) tangent to the manifold at a given point to determine, for

Figure 2. Example of configuration manifold.
doi:10.1371/journal.pcbi.1002978.g002

Coordinate-Independent UCM Analysis
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example, the length of a vector (D _qqaD
2~S _qqa, _qqaT) or the angle h

between them (cos h~S _qqa, _qqbT:D _qqaD
{1:D _qqbD

{1).

Kinetic energy metric: A metric does not come with the

manifold, it is extra structure that should be defined based on the

application. In this lies the connection to Mechanics: the kinetic

energy of a system naturally defines a metric. For a very general class of

mechanical systems, including the ones of interest in Robotics, the

kinetic energy (KE) can always be expressed as

KE(q)~
1

2
_qqT B(q) _qq

where the configuration-dependent matrix B(q) is defined based

on the inertial and geometric properties of the system and can be

shown to be always symmetric and positive definite and can be

used to define a bilinear metric form as

S _qqa, _qqbT :~ _qqT
a B(q) _qqb

Once a metric structure is in place, vector calculus methods can be

generalized for use on general manifolds independently of the choice of

coordinates used for the analysis. In the following, we should examine

only those which will be used in this paper.

Length of trajectories: if our manipulator moves from an

initial posture qa to a final posture qb via a trajectory q(t), the

length of the curve connecting the initial and final postures is

Lb
a :~

ðtb

ta

j _qq(t)jdt~

ðtb

ta

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S _qq(t), _qq(t)T

p
dt

~

ðtb

ta

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
_qq(t)T B(q) _qq(t)

q
dt

ð8Þ

Geodesics: among all the possible smooth trajectories

between two points, the geodesics are the ones of minimum

length in the sense of eq.(8). Geodesics are found by solving a

second order differential equation which involves first derivatives

of the metric coefficients (corresponding to the Coriolis’ and

centrifugal terms in the standard equations of manipulators). We

are not solving it explicitly as we will use results from other works,

so we refer the reader to Biess et al. [9] for further details. What

really matters here is that, from a given point q0 only one

geodesic exists which passes through it with a prescribed velocity

D, at q0.

There is an important map from the tangent space to the

manifold itself which is known as exponential map:

expq0
: Tq0

Q?Q

A manipulator with an initial configuration q0 and initial velocity

D1, if unperturbed by external forces, after a unit time would

evolve into a new posture q1 :~ expq0
(D1).

There is also its inverse map, known as logarithmic map

logq0
: Q?Tq0

Q

A manipulator with an initial posture q0 will evolve, in a unit time

and without external perturbations, into a final configuration q1

only if the initial velocity is D1 :~ logq0
(q1). The logarithmic map

extends to Riemannian manifolds the concept of difference between

two vectors, which only makes sense on linear spaces.

Distance between two postures: if reaching a new position

for a starting point in a unit time requires a large initial velocity,

despite the choice of the shortest path, then the two points are

probably far apart. The initial velocity, for a geodesic, is therefore

a good measure of distance. The usefulness of the logarithm (at least

locally) is in the ease of computing the distance between two points

d(qa,qb) :~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S logqa

qb, logqa
qbT

q

Intrinsic mean [18]: Given a set of m postures q1,q2, . . . ,qm,

how can we define a mean posture? This is one very clear example

where using vector calculus leads to coordinate-dependent results.

Once a Riemannian framework is in place, one can define an

intrinsic, i.e. coordinate-independent, mean posture as

q0 :~ argmin
q[Q

Xm

i~1

d2(q,qi)

Intrinsic variance [18]: Once we have a mean value q0, we

can consider the tangent space Tq0
Q and project onto it all the

samples qi via the logarithmic map:

Di :~ logq0
(qi)

As previously mentioned, the logarithm logq0
(qi) can be thought

of as difference between qi and q0. It should also be noted that, by

definition of the logarithm, Di is an element of the tangent space,

i.e. a vector, and as such we can easily extend classical

formulations for an intrinsic definition of variance

s2 :~
1

m

Xm

i~1

DDi D2~
1

m

Xm

i~1

SDi,DiT~
1

m

Xm

i~1

DT
i B(q0)Di

Rigid body motions: a metric for hand-held tools
As mentioned previously, a metric does not come with a

configuration manifold, it is extra structure which is typically

defined by the application. Therefore the investigator always has to

make a choice, especially when defining experimental conditions.

Once the choice is made, the Riemannian geometric framework

ensures that the results of the analysis will not depend on the

choice of coordinates.

The general Riemannian geometric approach starts from the

definition of the configuration manifold. When it comes to rigid body

motions, the configuration manifold is more structured than the general

case. The space of rigid body configurations is in fact a Lie group, a

manifold with additional algebraic structures as we shall see next.

With reference to Fig. 1, consider a space-fixed frame S and a

moving frame B attached to the hand-held tool at the gripping point.

Let Pgrip represent the 3D coordinates of the gripping point in space

coordinates. The orientation of B with respect to S is determined by

the coordinate axes fe1,e2,e3g, the latter being aligned with the tool

major axis, pointing away from the tip. At all times, the orientation of

B relative to S can be represented via a 3|3 rotation matrix R
whose first, second and third columns represent, respectively, the

space-fixed coordinates of the axes fe1,e2,e3g.
Rigid body rotations: The 3D orientation of a rigid body

can be described by means of a 3|3 rotation matrix R (satisfying

Coordinate-Independent UCM Analysis
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ortho-normality RT R~I and right-handedness det R~z1). A

rotation is physically determined once the rotation axis n (DnD~1)

and the rotation angle h are known, thus can be described by a

rotation vector r~hn.

The rotation matrix R corresponding to a rotation vector r can

be computed via the exponential map [19]:

R~exp(brr)~IzsinDrD
brr
DrD

z(1{cosDrD)
brr2

DrD2
ð9Þ

where the skew-symmetric matrix brr is defined via the ‘hat’

operator:

b:: : r~

rx

ry

rz

264
375? 0 {rz ry

rz 0 {rx

{ry rx 0

264
375~brr ð10Þ

Conversely, for a given rotation matrix R, the corresponding

rotation vector can be computed via the logarithmic map [19]:

r~ log_ (R)~
h

2sin h

R3,2{R2,3

R1,3{R3,1

R2,1{R1,2

264
375 ð11Þ

where h~arccos((trace(R){1)=2), valid for hvp. As a note, the

classical definition of logarithm (log) of a rotation matrix returns a

skew-symmetric matrix, which is associated with a unique 3D

vector via the natural isomorphism eq. (10). The map log_ simply

combines the logarithm and the isomorphism, returning directly a

rotation vector.

Body angular velocities: For a rigid body pivoting about a

hinge, R(t) represents the trajectory in the configuration space and
_RR(t) is the instantaneous velocity, as seen previously for general

manifolds. However, from Physics, we expect a three-dimensional

body velocity while _RR requires nine coefficients (obviously

correlated). The reason is that _RR maps the body positional

coordinates into the spatial velocity coordinates. It can be shown

[19] that expressing the same velocity in body coordinates leads to

skew-symmetric matrix, corresponding to the usual definition of

body angular velocity

^ :~R{1 _RR

Rigid body motions: The pose of a rigid body, e.g. the hand-

held tool in Fig. 1, is fully specified by the relative position P and

orientation R of the moving frame B with respect to the space-

fixed frame S. The pose g~fR,Pg can be conveniently

represented as a 4|4 homogenous matrix

g~
R P

0 1

� �
ð12Þ

The velocity _gg of the rigid body from the perspective of the moving

frame (g{1 _gg) can be concisely written as a 6D generalized body velocity

vector

g{1 _gg~
RT _RR RT _PP

0 0

" #
~

^

0 0

� �
u
� �

ð13Þ

which contains the body linear velocity and body angular

velocity . Dually, one could define generalized space velocities

via _ggg{1.

Changing frames: If we were to describe a physical motion

g(t) with respect to a new spatial frame, displaced from the

original one by a constant matrix g0~fR0,P0g, we would obtain a

new description g0 g(t) for the same physical motion. In general,

this would lead to a new velocity reading g0 _gg but it would not affect

body velocities since

g0 gð Þ{1
g0 _gg~g{1g{1

0 g0 _gg~g{1 _gg ð14Þ

As a change of spatial frame corresponds to left-multiplying by a

constant matrix g0, invariance to this transformation is called left-

invariance. Dually, a change of moving frame corresponds to a

right-multiplication (g(t)g0) and invariance to this transformation

is called right-invariance.

Left-invariant kinetic energy metric: The kinetic energy

(KE) of a rigid body is a scalar quantity which clearly cannot

depend on the frames (moving or spatial) used to describe the

kinematics of the object. As known from basic Mechanics, when

the moving frame is located at the center of mass of the rigid body,

the kinetic energy can be conveniently written in body coordinates

as

KE~
1

2
mE E2z

1

2
T H ~

1

2
T T

� �
B

� �
ð15Þ

with the generalized inertia matrix (relative to the center of mass)

being:

B :~
mI 0

0 H

� �
ð16Þ

where m is the mass of the rigid object, I is the 3|3 identity

matrix and H is the moment of inertia. Since body velocities are

by definition independent of the spatial frame, as shown in (14),

general invariance of the kinetic energy implies that also the

generalized inertia matrix (16) must be invariant to a change of

spatial frame, i.e. left-invariant. A left-invariant Riemannian metric can

then be defined from (15) as

S 1

1

� �
,

2

2

� �
T :~ 1 1½ � B

2

2

� �
ð17Þ

It is worth noting that the metric (17) is not invariant to changes of

moving frame, i.e. not right-invariant, as the generalized inertia

matrix B strongly depends on the moving frame. The formulation

in (15) is in fact only valid when the moving frame is located at the

center of mass. This reflects an important property of rigid bodies:

the lack of a bi-invariant metric, i.e. a metric which is independent of

both the spatial and the moving frame [20].

In dynamics, the inertia matrix can be determined once the

shape and the material properties such as density of an object are

known. Clearly, when kicking an object, it makes a lot difference

for the subsequent motion whether it is a round soccer ball or an

elliptical rugby ball.

However, for kinematic purposes, inertial properties may not be

of interest. For example, in our application, if the hand-held tool is

very lightweight and our motion is relatively slow, its shape and

material properties might be neglected at a first level of analysis. In

such cases, we can abstract the inertial properties and consider an

Coordinate-Independent UCM Analysis
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isotropic inertia, rather than a general ellipsoid, by setting m~a
and H~bI , where a and b are scalars

B~
aI 0

0 bI

� �
ð18Þ

This metric was introduced by Park and Brockett [20] as the scale-

dependent left-invariant metric for rigid body motions. The two

parameters a and b weigh the relative importance of rotations

versus translations. As highlighted by Park [21] there is no natural

choice for these scalar coefficients and a selection will depend on

the application. In our case, any scaling factor common to both a
and b would not change the orthogonality conditions nor the ratio

of variances, so we can fix a~1 and define a value for b. As

evident from Fig. 1 and detailed in next section, an infinitesimal

rotation dh at the gripping point about e2 would cause a tip

displacement ldh along e1. This suggests setting b~l2, i.e.

B~
I 0

0 l2I

� �
ð19Þ

and the inner product reduces to

S 1

1

� �
,

2

2

� �
T~ T

1 2zl2 T
1 2 ð20Þ

As shown by Park [21], [22], based on the metric defined by (19),

the geodesic curve g0i(t) connecting, in a time unit, an initial pose

g0~fR0,P0g to a final pose gi~fRi,Pig is

g0i(t)~
R0 expbit (1{t)P0ztPi

0 1

" #
ð21Þ

where i~ log_ (RT
0 Ri). The ‘difference’, in a Riemmanian sense,

between the two poses can be identified with the body velocity of

the geodesic motion

D̂Di : ~g{1
0i _gg0i~

log_ (RT
0 Ri) RT

0 (Pi{P0)

0 0

� �
ð22Þ

It is worth noting that, for the metric (18), geodesics evolve at

constant body velocity Di [23]. The distance between the two

poses is therefore

d(g0,gi) :~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EP0{PiE2zl2E log_ (RT

0 Ri)E2
q

ð23Þ

Once a metric is in place, one is actually able to relate different

tangent spaces via the so called ‘metric compatible connection’

and perform, for example, proper differentiation of velocity vector

fields which leads to a correct definition of acceleration [23].

Left-invariant kinematics for the pointing task
The focus of our analysis is on pointing tasks performed via

hand-held tools. The key aspect is that the tool itself has redundant

degrees of freedom with respect to the task. This allows disregarding the

complexity of the body postures (which especially for modeling the

grasping finger pattern would either lead to oversimplified models

or intractable ones) and focusing on the intermediate space of tool

configurations. In fact, we can think of the forward kinematics as a

concatenation of two maps: the first transforming bodily postures

to tool poses, the second transforming tool poses to controlled

variables, i.e. the tool tip. To determine the latter map, we should

consider that the gripping point of the hand tool is at a constant

distance l from the tip, therefore

Ptip~Pgrip{le3~Pgrip{lR

0

0

1

264
375 ð24Þ

Differentiating with respect to time leads to

Vtip~Vgrip{l _RR

0

0

1

264
375 ð25Þ

where Vtip :~ _PPtip and Vgrip :~ _PPgrip are, respectively, the veloc-

ities at the tip and at the gripping point, in space coordinates.

As we seek a formulation which is spatial frame invariant, we

will try to express everything in body coordinates. Body velocities

tip and grip are related to space velocities via the transformations

tip~R tip and grip~R grip, which leads to

tip~ grip{l |

0

0

1

264
375 ð26Þ

where ^ : ~RT _RR is the skew-symmetric matrix for the body

angular velocity. Equation (26) is clearly invariant to changes of

space frame as it only comprises constants and body velocities

which are left-invariant, as shown in (14). A more compact

formulation in terms of generalized velocity leads to

tip~J
grip

� �
ð27Þ

where J is the Jacobian matrix

J~ I lbee3½ �~
1 0 0

0 1 0

0 0 1

0 {l 0

l 0 0

0 0 0

264
375 ð28Þ

In the kinematic relation (27), the Jacobian projects the 6 dof

generalized velocity of the hand-held tool into the 3 dof velocity of

the task. This captures the redundancy of the tool with respect to

the prescribed task.

Null and orthogonal spaces
The nullspace N is the sub-space of generalized velocities

½ �T of the tool which produce no motion at the end-tip, i.e.

0~J ½ �T . It is straightforward verifying that the following

generalized velocities

n1 :~
1ffiffiffi
2
p e1 l{1e2

� �T
n2 :~

1ffiffiffi
2
p {e2 l{1e1

� �T
n3 :~ 0 l{1e3

� �T

8>>>>>><>>>>>>:
ð29Þ
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are an orthonormal basis of the nullspace of J , i.e. produce zero

end-tip velocity J ni~0 for i~1,2,3; are mutually orthogonal

Sni,njT~0 whenever i=j; and have unitary length Sni,niT~1 for

i~1,2,3.

Similarly, it can be verified that

o1 :~
1ffiffiffi
2
p e1 {l{1 e2

� �T
o2 :~

1ffiffiffi
2
p e2 l{1 e1

� �T
o3 :~ e3 0½ �

T

8>>>>><>>>>>:
ð30Þ

is an orthonormal basis of the orthogonal complement of N

O :~N\
~spanfo1; o2; o3g ð31Þ

A reference position for hand-held tools
Given a set of N rigid body poses gi~fRi,Pig, where

i~1,2, . . . N, an intrinsic definition of mean pose, see [24], [22]

and reference therein, is

g0 :~ argmin
g

XN

i~1

d2(g,gi)

where d(g,gi) is the distance between the poses g and gi as in (23).

It can be shown that the intrinsic mean pose can be expressed as

g0~fR0,P0g, where

P0 :~N{1
PN

i Pi

R0 :~ argmin
R

PN
i~1 E log_ (RT

i R)E2

8<: ð32Þ

For further details, the reader is referred to [24], [22].

Analysis of variance via principal geodesic analysis
In the classical UCM approach [4] [17], where postures are

typically parameterized via a vector of n joint angles

h~½h1,:::,hn�T , deviations from the reference position h0 are

directly computed as differences between vectors (h{h0) and

projected onto the nullspace of the Jacobian and onto its

orthogonal complement.

For nonlinear spaces as for rigid body motions, this is not

possible and we will extend the classical UCM approach with the

concept of geodesics as proposed by Fletcher et al. [24]. Starting

from a given point (e.g. a reference position), geodesic curves are

completely specified once the initial velocity is given and allow

connecting sufficiently close points via minimal paths. Therefore,

geodesics are a natural way to define the deviation of a point B

from a point A as the initial velocity for a geodesic curve to start in

A and reach B in a unit time.

Recalling (22), the ‘difference’ between a pose gi and the

reference pose g0 can be determined as the (constant) body

velocity required to join the two poses via a geodesic in unit time:

Di :~
i

i

� �
~

RT
0 (Pi{P0)

log_ (RT
0 Ri)

" #
ð33Þ

By definition, the body velocity is a vector of the tangent space and

can be projected onto the UCM and its orthogonal complement

via the available inner product (20):

Dn
i :~ SDi,n1Tn1zSDi,n2Tn2zSDi,n3Tn3

Do
i :~ SDi,o1To1zSDi,o2To2zSDi,o3To3

�
ð34Þ

As in the classical UCM approach, variance-per-dof can be

computed as

s2
n ~

1

3N

XN

i~1
EDn

i E
2

s2
o ~

1

3N

XN

i~1
EDo

i E
2

8><>: ð35Þ

where N is the number of measurements and 3 is the dimension for

both the nullspace and its orthogonal complement. The definition in

eq. (35) corresponds to the geometric framework proposed by

Fletcher et al. [24] where (based on the early work of Frechet [25])

the variance of a random variable in a metric space is defined as the

expected value of the squared distance from the mean.

This section first introduced the general steps involved in the

classical UCM approach and then derived an intrinsic definition of

each of these steps for the case of static pointing with hand-held

tools. In particular, an intrinsic definition of deviations eq. (33)

from an average pose eq. (32) was constructed by means of

geodesics. In this way, the variance eq. (35) of these deviations on

nullspace and on its orthogonal complement can be carried out

independently of the choice of coordinates.

Experimental setup
To analyze variability during static pointing tasks with hand-

held tools, experiments were conducted with 7 healthy subjects

without any known history of neuromuscular impairment. All

of them declared to be right-handed and gave their informed

consent prior to the experiment. The study was approved by

the institutional review board of Nanyang Technological

University and was conducted according to the principles

expressed in the Declaration of Helsinki. Each subject was

asked to hold a sensorized stylus of a Polhemus Liberty system

(38mm and 0:0012o resolution within 30cm range) at a specific

gripping point l~18cm from the tip, onto which a hypodermic

needle with luer connector (Terumo 0:40|13mm) was

attached. The subject was then asked to touch the tip of a

similar needle, firmly attached to a wooden table in a vertical

position, with the tip of the stylus, as shown in Fig. 1. The

position of the tip Ptip and the orientation of the stylus R,

which are related to the position of the gripping point Pgrip via

eq. (24), were acquired at 240 Hz via the Polhemus Liberty

system and recorded onto a local PC for off-line data analysis.

For both needles, only 1 mm of the tip is exposed while the

remaining part is isolated with tapes. The setup is such that a

beeping sound is produced when electrical contact between the

exposed tips of the two needles occurs.

Experimental protocol
The experimental protocol consisted of 20 consecutive trials. In

each trial, the subject was asked to make a 15 seconds, steady

contact between stylus and target tips separated each time by a

large movement of the stylus approximately 20 cm away from the

body. Only the inner most 10 seconds between two large

movements were analyzed (thick solid lines in Fig. 3). Firstly, the

furthest positions away from the target were detected (correspond-

ing to minima in Fig. 3) then a midpoint was calculated. For data

Coordinate-Independent UCM Analysis
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analysis we considered only the data points within 5 seconds

before or after the midpoint.

One minute rest was given every 5 trials. No visual magnifi-

cation was provided to the subject. The protocol was performed in

two different experimental conditions: in Exp I the elbow of the

right arm was supported on the table, while in Exp II the arm was

unsupported, resulting in different noise conditions [26]. For every

subject, both types of experiments were carried out in the same

day, with Exp I preceding Exp II and one hour rest in between.

The data relative to the three components of the tip position (Ptip)

during one representative trial are shown in Fig. 3.

Data reduction
For each trial, only the inner most 10 seconds (2400 samples) of

steady contact were analyzed.

To detect physiological tremor, the power spectral density

(PSD) was estimated. To this end, the velocity components along

each axis were estimated by numerically differentiating the tip

position, component-wise. Then, for each (10 seconds) trial, the

pwelch() function in the MATLAB environment was used to

estimate the average PSD over ten non-overlapping time windows

(1 second each). Finally, for each subject, the PSD estimates

obtained for each trial were averaged.

For each trial, the relative UCM components s2
n and s2

o were

computed as in eq. (35). The logarithm of their ratio, referred to as

UCM ratio, was computed

rucm~ln
s2

n

s2
o

	 

ð36Þ

The logarithm, instead of the ratio, was used in order to correct for

non-normal distribution [27], [28]. The UCM components for all

trials of a representative subject are shown in Fig. 4.

Similarly to the UCM components and their ratio, also the

variances of Ptip and Pgrip and their ratio

rpos~ln
s2

grip

s2
tip

 !
ð37Þ

were computed for each trial.

Statistical analysis
According to the UCM theory [4], a larger variance in the null

space (s2
n) than in its orthogonal complement (s2

o) indicates that the

position of the stylus tip is a variable directly under neural control.

Therefore, we hypothesized that the UCM ratio (rucm) will be

significantly greater than zero. We also tested the influence of the

experimental conditions (Exp I and Exp II) on the UCM ratio.

Similar analysis was conducted for the variances of s2
tip, s2

grip and

their ratio eq. (37).

To test whether the average UCM ratio eq. (36) is significantly

different from zero, a Wilcoxon signed rank was run for the each

subject on the rucm values derived from every trial, separately for

the two experimental conditions Exp I and Exp II. Similar tests

were conducted for rpos.

A series of analysis of variance (ANOVA) tests with repeated

measures was conducted to test the effect of experimental conditions

and of UCM component on the variance-per-dof. The dependent

variables are variance-per-dof, rucm and rpos. A three-way repeated

measures ANOVA–2 (experimental condition) | 2 (UCM compo-

nent) | 20 (Trial) was conducted on variance-per-dof. Two 2

(Experimental condition) | 20 (Trial) repeated measure ANOVAs

were conducted on rucm and rpos. All the ANOVAs used the

MATLAB implementation RMAOV33 [29] and RMAOV2 [30]. A

series of Kruskal-Wallis test were conducted to test the effect of

experimental conditions on rucm and rpos for every individual subject.

Results

Analysis of the power spectral density of the variability of

motions, revealed a frequency profile containing at least two major

peaks in the frequency ranges 0–7 Hz and 7–15 Hz, consistent

Figure 3. Components of the 3D position, in spatial frame coordinates, of the stylus tip (Ptip) for one representative trial. The ‘ * ’
marking the minima correspond to the positions furthest away from the target. The thick solid lines are the data of interest, within 5 seconds before
and after the midpoint between two minima.
doi:10.1371/journal.pcbi.1002978.g003
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with the spectral density of physiological tremor [31]. Fig. 5 shows

the averaged PSD for a representative subject.

UCM components and ratio
For both experimental conditions, there was much more

variability in the UCM subspace than in the orthogonal subspace

(i.e. s2
n&s2

o, Fig. 6) as a Wilcoxon signed-ranks test showed a

UCM ratio significantly different from zero (pv0:0010).

A three-way repeated measures ANOVA (experimental condi-

tion | UCM component | trials) conducted on the variance-per-

dof indicated that all the main effects are significant: pv10{4 for

the UCM component effect, p~0:0057 for the trial effect) and

p~0:0470 for the experimental condition effect. In addition,

significant interactions were found between trial numbers and

UCM component (pv0:0065 for all possible interactions).

Effects due to experimental condition (p~0:0164) and trials

(p~0:0012) were also found in a two-way repeated measures

ANOVA on rucm (Experimental condition | trial). No interaction

effect was found between experimental condition and trial

(p~0:4916). As shown in Fig. 7, there is a significant difference

for the UCM ratio evaluated for the two experimental conditions

in four subjects (pv10{4, p~0:0022, p~0:0265, and p~0:0032,

Kruskal-Wallis test on subject 1, 2, 3, and 7).

Figure 4. Variance per dof in the nullspace (s2
n) and its orthogonal complement (s2

o) for all 20 trials of a representative subject.
doi:10.1371/journal.pcbi.1002978.g004

Figure 5. Power spectral density for each velocity component of a representative subject.
doi:10.1371/journal.pcbi.1002978.g005
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Variance of position
Similar analysis as for the UCM components and ratio,

revealed, in general, more variability in Pgrip than in Ptip,

although this is not the case for all subjects (Fig. 8). Wilcoxon

signed-rank tests on the rpos showed that all the rpos are

significantly different from zero (pv0:0366) for all subjects and

two experimental conditions, except subjects 1, 3, and 7 in Exp I

(p~0:4330, p~0:4553, and p~0:2959 respectively). This indi-

cates that for all subjects, the variance is larger at the gripping

point of the hand tool than at the tip of the pen when the arm can

move freely without support; while half of the subjects have similar

variance at the gripping point and the tip when the arm is

supported.

As shown in Fig. 9, a series of Kruskal-Wallis tests were applied

to the rpos between two experimental condition and for subjects 1,

2, 3, and 7 there was a significant difference due to the

experimental condition (pv0:0024), for the remaining subjects

pw0:0548. A two-way repeated measures ANOVA conducted on

rpos indicated that there were experimental condition effect

(p~0:0027) and trial effect (p~0:0320) but no significant

interaction (p~0:6279).

Discussion

Motor redundancy: a blessing or a curse?
Complexity of the human body typically leads to an excess of

degrees of freedom for virtually every motor task we are

routinely involved with. Redundancy is also adopted in the

design of artificial systems, e.g. articulated robots, as extra dof

can increase dexterity and robustness. However, redundancy

also requires sophisticated control strategies, for example in

devising control laws which guarantee repeatable postures [32].

In this lies one of most fascinating aspects of human motion: the

apparent conflict between repeatability and variability of the

movement itself.

From an analytical perspective, repeatability and variability of

movement have traditionally been distilled from experimental data

via statistical approaches, by computing average and standard

deviation estimates of movement properties derived from repeated

trials. As pointed out by Newell and Slifkin [33], the vast majority

of motor control literature on normal human subjects has

neglected movement variability, considering it as a reflection of

‘biological noise’, while literature on motor disorders would

interpret ‘low’ variability as a deficit, e.g. as in the case of

stereotypies. Thresholds for standard deviations according to

which the amount of variability should be considered large or

small are often unreported, reflecting a bias relative to the

theoretical views of the investigator. Furthermore, there is clearly

more to movement variability than just standard deviation.

In the last decade, various researchers have started exploring

the structure of variability rather than just its amount. Structure in

variability has been so far explored along two major avenues: its

temporal or its geometric features. These two aspects are by no

means exclusive and, in general, a combined temporal and

geometric analysis is likely to provide more insight into human

motor control.

In this paper, we considered a pointing task and we focused on

the geometric structure of variability, and also estimated the power

spectral density to verify the frequency signature of physiological

tremor. Consistent with previous literature on physiological tremor

[31], our spectral analysis confirmed, for all subjects, the presence

of at least two peaks in the frequency ranges 0–7 Hz and 7–15 Hz.

However, variability is not just tremor, in particular in goal

directed tasks where voluntary control actions are expected to take

place. Furthermore, despite being a static pointing task, temporal

aspects are still present due to, for example, fatigue and learning

effects. In our analysis of variance, a main effect of trials was

always present. Given the simplicity of the task, we believe that

fatigue rather than learning might have contributed to the trial

effect.

The geometric structure of variability was underlined by the

pioneering work of Scholz and Schoner [4] who hypothesized that

variability in redundant tasks is largely restricted to a subspace

(UnControlled Manifold, UCM) of the configuration space which

does not affect the task. Along this line, other related approaches

have been proposed such as the Goal-Equivalent Manifold (GEM)

[34] and Tolerance, Noise and Covariation (TNC) method [1].

While it is expected that the variability of the distal segments

Figure 6. Average UCM components for each subject in Exp I (left, supported arm) and Exp II (right, unsupported arm). For both
experimental conditions, each subject shows a statistically significant difference (pv0:001) between the UCM components. Vertical lines represent
the standard errors.
doi:10.1371/journal.pcbi.1002978.g006
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increases with the degrees of freedom, Morrison and Newell [31]

showed that the contribution of more proximal upper limb

segments to distal (finger) tremor is not simply additive, which is

compatible with the hypothesis of neurally-driven compensatory

strategies. In their study, Morrison and Newell [31] asked healthy

subjects to minimize motion at the tip of the index fingers while

standing with the arms parallel to the ground, with both index

fingers fully extended and the remaining fingers fully flexed. The

contribution of different joints to the distal tremor was analyzed by

successively increasing the support of upper-limb segments from

proximal to distal. Among other things, their study highlighted

how the synergistic action of the wrist joint resulted in significantly

smaller tremor at the index finger during a postural task.

Similarly to Morrison and Newell [31], we evaluated variability

at a distal endpoint in two different conditions: supported (Exp I)

and unsupported arm (Exp II). In addition, our task was designed

to be kinematically redundant as we wished to analyze changes in

terms of ‘good’ and ‘bad’ variability, where ‘good’ refers to the

variability which does not affect the task (i.e. in the null space) and

‘bad’ denotes the variability directly reflected in the task space (i.e.

in the orthogonal complement to the null space). As expected, in

both experimental conditions, our results show that each subject

shows a statistically significant difference (pv0:001) between the

UCM components, projecting more tremor along directions which

do not affect the task. Furthermore, in the unsupported-arm

condition (Exp II), indeed more variability is introduced at the

distal endpoint but that it is mostly channeled into ‘good’

variability (Fig. 6). This is also clear from Fig. 7 where the

increase in both ‘good’ and ‘bad’ variability is analyzed when the

experimental condition is changed from supported-arm (Exp I) to

unsupported-arm (Exp II). While, in terms of mean values, ‘bad’

variability increases but does not double for all subjects, ‘good’

variability increases significantly for most of the subjects (for half of

them, there is a five-fold increase).

We performed a similar analysis comparing variability at the

gripping point and at the tool-tip. Although leading to qualitatively

similar results, UCM analysis leads to ‘crisper’ results in terms of

statistical significance. This was expected since the goal of the task,

clearly defined in pointing tasks, is fully captured by the UCM

analysis.

Figure 7. UCM ratio for seven subjects for the two experimental conditions, Exp I and Exp II (top). Bottom figures show the s2
n ratio

between Exp II and Exp I (left) and similarly for s2
o (right). The horizontal line marks the unitary ratio (i.e. no difference in the variance in position

between Exp II and Exp I). Vertical lines represent the standard errors. Statistically significant differences are highlighted for pv0:05 (*), for pv0:01
(**), and for pv0:001 (***).
doi:10.1371/journal.pcbi.1002978.g007
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A new tool to analyze skill
One of the most appealing aspects of the UCM method is the

possibility to distinguish ‘good’ variance (not affecting the task

success) from ‘bad’ variance (affecting task performance) and,

therefore, to identify skillful performance. Subjects who are able to

channel physiological tremor into movements which do not affect

the task, might be deemed more skillful. Therefore one might be

tempted to relate skills to the UCM ratio. However, our results

suggest another possible explanation.

From our experiments, there appear to be two groups of subjects:

those who show a statistically significant improvement in terms of

UCM ratio (Fig. 7-top) in relation to a change of experimental

condition and those who do not. A possible interpretation is that,

while all subjects perform well in the unsupported-arm condition,

the former group (formed by subjects ‘ma’, ‘me’ and ‘ql’) performs

equally well also in the supported-arm condition. The latter

condition is characterized by a reduced number of redundant

degrees of freedom. In this sense, when more dof are available, it

might be easier to channel variability into motions which do not

affect the task (‘good’ variability) and, thus, skill might be related to

the ability of performing equally well with a reduced number of dof.

However, the mechanism behind this group difference is unknown

and this requires further investigation.

Coordinate independence and objectivity
Despite its appeal, a weakness in the UCM analysis has been

recently pointed out in relation to its coordinate dependence [5].

An issue with UCM is that the orthogonal space is usually defined

via the standard Euclidean metric applied to the space of joint

angles. This choice is coordinate-dependent, thus the results of the

UCM analysis would change if, for example, we decide to

represent postures via joint angles instead of a normalized angle

(e.g. the joint angle divided by the biomechanical range of motion).

As also mentioned by Sternad et al. [5], in computational motor

control a distinction should be made between internal coordinates,

which are assumed to be used by the brain to process information

as well as plan and execute actions, and external coordinates used to

describe and analyze behavior by the investigator. In the latter

case, care must be exercised to ensure that the results are

independent of the researcher’s choice of coordinates.

Differently from the UCM approach, Sternad et al. [5]

proposed a method where variability is evaluated in the ‘‘space

of the result’’, a task-related space, making it less sensitive to

coordinates in the configuration (or execution) space. This is done

in recognition of the fact that for unambiguously defined tasks

there should be a natural way to evaluate performance, possibly

leading to a well-defined metric in the task-space.

From this perspective, a main contribution of this paper is the

use of task-specific features to construct an appropriate metric,

which leads to a frame-invariant and objective analysis in the sense

of [35].

In particular, manipulation via hand-held tools suggests the use

of the scale-dependent left-invariant metric (18), a particular type

of kinetic energy metric especially suitable for kinematic rather

than dynamic analysis, initially proposed by Park and Brockett

[20], [21]. Left-invariance guarantees independence of the inertial

frame but the lack of a bi-invariant metric [21] implies

dependence on the choice of body-fixed frame. Nevertheless, in

the case of kinetic energy metrics for rigid body motions, left-

invariance is in fact sufficient to guarantee the principle of objectivity [35].

From a mathematical perspective, it should be noted that one

could have chosen a right-invariant metric to guarantee body-fixed

frame indifference and forgo the left-invariance, i.e. bearing a

dependence on the spatial frame. This would not be acceptable in

our case, as the results would be dependent on the choice, for

example, of the measuring system.

Previous mathematical arguments are very general and do not

take into account the specific requirements of the task. To describe

the pose of a tool, the experimentalist needs to choose two

coordinate frames: a fixed frame S and a moving frame B. Our

left-invariant description does not depend on the fixed frame but,

due to the nature of rigid body motions, necessarily depends on the

moving frame, despite being an objective description in the sense

of [35]. However, our experimental protocol explicitly requires the

subject to grasp the tool at a prescribed position, i.e. at fixed

distance l from the tip as in Fig. 1. Arguably, this induces a

unique, natural choice for the position of the moving frame B. It

should be noted that our analysis only depends on the position of the moving

Figure 8. Variance at Pgrip and Ptip in Exp I (left) and Exp II (right). Vertical lines represent the standard errors. Statistically significant
differences are highlighted for pv0:05 (*), for pv0:01 (**), and for pv0:001 (***).
doi:10.1371/journal.pcbi.1002978.g008
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frame and not on its orientation, as shown in supporting information

Text S1. Therefore, although mathematically there might be a

general dependence on the choice of the body frame, a well

defined task should always induce a natural choice of such a frame.

This is consistent with the idea that unambiguously defined tasks

should allow to measure performance in an unambiguous way, as

also observed by Sternad et al. [5].

Possible generalizations
Dynamic tasks: In this paper, we focused on static pointing

tasks. However, starting from the original work by Scholz and

Schoner [4] the classical UCM concept was applied to a variety of

dynamic tasks, including sit-to-stand transitions, reaching and

walking. In these works, the UCM method was applied to

trajectories during consecutive movements which were re-scaled

in time and aligned so that corresponding points occurring at the

same normalized time could be sampled [4]. The only difference of

data analysis between static and dynamic tasks is in the way samples

are collected. In the static task, the samples are consecutive postures

within a specific trial. In dynamic tasks, an ensemble of trials is

considered and, at a specific normalized time, one posture per trial

is sampled. The analysis is then repeated at different time slices.

In general, this approach might raise concerns in dynamic tasks

which are not appropriately timed. When a task is self-paced, there

is no guarantee that events occurring in different trials at the same

normalized time are necessarily related.

In any case, the method would still be applicable to tracking tasks

where, repeatedly across trials, a subject is asked to track a visible

target which evolves along a predefined path at a predefined speed

(the whole path might or might not be displayed). At any given

time, the subject is supposed to be on target. Therefore, postures at

that very time could be sampled across trials and used in the UCM

analysis, as for a static task.

Visually perceived geometry: In a recent study, Danziger

and Mussa-Ivaldi [16] asked subjects to control a simulated 2-link

planar arm via a (hyper-redundant) map from finger postures to the

two joint angles of the linkage. According to the type of visual

feedback (one group of subjects could see the whole linkage while

another group could only see the moving end-tip), subjects would

move along paths which could be associated with the geodesics of

Figure 9. Ratio of position variance ratio (rpos) for each subject in both experimental conditions (Exp I and Exp II) (top). Bottom
figures show the s2

grip ratio between Exp II and Exp I (left) and similarly for s2
tip (right). The horizontal line marks the unitary ratio (i.e. no difference in

the variance in position between Exp II and Exp I). Vertical lines represent the standard errors. Statistically significant differences are highighted for
pv0:05 (*), for pv0:01 (**), and for pv0:001 (***).
doi:10.1371/journal.pcbi.1002978.g009
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the visually perceived tool, i.e. either a point or an articulated

linkage. These findings are consistent with the hypothesis that, from

visual observations, the brain can infer (geo)metric properties of

tools and can adapt to produce controlled motions consistent with

the perceived metric properties (e.g. moving along shortest paths).

Intrinsic statistics: As a final note, the type of statistical

analysis needs not to be restricted to simple analysis of

variance, as done in this paper along the line of classical

UCM approach. Once a Riemannian framework is in place,

as in our paper or in the work of Biess et al. [8], [9], one is

given a host of computational tools to perform intrinsic

statistics, as recently presented for example in the field of

medical imaging [18].

Supporting Information

Text S1 Our analysis does not depend on the orientation of the

moving frame B.

(PDF)
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