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Abstract

The motion of ions, molecules or proteins in dendrites is restricted by cytoplasmic obstacles such as organelles,
microtubules and actin network. To account for molecular crowding, we study the effect of diffusion barriers on local
calcium spread in a dendrite. We first present a model based on a dimension reduction approach to approximate a three
dimensional diffusion in a cylindrical dendrite by a one-dimensional effective diffusion process. By comparing uncaging
experiments of an inert dye in a spiny dendrite and in a thin glass tube, we quantify the change in diffusion constants due
to molecular crowding as Dcyto/Dwater = 1/20. We validate our approach by reconstructing the uncaging experiments using
Brownian simulations in a realistic 3D model dendrite. Finally, we construct a reduced reaction-diffusion equation to model
calcium spread in a dendrite under the presence of additional buffers, pumps and synaptic input. We find that for moderate
crowding, calcium dynamics is mainly regulated by the buffer concentration, but not by the cytoplasmic crowding, dendritic
spines or synaptic inputs. Following high frequency stimulations, we predict that calcium spread in dendrites is limited to
small microdomains of the order of a few microns (,5 mm).
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Introduction

Dendrites of neurons contain a complex intracellular organiza-

tion made of organelles, such as mitochondria, endoplasmic

reticulum, ribosomes and cytoskeletal network generated by actin

and microtubules [1–3]. The cell cytoplasm is thus a crowded

rather than diluted medium in which diffusional mobility of small

molecules is restricted [3–7]. Molecular crowding can affect many

biochemical processes such as, protein folding [8–10], enzymatic

reactions [11–13] and signal transduction [14]. Although electro-

microscopy images [15] reveal the complexity of dendritic organi-

zation, there are no direct methods to estimate the functional

consequence on diffusion. Modeling in combination with Monte-

Carlo methods [16–19] allowed to study diffusion in crowded

media. Depending on the size of the diffusing molecule and the

interactions with the heterogeneous media, crowding can lead to

anomalous or normal diffusion [4,20–24].

Neuronal calcium is an fundamental and ubiquitous messenger

[25,26]. It is regulated by cytoplasmic crowding, mobile and

immobile calcium buffers [27–30], pumps and dendritic spines,

which cannot be easily dissociated experimentally. It was already

noticed and quantified [31] that cellular calcium buffers can

determine amplitude and diffusional spread of neuronal calcium

signaling. Precisely, fixed calcium buffers tend to retard the signal

and to lower the apparent diffusion coefficient, whereas mobile

buffers can contribute to calcium redistribution. To study calcium

dynamics, we develop in the first part, a model of diffusion in

a crowded three-dimensional dendrite, that we reduce to a

one-dimensional effective diffusion process. The model is general

and can be applied to protein diffusion in membranes or in

endoplasmic reticulum-like networks [16,32]. In a second part, we

use uncaging experimental data of an inert dye (fluorescein) in a

spiny dendrite and in a glass tube of similar size filled with aqueous

solution to estimate the reduction of the diffusion constant in a

dendrite. These experiments are repeated by Brownian simula-

tions in a 3D model dendrite in order to validate our one-

dimensional model.

In the last part, we use the previously derived effective diffusion

constant and simulate a system of reaction-diffusion equations in

one dimension to study calcium dynamics in a dendrite. We

accounted for calcium buffers, pumps, dendritic spines and

synaptic inputs. We show that for moderate organelle crowding,

calcium spread is mainly restricted by the buffer and the pump

concentration and not by obstacles or dendritic spines. Although

crowding restricts dendritic diffusion by a factor 20, it is not

responsible for the high calcium compartmentalization (v1 mm) in

dendrites [33,34]. We further show that following high frequency

stimulations, calcium spread does not exceed 5 mm. In summary,

calcium microdomains are highly regulated by various active

processes such as calcium buffers, pumps and stores.

Results

Our results are divided into three sections. In the first section,

we present the diffusion model for an inert dye in a crowded

dendritic medium. The model is derived from a periodic
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compartmentalization of the dendritic domain. It is followed by an

extension of the model to almost periodic compartments and the

analysis of the mean time a particle takes to travel across the

dendrite. In the second part, we present the outcome of the

uncaging experiments of fluorescein to probe the dendritic

medium and to estimate the model parameters. It is followed by a

comparison to Brownian simulations, which repeat these exper-

iments on a computer. Finally, we provide mean-field simulation

results for calcium spread in a dendrite under the additional

presence of stationary buffers, pumps and synaptic input.

Crowding model
Modeling diffusion in a heterogeneous dendritic cyto-

plasm. To characterize diffusion in a heterogeneous dendrite,

containing various organelles such as mitochondria, spine

apparatus, endoplasmic reticulum and other structures, we

propose to derive from a three dimensional analysis a one-

dimensional effective diffusion equation. In the limit where the

space in between organelles is small, particles can still move

inside a dendritic domain V and the nature of the motion is not

impaired, and is well approximated by the Smoluchowski limit of

the Langevin equation [35]: a particle at position X(t) at time t is

described by

dXz
1

c
+W(X)dt~

ffiffiffiffiffiffiffi
2D
p

dw(t), ð1Þ

where W is a potential per unit of mass, c is the friction

coefficient, D is the aqueous diffusion constant and dw(t) is

Gaussian white noise. The potential W represents the effective

force on the particle. When a moving molecule hits impenetrable

organelles Oi, it is reflected. The distribution of independent

molecules is characterized by the probability density function

(pdf) p(x,t) which satisfies the Fokker-Planck equation

Lp

Lt
~DDpz+½1

c
(+W(X))p� ð2Þ

in the domain ~VV~V\|iOi , and a zero flux condition on the

organelles and the dendritic membrane L~VV:

J:n~{D
Lp

Ln
z

p

c

LW
Ln

~0, ð3Þ

where J is the flux and n the outer normal of the domain ~VV. To

study the overall effect of crowding on the diffusion, we shall

approximate equations (2) and (3) by deriving a one-dimensional

effective diffusion equation along the dendrite. We adopt an

approach based on a compartmentalization of the dendritic

domain and the small hole theory [36], which provides the mean

time for a Brownian particle to exit a domain through a small

absorbing opening. This method allows us to obtain an explicit

expression for the apparent diffusion constant. We divided a

dendrite into periodic compartments of length l and volume V ,

(Figure 1A) separated from their neighbors by a reflecting cross

section, except for a small opening of radius a. This compartment

should be large enough so that the organelle density is the same in

each of them. The small openings allow diffusing molecules to

move across compartments. In contrast to previous models where

crowding has been described by spherical obstacles [37] that pose

barriers to diffusing molecules, we model crowding as the

sequence of periodic compartments and small openings at the

boundaries of neighboring compartments. A compartment k starts

at position xk and ends at position xkz1 (Figure 1B). The number

Nk(t) of particles in compartment k, changes according to the net

flux across the small windows. The flux can be estimated by the

small hole approximation for the Mean First Passage Time

(MFPT) t a Brownian particle takes to escape a small opening

[36,38–41]). At first order in a, t is approximated by

t&
V

4aD
, ð4Þ

where D is the aqueous diffusion constant and V~pR2l the

cylindrical compartment volume. R denotes the dendrite radius.

Note that the MFPT solely depends on the ratio l=a for fixed

radius R. From numerical studies (data not shown) we find that

formula (4) holds for l=a *> 4 to reasonable accuracy (relative error

v0.05). In the long-time asymptotic regime (t&t), the

unidirectional flux of particles through a small hole is N=t. The

net flux is the difference between the unidirectional fluxes in

opposite direction, and thus, given by

Jnet
k (t)~Jz

k (t){J{
k (t)~

4a(xk)Nk{1(t)D

V (xk{1)
{

4a(xk)Nk(t)D

V (xk)
,

where we have assumed that the size of the opening and the

compartment volume may be spatially dependent. The

conservation of mass imposes that the changes in the number of

particles inside the compartment k is the sum of the net fluxes at

position xk and xkz1 (Figure 1B) and thus

dNk(t)

dt
~{(Jnet

kz1(t){Jnet
k (t))

~4a(xk)(
DNk{1(t)

V (xk{1)
{

DNk(t)

V (xk)
){

4a(xkz1)(
DNk(t)

V (xk)
{

DNkz1(t)

V (xkz1)
)

ð5Þ

Using a Taylor expansion with xkz1{xk~l for a fixed value of

Author Summary

Diffusion is one of the main transport phenomena
involved in signaling mechanisms of ions and molecules
in living cells, such as neurons. As the cell cytoplasmic
medium is highly heterogeneous and filled with many
organelles, the motion of a diffusing particle is affected by
many interactions with its environment. Interestingly, the
functional consequences of these interactions cannot be
directly quantified. Thus, in parallel with experimental
methods, we have developed a computational approach
to decipher the role of crowding from binding. We first
study here the diffusion of a fluorescent marker in
dendrites by a one-dimensional effective diffusion equa-
tion and obtained an effective diffusion constant that
accounts for the presence heterogeneity in the medium.
Furthermore, comparing our experimental data with
simulations of diffusion in a crowded environment, we
estimate the intracellular calcium spread in dendrites after
injection of calcium transients. We confirm that calcium
spread is mainly regulated by fixed buffer molecules, that
bind temporarily to calcium, and less by the heteroge-
neous structure of the surrounding medium. Finally, we
find that after synaptic inputs, calcium remains restricted
to a domain of 2.5 mm to each side of the input location
independent of the input frequency.

Calcium Diffusion in Dendrites
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the length l, equation (5) becomes

LN(x,t)

Lt
~4l2D a(x)

L2

Lx2

N(x,t)

V (x)

� �
z

L
Lx

a(x)

� �
L
Lx

N(x,t)

V (x)

� �" #

~4l2D
L
Lx

a(x)
L
Lx

N(x,t)

V (x)

� �� �
:

ð6Þ

Introducing the concentration c(x,t)~N(x,t)=V (x,t) we obtain

Lc(x,t)

Lt
~

4l2D

V (x)

L
Lx

a(x)
L
Lx

c(x,t)

� �
: ð7Þ

Similar equations have been derived in other contexts [42–44]. If

the parameters a(x) and V (x) are spatially independent, equation

(7) simplifies to

Lc(x,t)

Lt
~D eff

L2c(x,t)

Lx2
, ð8Þ

where the effective diffusion constant Deff is given by

Deff ~mD: ð9Þ

The compartment parameter is

m~
4la

S
, ð10Þ

where V~Sl and S is the cross-sectional area. The effective

diffusion constant depends on two parameters: the compartment

length l and the size of the opening a. We determine the model

parameters by (i) measuring the ratio of diffusion constants Deff =D

and (ii) a calibration condition of the form l=a~4. The latter

condition is chosen such that the small hole approximation (4) is

valid to reasonable accuracy (relative error v5%), which we have

tested in numerical simulations (not shown here). The effective

diffusion constant for spatially homogeneous compartments is

given by Deff ~l2=t*la. Thus, the calibration condition sets

one parameter arbitrarily within the limits of the small hole

approximation and measurements of the diffusion constant will fix

the other parameter. Equation (6) can be associated with a

stochastic equation

dx~a(x)dtz
ffiffiffiffiffiffiffiffiffiffiffi
2b(x)

p
dw, ð11Þ

where the drift and diffusion terms are

a(x)~
4l2D

V (x)
a’(x), ð12Þ

b(x)~
4l2D

V (x)
a(x): ð13Þ

(a prime denotes differentiation with respect to x). Thus, the drift

disappears for spatially homogeneous opening sizes between

compartments (a’(x)~0).

The previous analysis can be applied to the motion of receptors

on the surface of neurons, which contains impenetrable micro

domains [45]. When the surface can be decomposed into a set of

compartments containing small openings, we can apply the results

of the small hole computation derived in dimension two [36,38]:

the mean time for a Brownian molecule to escape a domain of

area A through a small hole is approximated by

t&
A

pD
log

1

e
, ð14Þ

where e is the ratio of the absorbing to the total length of the two

dimensional compartment. Following the same reasoning as in the

previous paragraph, the receptor density satisfies the one

dimensional reduced equation

LN(x,t)

Lt
~pDl2 L

Lx
log

1

e(x)

� �
L
Lx

N(x)

A(x)

� �� �
: ð15Þ

Crowding model for almost periodic diffusion barriers.

To further analyze the effect of diffusion barriers, we investigate

how our previous analysis is affected by an almost periodic

distribution of barriers, where a random jitter is modelled as white

Figure 1. Compartmentalized model dendrite with attached spine including buffers and pumps. The model dendrite is organized as a
sequence of periodic compartments of length l. The compartments are connected through little openings of radius a where molecules can pass to
neighboring compartments. (B) Inward and outward fluxes through the small openings of compartment k used in the derivation of the effective
diffusion equation.
doi:10.1371/journal.pcbi.1002182.g001

Calcium Diffusion in Dendrites
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noise. We will see that diffusion in such medium is characterized

by a fourth order diffusion equation. This analysis shows that

approximating diffusion by dimensional reduction can lead to a

none-classical diffusion description. We start with a compartment

position xk given by

xkz1{xk~DxzsDw, ð16Þ

where Dw is a centered Brownian variable of variance 1 and the

drift is a fixed number Dx&s. When the other parameters

a(x),V (x) are spatially independent, the conservation of mass

leads for compartment k to

dNk(t)

dt
~

4Da

V
Nkz1(t){2Nk(t)zNk{1(t)½ �, ð17Þ

where Nk(t):N(xk,t). It can be shown that by expanding the

functions Nkz1 and Nk{1 in terms of the random position xk the

mean number of diffusing molecules is given by a fourth order

diffusion type equation

L
Lt

SN(x,t)T~Deff {
s4

4l2

L4

Lx4
SN(x,t)Tz(1z

s2

l2
)

L2

Lx2
SN(x,t)T

" #
:ð18Þ

The effective diffusion equation (8) is recovered in the limit

s?0. In the small jitter limit s%1, the effective diffusion constant

reduces to

Ds~Deff (1z
s2

l2
), ð19Þ

where Deff is defined in (9). We conclude that jittering leads to an

increase in the diffusion constant compared to a periodic

arrangement of barriers. Interestingly, the distribution of com-

partments affects the nature of the apparent diffusion process: in

the periodic case, the apparent diffusion is described by the

standard second order diffusion while fluctuations in the

compartment distribution lead to an apparent diffusion that is

described by a fourth order equation.

Mean time for a diffusing particle to travel across a

dendrite. A possible application of the previous theory and

equation (6) is to estimate the mean time t for a diffusing particle,

such as a transcription factor, to travel across a nonbranching

dendrite.

The probability density function to find a molecule at position x

at time t is p(x,t)~
N(x,t)

N0
, where N is the number of molecules

per unit length. We can apply the standard theory of first passage

time [35] to equation (6) and obtain an equation for the mean first

passage time t(x):

{1~
4l2D

V (x)

L
Lx

a(x)
L
Lx

t(x)

� �
: ð20Þ

To obtain the MFPT, t1(x), to reach the cell body (soma) from

any starting point, we solve equation (20) in a dendrite sealed at

the distance L (Reflecting boundary condition) from the nucleus,

t1(x)~0 for x~0,

Lt1(x)

Lx
~0 for x~L:

The solution is

t1(x)~
1

4l2D

ðx

0

dy
1

a(y)

ðL

y

V (z)dz ð21Þ

For example, when a(x)~a, and the compartment volume is

constant V (x)~V , the mean time a diffusing molecule takes to

travel from location x to the nucleus is given by

t1(x)~
(2L{x)x

2Deff

, ð22Þ

where the effective diffusion constant is defined in (9). Similarly,

the MFPT, t2(x), in opposite movement direction, i.e., from the

(reflecting) soma to an absorbing site at x~L in the dendrite, is

given by

t2(x)~
L2{x2

2Deff

: ð23Þ

We conclude that in a dendrite with an effective diffusion

constant of Deff ~0:02{0:04 mm2=s [46], and L~5 mm, the

mean time for a mRNA to reach the soma, starting from the tip

(x~5 mm) is about t1(L)~L2=2Deff &5{10 min.

The effect of crowding in dendrites
Uncaging experiments in a dendrite. To study crowding

inside a dendrite, we use a set of experiments in which we measure

the diffusion time course of a caged inert dye molecule fluorescein

(Materials and Methods). To estimate the effect of crowding in the

dendritic medium, we compare the diffusion time course near and

far away from any dendritic spines (to avoid any perturbation by

the spine domain) to diffusion in a glass pipette of a similar radius.

Figure 2A shows confocal microscopy images of a dendritic

segment with several attached spines and the glass pipette. We

first compare the fluorescent transient in the dendrite and in

the glass tube at different locations from the uncaging spot

(x~0,0:6,1:2,1:8 mm). We find a much faster decay in the aqueous

solution of the pipette compared to the dendrite (Figure 2B). The

fluorescent signals were averaged over several uncaging

experiments (n~7{14). The diffusion constants were extracted

by a least-square fit of the data to the numerical solutions of

equation (8), which consider a spine as homogeneous at the length

scale of the compartment length l.
For the pipette data, where fluorescein diffuses freely, this

method led to a diffusion constant of D0~600+1:9 mm2=s,

whereas in the dendritic medium far away from any attached

spines, we estimated a diffusion constant of Dd~30+3:2 mm2=s.

This number is not far from the upper estimate obtained for

axoplasm of metacerebral cells of Aplysia california, where

Ddv16 mm2=s [31]. We conclude that cytoplasmic crowding in

the dendrite resulted in a drastic reduction of the apparent

diffusion constant by a factor of 20. Using the crowding model

presented in the previous section, we can estimate the compart-

ment length l and the opening size a that leads to this reduction in

the diffusion constant. From formula (9) and the calibration

condition, we find that l&0:2 mm and a&0:05 mm, where the

dendritic radius was set to R~0:5 mm.

We further investigated the influence of spine on dendritic

diffusion: we initiated a dye transient in the dendritic shaft at the

base of a spine by uncaging fluorescein. Figure 2C shows the

fluorescent signals in the presence and absence of the spine at

Calcium Diffusion in Dendrites
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different locations from the uncaging spot. We obtain a slightly

larger diffusion constant near a dendritic spine Dds~35+
3:7 mm2=s compared to no spine.

Brownian simulations of the uncaging experiments. To

support our modeling approach we use Brownian simulations

(Figure 3) to reproduce the uncaging experiments in a glass pipette

(Figure 3A) and in a 3D cylindrical model dendrite far (Figure 3B)

and near a dendritic spine (Figure 3C). The methods used for the

implementation of the Brownian simulations are described in

Materials and Methods.

Figure 2. (A) Images of the dendritic segments and the glass pipette used in the experiments. The sites of the uncaging spots are indicated.
(B) Fluorescein transients in the pipette (black) and in the dendritic medium far away from any attached spine (green) at different distances from the
uncaging spot. (C) Fluorescein transients in the dendrite near and far away of any attached dendritic spine are shown in blue and green, respectively.
Fluorescein was uncaged at the base of the spine at location x~0 mm. The data are averaged values over several uncaging experiments (n~7{14).
The numerical solutions of the 1D effective diffusion equation are shown as solid lines.
doi:10.1371/journal.pcbi.1002182.g002

Calcium Diffusion in Dendrites
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Figure 3. Brownian simulations of uncaging experiments. (A) Model glass pipette (radius R~1 mm and length L~36 mm). Shown is the initial
particle distribution as taken from the experimental data and the sampling volumes (white cylindrical disks) at different locations from the uncaging
spot (x~0,0:6,1:2,1:8,2:4 mm). (B) Compartmentalized model dendrite (radius R~0:5 mm and length L~12 mm). The compartment length and the
opening size are derived from the theoretical model (l~0:1982 and a~0:0495). (C) Compartmentalized model dendrite with attached spine (dendrite
geometry as in B with spine neck radius: 0.3 mm, spine neck length 0.2 mm, spine head radius 0.4 mm). (D) Comparison of 3D Brownian simulations
with the uncaging experiments and the results derived from the solutions of the 1D effective diffusion equation. The normalized concentration
profiles are shown for the glass tube (A), the dendrite (B) and the dendrite with attached spine (C) at three locations from the uncaging spot
(x~0,0:6,1:2 mm).
doi:10.1371/journal.pcbi.1002182.g003

Calcium Diffusion in Dendrites
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We first calibrate the parameter of the model: according to

equation (9), a reduction of diffusion constants by a factor of

Deff =D~1=20 results in a compartment length of l~0:1982 mm
and an opening size of a~0:0495 mm. The spine characteristic

lengths are taken from the confocal microscopy image Figure 2A.

We simulated N~104 particles (of fluorescein) and sampled the

concentrations in cylindrical disks (height = 0:15 mm) at locations

of the experimental recording sites (x~0,0:6,1:2,1:8,2:4 mm) for a

duration of 0.7 ms, which corresponds to the temporal resolution

of the experimental data. For the simulations in the glass pipette

and in the dendrite near and far any attached spine, the initial

distribution in the axial direction was taken from the experimental

data, whereas in the radial direction, it is taken to be

homogeneous. The diffusion constant of fluorescein in aqueous

solution was set to D~600 mm2=s in all simulations. Figure 3D

shows the comparison of the 3D Brownian simulations with the

experifmental data and the results derived from the 1D effective

equation. Note that in all simulations the concentration at x~0
and t~0 is normalized to 1. There is a sharp drop of particle

concentration in the case of a dendrite with attached spine at

x~0. This is due to the flux of particles out of the sampling box

into the spine. Note further that the 1D effective diffusion is only

valid in the long-time asymptotic regime where t&t&1 ms. We

conclude that the results of the 1D effective diffusion equation and

the 3D Brownian simulations in our diffusion model recover the

time course of the experimental data, confirming our overall our

approach. A movie (Video S1) of our Brownian simulations in the

dendrite with an attached spine is given in the Text S1.

Calcium dynamics in crowded dendrites
In addition to cytoplasmic crowding, calcium dynamics is

regulated by many factors such as binding to buffer molecules

(e.g., calmodulin and calcineurin), dendritic spines and various

types of pumps located on the dendritic surface (PMCA, NCX)

and on the surface of internal organelles such as the endoplasmic

reticulum (SERCA). It is usually not possible to dissect experi-

mentally the contribution of each process, and we shall apply our

previous result to study calcium spread in dendrites.

We present a reaction-diffusion equation (Materials and

Methods) to simulate calcium dynamics in both spiny and aspiny

dendrites. At this stage, we do not take into account the

intracellular calcium stores, and thus, we exclude the generation

of calcium waves through CICR, nor do we model spontaneous

dendritic calcium spikes or calcium transients associated with

back-propagating action-potentials. We shall focus here on the

local spread of calcium transients and we ignore global calcium

events. We include in our simulations the effect of buffers, pumps,

spines and synaptic input. The contribution to calcium dynamics

for each active component is provided in the Materials and

Methods.

Calcium is highly restricted by the buffer activity and not
by molecular crowding

We first simulated calcium diffusion in an aqueous solution

(contained in a glass pipette) by initiating a calcium transient and

solving the one dimensional diffusion equation (41)–(45) with a

diffusion constant of D0~400 mm2=s (Figure 4A). The effect of

crowding alone on calcium diffusion in a dendrite was simulated

by reducing the free diffusion constant to D~1=20D0~20 mm2=s
(Figure 4B). We assume here that the effects of crowding on

motion are the same for fluorescein molecules and calcium ions

attached to a dye molecules. As expected, crowding leads to a

more localized and persistent calcium transient compared to free

diffusion in an aqueous solution.

We next added two types of imobile buffers, calmodulin (CaM)

and calcineurine (CN), as well as pumps (NCX and PCMA) to the

simulation. The buffer concentration was varied between low

([CaM]0: 10 mM, [CN]0: 5 mM), medium ([CaM]0: 25 mM, [CN]0:

10 mM) and high ([CaM]0: 100 mM, [CN]0: 50 mM) levels.

Figure 4C and D show the effect of fast buffering on calcium

dynamics in aqueous solution and in a crowded dendrite,

respectively, for medium buffer concentration. The differences

are small. The calcium signal in the crowded medium is more

localized in space and slightly longer lasting than in aqueous

solution. From these simulation results, we conclude that the

spatiotemporal extent of the calcium signal is highly restricted by

the stationary buffer activity. These results agree qualitatively with

other uncaging experiments of calcium in glass tubes and dendrites

[47].

Calcium spread following a large range of frequency
stimulation is less than 5 mm around the source

We next analyze calcium spread originating from localized

inputs such as synapses. At dendritic synapses calcium can enter

through NMDA-receptors. To estimate calcium spread as a

function of the synaptic input frequency, we simulated Ca2z-

influx in the middle of a dendritic segment (Figure 4E). Buffers and

pumps were set to their default values (Table 1). We initiated

calcium transients in the crowded model dendrite for different

input frequencies (f ~5,10,20,50,80 Hz). The spatiotemporal

extent of the calcium signal for different input frequencies is given

in the intensity plots Figure 4F. Calcium spread is measured by the

full width at half maximum (FWHM) of the calcium signal.

Interestingly, for input frequencies larger than 20 Hz, the calcium

signal in the dendrite reaches a stationary value. For high input

frequencies (§20 Hz) calcium spread does not exceed 2:5 mm
( = 0.5|FWHM) as measured from the input source. This is in

agreement with the experimental data where calcium spread was

contained within a domain of about 5 mm. We conclude that

buffer and pumps limit calcium spread to few micrometers.

Discussion

Calcium spread in crowded dendrites
We have shown here that dendritic crowding reduces the

diffusion constant of inert Brownian molecules by a factor of 20

when compared to diffusion in an aqueous solution. We have used

this result to estimate calcium spread in dendrites. We found that

in the absence of regenerative mechanisms (VSCC, calcium

stores), the spread of calcium largely depends on the buffer

concentration and moderate molecular crowding does not play a

significant role in shaping calcium dynamics. Thus, crowding has

only a minor effect compared to the cumulative effect of pumps

and buffers. In addition, the presence of a single (passive) spine at

the location of calcium release did not influence calcium diffusion

in the dendrite.

In this study, we have analyzed the effect of molecular crowding

on calcium spread under the presence of stationary buffers.

Assuming that the diffusion constant of calcium and fluorescein

are reduced by the same factor due to the effect of molecular

crowding, our results confirm previous studies that calcium spread

is largely restricted by the effect of stationary buffers [31,48–50].

Our analysis showed only a small effect of molecular crowding

on calcium spread (Figure 4C and 4D): slightly more calcium

molecules were bound to buffers in the crowded condition.

These results are qualitatively consistent with stochastic simu-

lations in a cubic cell model under different crowding and buffer

mobility conditions [19], where it has been shown that molecular

Calcium Diffusion in Dendrites
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crowding affects the calcium signaling system mainly through

crowding-induced binding of calcium to buffer molecules and less

through the direct hindrance of calcium diffusion. This study

showed further that these effects are not additive. Interestingly, the

reduction in diffusion constant due to molecular crowding was

found to be 18% for moderately crowded environments with 30%

excluded volume fraction. In our study, the reduction of the

calcium diffusion constant was extrapolated from fluorescein

uncaging experiments in the dendritic medium, which resulted in

a much higher value. This difference might result from additional

crowding effects such as cavities that were not modelled in the

stochastic simulations.

Figure 4. (A) Calcium diffusion in an aqueous solution contained in a pipette of length L~12 mm. (B) Calcium diffusion in a crowded dendrite with
an effective diffusion constant of Deff ~mD0~20 mm2=s. A calcium transient of 1:0 mM was initiated at x~0 mm. Note that the initial concentration is
equal to about 600 particles per mm3 and evaluates to about 470 particles per micron for a dendrite with diameter d~1 mm. (C) Same settings than in
(A) but with additional buffers (medium buffer concentration) and pumps. (D) Same settings than in (B) but with additional buffers (medium buffer
concentration) and pumps. (E) Ca2z-influx was injected at 20 Hz for 1 s at the location of the NMDAR in the middle of the dendritic segment as
shown in the upper and middle panel. The resulting spatiotemporal Ca2z-profile in the dendrite is shown in the lower panel. (F) Spatiotemporal
profiles of Ca2z in the dendrite for different influx frequencies at the location of the NMDAR. (G) Corresponding calcium spread in the dendrite as
measured by the full width at half maximum (FWHM) of the calcium signal.
doi:10.1371/journal.pcbi.1002182.g004
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Table 1. Model parameters.

Parameter Value Reference

Glass tube geometry

length of glass tube L 36 mm adjusted

glass tube diameter d 2 mm adjusted

Dendrite geometry

length of dendritic segment L 12 mm adjusted

dendrite diameter d 1 mm (Koch, 1999)

dendritic cross section S 0.785 mm2 adjusted

Crowding

compartment length m 0:1982 mm adjusted

opening size a 0:0495 mm adjusted

compartment parameter m 0.05 adjusted

Ca2z-ions

diffusion constant of free Ca2z D0 400 mm2=s (Korkotian et al., 2004)

Ca2z initial concentration for pulse ½Ca2z�0 1:0 mM (Korkotian et al., 2004)

Ca2z-pumps

pump rate for PMCA kp 0.27|10{20 C=s (Erler et al., 2004)

pump density for PMCA rp 9200/mm2 (Erler et al., 2004)

half-saturation constant for PMCA Kp 0:9 mM (Korkotian et al., 2004)

hill coefficient for PMCA hp 1.0 (Stauffer et al., 1995)

pump rate for NCX kx 0.48|10{18 C=s (Erler et al., 2004)

pump density for NCX rn 300/mm2 (Erler et al., 2004)

half-saturation constant for NCX Kx 7:3 mM (Fujioka et al., 2000)

hill coefficient for NCX hx 1.7 (Fujioka et al., 2000)

Calmodulin

total concentration B1,T 10, 25 (default), 100 mM (Volfovsky et al., 1999)

forward binding rate for 1st binding kz
1,1 160 mM{1s{1 (Johnson et al., 1996)

backward binding rate for 1st binding k{
1,1 405 s{1 (Johnson et al., 1996)

forward binding rate for 2st binding kz
1,2 160 mM{1s{1 (Johnson et al., 1996)

backward binding rate for 2st binding k{
1,2 405 s{1 (Johnson et al., 1996)

forward binding rate for 3st binding kz
1,3 2.3 mM{1s{1 (Johnson et al., 1996)

backward binding rate for 3st binding k{
1,3 2.4 s{1 (Johnson et al., 1996)

forward binding rate for 4st binding kz
1,4 2.3 mM{1s{1 (Johnson et al., 1996)

backward binding rate for 4st binding k{
1,4 2.4 s{1 (Johnson et al., 1996)

Calcineurine

total concentration B1,T 5, 10 (default), 25 mM (Volfovsky et al., 1999)

forward binding rate kz
2,1 50 mM{1s{1 (Volfovsky et al., 1999)

backward binding rate k{
2,1 25 s{1 (Volfovsky et al., 1999)

Calcium dye (Fluo-4)

total concentration DT 2 mM (Korkotion et al., 2004)

forward binding rate kz
D 60 mM{1s{1 (Korkotion et al., 2004)

backward binding rate k{
D 170 s{1 (Korkotion et al., 2004)

NMDA-R

current through a single NMDAR I0 9 pA (Pina-Crespo and Gibb, 2002)

fraction of current carried by Ca2z c 11% (Burnashev, 1995)

time constant (decay) t1 80 ms (Zador and Koch, 1994)

time constant (rise) t2 3 ms (Zador and Koch, 1994)
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Calcium is restricted in microdomains near each synaptic
input

Calcium microdomains have been observed during spontaneous

and electrically evoked activation of synapses on dendritic shafts in

aspiny neurons [34]. Compartmentalization into domains of about

1 mm resulted from fast kinetics of calcium permeable AMPA

receptors and fast local extrusion via the Naz=Ca2z exchanger

[34]. In general, as observed in Figure 4, calcium spread is

robustly confined in a domain of less than 2:5 mm from the input

source and this seems to be independent of the synaptic firing

frequency. Thus, calcium dynamics seems to be well regulated by

buffers, stores and extrusion mechanisms.

It is certainly a requirement for dendrites to prevent calcium

spread over large distances because it is not only the primary

messenger in the induction of synaptic plasticity, such as long term

potentiation (LTP) [51], but it is also involved in morphological

changes and in the regulation of receptor trafficking such as AMPA

[52]. While organelle localization might depend on the dendritic

local needs (protein syntheses, energy supply and local calcium

stores), calcium pump densities and calcium buffer concentrations

might be regulated independently to maintain calcium homeostasis.

It remains an unsolved question to determine how pumps and

calcium buffer molecules are regulated along a dendrite.

Molecular trafficking near dendritic spines
Using our previous computations, we found that (passive)

dendritic spines in this mean-field approach do not contribute

much in dendritic calcium regulation (data not shown). In general,

our result suggests that spines should not significantly affect the

movement of diffusing particles along the dendrite. However, in

the case of calcium, we have not taken into account a possible

calcium propagation through the endoplasmic reticulum network,

which may lead to a very different type of propagation.

Dendritic spines can be seen as the ultimate place of

confinement in dendrites: indeed, calcium exchangers located on

the endoplasmic reticulum surface or on the spine neck membrane

can prevent calcium from diffusing into the spine head [53,54]. In

addition, large crowding observed at the spine base due to various

types of organelles such as the endoplasmic reticulum or the spine

apparatus [2,15] can prevent diffusing molecules from entering

the spine neck. However, it is not clear whether mRNA or

transcription factors can enter dendritic spines by passive diffusion

or whether active processes are required.

Materials and Methods

Fluorescein experiments in dendrites
Cultures were prepared as detailed in [47]: we use wistar rat

pups at P1. Hippocampal tissue was mechanically dissociated and

plated on 12 mm glass coverslips at 3–4|105 cells per well in a 24

well plate. Cells were left to grow in the incubator at 370C, 5%

CO2 for 4 days, at which time the medium was changed to 10%

HS in enriched MEM. The medium was changed four days later

to 10% HS in enriched MEM. Cells were transfected at 1 wk in

culture with DsRed plasmid to visualize the dendrites and spines

using a lipofectamine 2000 (Invitrogen) method. On the day of

imaging, the glass was transferred to the recording medium

containing (in mM): NaCl 129, KCl 4, MgCl2 1, CaCl2 2, glucose

10, HEPES 10, and TTX 0:5 mM. pH was adjusted to 7.4 with

NaOH, and osmolarity to 315 mOsm with sucrose. Ten-fourteen

day old cultured cells were patch clamped at the soma and

recorded with a glass pipette containing (in mM): K-gluconate

140, NaCl 2, HEPES 10, EGTA 0.2, Na-GTP 0.3, Mg-ATP 2,

phosphocreatine 10, and 100 mM of caged fluorescein (Molecular

Probes) at pH 7.4 having a resistance of 6–12 MV. Signals were

amplified with Axopatch 200 (Axon Instruments Inc. Foster City,

CA). Cells were imaged with a 636 water immersion objective

(NA = 0.9). UV laser was aimed at a spot of 1 m2 in the center of

the field of view. A line scan mode (0.7 msec/line) was used along

an imaged dendrite to measure fast changes in fluorescence

following flash photolysis of caged fluorescein. In the second stage

of the experiment, the content of patch pipettes, containing caged

fluorescein, was sucked out and introduced into additionally

prepared pipettes with long and sharp tips, having tens of microns

in length and about 1–2 mm in diameter making their geometry

similar to a ‘‘typical’’ dendrite. Same line scan mode was used to

compare changes in fluorescence in a dendrite and in a glass tube,

containing similar concentrations of caged fluorescein. Data were

analyzed using custom made MATLAB-based programs. Steps of

0.6 mm from the center of the uncaging sphere were defined

through the line scans and pixels inside every step were

horizontally averaged. Every line scan trial was repeated 7–14

times. Statistical comparisons were made with t-tests.

Brownian simulations
We implemented the Brownian simulations in MATLAB using

a ray-tracing algorithm. To overcome the huge computational

burden that Brownian simulations in complex domains impose, we

made heavily use of MATLAB’s object-oriented programming

and vectorization features as well as of the external C/C++
interface functions capabilities (MEX-files). We first constructed a

triangular mesh of the simulation domain (e.g., cylinder, cylinder

with spine, see Figures 3 A,B) using a simple mesh generator based

on distance function (DistMesh package, [55]). The (meshed)

simulation domain was then equipped with user-defined sampling

boxes, an initial distribution of particles and diffusion barriers (e.g.,

disks with small holes, see Figures 3 B,C). We predefined a

sampling interval (ts~0:7 ms) at which the particle concentrations

in the sampling boxes were measured.

Surface mesh elements were defined to be either reflective or

absorbing. The top and the bottom of the cylindrical domain was

set to be absorbing while all other surface elements were defined to

be reflective. Particle rays crossing reflecting boundaries or

obstacles were reflected according to the law of light reflection.

Parameter Value Reference

radius of receptor w 0.025 mm adjusted

Spines

spine radius as 0.05–0.16 mm (Koch, 1999)

Parameters used in the stochastic simulation experiments and mean-field calcium dynamics simulations.
doi:10.1371/journal.pcbi.1002182.t001

Table 1. Cont.
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To speed up the code we divided the simulation domain into

partition voxels. For each partition voxel a list of contained objects

(mesh elements, obstacles) was pre-computed and provided to the

algorithm during execution.

The Brownian simulation was implemented using an Euler-

scheme with adaptive-step size. Steps were defined by the

distance to mesh elements and obstacles. The closer the particles

were to objects the smaller the step size was chosen. As a rule of

thumb, the minimal step size was determined by 0.3–0.5 of the

smallest length scale that had to be resolved (e.g., the radius of the

hole of the disks, see Figure 3 B). The (vectorized) particle rays

were traced in the voxels and tested for intersections with mesh

elements or objects. If intersections occurred the particles were

either reflected or absorbed. It is important to note that an

adaptive-step size algorithm leads for each particle to a different

progress in physical time. Hence, the measurement of particle

concentrations at fixed sampling times, required the implemen-

tation of a scheduler that removed particles temporarily from the

simulation and stored their positions. Our simulations lasted

between several hours to several days on a cluster depending on

the number of particles, number of objects and the minimal step

size. We have made extensive use of MATLAB’s visualization

tools to monitor the simulations and to generate visual outputs of

the simulation results (see snapshots in Figures 3 A–C and a

movie (Video S1) in the Text S1). We have included in the Text

S1 a validation study of diffusion in a cylindrical domain with

absorbing boundaries at the top and bottom. Different measures

such as global and local particle concentrations as well as the

mean first passage time to the absorbing boundaries are extracted

from the simulations and compared with existing analytical

results. The test-simulation is shown in Video S2. A good

agreement between these results was obtained, and thus, evidence

for the correctness of the implemented algorithm in the Monte-

Carlo simulation tool is provided.

Calcium dynamics
The spatiotemporal calcium signal in the dendrite is regulated

by several active and passive components that are described next.

Calcium buffers. Dendrites contain a large number of

different buffers. The reactions of a buffer B that can bind n

calcium ions is modeled by the series of chemical reactions

BCam{1zCa2z'
kz

m
k{

m
BCam, m~1, . . . ,n,ð24Þ

where kz
m and k{

m are the forward and backward rates for

m~1, . . . ,n, respectively. We choose two representative members

of the buffer molecules: calcineurin (CN) with one calcium binding

site (n~1) and calmodulin (CaM) with four binding sites (n~4).

The kinetic equations are derived from the standard theory of

chemical reactions, leading to a coupled set of odes for the

unknown calcium concentrations, [Ca2z] and buffer concen-

trations, [BCam], with m, (m~1, . . . ,n), calcium bonds:

d Ca2z
� �

dt
~
Xn

m~1

{kz
m BCam{1½ � Ca2z

� �
zk{

m BCam�½ Þ,ð25Þ
	

d BCam½ �
dt

~{kz
mz1 BCam½ � Ca2z

� �
zk{

mz1 BCamz1½ �

zkz
m BCam{1½ � Ca2z

� �
{k{

m BCam½ �, m~1, . . . ,n,

ð26Þ

BT~ B½ �z
Xn

m~1

BCam�,ð27Þ½

In the following we will not use concentrations as the dynamic

variables, but the number of particles (in mmol) per unit length,

N(x,t). The conversion from calcium concentration to particles

per unit length is

Ca2z
� �

(x,t)~NCa(x,t)=S, ð28Þ

where S is the cross section of the dendrite.

Calcium pumps. Two basic mechanisms are responsible for

the removal of calcium ions across the neuron membrane: the

ATP-driven plasma membrane Ca2z pumps (PMCA) and the

Naz=Ca2z exchanger (NCX). The PMCA pumps extrude Ca2z

ions against the concentration gradient using the energy provided

by the ATP molecules. The sodium-calcium exchanger can move

one calcium ion inwards for moving three sodium ions outward.

Both extrusion mechanisms are described by similar equation: the

loss of calcium ions through the PMCA pumps (p) and NCX (n) is

modeled according to

Jp=n(x,t)~{lp=nkp=ngp=n(NCa(x,t)), ð29Þ

with an activation characteristics

gp=n(NCa(x,t))~
NCa(x,t)

hp=n

(KpS)
hp=nzN

hp=n
Ca (x,t)

, ð30Þ

where the half-saturation concentration is Kp=n, the extrusion rate

per pump (number of ions per unit time) is given by kp=n, the

density of pumps per unit length is denoted by lp=n and hp=n is the

hill coefficient.

Passive effect of dendritic spines. Dendritic spines are

modeled as passive calcium absorbers. In our model, calcium ions

entering a dendritic spine are totally absorbed. The flux of calcium

ions into the dendritic spine depends on the spine neck radius. It

can be computed in the configuration where the dendrite is

compartmentalized and the compartments are connected through

small openings (Figure 1A). In that case, the openings between

compartment and the spine entrance are well separated, and thus

the flux of calcium ions into a dendritic spine with spine neck

radius as located at a longitudinal position xk is

Jsp(x,t)~{2asksy(x{xk,as)NCa(x,t), ð31Þ

where y(x; w) is a rectangle function of width 2w:

y(x,w)~
1

2w
H(x{w){H(xzw)½ � ð32Þ

and H(x) is the Heaviside step-function (H(x)~1 for xw0 and

zero otherwise). The rate, ks, is given by the inverse of the mean

first passage to reach a small opening of radius as. Thus

ks~
1

t
~

4Deff as

V
, ð33Þ

where V is the compartment volume. The total flux of calcium

ions into the neck of Ns spines with a neck radius as distributed at

ð24Þ

ð25Þ

ð27Þ
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positions xk,k~1, . . . ,Ns, is given by

Jsp(x,t)~{
XNs

k~1

2asksy(x{xk,as)NCa(x,t) ð34Þ

and

Jsp(x,t)~{2asnsksNCa(x,t), ð35Þ

where ns is the spine density per unit length.

Calcium dye. The effect of the calcium dye is modeled as

buffer by the reaction

CazDye'
kz

D
k{

D
Ca:Dye, ð36Þ

where Ca:Dye denotes the calcium-dye complex. The kinetic

equations are given by

d Ca2z
� �

dt
~~{kz

D Ca2z
� �

DT{ Ca:Dye½ �ð Þzk{
D Ca:Dye½ �, ð37Þ

d Ca:Dye½ �
dt

~{k{
D Ca:Dye½ �zkz

D DT{ Ca:Dye½ �ð Þ Ca2z
� �

, ð38Þ

where DT is the total dye concentration, i.e., DT~ Dye½ �z
Ca:Dye½ �.

Synaptic input. Calcium influx on dendritic spines is mediated

primarily by slow NMDA currents [56]. The voltage dependent

NMDA channel is at resting potential mostly block by the Mg2z

ions. As [57], we ignore the details of the voltage dependence of the

NMDA receptor channel and consider a simplified model

corresponding to presynaptic stimulation in conjunction with

postsynaptic voltage clamp. The time course of the NMDA

mediated synaptic current is modeled as the difference of two

exponentials

I(t)~
XN

i~1

I0e{(t{ti )=t1{e{(t{ti )=t27 t{tið Þ ð39Þ

where H(t) denotes the step-function, ti is the time of stimulus

initiation and N the number of pulses. The electrical currents are

transformed into a particle current per unit length according to

Jsyn(x,t)~
cI(t)

2wFz
y(x{xk; w), ð40Þ

where xk is the location of the receptor, w is the radius of the

channel opening, c the fraction of current carried by calcium

through the receptor, F the Faraday constant, z~2 the valence of

calcium and y(x,w) is a rectangular function with center at 0 and

half-width w.

Reaction-diffusion equations. The total effect of buffers,

pumps and spines on the cytosolic calcium concentration can be

summarized in form of a reaction-diffusion equation:

LNCa(x,t)

Lt
~Deff

L2NCa(x,t)

Lx2
zJb(x,t)zJpu(x,t)zJsp(x,t)zJsyn(x,t): ð41Þ

where Jb,Jpu,Jsp,Jsyn describes the calcium fluxes due to the

buffers, pumps, spines and synaptic input. Equation (41) is

coupled to the dynamic equations for the particle density of K
buffer molecules NBiCam (x,t):Ni,m(x,t),i~1, . . . ,K with maxi-

mally ni calcium binding sites and to the equation describing the

calcium-dye particle density, NCaDye(x,t). We finally obtain the

set of equations that describe the calcium dynamics in the

dendrite:

LNCa(x,t)

Lt
~Deff

L2NCa(x,t)

Lx2
ð42Þ

z
XK

i~1

Xni

m~1

{kz
i,m=S


 �
Ni,m{1 x,tð ÞNCa x,tð Þzk{

i,mNi,m x,tð Þ

 �

{(kz
D =S) DT{NCaDye(x,t)

	 �
NCa(x,t)zk{

D NCaDye(x,t)

{
X
n,p

likigi(NCa(x,t)){
XNs

k~1

2asksy(x; xk)NCa(x,t)zJsyn(x,t),

LNi,m(x,t)

Lt
~DBi

L2Ni,m(x,t)

Lx2
{(kz

i,mz1=S)Ni,m(x,t)NCa(x,t)

zk{
i,mz1Ni,mz1(x,t)z(kz

i,m=S)Ni,m{1(x,t)NCa(x,t)

{k{
i,mNi,m(x,t), m~1, . . . ,ni; i~1, . . . ,K

ð43Þ

Bi,T~Ni,0(x,t)z
Xni

m~1

Ni,m(x,t), i~1, . . . ,K, ð44Þ

LNCaDye(x,t)

Lt
~{k{

D NCaDye(x,t)z(kz
D=S) DT{NCaDye(x,t)

	 �
NCa(x,t):ð45Þ

We included in the above equations the effect of mobile buffers.

However, in the following, we assume that the buffers are fixed

and set the buffer diffusion constants, DBi
,i~1, . . . ,K , to zero.

Numerical simulations. The reaction-diffusion equations

(42)–(45) were solved numerically using MATLAB. The partial

differential equations were solved using the numerical method of

lines which is implemented in the MATLAB solver. Space

and time discretizations were set to Dx~0:025 mm and Dt~
0:01 ms{1 ms, respectively, depending on the total simulation

time which varied between T~10 ms and T~1 s. The total

simulation time was determined by the biological components

included in the simulation protocols. For example, for a simulation

of calcium diffusion with activated pumps and buffers, a simulation

time of 10 ms was sufficient due to the fast uptake of calcium by

the buffers. Simulation protocols that included synaptic input

required a much larger simulation time of about 1 s (Figure 4).

Supporting Information

Video S1 Movie of a stochastic simulation of N~104 particles in

a model dendrite with an attached spine. The geometric

measurements for the dendritic segment and the dendritic spine

were extracted from Figure 2A. The top and the bottom of the

dendritic cylinder are absorbing surfaces.

(AVI)

Video S2 Movie of a diffusion experiment of N~104 particles in

a cylindrical domain (radius R~1 mm, length L~3 mm) with

ð42Þ

ð43Þ
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absorbing boundary conditions at the top and bottom of the

cylinder. Diffusion constant: D~1 mm2=s.

(AVI)

Text S1 Validation study for testing the algorithm implemented

in the stochastic simulation tool.

(PDF)

Figure S1 (A) Global particle concentration U(t) in a cylindrical

domain (radius R~1 mm, length L~3 mm) with absorbing top and

bottom and normalized local particle concentration u(t)=u(0)
in a small sampling volume with center at z~L=2 and height

h~0:25 mm. Comparison of the exact global and local particle

concentrations (7) and (8), respectively, to the Brownian simulation

results using N~104 particles. (B) Comparison of the averaged

mean first passage time as a function of cylinder length L.

Diffusion constant: D~1 mm2=s.

(EPS)
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