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Abstract

Genome-scale metabolic networks are highly robust to the elimination of enzyme-coding genes. Their structure can evolve
rapidly through mutations that eliminate such genes and through horizontal gene transfer that adds new enzyme-coding
genes. Using flux balance analysis we study a vast space of metabolic network genotypes and their relationship to
metabolic phenotypes, the ability to sustain life in an environment defined by an available spectrum of carbon sources. Two
such networks typically differ in most of their reactions and have few essential reactions in common. Our observations
suggest that the robustness of the Escherichia coli metabolic network to mutations is typical of networks with the same
phenotype. We also demonstrate that networks with the same phenotype form large sets that can be traversed through
single mutations, and that single mutations of different genotypes with the same phenotype can yield very different novel
phenotypes. This means that the evolutionary plasticity and robustness of metabolic networks facilitates the evolution of
new metabolic abilities. Our approach has broad implications for the evolution of metabolic networks, for our
understanding of mutational robustness, for the design of antimetabolic drugs, and for metabolic engineering.

Citation: Matias Rodrigues JF, Wagner A (2009) Evolutionary Plasticity and Innovations in Complex Metabolic Reaction Networks. PLoS Comput Biol 5(12):
e1000613. doi:10.1371/journal.pcbi.1000613

Editor: Nathan D. Price, University of Illinois at Urbana-Champaign, United States of America

Received June 29, 2009; Accepted November 16, 2009; Published December 18, 2009

Copyright: � 2009 Matias Rodrigues, Wagner. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: AW acknowledges support through grant 315200–116814 from the Swiss National Foundation, as well as support from SystemsX.ch and the Santa Fe
Institute. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: j.rodrigues@bioc.uzh.ch

Introduction

Organisms, especially microbes, thrive on organic nutrients with

bewildering diversity: the vast majority of organic molecule can

mean ‘‘food’’ for some species. From a microbe’s perspective,

acquiring the ability to survive on a new carbon source can make

the difference between life and death; such an acquisition can thus

be an important evolutionary innovation. We here study the

properties of metabolic systems that facilitate such innovations.

The evolution of biological macromolecules has received serious

attention for decades [1]. The same is not true for biological

systems on higher levels of organization, such as regulatory and

large complex metabolic networks. One reason is a comparative

paucity of data for such networks. Another reason is the inherent

difficulty in characterizing both network genotypes and network

phenotypes. Recent work on genome-scale metabolic networks

reduces these limitations. First, metabolic genotypes have recently

been characterized for several model organisms [2–4]. Second,

databases of metabolic reactions inform us about a broad

spectrum of chemical reactions catalyzed by enzymes in living

things. Third, flux balance analysis [5] allows us to compute

metabolic phenotypes from metabolic genotypes (Figure 1). Taken

together, these developments allow us to study the evolution of

metabolic networks in greater depth.

The functions and phenotypes of biological macromolecules are

robust to genetic change. Such robustness has important

implications for the evolutionary plasticity of molecules, the ability

of molecules to evolve new properties. Through mutations that do

not affect a molecule’s function, vast regions of phenotype space

can be explored, regions in which molecules with novel

phenotypes can lie [1,6]. Does the same hold for genome-scale

biological networks? Can biological networks with similar

phenotypes have a vast number of interconnected and different

genotypes, thus being both highly robust and having large

evolutionary plasticity? These questions currently have few

answers. We study the evolution of genome-scale metabolic

networks to provide such answers.

For our purpose, a metabolic genotype is a set of chemical

reactions – catalyzed by gene-encoded enzymes – that take place

in an organism. Any one organism’s metabolic network exists in a

much larger space of metabolic genotypes. This space is defined by

the biochemical reactions known to be realized in living cells. Any

one organism’s genotype can be thought of as a point in this space,

where some biochemical reactions occur and others are absent.

Genotypes can thus be represented as binary strings whose entries

indicate presence (‘1’) or absence (‘0’) of reactions (Figure 1) in an

organism. We define the phenotype of such a network as its ability to

sustain life in a given environment or set of environments. This

means that the network must be able to produce all biochemical

precursors (amino acids, nucleotides etc.) that are necessary to

allow a free-living heterotrophic organism such as Escherichia coli to

grow from environmental resources. We here consider 101

minimal environments that only differ in their carbon source.

Specifically, these environments provide only a terminal electron

acceptor (O2), a source of nitrogen (NH3), sulfate (SO4), phosphate

(PO4), and one out of 101 sources C of carbon (see Text S1 for a

complete list of all carbon sources used). We can represent a

metabolic phenotype as a binary string, whose i-th entry is equal to
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one (Figure 1), if a network is able to sustain life when Ci is the only

available carbon source. A network able to sustain life in complex

environments with multiple carbon sources has phenotypes in

which many of these entries are equal to one.

Metabolic phenotypes, as defined here, can be computed from

metabolic genotypes using flux balance analysis. Flux balance

analysis is a computational tool that relies both on stoichiometric

information about chemical reactions occurring in a cell, as well as

on an objective function such as the production of biomass

precursors. For a given nutritional environment, it computes

allowable rates at which individual reactions proceed in a

metabolic steady state, and these rates in turn determine whether

all necessary biochemical precursors can be produced. Its

qualitative predictions – growth or no growth – are in good

agreement with experimental data for well-studied model systems

[7,8].

We here study the evolution of metabolic networks in the space

of the genotypes just defined. Genotypes can change through the

elimination of chemical reactions caused by loss of function

mutations in enzyme-coding genes. Many such mutations do not

abolish a network’s ability to sustain life [4,7–17]. Genotypes can

also change through addition of chemical reactions, which occurs

at appreciable rates in prokaryotes through horizontal gene

Figure 1. Exploration of a vast genotype space of metabolic networks. A genotype can be represented in different ways: (A) as a metabolic
network, (B) as a node in a genotype network, or (C) as a binary vector listing the reactions catalyzed. Genotypes on the genotype network (B) that
are connected differ by only one mutation. The color of the genotype circles indicates their metabolic phenotype. Metabolic phenotypes are
computed using FBA applied to 101 environments with different carbon sources. They can be represented as a binary vector listing the environments
a genotype is viable in (D). Random evolutionary walks can be seen as paths on a genotype network. Two independent random walks are shown with
the same starting genotype (G1) and two final genotypes (GF and GF’), passing through intermediate genotypes (i.e.: G2) that differ by one mutation.
Mutations are chosen at random. They can be additions or deletions of individual reactions from the corresponding metabolic network but they must
not change the phenotype. The neighborhood of each genotype can be analyzed by characterizing the phenotype of the one mutant neighbor
genotypes (approximately 5’800 neighbors per genotype). The number of genotypes in the genotype space is 25800. Each genotype is able to catalyze
approximately 1000 out of 5800 possible reactions.
doi:10.1371/journal.pcbi.1000613.g001

Author Summary

Understanding the fundamental processes that shape the
evolution of bacterial organisms is of general interest to
biology and may have important applications in medicine.
We address the questions of how bacterial organisms
acquire innovations, including drug resistance, allowing
them to survive in new environments. We simulate the
evolution of the metabolic network, the network of reactions
that can occur inside a living organism. The metabolic
network of an organism depends on the genes contained in
its genome and can change by gaining genes from other
organisms through horizontal gene transfer or loss of gene
activity through mutations. Our observations suggest that
the robustness to gene loss in Escherichia coli is typical of
random viable metabolic networks of the same size. We also
find that metabolic networks can change significantly
without causing the loss of an organism’s ability to survive
in a given environment. This property allows organisms to
explore a wide range of novel metabolic abilities and is the
source of their ability to innovate. Finally we present a
method to find reactions that are essential across all
organisms. Drugs targeting such a reaction may avoid drug
resistance mutations that bypass the reaction.

Plasticity and Innovations in Metabolic Networks
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transfer [9,18]. This motivates our choice of a prokaryotic network

– that of E. coli – as the departure point of our work [19]. Two

further reasons compelled us to choose specifically the E. coli

network. First, it is perhaps the most prominent and well-studied

example of a metabolic network in a free-living organism. Second,

more effort has been devoted to studying its robustness than for

other networks [7,8,14,16,20–25]. For these reasons we also

wanted to compare properties of the E. coli metabolic network with

those of the sampled networks that our approach generates.

Mutations and horizontal transfer can sometimes affect more

than one enzyme-coding gene (reaction), but we focus here on the

individual reaction as the elementary unit of change. Each such

change transforms a network into one of its immediate neighbors

differing from it by one reaction. We refer to all of a network’s

neighbors as a network’s neighborhood. Methodologically, our

approach bears resemblance to that of an earlier study [16] which

asked how minimal genomes evolve from the E. coli genome

through metabolic gene loss. However our method is new in that

we do not limit ourselves only to the elimination of chemical

reactions but 1) we allow for the addition of metabolic reactions,

which allows us to explore a vast genotype space, 2) our analysis is

not limited to E. coli, and 3) we also explore a very large number of

different environments.

In this context, we ask several fundamental questions about the

organization of genotype space, and about the ability of metabolic

networks to find evolutionary innovations in this genotype space.

How different can the organization of two metabolic networks be

while still preserving similar phenotypes? How many mutational

steps are needed to get from a network with a given phenotype to

one with a very different phenotype? How different are the new

phenotypes that a network encounters in its immediate neighbor-

hood during evolution? The answers to these questions can not

only elucidate why metabolic networks are robust to mutations

[4,7,8,12,26–30]. Even more importantly, they also tell us how

metabolic innovations can arise through a metabolic network’s

exploration of a vast space of possible genotypes.

Results

Networks supporting life in one environment can have
very different essential reactions

We begin our analysis with a simple phenotype, a metabolic

network’s ability to produce all biochemical precursors from a

single carbon source, glucose, in an aerobic minimal medium (see

Text S1 for a list of all environmental metabolites). The E. coli

metabolic network [19], excluding 205 transport reactions,

catalyzes 726 out of the ‘‘universe’’ of 5870 reactions we consider

(see Text S1 for details on reaction compilations). Its immediate

neighborhood in genotype space consists of the 5870 networks that

differ from the E. coli network by one (added or eliminated)

reaction. Addition of a reaction to a network would not impair its

ability to grow on glucose, but elimination of a reaction might.

Out of the 726 E. coli reactions, 210 reactions are essential and

cannot be removed without abolishing growth on glucose minimal

medium. Thus, only 3.6% (210/5870) of the entire neighborhood,

and only 29% (210/726) of those neighbors with one deleted

reaction, are not able to sustain life on glucose minimal medium.

Are metabolic networks that are very different from the E. coli

network, but that can also sustain life on glucose similarly robust?

To address this question, we analyzed 1000 such networks (Figure 1).

These networks were the end points of 1000 long random walks of

104 mutational steps each through genotype space that started from

the E.coli network. Figure S1 shows the evolution of genotype

distance and network size in one such random walk. Each step

consisted of the random addition or deletion of one chemical

reaction and was required to preserve the ability to sustain life on

glucose minimal medium. For brevity, we will call the end-point of

such a random walk a random viable metabolic network with a given

phenotype. We emphasize that the number of reactions in the

random viable metabolic networks is similar to that of the E. coli

metabolic network (see Text S1 for algorithmic details). We

examined the neighborhood of each of these 1000 random viable

networks to identify essential reactions in them. Figure 2a shows the

distribution of the number of essential reactions. It varies across a

narrow range between a minimum of 213 (26.4%) and a maximum

of 257 (32.4%) reactions. The robustness of the E. coli network lies in

the bulk of this distribution, and is thus not atypical. This suggests

that for a typical metabolic network with a given phenotype, many

different mutational changes leave the network’s ability to sustain

life in a given environment unchanged.

How different are the networks that can sustain life in this

simple environment? We addressed this question in two comple-

mentary ways. First, we asked how many essential reactions differ

between each network pair drawn from the 1000 random viable

networks we had generated previously. Specifically, we represent-

ed the set of all essential reactions by a binary vector. For each of

the 1000 random viable networks, this vector contained a ‘1’ for a

reaction that was essential in the respective network, and a ‘0’ for a

reaction that was nonessential. We calculated the normalized

Hamming distance between these vectors for each pair, which is

the fraction of entries at which these vectors have different values.

This distance ranges from zero if a network pair has completely

identical essential reactions to one if a network pair has no

essential reactions in common. Figure 2b shows the distribution of

the fraction of essential reaction that two networks have in

common. On average, 32.9% of essential reactions are different in

two random viable networks with the same phenotype. If we

exclude reactions from this analysis that are essential in all 1000

networks, then 74% of essential reactions differ among networks.

We next ranked all reactions according to the number of

networks (among 1000) in which they were essential. Reactions

essential in all 1000 networks received the lowest rank, and reactions

that were essential in successively fewer networks received

increasingly larger ranks. This ranking indirectly estimates the

abundance of alternative pathways around any given reaction in a

random viable metabolic network. If there are many alternative

pathways, then the reaction will rarely appear as essential; if there

are no alternate pathways, the reaction will appear as essential in all

metabolic networks. The majority (4550) of reactions were never

essential. Among the 1420 reactions that were essential in at least

one network, only a small minority of 7.3% (103) reactions were

essential in all networks. As an example, Figure 3 shows a measure

of the reaction rank for a small subset of reactions, the key reactions

in central energy metabolism (glycolysis, pentose phosphate shunt,

citric acid cycle) color-coded according to whether they are rarely

(blue) or frequently (red) essential. All of the 26 reactions were

essential in more than one percent of the 1000 random viable

networks. Around 46 percent of the reactions (12/26) were essential

in more than 10 percent of the networks. Merely three reactions

were essential in almost all of the networks. They come from

glycolysis (glucose 6-phosphate isomerase), the citric acid cycle

(aconitase), and from the pentose phosphate pathway (ribulose 5-

phosphate 3-epimerase,). Note that two reactions that belong to the

same (apparently unbranched) pathway of Figure 3 may show

different essentiality. This can be understood by considering that for

each reaction there may be a different number of alternative

pathways (whose reactions are not shown in the figure) but that can

compensate for the loss of the reaction.

Plasticity and Innovations in Metabolic Networks
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To validate our analysis of reaction essentiality with empirical

data, we tested the following prediction: If a reaction is frequently

essential in our random viable metabolic networks, then its

enzyme-coding genes should also occur in a large number of

different genomes. This is indeed the case, as we show in Figure

S4. The figure demonstrates that the frequency of a reaction as

essential and the number of prokaryotic genomes carrying an

enzyme-coding gene that catalyzes this reaction are positively

correlated (Pearson’s r = 0.45 and p = 2.2610216). For this analysis

we used the information available in the KEGG database [31,32].

Taken together, these observations show that networks with the

same phenotype are highly plastic in their organization. Many

essential reactions typically differ between pairs of such networks.

This holds even for reactions in the most central parts of

metabolism.

Networks supporting life in one environment can have
very different genotypes

In a second effort to characterize the plasticity of network

organization, we asked how distant from the E. coli network a

network can maximally be and still preserve the ability to sustain

life on a glucose-minimal medium. To do so, we generated 1000

networks from the E.coli network through a random walk similar to

that described above, but where we forced each step of the

random walk to increase the distance to the E.coli network.

Figure 4a shows that more than three quarters of genotype space

can be traversed without destroying the metabolic phenotype.

An environment in which metabolic networks have to synthesize

every single biochemical precursor is demanding. Thus, our

observations might depend strongly on the nature of this

environment. However, this is not the case. We also examined a

rich medium in which 36 biochemical precursors are provided for

the cell (see Text S1 for details). In such a medium, 15.9% of

reactions are essential on average (13.5% fewer than in minimal

medium) (Figure 2a); the percentage of essential reactions that differ

among two networks is very similar (33.8%; Figure 2b); the number

of reactions that are essential in at least one environment is smaller

(1304 vs. 1420); a smaller percentage (5.1%; 67 of 1304) of reactions

are essential in all networks (Figure 2c; Table S1); and the maximal

distance of networks to the E. coli network is on average 83.9%, even

larger than in minimal medium (Figure 4a). Thus, evolution in a

rich versus a minimal environments does not change our results

dramatically. It is instructive to examine the reactions essential in all

networks more closely. They are significantly enriched in reactions

involved in tyrosine biosynthesis (P = 0.01), cell wall biosynthesis

(P = 1.0610210), and membrane biogenesis (P = 2.861026).

Taken together, the following picture emerges from these

observations. Networks that have the ability to sustain life on a

particular carbon source have many neighbors in genotype space

with the same ability. By mutationally stepping from neighbor to

neighbor (through addition and deletion of chemical reactions)

network organization can change fundamentally without losing this

ability. Two networks with this ability can contain very different sets

of reactions, and very different essential reactions. Because networks

with the ability to sustain life in a given environment are connected

Figure 2. Essential reactions differ dramatically between metabolic networks with the same metabolic abilities. (A) Distribution of the
fraction of essential reactions in 1000 random networks viable in minimal or rich glucose containing medium. (B) Distribution of the fraction of
essential reactions shared among pairs of these 1000 random networks. (C) Rank plot of reaction essentiality. Reactions essential in all of the 1000
random viable networks are given the lowest rank of one. (D) The average fraction of essential reactions (vertical axis) as a function of the number of
carbon sources a network can sustain life in (horizontal axis). Each point is an average of 100 networks (whiskers: 95% confidence interval).
doi:10.1371/journal.pcbi.1000613.g002

Plasticity and Innovations in Metabolic Networks
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through their neighbors in genotype space (see Text S1 for details)

this means that large fractions of genotype space can be traversed on

evolutionary time scales without affecting any one metabolic ability.

Metabolic networks with complex carbon phenotypes
can also have very different organizations

We next turn to more complex phenotypes, namely the ability

for a network to sustain life if any one of multiple carbon sources is

provided in an otherwise minimal environment. We here focus on

the 101 potential carbon sources annotated to have associated

transport reactions in E. coli. Because the requirement to sustain

life on an increasing number of carbon sources may increasingly

constrain network architecture, our observations from above may

not hold for such complex phenotypes. Figure 4b, however, shows

that this is not the case. The figure examines the maximal

genotype distance from the E. coli network achievable for networks

with the same phenotype, as a function of the phenotype’s

complexity, that is, the number of carbon sources a network can

sustain life on. This maximal distance declines by less than 10%

for networks that can sustain life on 60 carbon sources. Thus, even

if a network can sustain life in many different carbon-containing

environments, its architecture is not highly constrained. The

fraction of reactions that are essential does not change dramat-

ically either (Figure 2d). Specifically, it increases modestly from a

mean of 0.3 (Figure 2b) to 0.4 (Figure 2d) for networks that can

sustain life on 5 and 60 different carbon sources, respectively. In

this analysis, we used a very conservative definition of essentiality.

For example, for networks able to sustain life on 60 different

carbon sources, we call a reaction essential if it is required in at

least one of the 60 minimal environments distinguished by these

carbon sources. If we define reaction essentiality less conserva-

tively, then the fraction of essential reactions actually decreases

with an increasing number of carbon sources (Figure S2).

Networks with different phenotypes can be found close
together in genotype space

We next studied several properties of metabolic networks that

relate to their ability to evolve new phenotypes. The first such

property regards the minimum genotype distance of two metabolic

networks with arbitrary, different phenotypes. If this distance is

typically large, then it would be very difficult to reach any one

phenotype from a network with a different phenotype through a

modest number of genetic changes. To determine this distance, we

first created a pair (G1, G2) of metabolic network genotypes with

randomly chosen different phenotypes, as described in the Text

S1. We then carried out a random walk that started from G1 and

that approached G2 in genotype space, while leaving G1’s

phenotype unchanged. When this random walk had reached a

point where the genotype distance to G2 could no longer be

reduced, we stopped and recorded the minimal distance thus

obtained. We repeated this procedure for 1,000 metabolic network

pairs with different phenotypes. Figure 4c shows a histogram of

Figure 3. Reaction essentiality in central metabolism. Color-coded map of reactions in central energy metabolism that appear rarely (blue) or
frequently (red) as essential in 1000 random viable metabolic networks. The color is in logarithmic scale indicating that most reactions even in this
most central part of metabolism are essential only in a small fraction of networks with a given metabolic phenotype.
doi:10.1371/journal.pcbi.1000613.g003

Plasticity and Innovations in Metabolic Networks
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this minimal distance for networks that are required to sustain life

on at least one carbon source. It is evident from the Figure that this

distance is small relative to the distance between random viable

metabolic networks with the same phenotype. It spans of the order

of 10% of metabolic network size (circa 100 reactions). We note

that this distance is an average over many and sometimes very

different phenotypes, and also that it is merely an upper bound to

the minimal distance between metabolic networks with different

phenotypes. The reason is that we only minimized the distance

between G1 and G2 by changing G1. Had we changed G2 as well

we would have found even smaller minimal distances. Figure 4d

shows how this distance depends on the number of different

carbon sources a network can sustain life on. The figure shows, for

phenotypes that can sustain life on increasing numbers of carbon

sources (horizontal axis), the mean and standard error of the

minimum distance between networks with different phenotypes.

While the minimal distance increases with increasing numbers of

carbon sources, this increase is small, of the order of 2% of the

total genotype distance. Thus, complex constraints on metabolism

do not dramatically increase the difficulty networks would

encounter in evolving towards specific, novel phenotypes.

Evolving networks encounter ever-new phenotypes in
their immediate neighborhood

Does the genotypic plasticity of metabolic networks facilitate the

discovery of novel metabolic abilities? To address this question, we

examined the novel metabolic phenotypes accessible to networks

that are subject to phenotype-preserving evolutionary change. By

phenotypes ‘‘accessible’’ to a network, we here mean all the

phenotypes that can be found in the neighborhood of this network.

These are novel phenotypes that can be easily reached through a

single, small genetic change. Specifically, we first carried out a

random walk starting from a network with a specific metabolic

phenotype, and counted the cumulative unique number of

phenotypes that occurred in the neighborhood of this random

walker. That is, if a phenotype occurred twice, either in the

neighborhood of the same network, or in the neighborhood of a

network encountered previously during the random walk, we

counted it only once. Figure 5a shows the cumulative number of

new phenotypes that such an evolving network encounters. This

number does not saturate and continues to increase even though

the random walk shown here comprises many thousand mutations.

Second, we compared the phenotypes in the neighborhood of (i)

an evolving network Gt with unchanging phenotype, and (ii) its

ancestor G0 as a function of the number of mutations t between the

two networks. Specifically, we asked for the fraction of phenotypes

that differ between the one-neighborhoods of the two neighbor-

hoods. If this fraction were close to one for large t, then even two

dissimilar networks might only have access to very similar metabolic

phenotypes. Figure 5b shows, as a function of t, the fraction of

different phenotypes in the neighborhood of G0 and Gt. It is evident

that this fraction approaches a large value very quickly, that is, even

similar genotypes have access to a diverse spectrum of phenotypes.

Figure 4. Metabolic networks with the same phenotype can have vastly different genotypes. (A) Distribution of maximum genotype
distance between 1000 networks that are the end-points of random walks leading away from the initial (E. coli) network while preserving the metabolic
phenotype. (B) Maximum genotype distances (vertical axis) between initial metabolic networks able to sustain life on a given number of carbon sources
(horizontal axis) and 1000 final random viable metabolic networks. For each number of carbon sources 100 random walks of 104 mutations were carried
out starting from 10 different initial networks (whiskers: 95% confidence interval). (C) The distribution of minimal genotype distance between pairs of
networks with different metabolic phenotypes required to sustain life on at least one carbon source. (D) Average minimal genotype distance (the mean
of the distribution in (C) as a function of the number of carbon sources. The error bars are too short to be visible in this plot.
doi:10.1371/journal.pcbi.1000613.g004

Plasticity and Innovations in Metabolic Networks
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Third, we examined the neighborhoods of multiple end points

(orange circle in Figure 1) of long phenotype-preserving random

walks starting from the same network. Doing so tells us how

different the phenotypes accessible from very different (essentially

random) metabolic networks with the same phenotype are.

Figure 5c shows the distribution of this fraction of accessible but

different phenotypes for 4950 network pairs. Importantly, the vast

majority of phenotypes differ among these pairs. That is,

phenotypes found near one network are usually different from

phenotypes near another network with the same phenotype. In

sum, three independent lines of evidence show that the metabolic

phenotypes accessible to networks with the same phenotype differ

dramatically even for moderately different networks.

Finally, we also examined how the accessibility of novel

phenotypes depends on the phenotypic complexity of the evolving

networks themselves, that is, on the number of carbon sources that

they can support life on. In principle, all 2101 phenotypes are

accessible from any metabolic genotype through a single mutation,

regardless of the number of carbon sources the genotype is viable

in (see Text S1 for a detailed explanation). However, Figure 5a

and Figure S3 show that networks able to sustain life on more

carbon sources encounter more novel phenotypes along their

evolutionary trajectory. In addition, Figure 5d shows that the

fraction of metabolic phenotypes that differ between the

neighborhoods of random viable network pairs with the same

phenotype is consistently large and shows no simple dependency

on the number of carbon sources.

Discussion

Metabolic networks can evolve through the elimination of

individual reactions by mutation, and through the addition of new

reactions by horizontal gene transfer. We here explored a vast

space of metabolic network genotypes through random changes of

individual reactions that preserve a network’s metabolic abilities.

The ability of flux balance analysis to determine metabolic

phenotypes –a network’s ability to sustain life in a well-defined

environment containing specific carbon sources – allowed us to

characterize the relationship between metabolic genotypes and

phenotypes. We find that metabolic networks with the same

phenotype show enormous genetic plasticity, and that this

plasticity aids in the evolution of novel metabolic abilities.

Multiple experimental and computational studies show that a

large fraction of enzyme-coding genes are dispensable in genome-

Figure 5. Evolving networks with conserved phenotypes can access very different novel phenotypes along their evolutionary path.
(A) shows the average cumulative number of phenotypes (vertical axis) found in the neighborhood of an evolving network as a function of the
number of mutations (horizontal axis) the network experienced during its evolution; (B) shows the fraction of the phenotypes in the neighborhood of
the evolving network (Gt) and an initial network (G0) that differ from one another. The diagram in the inset illustrates the increasing number of novel
phenotypes in the evolving network’s neighborhood (gray area of the circle) that are different from the phenotypes in the neighborhood of G0. For
pairs of random viable metabolic networks with the same phenotype; (C) shows the distribution of the fraction of different phenotypes in the
neighborhoods of these networks. (D) shows the mean of the distribution (C) of phenotypic differences in the neighborhood of the network pairs
versus the numbers of carbon sources they can sustain growth on. Data in (A), (B), (C) and (D) are averages over 100 random walks of 104 mutations
starting from 10 different initial networks. In (C) only pairs of networks with the same initial network of the random walk were compared, thus 450
neighborhood comparisons. In all plots whiskers represent the 95% confidence interval.
doi:10.1371/journal.pcbi.1000613.g005
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scale metabolic networks. These networks continue to sustain life

even upon removal of many apparently central and important

reactions [7,8,12,14,16,27,33–36]. These studies raise the question

whether such robustness is an evolutionary adaptation, evolved in

response to ongoing mutational pressure. Our approach of

creating multiple, essentially random viable metabolic networks

with pre-defined phenotypes suggests an answer to this question

for the E. coli metabolic network. In both a glucose-minimal and a

rich environment, the fraction of reactions dispensable in the E.coli

network is not dramatically different from that of 1,000 metabolic

networks with the same metabolic phenotypes. This argues that

the high robustness to gene deletions of E. coli metabolism may not

be an evolutionary adaptation, but is rather typical of metabolic

networks of comparable size. A caveat to this observation is that

our approach allows modest fluctuations in reaction numbers (by

about 14 percent) to facilitate the sampling of metabolic genotype

space. These fluctuations may influence estimates of robustness by

approximately the same amount. We will leave exploration of this

influence to future work.

Our observations go beyond preceding work which showed that

a reaction’s essentiality may depend on the environment [28,37].

We demonstrate that the plasticity of metabolic networks is so

great that even in a single environment, different networks with

the same phenotypes may show very different essential reactions.

For example, only 7.3% of all reactions essential in at least one of

1,000 networks are essential in all networks. Excluding these

reactions, two networks with the same phenotype differ in 74% of

their essential reactions. Even in pathways as important as central

energy metabolism, the vast majority of reactions are essential in

only 1% of networks. One might think that networks able to thrive

on many different carbon sources might show vastly more essential

reactions. However, this is not the case. Reaction essentiality

depends only modestly on the number of carbon sources a network

can sustain life on.

Gene essentiality thus strongly depends on a network’s genotype,

which is highly malleable. Even organisms with similar metabolic

abilities may thus show very different dispensable genes in a given

environment. These observations have implications for the design of

antimetabolic drugs that inhibit specific metabolic reactions.

Specifically, an evolutionary approach like ours may be highly

useful in identifying reactions that are essential in most networks

with a given metabolic phenotype, as a precursor to rationally

designing drugs inhibiting these reactions. The more frequently

essential a reaction is, the smaller the likelihood that a cell can

circumvent it through addition or deletion [27] of other reactions.

For example, the major antimetabolic antibiotics – sulfonamides

and trimethoprim – inhibit two different reactions (dihydropteroate

synthetase and dihydrofolate reductase) leading to tetrahydrofolate,

an essential precursor for nucleic acid synthesis. These two

reactions, however, are essential in only 40 percent of networks

able to sustain life in rich medium. Figure S5 shows some of the

ways by which nonessentiality arises in this case. Multiple bacterial

species, for example, bypass the need for dihydrofolate reductase in

the synthesis of nucleotide precursors, using a flavin-dependent

thymidilate synthase instead [38]. A better target in the same

pathway would be the enzyme dihydrofolate synthase, which our

approach finds to be essential in all networks (Figure S5) In a similar

vein, it is no coincidence that a broad class of antibiotics (penicillins,

bacitracin, cephalosporins, carbapenems, vancomycin etc.) target

synthesis of cell walls and membranes: Among the reactions found

to be essential in all networks (Table S1), cell wall and membrane

biosynthesis reactions are highly enriched. Thus, our approach

lends itself to a pre-screening of metabolic reactions or reaction

classes for drug targeting.

Our analysis shows that vastly different networks with the same

phenotype can be connected through paths of single mutations

(reactions additions/deletions) in genotype space. Specifically,

these paths can traverse more than three quarters of genotype

space without destroying a given phenotype. This phenomenon

does not depend strongly on the evolutionary constraints on a

metabolic network, that is, on the number of carbon sources a

network is required to sustain life on. These observations are

reminiscent of genotype networks or neutral networks that have

been characterized for RNA, protein, and transcriptional

regulation circuits [39–44]. In these networks, genotypes with

the same phenotype form large sets in genotype space, sets that

can be connected through many single, small mutational changes.

For example, proteins with the same tertiary structure and

function (phenotype) often share a common ancestor, but their

amino acid sequences (genotypes) have diverged beyond recogni-

tion [45,46]. The existence of such genotype networks – and the

robustness it implies – facilitates the evolution of new molecular

functions [47–50].

We here provide two lines of evidence that genotype networks

may also facilitate the evolution of new metabolic phenotypes, the

ability to survive on previously not utilizable carbon sources. First,

we show that networks with different and arbitrary phenotypes

can be found close together in genotype space. This means that

from any one network, only a small fraction of genotype space

needs to be traversed to find any given, novel phenotype. Second,

we also analyze the neighborhood of different neutral networks

with the same phenotype. This neighborhood consists of all

networks that differ in only one reaction from a focal network.

They are thus accessible from this network through a single

mutation. We find that the neighborhoods of different networks

contain very different novel phenotypes. This means that by

traversing a large fraction of genotype space without changing the

phenotype, one can render different novel phenotypes accessible

(Figure S6). Put differently, even microorganisms with identical

phenotypes may be able to access very different novel phenotypes.

This observation points to the need to carefully choose organismal

strains for engineering of novel metabolic abilities, such as the

production of biofuels, or the degradation of toxic compounds in

bioremediation. The right choice may mean that only a small

alteration, such as the addition of one reaction to a metabolic

network, is sufficient to produce a desired new phenotype.

Consider the example of the carbon source melibiose, a sugar

similar to lactose and made of the same two monosaccharides

(galactose and glucose) but differing in the glycosidic link

between them. While lactose can be metabolized by many

microbes, melibiose is a less commonly utilizable compound. The

metabolization also requires different enzymes (a-galactosidase

for melibiose and b-galactosidase for lactose). The metabolic

ability to use melibiose is desirable, for example in yeast, where

cells have been engineered to utilize melibiose to improve

efficiency and reduce waste in fermented dairy products [51].

Among the networks with identical metabolic phenotypes that we

examine, there are networks where adding the a-galactosidase

reaction is sufficient to endow the network with melibiose

utilization. In contrast, in other networks with the same

phenotype the addition of this reaction is not sufficient (even

though both networks are able to grow on glucose). The reason is

that these latter networks are unable to excrete the excess

galactose from the degradation of melibiose. Another example

involves the addition to a network of a single reaction catalyzing

the transfer of a phosphor group from a phospho-histidine to

galactitol. This reaction produces galactitol 1-phosphate, and it

enables the network to grow on galactitol. In another network
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with the same phenotype, the addition of this reaction does not

have the same result. The reason is that the first network contains

other reactions that enable it to convert of galactitol 1-phosphate

into galactose, which it can grow on.

We next motivate the choice of metabolic network sizes for our

work. Flux balance analysis has been used to show that a

significant number of reactions in E. coli, when removed, show no

impact on optimal growth in several different environments [52].

This observation might lead one to suppose that phenotype-

preserving paths through genotype space are long merely because

many reactions are never essential. However, this is not the case.

For example, although the fraction of essential reactions in E. coli is

merely 28% when considering a glucose minimal environment,

this fraction rises to 43% when considering growth on each of the

more than 81 carbon sources we examined here. In addition,

when considering the influence of the genetic background, we

observe that 66% of the reactions appear as essential in at least one

of the many randomized viable metabolic network in a glucose

minimal environment, and 81% of reactions become essential

when we consider the full spectrum of 81 carbon sources. This

fraction of essential reactions would undoubtedly have risen

further if we had the computational means to analyze additional

carbon sources and genetic backgrounds. Taken together, these

observations mean that essentiality of reactions depends on

environment and genetic background, and that there may not

be a meaningful reduced reaction set that is always under

selection. These observations, and our desire to compare

properties of our sampled networks to the E. coli network

prompted our choice of network size.

Flux balance analysis has limitations in how precisely it can

predict growth or by-product secretion after gene knockouts [5],

which may depend on the choice of optimization principle [53]

and flux maximization method [7]. These limitations are

connected to how metabolic genes are regulated, and they do

not affect our study because we are not concerned with regulatory

evolution. For our purposes, it is sufficient to evaluate if an

organism represented by a metabolic network is viable in

principle, based on the complement of enzymes it carries and

the biomass precursors it can synthesize given a spectrum of

nutrients.

The potential problem of limited and likely biased information

about the set of biochemical reactions that occur in nature does

not affect our results qualitatively. The reason is that any increase

in the number of known biochemical reactions will cause the

appearance of alternative pathways, lowering the number of

essential reactions, and thus increasing the robustness and the

plasticity of metabolic networks.

Aside from these caveats, the biggest limitation of the approach

presented here lies in its computational demands. Determining the

metabolic phenotypes of networks in the neighborhood of a single

genome-scale network for 101 carbon sources requires the solution

of 5.856105 ( = 10165800) complex linear programming prob-

lems [5]. For our simulations we analyzed more than 20’000 such

genomes and this was currently at the limit of computational

feasibility. This limitation will undoubtedly be ameliorated with

time.

In sum, the approach proposed here can provide various

insights into the organization of metabolic networks. It demon-

strates that the architecture of such networks shows high plasticity,

even for single environments, a property that facilitates the

evolution of new metabolic functions. It suggests a method to

target metabolic reactions for rational drug design, and shows that

the plasticity of metabolic networks creates both opportunities and

constraints for the evolution of novel metabolic abilities.

Methods

Random walks in genotype space
We explore the vast space of metabolic networks by long

random walks that leave a network’s ability to synthesize all

essential biomass components unchanged. Each step of the

random walks we use has two parts. The first part consists of

mutation, the deletion of a randomly chosen reaction from a

network, or the addition of a new randomly chosen reaction from

the global reaction set above. We constrain variation in the

number of reactions in this random walk by means of a bias in the

choice of mutation that depends linearly on the number of

reactions in the metabolic network (see Text S1). With this

procedure, the networks have always approximately 1000

reactions throughout the simulations. In the second part of a

random walk’s step, we apply flux balance analysis to verify that

the new metabolic network still has the same phenotype, i.e., that

it can still grow on the same specific set of carbon sources. If so, the

mutated network is accepted and the next step of the walk starts

with the mutated network; if not, the mutated network is rejected,

and the next step of the random walk starts with the previous

(unmutated) network.

Methods are described in greater detail in the Text S1.

Supporting Information

Text S1 Detailed description of simulation conditions and

methods

Found at: doi:10.1371/journal.pcbi.1000613.s001 (0.14 MB PDF)

Figure S1 Random walks in genotype space. a) Autocorrelation

function of growth flux in an unbiased random walk of 10’000

generations starting from the E. coli metabolic network. The

autocorrelation function was calculated for the last 5’000

generations. b) A sample trajectory of a random walk starting

from the E.coli metabolic network, showing both the number of

reactions in the evolving network, as well as the genotype distance

(normalized Hamming distance) between the evolving network

and the initial network. When the genotypes of both networks are

represented by binary vectors indicating the presence or absence

of reactions (see Figure 1a), the normalized Hamming distance

corresponds to the fraction of entries in these two vectors that are

different.

Found at: doi:10.1371/journal.pcbi.1000613.s002 (0.07 MB TIF)

Figure S2 The fraction of reactions essential in a complex

environment decreases with environmental complexity. Average

fraction of essential reactions (vertical axis) as a function of the

number of carbon sources a network can sustain life in (horizontal

axis). A reaction is called essential here, if it is essential in an

environment that contains all of the carbon sources a network is

required to grow on. For each number of carbon sources 10

different initial networks were generated, as described in Methods,

and for each of these 10 networks 10 random walks were carried

out. Each circle on the plot is thus based on 100 networks

(whiskers: 95% confidence interval). See Methods for details on

how the initial networks were generated.

Found at: doi:10.1371/journal.pcbi.1000613.s003 (0.06 MB TIF)

Figure S3 Networks that can grow on more carbon sources

encounter more novel phenotype during their evolution. The

average cumulative number of phenotypes (vertical axis) found in

the neighborhood of an evolving metabolic network at the

endpoints of 100 phenotype-preserving random walks is shown

as a function of the number of carbon sources the initial networks

can grow on. For each number of carbon sources shown, the data
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is an average over 10 independently generated initial networks,

and over 10 random walks starting from each of these 10 networks.

Found at: doi:10.1371/journal.pcbi.1000613.s004 (0.06 MB TIF)

Figure S4 Reaction essentiality and gene appearance in

prokaryotic genomes. Correlation of frequency of reaction

essentiality in random metabolic networks and number of genomes

carrying an enzyme-coding gene catalyzing that reaction.

Pearson’s r = 0.45; p = 2.2610216. This analysis uses enzyme-

coding genes from 875 prokaryotic genomes in the KEGG

database

Found at: doi:10.1371/journal.pcbi.1000613.s005 (0.10 MB TIF)

Figure S5 Reactions in tetrahydrofolate biosynthesis and their

essentiality. We found that the reaction dihydropteroate synthe-

tase, a target of sulfonamides, is essential in 41% of the metabolic

networks we studied, while the other reaction producing

dihydropteroate is essential in 56.1% of networks. In the

remaining 2.9% of networks, both reactions appear, but none

are essential. These observations have a straightforward explana-

tion. Dihydropteroate is an essential metabolite. Because only two

alternative reactions exist to make dihydropteroate, whenever one

of these reactions is missing, the other is an essential reaction.

Whenever both reactions are present, neither reaction is essential.

For the production of tetrahydrofolate from dihydrofolate, there

exist, similarly, two parallel dihydrofolate reductase reactions.

These reactions are the target of trimethoprim. The reactions are

only distinguished by the molecule that acts as the electron donor,

either NADH or NADPH. Individually, these reactions appear as

essential in only 30%–40% of networks. In addition, only 66.2% of

networks cannot tolerate the removal of both reactions. The

reason is that there are alternative paths (not shown) that bypass

the direct production of tetrahydrofolate from dihydrofolate.

Found at: doi:10.1371/journal.pcbi.1000613.s006 (0.06 MB TIF)

Figure S6 The connectedness of metabolic networks with the

same phenotype facilitates access to new metabolic phenotypes.

The rectangle symbolizes genotype space, and the grey circles

symbolize metabolic networks with a given metabolic phenotype.

The colored circles stand for metabolic networks with a novel

phenotype. Different novel phenotypes (different colors) are

accessible from different networks (points) in genotype space with

the same phenotype.

Found at: doi:10.1371/journal.pcbi.1000613.s007 (0.08 MB TIF)

Table S1 List of reactions that appear frequently as essential in

random metabolic networks

Found at: doi:10.1371/journal.pcbi.1000613.s008 (0.43 MB XLS)
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