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Abstract

Machine learning has been used for estimation of potential energy surfaces to speed up molecular dynamics simulations of
small systems. We demonstrate that this approach is feasible for significantly larger, structurally complex molecules, taking
the natural product Archazolid A, a potent inhibitor of vacuolar-type ATPase, from the myxobacterium Archangium gephyra
as an example. Our model estimates energies of new conformations by exploiting information from previous calculations
via Gaussian process regression. Predictive variance is used to assess whether a conformation is in the interpolation region,
allowing a controlled trade-off between prediction accuracy and computational speed-up. For energies of relaxed
conformations at the density functional level of theory (implicit solvent, DFT/BLYP-disp3/def2-TZVP), mean absolute errors
of less than 1 kcal/mol were achieved. The study demonstrates that predictive machine learning models can be developed
for structurally complex, pharmaceutically relevant compounds, potentially enabling considerable speed-ups in simulations
of larger molecular structures.
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Introduction

Molecular dynamics (MD) simulations allow for computing low-

energy molecular conformations, which is essential when rapid

heuristic or empirical approaches fail or are deemed too coarse-

grained [1,2]. MD simulations can be performed at different levels

of sophistication, ranging from empirical and semi-empirical

methods to quantum mechanical (QM) approaches. The compu-

tational power required increases with higher levels of theory,

rendering exact energy estimation of large or complex chemical

structures practically limited. Here we show that fast machine

learning (ML) methods may serve as surrogate energy estimators

for computationally demanding MD studies of structurally

complex natural products, taking as an example Archazolid A, a

macrolide from the myxobacterium Archangium gephyra.

In first principles MD simulations, electronic structure calcula-

tions are repeatedly carried out for highly similar conformations of

the same molecule. Information from previous calculations is

usually ignored. As an exception, ML algorithms have been used

to exploit this information by interpolating between reference

calculations, yielding fast (ms instead of hours), accurate, highly

empirical energy estimates [3]. For the interpolation of potential

energy surfaces in molecular dynamics, this approach has been

limited to small systems due to the molecular representation used.

Here, we provide proof of principle that such ‘‘QM/ML’’

approaches can also be developed for structurally complex,

pharmaceutically relevant compounds, yielding highly accurate

predictions.

Target
Archazolid A (molecular weight of 739 Da; Fig. 1) is a low-

nanomolar inhibitor of vacuolar-type ATPase (V-ATPase) with

anti-proliferative activity in vitro and in vivo [4–8]. Its central 24-

membered macrolactone ring contains seven alkenes, and eight

methyl- and hydroxyl-bearing stereocenters. Their full relative and

absolute stereochemistry (2E, 5E, 7S, 8S, 9Z, 11Z, 13E, 15R, 16S,

17S, 18E, 20E, 22S, 23S, 19S) and three in-solution model

conformations were elucidated by Menche and coworkers using

nuclear magnetic resonance (NMR) spectroscopic methods (Fig. 2)

[9].

Machine learning
The common idea behind ML models for QM is that whenever

a series of computationally expensive, related QM calculations is

done, ML can be used to replace some of these calculations to

speed up the process. The way ML does this is by interpolating

between a set of reference calculations, the training set, with the

underlying assumption being that similar chemical systems have

similar properties (the ‘‘chemical similarity principle’’ [10]). This
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approach is well known in cheminformatics, where experimentally

determined molecular properties are estimated [11]. ML has

recently been used in diverse QM contexts ranging from density

functional theory [12] over prediction of atomization energies

across chemical compound space [13] to transition state theory

[14].

ML estimators of potential energy surfaces have been pursued

since the early 1990s using artificial neural networks [3,15–17].

Recently, non-parametric methods such as Gaussian process

regression have been used as well [18–23] (a parametric model

absorbs all information from the training data into its parameters,

e.g., the weights of an artificial neural network. A non-parametric

model requires access to the training data. Another way to view

this is that parametric methods use a fixed number of basis

functions, whereas non-parametric methods use one basis function

per member of the training set. Thus, for non-parametric methods

the complexity of the model can increase with the number of

training data. Note that non-parametric models can have

parameters). A critical component of QM/ML models is the

representation of the simulated system, i.e., the choice of

molecular descriptor. Neural networks have often been used with

symmetry functions [3], which have advantages with respect to

periodic potentials, but do not scale to larger systems. Other

representations include internal coordinates, system-specific vari-

ables, and more complex procedures. For example, Gaussian

approximation potentials [22] use local atom densities, project

them onto the four-dimensional unit sphere, calculate (hyper)-

spherical harmonics coefficients, and finally use their bispectrum, a

three-point correlation function, to obtain a fixed-length set of

cubic rotational invariants [23]. In contrast, we use a simple

matrix representation based on nuclear charges and intra-

molecular distances only [13].

Results

Molecular dynamics
Starting from a modelled Archazolid A conformation using the

NMR constraints published by Farès et al. [9], we generated an

ensemble of conformations using semi-empirical MD at the AM1

level [24] in VAMP [25]. Four different trajectories of 300 ps

length were generated at a temperature of 400 K, ensuring an

enhanced sampling rate. Similar conditions were previously

Figure 1. Configuration of the myxobacterial polyketide
Archazolid A, a potent inhibitor of vacuolar-type ATPase (V-
ATPase).
doi:10.1371/journal.pcbi.1003400.g001

Figure 2. Reported conformations 5a, 5b (grey), and nmr (black)
of Archazolid A derived from NMR studies [9]. Molecules were
superimposed by minimizing root mean square deviation in PyMol
(www.pymol.org).
doi:10.1371/journal.pcbi.1003400.g002

Author Summary

Molecular dynamics simulations provide insight into the
dynamic behavior of molecules, e.g., into the adopted
spatial arrangements of its atoms over time. Methods differ
in the approximations they employ, resulting in a trade-off
between accuracy and speed that ranges from highly
accurate but expensive quantum mechanical calculations
to fast but more inaccurate molecular mechanics force
fields. Machine learning, a sub-discipline of artificial
intelligence, provides algorithms that learn from data, that
is, make predictions based on previously seen examples.
By starting with a few expensive quantum mechanical
calculations, training a machine learning algorithm on
them, and then using the resulting model to carry out the
molecular dynamics simulation, one can improve the
accuracy/speed trade-off. We have developed and applied
such a hybrid quantum mechanics/machine learning
approach to Archazolid A, a natural product from the
myxobacterium Archangium gephyra and a potent inhib-
itor of vacuolar-type ATPase. By dynamically refining our
model over the course of the simulation, we achieve errors
of less than 1 kcal/mol while saving over 40% of the
quantum mechanical calculations. Our study demonstrates
the feasibility of predictive machine learning models for
the dynamics of structurally complex, pharmaceutically
relevant compounds, potentially enabling considerable
speed-ups in simulations of even larger biomolecular
structures.

Machine Learning of Natural Product Conformations
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successfully applied to the rational design of b{turn inducing

peptide mimetics [26,27].

MD snapshots were first relaxed with AM1 in MOPAC [28].

Full optimization of each structure was then achieved with

TURBOMOLE [29], applying a BLYP(RI)-D2-COSMO/def2-

SVP (DFT-D2) level of theory. Assessing the relative conforma-

tional energy differences of the DFT-D2 optimized snapshots,

using BLYP(RI)-D3-COSMO/def2-TZVP (DFT-D3), revealed a

broad distribution of energies spanning 88 kJ/mol (Fig. S1). With

progression of the MD trajectories, the energies of the resulting

snapshots fluctuated around an average value, except for trajectory

2, where progressively worse conformers were generated after

100 ps. A number of conformers obtained in all four trajectories

were found to be energetically favored at the same level as the

published NMR-motivated structures nmr, 5a, 5b [9]. More than

50% of the DFT-D2 optimized snapshots possessed relative

energies below that of conformation 5a (,35 kJ/mol), and about

20% of the generated conformers possessed a more favorable

energy than conformer 5b (,20 kJ/mol). 20 conformers were at a

similar energy level as nmr (,8 kJ/mol).

Overall, the conformers generated comply with between 13 and

25 of the experimental ROESY (rotating-frame nuclear Over-

hauser effect) constraints, while structures reported in the literature

[9] satisfy between 18 and 23 constraints. Structures obtained

from the first 100 ps of each trajectory seem to deviate more

strongly from the average number of satisfied NMR constraints

than structures toward the end of the trajectories (Fig. S1).

In summary, the semi-empirical MD sampling and DFT-D2

optimization produced conformers possessing favorable energies

and similar compliance with experimental data as the previously

reported conformations 5a, 5b, and nmr. The MD study suggested

prominent flexibility of Archazolid A. While most of the

conjugated double bonds were found to be co-planar in the

minimized structures, the 1,3,5-hexatrien moiety between atoms 9

and 16 did not show full co-planarity, but most often torsion angles

of 50–60u between the double bonds in positions 9 and 11 (Fig.

S2), which is in agreement with both the NMR-derived

conformations 5a, 5b, and models of the Archazolid-V-ATPase

complex [30,31]. The importance of this region for bioactivity and

bioavailability is supported by preliminary structure-activity

relationship data available for Archazolid analogs, which highlight

the importance of the C-7 hydroxyl as part of the pharmacophore

[4,32]. We thus concluded that our MD simulations sampled

relevant conformations of the central macrocyclic structure.

To compare the conformational space from our QM/DFT-D

methodology with that of force fields (FF), we generated 2 800

diverse conformers using the MMFF94x FF. We then clustered

both FF-based and QM-based conformations with respect to

geometric measurements of the macrolactone ring. About 40% of

the FF-based structures are in clusters containing no QM-based

conformers. Likewise, about 40% of QM-based conformations are

found in clusters containing hardly any FF-based structures

(,10%). In the mixed clusters, no correlation was found between

normalised relative energies of FF-based and QM-based confor-

mations. On account of this, only DFT-D energies were

considered for further study.

We visualized the computed DFT energy landscape by

projecting the conformations sampled by the four MD simulations

using principal component analysis (PCA, Fig. 3). PCA is a

dimensionality reduction method that preserves global distances

(see Figs. S3, S4, S5, S6 for visualization using stochastic neighbor

embedding, a technique that preserves local distances). In the two-

dimensional projection, we observed adjacent, potentially con-

nected low-energy basins (blue regions in Fig. 3), which also

contained conformation nmr. Conformer d008, located close to

nmr, is the lowest-energy structure from all MD runs.

Machine learning
We trained ML models to capture the relationship between the

relaxed Archazolid A conformations sampled from the MD

simulation and their DFT-D3 energies.

Conformations were encoded using a simple matrix represen-

tation [13] based solely on nuclear charges Z and inter-atomic

distances D, the same input that enters first principles calculations.

In brief, off-diagonal elements of the symmetric matrix were

computed as ZiZj=Dij , where i=j are atom indices, and main

diagonal elements as 0:5Z2:4
i . This representation is related to

atom-pair and distance-scaled molecular autocorrelation descrip-

tors [33,34]. Due to symmetry and fixed composition and

geometry, only the strict lower triangular part of the matrix was

used, concatenated into a 6441-dimensional vector. Note that due

to strong correlation between descriptors, the effective dimension-

ality is much lower (90% (95%, 99%) of the variance in the

descriptors is explained by the first 25 (46, 136) PCA components.

Relevant dimension analysis [35], a related technique taking

energies into account, estimates the dimensionality to be 89).

Gaussian processes [36], sometimes known as Kriging, are a

non-parametric regression method with regularization to prevent

over-fitting. GP models take the form

EML(x)~
Xn

i~1

aik(xi,x), ð1Þ

where xi is the i-th reference conformation, n is the number of

reference conformations, x is a new conformation to be predicted,

ai are regression coefficients, and k is a kernel function. Kernels,

also called covariance functions, are symmetric positive definite

functions that measure the similarity between data points, here

conformations in the vector representation described above. We

used the linear kernel k(xi,xj)~vxi,xjw. For each prediction,

GPs also provide the predictive variance, a built-in measure of the

domain of applicability that can be used to quantify confidence

into individual predictions.

Validation results
Retrospective validation of predictive accuracy on all MD data

using 10 repetitions of 10-fold stratified cross-validation (n = 100)

yielded a root mean squared error (RMSE) of 5.3560.72 kJ/mol,

mean absolute error (MAE) of 3.5160.38 kJ/mol, and squared

correlation coefficent of R2 = 0.8860.03 (see Fig. 4 for a scatterplot).

For cross-validation, data were divided into 10 parts (splits) of

equal size and similar distribution of energy (stratification by

energy). For each split i, a ML model was trained on the other

splits 1,2, . . . ,i{1,iz1, . . . ,10 and used to predict split i. This

provides predictions for all conformations by models trained on

90% of the data, never including the predicted conformation itself.

Model parameters were optimized in an inner loop of cross-

validation (nested cross-validation). See refs. [37,38] for more

detailed explanations.

The large number of 6441 descriptors introduces the possibility

of chance correlations [39,40] between descriptors and energies.

Although this risk is lessened by correlations between descriptors

(resulting in fewer actual degrees of freedom) and our use

of regularization, we performed two randomization tests

(y{scrambling) [41] with permuted labels and descriptors,

respectively. This resulted in p-values of ,10235 (Mann-Whitney

U-test, n = 100) and an increase in estimated noise levels of three

Machine Learning of Natural Product Conformations
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and five orders of magnitude, respectively, strongly indicating that

the observed good performance of our model is genuine.

The importance of sampling is well known in MD, and has led

to the development of various sampling schemes [1], such as

umbrella sampling [42] or reconnaissance metadynamics [43].

Similarly, sampling also affects ML models via the sampling of

reference conformations. We demonstrate this as follows: First, we

trained ML models using all conformations from one of the MD

runs as training data (Table 1). Training data were almost

perfectly replicated (R2.0.99), but markedly lower predictive

performance on the other MD runs revealed imperfect confor-

mational sampling of each MD simulation alone. Then, we

combined all data from the four MD runs, and trained ML models

using random subsets of 25, 50, 75 and 100% of the computed

Archazolid A conformations (Table 2). This resulted in clearly

improved predictions on test data, i.e., conformations that were

not contained in the training set. Fig. 5 shows the relationship

between sampling (data density) and prediction errors.

The simplest way to use a ML model is to create a large amount

of training data, then train and apply the model. As shown

(Tables 1 and 2), it is important that the training data are diverse

because only conformations covered by them will be predicted

well; the larger such a training set is, the better the predictions. In

an MD simulation, such a training set could be obtained by a

fixed-size initial sampling at elevated temperature. This corre-

sponds roughly to the situation in Table 2.

A more economical way to use a ML model is to adjust the

model on the fly [44]: Start with a small initial training set. Then,

for each new conformation, decide whether the model can predict

it. If not predicted, add it to the training set and retrain the model.

This adaptive scheme requires a measure of the domain of

applicability [45,46] of the model. Here, we use the GPs predictive

variance: If it is below the k = 0.95 quantile of the predictive

variance of the training data, the conformation is accepted for

prediction. Note that k can be used to trade off prediction

accuracy versus computational savings, i.e., the number of

predicted conformations (Fig. 6). Using an initial stratified training

set of 50 conformations and k = 0.95 yielded a RMSE of

4.4260.41 kJ/mol, MAE of 3.4660.34 kJ/mol, and squared

correlation of R2 = 0.9460.01 for 384642 predicted conforma-

tions (mean 6 std. dev., averaged over all 4! = 24 orderings of the

four MD runs). For this study, this would have saved 23 out of 58

days used for DFT-D3 calculations (single core).

Discussion

This study demonstrates that GP regression, a Bayesian non-

parametric ML method, is suited for modeling relationships

Figure 3. Projection of MD conformations of Archazolid A onto two dimensions (d1, d2) by principal component analysis. Shown are
distribution of individual conformations (left) and smoothed energy landscape generated by LiSARD [52] (right). Labels indicate reported NMR-
motivated structures (A = c5a, B = c5b, P = nmr) and lowest-energy MD conformations (8, 595, 40). Color coding is from lowest (blue) to highest (red)
relative energy.
doi:10.1371/journal.pcbi.1003400.g003

Figure 4. Predicted DEML vs calculated DE values of Archazolid
A conformations. All predictions were obtained by stratified 10-fold
cross-validation of the complete MD data. NMR-based conformations
c5a, c5b, nmr are marked by red circles (external test data).
doi:10.1371/journal.pcbi.1003400.g004

Machine Learning of Natural Product Conformations
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between molecular structure and QM properties even for

structurally complex, pharmaceutically relevant compounds. The

simple molecular representation used proved sensitive to structural

variations in relaxed geometries and enabled finding correlations

between simulated conformations and computed energy values at

the DFT/BLYP-disp3/def2-TZVP level of theory. For Archazolid

A, mean absolute errors of less than 4 kJ/mol (<1 kcal/mol) were

achieved. The GP’s predictive variance was used to dynamically

improve the model over the course of the MD simulation

(‘‘learning on the fly’’) [44].

Here, we did not use the ML model’s derivatives. For this, note

that due to the highly empirical nature of these models, derivatives

can only be expected to be accurate along directions covered by

the training data. To avoid excessive generation of training data,

projected gradients can be employed [12]. Note that the model is

readily usable for Monte Carlo simulations.

Adaptive sampling strategies for MD like reconnaissance

metadynamics [43] bias the course of the MD simulation based

on the trajectory so far by avoiding low-energy regions that have

already been sampled sufficiently. Since the training set of an

effective non-parametric ML model by necessity covers the

conformational space visited so far, it provides a natural means

to bias the MD simulation. For GP models, the predictive

variance, which is effectively a measure of training data density,

could be used. Active learning [47] might be useful for such

sampling strategies as well.

Innovative ML algorithms that are tightly integrated with MD

techniques could provide access to long-term simulations of

challenging chemical and biomolecular systems. Here, we made

a successful first step in this direction taking myxobacterial

Archazolid A as an example.

Materials and Methods

Molecular dynamics simulation
Semi-empirical MD simulations were carried out with VAMP

using the AM1 Hamiltonian [24,25]. A starting structure of

Archazolid A was modeled using NMR constraints published by

Farès et al. [9]. This model was then minimized with constraints

[9] using the MMFF94x force-field in MOE (Molecular

Operating Environment, 2011.2010; Chemical Computing

Group, Montreal, Canada) and further refined to closely match

the conformation of the NMR-derived Archazolid A structure.

Before starting the MD simulation, the model structure was

minimized in VAMP using the AM1 Hamiltonian. Four

trajectories of 300 ps length at a temperature of 400 K were

calculated using an NVT ensemble with a Berendsen heat bath

coupling constant of 40 fs. For solving Newtons equations of

motion, the velocity Verlet integrator within VAMP was used and

initial velocities of particles were set according to the Maxwell

distribution. The total linear momentum of the system was forced

to zero to prevent drifting. Using a time step of 1 fs for the

molecular dynamics simulations, snapshots were recorded every

100 fs resulting in trajectories of 3000 snapshots. The initial 50 ps

of each trajectory were discarded to ensure equilibration of the

system. A total of 1000 equally distributed conformers (1 ps

distance) from the four trajectories were energy minimized using

MOPAC2012 at AM1 level (Stewart Computational Chemistry,

Colorado Springs, USA). The geometry optimization was

conducted with a molecular mechanics correction to amide

bonds, a dielectric constant of [r~78:4 for the COSMO

simulation and precise settings. Optimization failed for 21

conformers, leaving 979 structures.

Table 1. Performance of ML models trained separately on each individual MD run and tested on the other MD runs.

MD run 1 MD run 2 MD run 3 MD run 4

train test train test train test train test

n 237 726 238 725 244 719 244 719

RMSE 0.00 15.46 1.08 12.12 3.50 8.29 0.26 11.31

MAE 0.00 10.21 0.82 8.92 2.61 6.19 0.20 8.00

MAE (%) 0.00 11.73 1.03 10.16 3.00 7.43 0.28 9.11

R2 1.00 0.50 1.00 0.49 0.93 0.73 1.00 0.62

RMSE: root mean square error (kJ/mol), MAE: mean absolute error (kJ/mol), MAE (%): MAE as a percentage of the range of training set energy values, R2: squared Pearson
correlation coefficient.
doi:10.1371/journal.pcbi.1003400.t001

Table 2. Performance of ML models trained on randomized subsets of increasing size of the complete MD data.

25% 50% 75% 100%

train test train test train test train test

n 240 723 481 482 722 241 963 0

RMSE 3.32 7.59 2.09 6.21 1.93 5.52 1.04 –

MAE 2.56 5.54 1.55 4.36 1.45 3.48 0.72 –

MAE (%) 3.10 6.31 1.88 4.97 1.67 4.21 0.82 –

R2 0.95 0.76 0.98 0.84 0.98 0.87 1.00 –

See Table 1 for abbreviations.
doi:10.1371/journal.pcbi.1003400.t002
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DFT calculations
Subsequently, we performed DFT-D2 calculations using

TURBOMOLE (v6.3.1, TURBOMOLE GmbH, Karlsruhe,

Germany) [29] to further optimize the MD snapshots. Geometry

optimizations were performed at the BLYP(RI)-D2-COSMO/

def2-SVP level with the dielectric constant set to [r~78:4. We

obtained a total of 963 DFT-D2 optimized snapshots. To allow for

direct comparison of MD snapshots and the experimentally

determined NMR structures, we additionally conducted DFT-D2

optimizations for these structures. Final energies were obtained

using single point calculations on the BLYP(RI)-D3-COSMO/

def2-TZVP level with the dielectric constant set to [r~78:4 and

using the third-generation Grimme dispersion correction [48,49].

Calculations were done on a cluster with Intel Xeon E5440

(2.83 GHz, 800 MB RAM/core) processors (DFT-D2 optimiza-

tion) and on a cluster with AMD FX-8150 (3.6 GHz, 800 MB

RAM/core) processors (DFT-D3 single point energies).

Assessment of minimized MD snapshots
The 1H-NMR ROESY correlations published by Hassfeld et al.

[30] were used to assess the agreement of in silico generated

conformers with experimentally determined constraints of Arch-

azolid A. The ROESY correlations were classified into the

following 1H distance constraints: ,5 Å for weak, ,3.5 Å for

medium and ,2.5 Å for strong ROESY correlations [50]. Proton-

proton and proton-methyl distances were calculated in MOE. For

proton-methyl correlations, the average distance to all methyl

protons was calculated to yield an average distance. Computed

distances were then assessed using the NMR-derived ROESY

constraints yielding the number of satisfied distance constraints for

each conformer. Constraints that were either always or never

fulfilled by all conformations were omitted in the analysis.

Comparison to force fields
The MMFF94x FF was used to carry out low mode MD

simulations in MOE. We accepted only conformations within an

energy window of DE = 20.0 kcal/mol of the found global

minimum and treated conformations within an RMSD of 0.25

after energy minimization and optimal rigid body superposition as

identical. Conformational sampling was terminated when 100

consecutive attempts failed to generate any novel conformation,

yielding about 2 800 structures.

Principal component analysis (PCA)
PCA [51] finds uncorrelated directions of maximum variance in

the data. These are given by the eigenvectors of the empirical

covariance matrix (sorted in descending order of the correspond-

ing eigenvalues, which also provide a measure of the explained

variance). The number of principal components to use is a free

parameter of the method. Here, we used two components for

visualization. PCA projections were done using Mathematica

(version 9, Wolfram Research).

Smoothed energy landscapes
Two-dimensional representations of the data colored by DFT-

D3 values provide detailed information about relationships

Figure 6. Learning using predictive variance. Shown is the trade-
off between mean absolute error (MAE, solid line, left scale) and
number of predicted conformations (m, dashed line, right scale). Results
are averaged over all possible orderings of the four MD runs (4! = 24;
standard deviations ca. 0.4 kJ/mol and 35 samples). Squared correlation
is R2 = 0.99.
doi:10.1371/journal.pcbi.1003400.g006

Figure 5. Influence of sampling. Shown are smoothed PCA maps of absolute prediction errors for ML models trained on individual MD data (top
row) and ML models trained on randomized subsets of all MD data (bottom row). Color indicates magnitude of error (blue = low, red = high); training
samples are shown as black dots.
doi:10.1371/journal.pcbi.1003400.g005

Machine Learning of Natural Product Conformations
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between conformations. To enable better identification of global

features like energy basins and barriers, we smooth these energy

landscapes as described elsewhere [52]. In brief, the Nadaraya-

Watson estimator [53,54] with Gaussian kernel was used to obtain

locally weighted averages at locations without observations. The

involved bandwidth was estimated using the normal reference rule

[55], resulting in local density adaptive bandwidths. Smoothed

energy landscapes were calculated using the visualization software

LiSARD (version 1.2.2, ETH Zürich, Switzerland; for license

requests, contact G. Schneider). The smoothing factor was set to

k = 0.3.

Gaussian process regression
Gaussian process (GP) regression is a Bayesian non-parametric

technique [36,56,57]. A GP is a generalization of the normal

distribution to functions, i.e., a function-valued random variable.

For regression, one considers all functions generated by a GP that

‘‘agree’’ with the training data, i.e., one conditions a joint

Gaussian prior distribution on it. The mean of the resulting

posterior distribution is the predictor; its variance can be used as a

measure of confidence in the prediction (domain of applicability).

In matrix notation, predictor and predictive variance take the

form

LT (KzlI){1y and diag(M{LT (KzlI){1L),

where K, L, M are the kernel matrices between training

conformations, training and test conformations, and test confor-

mations, respectively, l.0 is a hyper-parameter controlling

regularization strength, I is the identity matrix, and y is the

vector of reference energies. The regression coefficients in Eq. 1

are thus given by a~(KzlI){1y. Note that GP predictions are

technically equivalent to those of kernel ridge regression [58], a

regularized form of ordinary regression. A GP is specified by a

covariance function, or kernel, that quantifies similarity between

two inputs. We used the linear kernel k(x,x0)~vx,x0w.

Models with the non-linear squared exponential kernel did not

lead to significant improvements in performance (Table S2). The

noise level hyper-parameter l (the variance of the assumed label

noise) was chosen by optimizing the stratified 10-fold cross-

validated mean absolute error over a logarithmic grid, For

performance estimates, this was done in an inner loop of cross-

validation.

Supporting Information

Figure S1 Assessment of minimized molecular dynam-
ics snapshots. (a) Fulfilled ROESY constraints versus trajectory

sequence. Optimized structures are color-coded as green filled

diamonds (published NMR-motivated conformations), yellow

filled circles (trajectory 1), red squares (trajectory 2), purple

diamonds (trajectory 3), and blue triangles (trajectory 4). Trend

lines are shown using the same color-coding. (b) Shown are the

three previously published structures (A, B, and C; see also main

text Fig. 2), and five structures generated by the simulations (D–

H). These conformers exhibit favorable relative energies or a high

number of fulfilled ROESY constraints. (c) Relative DFT-D3

energies versus satisfied ROESY constraints. (d) Relative DFT-D3

energies versus trajectory sequence.

(PDF)

Figure S2 Computed low energy conformations d8,
d239, d595 of Archazolid A. The conformers display torsion

angles close to 55u between the double bonds in positions 9 and 11

(arrows).

(PDF)

Figure S3 Smoothed principal components analysis
visualizations. Shown are projections to the first two principal

components smoothed by Lisard using conformations relaxed by

AM1 (a,c) and DFT-D2 (b,d), colored by DFT-D2 (a,b) and DFT-

D3 energies (c,d).

(PDF)

Figure S4 Smoothed stochastic neighbor embedding
visualizations. Shown are two-dimensional embeddings

smoothed by Lisard using conformations relaxed by AM1 (a,c)

and DFT-D2 (b,d), colored by DFT-D2 (a,b) and DFT-D3

energies (c,d).

(PDF)

Figure S5 Smoothed principal components analysis
visualizations with minimum energy conformations.
Shown are projections to the first two principal components

smoothed by Lisard using conformations relaxed by AM1 (a,c) and

DFT-D2 (b,d), colored by DFT-D2 (a,b) and DFT-D3 energies

(c,d).

(PDF)

Figure S6 Smoothed stochastic neighbor embedding
visualizations with minimum energy conformations.
Shown are two-dimensional embeddings smoothed by Lisard

using conformations relaxed by AM1 (a,c) and DFT-D2 (b,d),

colored by DFT-D2 (a,b) and DFT-D3 energies (c,d).

(PDF)

Table S1 Lowest energy conformations. Shown are, for all

four scenarios, the three MD conformations with lowest relative

energy and the three NMR-motivated conformations. ident. = i-

dentifier, ind. = index (1-based), DE = relative energy.

(PDF)

Table S2 Performance of machine learning models.
Statistics are over 10 runs of 10-fold stratified cross-validation

(n = 100). For each entry, mean 6 standard deviation are shown.

The same splits are used in each row. All preprocessing (centering,

standardization) is done separately for each split, on training folds

data only. Optimization of hyper-parameters (noise level, length

scale) is done in an inner loop of stratified 10-fold cross-validation

using a logarithmic grid. All units are in kJ/mol. In all scenarios,

machine learning models significantly outperform the null model.

Standardization and/or centering never improve performance by

more than one standard deviation. Investigated machine learning

models: Model names have form abc, with a indicating the kernel

(0 = linear, 1 = squared exponential), b indicating standardization

(0 = no, 1 = yes), and c indicating centering in kernel space (0 = no,

1 = yes). Note that the 011 model is redundant as standardization

centers the input vectors.

(PDF)
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4. Höfle G, Reichenbach H, Sasse F, Steinmetz H (1993). Archazolide,
Herstellungsverfahren und Mittel, Patent DE 41 42 951 C1.

5. Huss M, Sasse F, Kunze B, Jansen R, Steinmetz H, et al. (2005) Archazolid and

apicularen: Novel specific V-ATPase inhibitors. BMC Biochem. 6: 13.
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