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Abstract

Quorum-sensing systems mediate chemical communication between bacterial cells, coordinating cell-density-dependent
processes like biofilm formation and virulence-factor expression. In the proteobacterial LuxI/LuxR quorum sensing
paradigm, a signaling molecule generated by an enzyme (LuxI) diffuses between cells and allosterically stimulates a
transcriptional regulator (LuxR) to activate its cognate promoter (pR). By expressing either LuxI or LuxR in positive feedback
from pR, these versatile systems can generate smooth (monostable) or abrupt (bistable) density-dependent responses to
suit the ecological context. Here we combine theory and experiment to demonstrate that the promoter logic of pR – its
measured activity as a function of LuxI and LuxR levels – contains all the biochemical information required to quantitatively
predict the responses of such feedback loops. The interplay of promoter logic with feedback topology underlies the
versatility of the LuxI/LuxR paradigm: LuxR and LuxI positive-feedback systems show dramatically different responses, while
a dual positive/negative-feedback system displays synchronized oscillations. These results highlight the dual utility of
promoter logic: to probe microscopic parameters and predict macroscopic phenotype.
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Introduction

Free-living bacteria use quorum-sensing systems – dedicated

chemical communication channels – to coordinate population-

wide behaviors [1,2]. These systems regulate the cell-density-

dependence of several bacterial activities, including biolumines-

cence, competence and sporulation, biofilm formation, and

virulence factor expression [3,4]. In many gram-negative bacteria,

quorum sensing is mediated by two key proteins termed LuxI and

LuxR, and a class of signaling molecules known as acyl-

homoserine lactones (AHLs) [1]. LuxI is the enzyme that

synthesizes AHL, with the LuxI homologs of different species

generating distinct AHL side-chain variants; LuxR, when bound

to its cognate AHL, functions as a transcriptional activator. The

AHL generated within each cell freely diffuses into the

extracellular medium, so its concentration is a readout of cell

density.

The molecular roles of LuxI and LuxR were first elucidated in

the marine bacterium Vibrio fischeri, where they regulate expression

of the lux genes responsible for bioluminescence (Fig. S1). The V.

fischeri lux regulatory region consists of two divergent promoters

[5,6]. At low cell densities, luxR is transcribed efficiently from the

leftward pL promoter, while luxI and bioluminescence genes are

transcribed at a basal level from the rightward pR promoter. At

high cell densities, AHL-bound LuxR activates transcription at the

pR promoter; this initiates a positive-feedback loop via LuxI

synthesis. Similar LuxI/LuxR quorum-sensing systems have been

identified through sequence homology in over 50 species of gram-

negative proteobacteria [7–9]. Like V. fischeri, many species place

LuxI within a positive-feedback loop at the LuxR-regulated

promoter (henceforth pR), while LuxR is the target of external

regulation [4,5,10–22] (Table 1). Positive feedback can generate

an abrupt switch-like activation of gene expression at some

threshold cell density, which can be advantageous in several

biological contexts [23,24]; however, the mere presence of

feedback does not guarantee such a response [23–27]. Recent

experiments on re-wired V. fischeri LuxI/LuxR systems have shown

that the nature of the response can depend on which protein –

LuxI or LuxR – is placed in feedback [28–30]. Evidently, a

system’s actual density-dependent behavior arises from the

complex interplay of feedback architecture with microscopic

biochemical parameters. However, in order to understand this

interplay it seems we must first comprehensively characterize a

vast number of relevant parameters – species concentrations,

reaction rates, binding constants, and so on. This expanse of

biochemical detail presents a fundamental barrier to developing a

predictive, experimentally falsifiable description of these systems.

Here we show how to cross this biochemical expanse, with the

aid of a few carefully chosen measurements. Specifically, we

demonstrate that the promoter logic of pR – its transformation of
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multiple inputs into a single transcriptional output – encapsulates

all the biochemical information required to predict the responses

of LuxI/LuxR quorum-sensing systems. The idea of summarizing

the characteristics of a promoter by its input-output relationship

has been a fruitful one in the study of transcriptional networks:

gene regulation functions [31,32], cis-regulatory input functions

[33,34], and genetic logic gates [35,36] are all variations on this

theme. Here we use the term ‘promoter logic function’ to

emphasize the fact that the pR promoter integrates multiple

regulatory inputs. In contrast to prior usage [36], we do not

restrict ourselves to cis-acting inputs alone, but rather take a

black-box approach in which the ‘inputs’ can include any

upstream elements that influence the output transcription rate.

Using a combination of theory and experiment, we show how the

promoter logic function of pR is defined and measured; we

describe how to predict density-dependent responses from this

measurement alone; and we successfully predict the responses of

several distinct feedback systems built from V. fischeri LuxI/LuxR

components. Thus we give concrete meaning to the abstract idea

of the promoter as a computational entity, the central processor

at the heart of this ubiquitous cell-to-cell communication

paradigm.

Results

Defining the promoter logic function and density-
dependent responses

Consider a thought experiment involving a population of cells

whose intracellular LuxI and LuxR concentrations are held fixed

( �YYI , �YYR). If cell growth is suddenly clamped at some density r, then

once sufficient time has elapsed, the AHL concentration (w) will be

proportional to cell density and the LuxI concentration:

w~mr �YYI , ð1Þ

where the proportionality constant m depends on AHL production

and decay kinetics, and on the modality of cell growth (Supporting

Information, Text S1: Density dependence of AHL). LuxR-AHL

binding is in rapid equilibrium [37], so the rate of transcription at

the pR promoter will essentially depend on the instantaneous

concentrations of LuxR and AHL:

Transcription rate at pR~f w, �YY Rð Þ~f mr �YY I , �YY Rð Þ ð2Þ

Since we never measure transcription directly, it is convenient

define the maximal value of f as the unit transcription rate.

The function f can be interpreted in two distinct but related

ways. First, we can consider LuxI and LuxR as its two free inputs,

keeping r fixed. This is the promoter logic function (PLF) of pR, and is

valid for feedforward systems in which LuxI and LuxR levels can

be set independent of cell density. We can visualize it as the two-

dimensional surface generated by varying LuxI and LuxR in the x

and y directions, while plotting the transcriptional output as the

height along the z direction [33–36]. To go from the PLF at

density r to the PLF at a higher density r0, we squeeze the former

by the factor r’=r along the LuxI axis; this is equivalent to

multiplying the AHL-to-density proportionality constant m by the

same factor.

Alternatively, we can regard f principally as a function of cell

density. This interpretation is valid both for feedforward systems

with LuxI and LuxR levels held fixed, as well as for feedback

systems in which these levels might have density-dependent steady-

states Y SS
. (r). The rate of transcription at pR is then given by:

DDR(r):f (mrY SS

I
(r),Y SS

R
(r)): ð3Þ

This is the system’s density-dependent response (DDR); it is visualized as

a curve that specifies the transcriptional output at each cell density.

Although defined in growth-clamped conditions, the DDR has a

Table 1. Examples of feedback and regulation in LuxI/LuxR
quorum-sensing systems.

System, function, and feedback architecture Ref.

Vibrio fischeri LuxI/LuxR: Bioluminescence 13,14

Sending LuxI synthesizes AHL 13

Receiving AHL binds LuxR, probably drives dimerization 12

Feedback luxI expression activated by LuxR-AHL 13

Regulation luxR expression catabolite-repressed via CRP 5

Agrobacterium tumefaciens TraI/TraR: Ti plasmid conjugation 15,16

Sending TraI synthesizes AHL 17

Receiving AHL reversibly binds TraR, drives dimerization 17

Feedback traI and traR expression activated by TraR-AHL 15

Regulation traR expression octopine-responsive 15

Pseudomonas aeruginosa LasI/LasR: Biofilm formation; virulence 18

Sending LasI synthesizes 3O-C12-HSL 18

Receiving 3O-C12-HSL reversibly binds LuxR, drives multimerization 19

Feedback lasI expression activated by LasR-3O-C12-HSL 20

Regulation lasR expression regulated by a two-component system 4

Pseudomonas aeruginosa RhlI/RhlR: Biofilm formation; virulence 18

Sending RhlI synthesizes C4-HSL 18

Receiving C4-HSL reversibly binds RhlR homodimer 21

Feedback rhlI expression activated by RhlR-C4-HSL 22

Regulation rhlR expression activated by LasR-3O-C12-HSL 21

doi:10.1371/journal.pcbi.1002361.t001

Author Summary

Bacterial cells constantly communicate with one another
by exchanging chemical signals, which constitute a rich
source of information about the proximity of friends or
foes in the environment. These signals can be used to
coordinate the actions of cells across a population. For
example, pathogenic bacteria infecting a host can remain
quiescent, only becoming virulent once they attain a
sufficient cell density. Such coordination, regulated by so-
called quorum-sensing systems, works on the following
principle: every cell in the population secretes a specific
chemical signal; the more cells there are, the more signal is
generated; when individual cells sense that the signal has
crossed some threshold, they launch a response. The
nature of the response depends on the detailed molecular
wiring of the secretion and sensing system, which can vary
from species to species. It is often impossible to determine
all these molecular details for any given system. Borrowing
ideas from control theory, we show that this internal
wiring can be largely ignored, and these systems can be
considered as ‘black boxes’. Our experiments demonstrate
that the measured input-output logic of the black box,
which we term ‘promoter logic’, is sufficient to predict the
diverse responses of different quorum-sensing systems.

Prediction by Promoter Logic in Quorum Sensing
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clear operational interpretation for growing populations: it is the

moving target towards which the transcription rate converges as

cell density increases. The more rapidly intracellular components

equilibrate relative to cell growth, the closer the actual rate of

transcription will be to this target.

We can classify the DDRs of different systems according to their

behavior over the relevant cell density range, from zero upto some

terminal value rmax (Fig. 1A; Supporting Information, Text S1:

Bifurcation analysis of feedback loops). For monostable DDRs

(type M; mnemonic sMooth) transcription is a smoothly

increasing, typically sigmoidal function of cell density. For bistable

DDRs (type B; mnemonic aBrupt) the sigmoidal curve folds back

on itself, so there is a range of cell densities over which two stable

transcription levels co-exist. If rmax falls beyond the bistable range

(type B+), cells that are initially un-induced will abruptly switch to

the induced state once their density crosses the threshold at which

the lower branch of the curve vanishes. If rmax falls within the

bistable range (type B6), the system will be hysteretic (history-

dependent): cells that are initially un-induced will tend to remain

so; cells that are initially induced can sustain induction at the

terminal cell density; and noise-driven transitions between these

states can generate a heterogeneous population [23,24]. If rmax

falls below the bistable range (type B2), cells will always remain

un-induced; we do not expect this behavior to be relevant in

natural contexts. The DDR of a given LuxI/LuxR system will

depend on the values of various biochemical parameters, and on

the feedback topology; both LuxR and LuxI positive-feedback

systems can display all four DDR types, under different parametric

conditions.

Predicting density-dependent responses from promoter
logic

Because the PLF and the DDR are essentially different slices of

the same function, it should be possible to obtain one from the

other as long as they are measured under the same conditions.

Here we make a stronger claim: that knowledge of the PLF for a

feedforward system allows us to predict the entire DDR of feedback

systems constructed using the same promoter. A feedforward

system is one in which both LuxI and LuxR are expressed

constitutively while some output protein Z (with concentration YZ )

is expressed from pR (Fig. 1B). In a positive-feedback system,

either LuxI or LuxR is expressed from pR forming a transcrip-

tional loop, while the other is expressed constitutively (Fig. 1C–E).

These possibilities are represented by the following differential

equations:

Feedforward :
1

cZ

dYZ

dt
~QZf (mr �YY I , �YY R){YZ

LuxR-feedback :
1

cR

dYR

dt
~QRf (mr �YY I ,YR){YR:

LuxI-feedback :
1

cI

dYI

dt
~QI f (mrYI , �YY R){YI

ð4Þ

Here, intracellular protein concentrations (Y.) are the dynamical

variables; symbols with overbars ( �YY.) represent the fixed

concentrations of constitutively expressed proteins; and the

parameters Q. are protein production rates per transcript, scaled

Figure 1. Density-dependent responses and feedback loops. (A) The response of a quorum-sensing system is encapsulated by its
transcriptional output, from the moment of inoculation upto its terminal density rmax. Four different types of density-dependent responses can arise:
(M) monostable, where transcription smoothly increases with cell density; (B+) bistable, with a threshold density at which transcription abruptly
increases; (B6) bistable and hysteretic at the terminal density, where high and low transcription states co-exist; (B2) bistable but un-induced even at
the terminal density, since the potentially bistable region is never reached. Solid lines are stable fixed points, dotted lines are unstable fixed points,
and grey boxes indicate bistable density ranges. In our experiments we infer DDRs from the measured terminal responses. These figures were
generated for the autonomous LuxI-feedback system using Eq. S18 and parameters from Table S3. Here rmax = 0.05 (OD600) to match the autonomous
loop experiments, while fa, ng are varied as follows. M: {0.1,0.6}; B+: {0.04,1.6}; B6: {0.01,1.4}; B2: {0.002,1.5}. (B) Constructs used in this study. In
sender cells (Sen), LuxI is expressed from the aTc-inducible pTet promoter. In feedforward receiver cells (Rec-FF), LuxR is expressed from the IPTG-
inducible pLac promoter, and CFP is expressed from the pR promoter. (C) In the feedback receiver cells (Rec-RFB), LuxR is expressed in feedback from
the pR promoter. (D,E) In autonomous feedback systems (Aut-RFB and Aut-IFB) either LuxR or LuxI is expressed in feedback from the pR promoter,
while the other protein is expressed from the pLac promoter. Detailed construct maps are given in Tables S1, S2.
doi:10.1371/journal.pcbi.1002361.g001

Prediction by Promoter Logic in Quorum Sensing
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by the protein decay rates c.. The microscopic biochemical details

(hidden inside the function f ) are separable from feedback

topology (which determines the structure of the differential

equations) – consistent with our intuition that the same genetic

components may be re-wired in many ways [29].

Formally, the density-dependent response in the growth-

clamped thought experiment can be found by measuring

production and decay rates in Eq. 4; the steady-states Y SS
. (r)

are those protein levels at which these rates become equal [32]. In

practice, protein concentrations can be more accurately deter-

mined than production and decay rates. A robust, model-

independent technique proposed by Angeli et al. [26] allows us

to predict feedback responses using concentration measurements

alone, absent any rate data (Fig. 2). Consider a LuxR-feedback

system, where the LuxI concentration is held fixed at a level �YYI

(the regulator) and the LuxR concentration is allowed to reach its

density-dependent steady-state level Y SS
R (r) (the quantity we wish

to predict). Imagine breaking the feedback loop by expressing

LuxR exogenously at its original steady-state level from a

constitutive promoter (the input), and substituting some passive

reporter Z in place of LuxR, downstream of pR (the output). The

concentration of the reporter will be different from that of LuxR

because it has a different translation rate: Y SS
Z ~ QZ=QRð ÞY SS

R .

This concentration can also be calculated from Eq. 4, as the

system is now identical to the feedforward case:

Y SS
Z ~QZf (mr �YYI ,Y SS

R ). Setting these equal to one another, we

see that the steady-state level of LuxR in feedback satisfies a

consistency condition:

Y SS
Z ~QZf (mr �YYI ,Y SS

R )~ QZ=QRð ÞY SS
R ~Y SS

Z : ð5Þ

Both the left-hand and right-hand terms can be measured and

graphed on a YZ versus YR plot (Fig. 2B). The left-hand term is a

slice of the PLF; it will generally be a monotonically increasing

nonlinear curve called the input-output characteristic. The right-hand

term will be a straight line called the line of equivalence whose slope

encodes the input-to-output scale factor. The point Y SS
R where

they intersect satisfies the desired steady-state condition of Eq. 4:

it is level LuxR would reach in feedback when the regulator LuxI

is held at the given level. A different level �YYI of the regulator

corresponds to a different slice of the PLF, and results in a

different steady state response Y SS
R (Fig. 2C,D). The converse of

this strategy applies for the LuxI-feedback case: here, the steady-

state LuxI response (Y SS
I ) can be predicted as a function of the

LuxR regulator level ( �YYR). Thus we can predict the response of

LuxR or LuxI feedback loops directly from measured PLF at

density r; responses at other densities can be predicted using

stretched or squeezed versions of the PLF, via the proportionality

constant m.

From thought experiment to practical measurement
To implement this predictive approach, we must measure

the promoter logic in conditions that mimic the idealized

thought experiment. Specifically, we must clamp cell growth

and AHL accumulation so the AHL-to-density proportionality

shown in Eq. 1 is achieved. A continuous-flow chemostat setup

clamps cell density rather than cell growth, and is difficult to

multiplex. A more feasible strategy relies on the observation

that the required AHL-to-density proportionality condition can

arise in two very different situations. First: under the static

conditions of the thought experiment where cell growth is

clamped at a nominal density r. Second: in an exponentially

growing culture where LuxI is held constant, and r is the cell

density at the time of measurement. (The only caveat is that the

proportionality constant m will be different for the two

protocols; see Supporting Information, Text S1: Density

dependence of AHL.) Under exponential growth conditions,

the PLF can be determined by splitting the measurement over

two cell types (Fig. 1B): AHL-producing sender cells (Sen)

which express LuxI at a pre-determined level; and AHL-

responsive receiver cells (Rec-FF) which express LuxR at a pre-

determined level, as well as a reporter protein downstream of

pR in the feedforward configuration. We first let sender cells

grow exponentially from a very low initial density. Once the

culture reaches the desired density r, we filter these cells out to

clamp AHL levels (which, crucially, now obey the AHL-to-

density proportionality condition). Finally, we measure the

response of the receiver cells in the filtrate medium. By

repeating this measurement at a standard cell density r but

many different combinations of LuxI and LuxR levels, we can

map out the complete PLF.

The promoter logic function of pR
We employed our theoretical framework to predict and test the

responses of synthetic quorum-sensing systems built from V. fischeri

components, expressed in an Escherichia coli background

[29,30,38,39] (Tables S1, S2). We expressed LuxI in sender cells

from the anhydrotetracycline (aTc) inducible tet promoter (pTet),

and LuxR in receiver cells from the isopropyl b-D-1-thiogalacto-

pyranoside (IPTG)-inducible lac promoter (pLac) (Fig. 1B). We

grew sender cells in minimal medium containing aTc for 12 h,

until the optical density of the culture reached the level

OD600 = 0.2. At this point we filtered out the cells and retained

the AHL-enriched broth, to which we added an equal volume of

fresh minimal medium containing IPTG, so that the nominal cell

Figure 2. Predicting feedback responses. (A) Consider a black box
that transforms a regulatable input into a measurable output, where
properties of this transformation might depend on some external
regulator. (B) For a fixed regulator value a, we map out the input-output
characteristic (IOC) by varying the input and measuring the resulting
output (black curve). (C) If the output is now fed back into the input, the
two values are forced to match. This condition only obtains at special
points where the IOC intersects the line of equivalence I = 0 (red line,
Fig. 2B). These intersection points determine all possible steady-state
responses of the feedback system, though this graphical argument is
agnostic regarding the stability of steady-states. (D) If the regulator
level a is now changed, the IOC must again be measured, and the new
feedback response predicted. By iterating this process, we obtain the
full feedback response as a function of a.
doi:10.1371/journal.pcbi.1002361.g002

Prediction by Promoter Logic in Quorum Sensing
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density was OD600 = 0.1. We inoculated receiver cells into this

broth at low density, and grew them for 12 h to a final density of

OD600 = 0.1. We tracked the two inputs by measuring the levels of

LuxI in sender cells using polycistronic cyan fluorescent protein

(designated LuxI::CFP, with fluorescence signal YI ) and LuxR in

receiver cells using polycistronic yellow fluorescent protein

(designated LuxR::YFP, with fluorescence signal YR). The role

of the passive output Z was played by the cyan fluorescent protein

expressed from pR in receiver cells (designated CFP, with

fluorescence signal YZ ). In total we carried out two or more

replicate measurements of output CFP for all 42 combinations of 6

different LuxI::CFP levels (varying aTc in the range 0–50 ng/ml;

Fig. 3A) and 7 different LuxR::YFP levels (varying IPTG in the

range 0–1000 mM; Fig. 3B). Fig. 3C shows the result: the PLF of

the V. fischeri pR promoter. As expected, the system performs an

AND-type operation [35,36] only generating an output when both

LuxI and LuxR levels are above threshold, with the output CFP

level varying over two orders of magnitude between the low and

high states. Horizontal or vertical slices of the PLF are the input-

output characteristics.

Lines of equivalence
We expressed CFP, LuxI::CFP, and LuxR::YFP, in turn,

downstream of IPTG-inducible pLac, and used an affine fit to

determine fluorescence backgrounds and scale factors to account

for the differing translation rates and fluorescence units of each

(Fig. S2). For example, plotting LuxR::YFP levels on the x-axis and

CFP levels on the y-axis as IPTG is varied produces a linear fit

with non-zero intercept; the background fluorescence levels in

each channel can be estimated from intercepts, and the scale factor

from the slope (see Supporting Information, Text S1: Fluorescence

backgrounds and scale factors). With backgrounds subtracted, on a

standard plot the data will fall on a straight line passing through

the origin with slope equal to the scale factor; on a log-log plot they

will fall on a straight line with unit slope. These correspond to lines

of equivalence.

Feedback response measurements
To test the generality of our approach, we predicted and

measured the responses of three distinct feedback loops, each for a

set of regulator levels, totaling to 20 different DDRs.

Rec-RFB (Fig. 1C): cells expressing LuxR::YFP downstream of

pR, giving a LuxR-feedback topology. These feedback receiver

cells must be coupled to AHL-producing sender cells expressing

LuxI::CFP downstream of pTet. Here, aTc-induced LuxI::CFP is

the regulator, LuxR::YFP is the input, and CFP is the output. We

predicted the value of LuxR::YFP in feedback for six values of

aTc, and compared this to the measured response at terminal

density rmax = 0.1 (OD600).

Aut-RFB (Fig. 1D): cells expressing LuxI::CFP downstream of

pLac, while LuxR is expressed downstream of pR, giving an

autonomous LuxR-feedback topology. Here, IPTG-induced

LuxI::CFP is the regulator, LuxR::YFP is the input, and CFP is the

output. We predicted the value of LuxR::YFP in feedback for seven

values of IPTG, and compared this to the measured response at

terminal density rmax = 0.05 (OD600).

Aut-IFB (Fig. 1E): cells expressing LuxR::YFP downstream of

pLac, while LuxI is expressed downstream of pR, giving an

autonomous LuxI-feedback topology. Here, IPTG-induced Lux-

R::YFP is the regulator, LuxI::CFP is the input, and CFP is the output.

We predicted the value of LuxI::CFP in feedback for seven values

of IPTG, and compared this to the measured response at terminal

density rmax = 0.05 (OD600).

In order to detect hysteresis in these experiments, we initialized

cells in either un-induced (OFF history) or fully induced (ON

history) states before growing them to the terminal density

(Materials and Methods: Cell growth and imaging). If the system

is hysteretic, the terminal responses of the OFF-history and ON-

history cell populations will be different; conversely, if these two

populations have similar terminal responses, the system is non-

hysteretic. We can infer the DDR type for each feedback construct

and regulator level from the measured terminal response alone. If

the terminal response is hysteretic, with high and low states, we

Figure 3. The promoter logic function of pR. (A,B) Input LuxI::CFP and LuxR::YFP values as functions of the inducers aTc and IPTG, respectively;
data are fit to Hill functions (Eq. S4) with parameters given in Table S4. To the right of each graph we show inverted phase-contrast images of E. coli
cells overlaid with pseudocolor fluorescence data of LuxI::CFP and LuxR::YFP levels. Datapoints on the graph are population averaged values of
fluorescence-per-pixel in the CFP and YFP channels; error bars represent standard deviations over replicates. (C) Bubble-plot of the measured
promoter logic function of pR at the nominal cell density OD600 = 0.1. Here, aTc (hence LuxI::CFP) is varied along the x-axis; IPTG (hence LuxR::YFP) is
varied along the y-axis; the area of the circle at each combination of input values represents the resulting CFP output level (which can also be read
out using the colorbar). Vertical or horizontal cuts correspond to the input-output characteristics shown in Fig. 5A,D; these can be used to predict
LuxR-feedback or LuxI-feedback responses, respectively.
doi:10.1371/journal.pcbi.1002361.g003

Prediction by Promoter Logic in Quorum Sensing
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can immediately conclude that the entire DDR is bistable type

B6. If the terminal response is either high or low, but small

changes in the regulator level lead to hysteretic behavior, we can

infer that the entire DDR is bistable type B+ or B2 respectively. If

the terminal response is non-hysteretic and ranges over interme-

diate transcription levels as the regulator level is varied, we can

infer that the entire DDR is monostable type M. Ambiguous cases

(for example a high terminal response, insensitive to the regulator,

is consistent with both types M as well as B+) can be resolved by

direct measurement of the DDR over the full density range.

Briefly, we find that the Rec-RFB system generates monotonic

type M DDRs with no evidence of hysteresis, for all six values of

aTc (Figs. 4A, 5C). Similarly, the Aut-RFB system generates non-

hysteretic, monotonic type M DDRs for all seven values of IPTG

(Figs. 4B, 5B). In stark contrast, the Aut-IFB system generates

hysteretic type B6 DDRs for a range of intermediate IPTG levels,

with un-induced type B2 or fully-induced type B+ responses

below or above this range (Figs. 4C, 5E). In the following two

sections we assess in detail the extent to which our predictions

match these observed responses.

Model-independent predictions
In principle, the prediction procedure is straightforward:

holding the regulator fixed, we must extract the appropriate

input-output characteristic from the PLF (Fig. 3C), and find its

points of intersection with the appropriate line of equivalence (Fig.

S2). In practice, there are two complications. First, because the

PLF is determined only for a discrete set of input values, some type

of interpolation procedure is required before we can detect

intersections. Second, two experiments performed with the same

construct under different growth conditions will be characterized

by different values of the AHL-to-density proportionality constant

Figure 4. Model-independent predictions. Each stack of histograms relates to predictions and terminal response measurements of a different
feedback loop shown in Fig. 1C–E. In all stacks, grey histograms show model-independent predictions over 1000 trials. Note that the predictions are
of deterministic steady-states, while the measurements include the effects of cell-to-cell variability; measured histograms are thus broader than
predicted ones. (A) Rec-RFB. Orange histograms show observed LuxR::YFP levels. Numbers on the right indicate aTc levels in ng/ml. Our predictions
match the observed fluorescence intensities as well as the threshold aTc level within a factor of two, even though both the input and output are
varied by over an order of magnitude. (B) Aut-RFB. Orange histograms show observed LuxR::YFP levels for ON-history cells, white histograms show
observed LuxR::YFP levels for OFF-history cells; the intersection is hatched. Numbers on the right indicate IPTG levels in mM. LuxR::YFP levels are
predicted to be low independent of IPTG, but are observed to be induced starting from IPTG,50 mM. There is no evidence of hysteresis. (C) Aut-IFB.
Blue histograms show observed LuxI::CFP levels for ON-history cells, white histograms show observed LuxI::CFP levels for OFF-history cells; the
intersection is hatched. Numbers on the right indicate IPTG levels in mM. For the Aut-IFB case, we sometimes detect three intersections of the input-
output characteristic with the line of equivalence, an indication of multistability and hysteresis; the low and high intersections are predicted stable
values, the middle intersection is an unstable threshold (e.g. see Fig. 5D). Percent values show the fraction of trials that generate such multistable
predictions. The actual terminal response is indeed observed to be hysteretic: histograms from OFF-history cells and ON-history cells are non-
overlapping for IPTG = 10 mM and 50 mM.
doi:10.1371/journal.pcbi.1002361.g004
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m, so their DDRs will be relatively stretched or squeezed along the

density axis.

As a first pass we opted for a predictive procedure that required

no underlying mechanistic model or adjustable parameters: we used

power-law interpolation, corresponding to linear interpolation in

log-log space [40], and did not allow for any variation in m. The PLF

measurements showed slight deviations between replicates; we

incorporated this uncertainty into our prediction procedure using a

Monte Carlo approach. Essentially, we added log-normal noise to

the measured datapoints and generated an ensemble of predicted

intersections over 1000 trials (Materials and Methods: Model-

independent predictions). For the Rec-RFB system our model-

independent predictions correctly captured, within a factor of two,

both the terminal magnitude of LuxR::YFP levels in feedback, as

well as the threshold aTc concentration at which the system

becomes activated (Fig. 4A). For the Aut-RFB system, although we

predicted a consistently low terminal level of LuxR::YFP indepen-

dent of IPTG concentration, the system was observed to be induced

by an order of magnitude starting around IPTG = 50 mM (Fig. 4B).

The Aut-IFB case was the most interesting: in this case, we detected

multiple intersections of the input-output characteristic with the line

of equivalence, implying that the feedback system should be bistable

and hysteretic [26]. Indeed, the terminal feedback response showed

a strong hysteresis of LuxI::CFP levels (Fig. 4C), and our predictions

correctly captured the magnitude of the low and high states.

However, we only predicted hysteresis for IPTG$50 mM, whereas

it was observed even at IPTG = 10 mM. Surprisingly, both the

autonomous systems were induced below the predicted threshold

IPTG level, even though they were grown to a lower final density

than the receiver cells. We attribute this to the increased

accumulation of AHL in the autonomous case, compared with

the sender-receiver experiments in which AHL levels decay once

sender cells are removed (see Materials and Methods: AHL

calibration; Fig. S4).

Model-based predictions
The variations in the terminal density and AHL levels between

different experimental modalities can be captured via the

Figure 5. Model-based predictions. (A,D) Intersections of input-output characteristics (IOCs: black curves, generated using Eq. 6, Table S3, and Eq.
S4, Table S4) with lines of equivalence (red lines, generated using Eq. S3, Table S3). Datapoints show CFP values from the PLF; fluorescence values are
background-subtracted. Since the promoters driving the regulators have lower maximal transcription rates than pR, datapoints lie in a low band of
regulator values. Fitted IOCs appear to have the same maximal value because the half-saturation concentration for LuxR-DNA binding is ,1 LuxR
molecule per cell, far below available total LuxR (Supporting Information, Text S1: AHL and LuxR biochemistry). (B,C,E) Predicted (curves) and
measured (datapoints) terminal responses for the three feedback loops. Each datapoint gives the mean fluorescence of a cell population; error bars
represent standard deviations over replicates. (A) For predicting LuxR-feedback response, the IOC is a vertical slice of the PLF (keeping aTc and LuxI
fixed, while varying IPTG and LuxR); for example, we show IOCs corresponding to aTc = 0 ng/ml and 50 ng/ml (Fig. 3C). (B) Feedback response of Aut-
RFB. White datapoints show the terminal response of OFF-history cells; orange datapoints show the terminal response of ON-history cells. There is no
evidence of hysteresis; we infer that all DDRs are monostable, type M. (C) Feedback response of Rec-RFB. Orange datapoints show measured terminal
responses. We infer that all DDRs are monostable, type M. (D) For predicting LuxI-feedback response, the IOC is a horizontal slice of the PLF (keeping
IPTG and LuxR fixed, while varying aTc and LuxI); for example, we show IOCs corresponding to IPTG = 10 mM and 100 mM (Fig. 3C). (E) Feedback
response of Aut-IFB. White datapoints show the terminal response of OFF-history cells; blue datapoints show the terminal response of ON-history
cells; the grey box highlights the hysteretic region. We infer that DDRs in the hysteretic IPTG range are bistable, type B6, while those below and
above this range are type B2 and B+ respectively. (F) Quantifying hysteresis for autonomous feedback loops Aut-RFB (orange) and Aut-IFB (blue). We
show p-values from a T-test quantifying the differences between the terminal responses of ON-history and OFF-history cells over replicates; the
dotted line shows p = 0.05. Only the Aut-IFB system shows significant hysteresis (grey box).
doi:10.1371/journal.pcbi.1002361.g005
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proportionality constant m. Incorporating this free parameter into

the model-independent strategy is cumbersome. To proceed, we

employed a more sophisticated interpolation strategy in which we

fit the observed PLF to a parameterized functional form. Any

function that reasonably described the PLF data would suit our

purpose; for example, rational polynomial approximations are

frequently used for non-linear systems identification in control

theory. A biochemically-motivated form is particularly useful

because it can be applied both to predict the macroscopic response

of feedback loops, as well as to estimate the values of meaningful

microscopic parameters [33,41]. We used a biochemical model to

derive the following parameterized form for the PLF, describing

the output CFP level (YZ ) as a function of the two regulated inputs

LuxI::CFP ( �YYI ) and LuxR::YFP ( �YYR) (see Supporting Information,

Text S1: Modeling the promoter logic function):

YZ

QZ

~bz 1{bð Þ
�YY n

R(~ddz(~mmr �YY I )m)n

1z �YY n
R(~ddz(~mmr �YY I )m)n

: ð6Þ

The Hill coefficients m and n capture the cooperativity of AHL-

LuxR binding, and LuxR-DNA binding, respectively; the

parameter ~mm is a scaled version of the AHL-to-density propor-

tionality constant from Eq. 1. We fit this function to the measured

PLF, using a non-linear least-squares approach to estimate

parameter values [42] (see Supporting Information, Text S1:

Parameter estimation; Table S3; Fig. S3). Our estimated Hill

coefficients were in reasonable agreement with previous biochem-

ical measurements [12] (see Supporting Information, Text S1:

AHL and LuxR biochemistry).

To predict feedback responses, we fed fitted PLF parameters

into Eq. 6 to obtain our input-output characteristics (Fig. 5A,D),

with the regulator values �YYI (for LuxR-feedback systems) or �YYR

(for LuxI-feedback systems) obtained from Eq. S4. We applied our

fitted parameter values directly, with no free parameters or

variations in ~mm, to predict the full set of terminal responses for the

Rec-RFB system, for all six values of aTc (Fig. 5C). For the

autonomous feedback systems, we kept all PLF parameters fixed

save one: the value of ~mm was varied to find the best match between

predictions and Aut-IFB data (Table S3: ~mm[Aut]). By adjusting this

single parameter we were able to predict full set of terminal

responses for both the Aut-RFB as well as the Aut-IFB systems, for

all seven values of IPTG (Fig. 5B,E).

Our predictions have two substantive components. First, there is

the qualitative prediction that the Rec-RFB and Aut-RFB systems

should be non-hysteretic, and show smooth monotonic DDRs;

while the Aut-IFB system should be hysteretic for some regulator

levels, and show bistable DDRs. This prediction is robust and

model-independent: it relies directly on the measured PLF, with

no room for adjustment. That our observations precisely match

these qualitative predictions is our strongest result. Second, there is

the quantitative prediction of the precise induction thresholds and

expression magnitudes for each system. These quantitative

predictions substantially match the very different observed

terminal responses of the Rec-RFB, Aut-RFB and Aut-IFB

systems: in all cases we correctly capture the threshold inducer

levels and saturating output levels over the full set of regulator

values (Fig. 5B,C,E). In two instances, however, the observed

response is more gradual than predicted (Fig. 5B,C). This could be

due to ‘critical slowing down’ [43,44], a phenomenon that causes

dynamical systems close to a sharp threshold to display slowed

kinetics. To explore this further, we used our fitted parameter to

predict the dynamic responses of the autonomous feedback systems

as functions of cell density, under rapid growth conditions. As

expected, the observed expression levels lagged behind the

dynamic predictions, particularly near sharp thresholds (Fig. S5).

The interplay of external regulation, promoter logic, and
feedback topology

The response of a natural LuxI/LuxR feedback system can be

modified in three distinct ways: first, the expression level of the

regulator could vary, perhaps in response to an external signal;

second, the promoter logic function could be perturbed, for

example by mutations that influence protein-DNA binding; third,

the feedback topology itself could be switched, by large-scale DNA

re-arrangements. In our experiments the autonomous LuxR-

feedback and LuxI-feedback systems are composed of the same

genetic components in permutation (Table S2); this change to the

feedback topology, leaving promoter logic untouched, results in

systems with completely different qualitative response types. We

can use our biochemical model to explore more generally how

regulation, promoter logic, and feedback interact to determine

system response; Fig. 6 shows our essential findings (Supporting

Information, Text S1: Bifurcation analysis of feedback loops; Fig.

S6). The two panels, corresponding to the two different feedback

topologies, show identical slices of parameter space: the Hill

coefficient of LuxR-DNA binding, and therefore the promoter

logic function, is varied along the x-axis; the expression level of the

regulator is varied along the y-axis. We see that both feedback

topologies can achieve any of the possible response types if

parameter values are carefully selected. However, given a set of

LuxI/LuxR homologs whose biochemical parameters are ran-

domly assigned, one is much more likely to achieve an abrupt

bistable response using a LuxI-feedback topology. Moreover, once

biochemical parameters (such as the Hill coefficient) have been

fixed, our model predicts that the LuxR-feedback topology is

hardwired into a single response type, whereas the LuxI-feedback

topology can be tuned between smooth and abrupt responses by

varying the LuxR regulator level. This non-trivial prediction is

corroborated by the fact that the same LuxI-feedback topology

that shows a abrupt bistable response in our experiments generates

a smooth monostable response when the LuxR regulator is

expressed from a different constitutive promoter [29].

Dual feedback systems and oscillations
The model-independent strategy we have described here is

powerful and broadly applicable: the steady-state response of a

feedback system, if it exists, will be at one of the self-consistent

points where the input-output characteristic intersects the line of

equivalence (Fig. 2). However the converse is not true: not all these

self-consistent intersections represent feedback steady-states. For

example, the LuxI-feedback system has three intersection points

(Fig. 5D), but only the low and high intersections represent stable

steady-states. It is theoretically possible to predict stability

properties if the system under consideration is monotone [26], a

subtle technical requirement related to the internal structure of the

black box; however, there is no direct method to determine if a

given black box is monotone. A feedforward system in which an

increase in any input leads to an increase in the output is

monotone. From molecular data, we know that the pR promoter

with LuxI and LuxR considered as its inputs satisfies this

condition. A system with only internal positive feedback loops is

also monotone. For example, consider the dual positive feedback

case in which LuxI as well as LuxR are expressed downstream of

pR (Fig. S7A). One way to decompose this system is to cut the

LuxI-feedback loop, and think of the monotone black box as the

entire LuxR-feedback system we have already studied (Fig. 5B).

The analysis proceeds precisely as before; there is no external
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regulator, but we can still predict density-dependent responses

(Fig. S7B,C; Supporting Information, Text S1: The dual positive-

feedback system). However, a black box that contains internal

negative feedback loops might fail to be monotone. In this situation

the model-independent theory is much more difficult to apply

[45], but the model-based PLF parameters still prove useful.

As a proof-of-principle, we constructed a system involving a dual

positive/negative feedback (Fig. 7A); for positive feedback, we used

the Aut-RFB system in which LuxR was expressed downstream of

pR, while LuxI was expressed downstream of the pLac promoter; for

negative feedback, we expressed the repressor LacI downstream of

an additional copy of pR, and placed the entire construct in a LacI-

deleted E. coli strain (Materials and Methods: Dual-feedback

experiments). On a LuxR vs. LuxI plot, the self-consistent solution

is determined by the intersection of two curves: first, the positive-

feedback curve in which the output LuxR is shown as a function of

LuxI (Fig. 7B,C: orange curve); second, the negative-feedback curve

in which the output LuxI is shown as a function of LuxR, via LacI

(Fig. 7B,C: blue curve). The self-consistent solution does exist;

however, the PLF parameters on their own cannot be used to

determine its stability. To go further, we employed a differential

equation formulation containing an extra dynamical parameter: the

response rate cI of LuxI (Supporting Information, Text S1: The dual

positive/negative-feedback system). For certain values of cI the self-

consistent solution is unstable, and the system is predicted to oscillate

(Fig. 7C,E). Indeed we observed such oscillations in density-clamped

chemostat experiments, synchronized over the entire cell popula-

tion, with a period of several hours (Fig. 7H). Synchronized

oscillations in a LuxI/LuxR-based positive/negative-feedback

system have already been reported, and comprehensively analyzed

[46]. Our goal here is only to show that, while the PLF on its own

does not contain sufficient information to predict oscillations, it

nevertheless does restrict the number of additional parameters that

need to be considered. Taken together, the success of our predictions

demonstrates our central claim: that the promoter logic function of

pR contains sufficient biochemical information to determine the

feedback responses of diverse quorum-sensing systems.

Discussion

Any predictive mechanistic description of quorum sensing must

be able to connect microscopic rules to macroscopic phenotype.

There are essentially three strategies for doing this, distinguished

by the level at which measurements must be made. First, we could

directly measure all the relevant microscopic biochemical

parameters [12]. This approach, while truly predictive, quickly

becomes infeasible as the complexity of the system increases and

the number of unknown parameters explodes. Second, we could

measure the macroscopic response itself, and use these to fit the

parameters of a mechanistic model [29]. This approach provides

molecular insight and explanatory power, and can be used to rule

out models inconsistent with the observed behavior. However,

explaining the macroscopic response is not equivalent to

predicting it a priori. Third, we could make measurements at an

intermediate mesoscopic scale, far removed from molecular detail

but still below the level of the phenotype of interest. For gene-

regulatory networks, this amounts in practice to characterizing the

behavior of isolated components of larger feedback systems. Such

measurements can be used to estimate ‘lower level’ molecular

parameters [33,41]; but they can also be directly applied to predict

‘higher level’ phenotype [32,47]. This mesoscopic approach is the

one we have taken here. Our central finding is that promoter logic

acts as a biochemical focal point: many types of microscopic rules

might result in the same promoter logic function, but it is this

Figure 6. The interplay of regulation, promoter logic, and
feedback. (A) Response types for the LuxR-feedback topology, with LuxI
as the regulator. (B) Response types for the LuxI-feedback topology, with
LuxR as the regulator. Each panel shows an identical slice of parameter
space: the Hill coefficient n of LuxR-DNA binding is varied along the x-
axis; the transcription rate a. of the regulator is varied along the y-axis; all
other parameters are fixed at their autonomous loop values given in
Table S3. The parameters corresponding to our autonomous loop
experiments are shown as seven partly overlapping white dots, whose
positions are identical in the two panels: their x-coordinates are given by
the fitted Hill coefficient n = 1.45; their y-coordinates are given by the
seven IPTG-induced pLac transcription rates, obtained using Eq. S4 with
parameters from Table S4. The boundaries between the four DDR types
are computed numerically; any differences in these DDR boundaries
between the two panels can be attributed to topology alone. Both LuxR-
feedback and LuxI-feedback topologies can generate all four types of
density-dependent responses; however, given the same microscopic
parameters the two topologies can show distinct behaviors. The
observed LuxR-feedback responses happens to fall near the monostable
type M boundary, while the observed LuxI-feedback responses are solidly
within the bistable type B region. Generically, for a given ‘hard-wired’
value of n the LuxR-feedback response will be either type M (smooth) or
type B (abrupt). In contrast, as long as n is sufficiently high, the LuxI-
feedback system can be tuned between smooth and abrupt responses
by varying the regulator level aR. Moreover, the LuxI-feedback system
can achieve abrupt responses over a broader range of n values. These
figures are qualitatively unchanged for other values of the fixed
parameters (Supporting Information, Text S1: Bifurcation analysis of
feedback loops).
doi:10.1371/journal.pcbi.1002361.g006
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function alone that determines the macroscopic density-dependent

response. This assertion is demonstrated by our ability to predict

the density dependent responses of three distinct feedback loops

based only on the measured promoter logic, using no free

parameters except the density scale. We expect our approach to be

broadly applicable, though it will tend to fail if measured promoter

logic is perturbed when the system is embedded within a larger

network [48], or if the system is influenced by network-host

interactions [49].

We have seen that the versatility of LuxI/LuxR quorum-sensing

systems arises from the interplay between promoter logic and

feedback topology. It is interesting that many transcriptionally

characterized LuxI/LuxR systems use a LuxI-feedback configu-

ration, whereas LuxR is typically placed downstream of a

promoter that responds to environmental inputs (Table 1). The

natural preference for LuxI feedback is unlikely to be the result of

a frozen accident, because quorum sensing genes have been

repeatedly shuffled over evolutionary timescales [7]. Moreover,

this preference cannot be driven by selection for a particular

response type, because both topologies can achieve any desired

response given the right promoter logic parameter values. We

suggest instead that the LuxI-feedback configuration has been

selected for its capacity to generate different response types via

modulation of the regulator [50]. Feedback topology and

promoter logic are ‘hard wired’ (they can only be changed by

mutations or re-arrangements at the DNA level), whereas

regulator expression can respond dynamically to external cues.

This tunability becomes relevant when cells must cope with

uncertain or time-varying conditions: the choice between a smooth

density-dependent response, abrupt activation, or noise-driven

heterogeneity will be dictated by the ecological context. To test

this conjecture we would need to observe the quorum-sensing

capacities of bacterial species in their natural environment [8,51],

determine whether cell populations do indeed tune their responses,

and gauge the extent to which this flexibility has any impact on

fitness. As new bacterial genomes are sequenced, the number of

putative LuxI/LuxR systems will rise exponentially, and we will be

limited only by the rate at which we can experimentally

characterize their behavior. The predictive framework we have

developed provides a reliable and scalable way to explore the

design, function, and diversity of these versatile cell-to-cell

communication systems.

Materials and Methods

Strains and plasmid constructs
All experiments except those involving the dual-feedback system

were performed in the host Escherichia coli strain K-12-Z1, a

Figure 7. Oscillations in the dual positive/negative-feedback system. (A) In the dual feedback system, both LuxR as well as the LacI repressor
are placed downstream of pR. LuxR positively regulates its own expression; LacI negatively regulates the expression of LuxI via the pLac promoter. We
model the system using measured PLF parameter values (Table S3), as well as additional parameters describing LacI-pLac interactions and protein
decay rates whose values are chosen in order to generate oscillations; the decay rate cI of LuxI is left as a free parameter (Supporting Information,
Text S1: The dual positive/negative-feedback system). (B,C) Numerical phase plane analysis. The orange curve is the LuxR nullcline along which
dYR=dt~0; the blue curve is the LuxI nullcline along which dYI=dt~0; the intersection of these curves is a fixed point which could be stable or
unstable. The black curve is shows the system trajectory, which runs counterclockwise as time progresses. (B) For cI ~0:1 the fixed point is stable, and
the system fails to oscillate. (C) For cI ~0:01 the fixed point is unstable, and the system enters a limit-cycle oscillation. (D,E) We show LuxR (orange,
left axis) and LuxI (blue, right axis) values as functions of time (in arbitrary units), corresponding to the trajectories from (B,C). (F) Our experiments are
conducted in a nitrogen-limited chemostat, which maintains a steady-state cell density of OD600 = 0.185. (G,H) Measured response of dual feedback
cells in the chemostat. Datapoints represent the mean fluorescence values of LuxR::YFP (orange, left axis) and LuxI::CFP (blue, right axis) for a
population of ,500 cells; errorbars represent standard error of means. (G) In the control experiment cells are grown in the presence of 1 mM AHL,
thus abolishing negative feedback, and the system settles into a steady state. Note that panels (D) and (G) represent very different steady-state
situations, and should not be directly compared. (H) In the oscillation experiment cells are initially primed with 1 mM AHL, but this is allowed to dilute
out from the 12 h timepoint. From about 20 h, the system displays oscillations that are synchronized over the entire population and stable for 15 h,
in qualitative agreement with the numerical predictions.
doi:10.1371/journal.pcbi.1002361.g007
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derivative of the K-12 MG1655 strain [52] with a chromosomal

gene cassette from the strain DH5aZ1 inserted by P1 transduction

[53] (Master’s Thesis, S. Dabholkar, 2007). This cassette encodes

LacI (the Lac repressor, expressed at ,3000 copies per cell), TetR

(the tetracycline repressor, expressed at ,7000 copies per cell),

and a spectinomycin resistance marker. The inhibition of the pLac

promoter by LacI is relieved by the addition of extracellular

isopropyl b-D-1-thiogalactopyranoside (IPTG); the inhibition of

the pTet promoter by TetR is relieved by the addition of

extracellular anhydrotetracycline (aTc). K-12-Z1 cells were

maintained at 4uC on LB agar containing 50 mg/ml of

spectinomycin; plasmid-transformed cells were maintained on

LB agar containing 100 mg/ml of ampicillin. All plasmid

constructs were built using components from the Registry of

Standard Biological Parts [54] (partsregistry.org). Constructs were

assembled using the standard BioBrick assembly strategy, and

maintained in the ampicillin-resistant pSB1A2 plasmid backbone

(partsregistry.org/Part:pSB1A2) with a pMB1 origin of replication

(copy number 100–300). Table S1 lists the BioBrick parts we used;

Table S2 gives construct maps.

Cell growth protocols
Cells from fresh colonies were first grown in 3 ml LB with the

appropriate antibiotic for ,12 h at 37uC. 10 ml of this culture was

diluted in 990 ml of 1% glucose-M9 minimal medium [55].

Aliquots ranging from 20–50 ml of this culture were then

transferred to several tubes containing 3 ml of 1% glucose-M9

minimal medium with no antibiotic. When required, this medium

was supplemented with the appropriate combination of inducers

(0, 5, 10, 50, 100, 500, 1000 mM IPTG; 0, 1, 5, 10, 20, 50 ng/ml

aTc). These tubes were maintained at 37uC in an incubated shaker

for the desired duration, and their final cell density was

determined from a 1 ml sample by optical absorbance at

600 nm (OD600). The sample closest to the target density was

selected for subsequent growth phases when required, or processed

for imaging. We used slight variations of this protocol for different

constructs:

Line of equivalence measurements. Cells transformed

with pLac expression constructs (Lac-CFP, Lac-LuxR, or Lac-

LuxI; see Table S2) were grown overnight in LB. They were then

transferred to 1% glucose-M9 medium containing the desired final

concentration of IPTG, allowed to grow for 12 h to a target

density OD600 = 0.1, and processed for imaging.

Sender-receiver measurements. Sender cells (Fig. 1B)

were grown overnight in LB. They were then transferred to 1%

glucose-M9 medium containing the desired concentration of aTc,

and allowed to grow for 12 h to a target density OD600 = 0.2. 1 ml

of this sample was extracted for imaging. Sender cells were then

removed using a 0.22 mm filter (Millipore), and the AHL-

containing supernatant was replenished with an equal volume of

fresh 2% glucose-M9 medium containing the desired final

concentration of IPTG. Receiver cells (Rec-FF or Rec-RFB;

Fig. 1B,C) previously grown overnight in LB were added to this

medium, grown for 12 h to a final OD600,0.1, then processed for

imaging.

Autonomous loop hysteresis measurements. ON history

protocol: Cells transformed with autonomous feedback loop

constructs (Aut-RFB or Aut-IFB; Fig. 1D,E) were grown

overnight in LB. They were then transferred to 25 ml of

glucose-M9 medium containing 500 nM synthetic AHL and

100 mM IPTG, and grown for 12 h to a target density

OD600 = 0.2. These cells were washed with 1% glucose-M9

medium by two rounds of centrifugation-pelleting followed by

re-suspension, in order to minimize transfer of AHL or IPTG into

subsequent steps. OFF history protocol: Cells were grown

overnight in LB. They were then transferred to 25 ml of

glucose-M9 medium with AHL and IPTG omitted, and grown

for 12 h to a target density OD600 = 0.05. This lower density was

used because OFF-hisotory cells were observed to be partially

induced at OD600 = 0.2. Both ON and OFF history cells were then

transferred, at the appropriate dilution, to 3 ml 1% glucose-M9

medium containing the desired final concentration of IPTG,

grown for 12 h to a target density OD600 = 0.05, and processed for

imaging.

Autonomous loop density-dependent measurements. Cells

transformed with autonomous feedback loop constructs (Aut-RFB or

Aut-IFB; Fig. 1D,E) were grown in 3 ml LB for 8 h. A 5 ml aliquot of

this culture was transferred to 80 ml of 1% glucose-M9 medium, and

cells were grown for 12 h to a target density OD600 = 0.03. These

cells were extracted using a 0.22 mm filter, washed twice with glucose-

M9 to remove any trace of AHL, and re-suspended in 25 ml of 1%

glucose-M9 medium containing the desired concentration of IPTG.

Subsequently, at successive timepoints from 0 to 12 h, 1 ml samples

were extracted for OD600 measurements and then processed for

imaging. For the Aut-IFB system, at high cell densities (OD600.0.5

after 8+ hours of growth) we found that a sub-population of cells

consistently lost fluorescence (possibly due to to plasmid loss, as the

media are antibiotic-free; see below). These cells were removed by

thresholding on LuxI::CFP levels when calculating population

averages. To investigate the cause of fluorescence loss, Aut-IFB

cells were imaged at the 0 h and 12 h timepoints; they were then

diluted by a factor of 100, and 35 ml of this culture was transferred

into 3 ml glucose-M9 medium containing 1 mM AHL. These cells

were grown for a subsequent 12 h, then imaged. If bistability were the

cause of the low fluorescence population, we would expect

fluorescence to recover in the presence of AHL; instead, we see a

total fluorescence loss at the 24 h timepoint (Fig. S8A). Colony

forming units (CFU) were measured at the 0 h and 12 h timepoints:

50 ml of diluted culture (at dilution factors of 104 or 105) was spread

and grown for 12 h at 37uC on LB agar plates containing

spectinomycin (25 mg/ml) and ampicillin (50 mg/ml), or

spectinomycin alone. Cells were observed to be predominantly

ampicillin-resistant at the 0 h timepoint but not at the 12 h timepoint

(Fig. S8B), suggesting plasmid loss as the cause of fluorescence loss.

Microscopy and image analysis
Cells from 1 ml of culture were pelleted by centrifugation at

13.2 k rpm for 10 minutes at 37uC, then re-suspended in 10 ml of

1% glucose-M9 medium. 4 ml of this suspension was placed on a

microscope slides (Thomas Scientific), and pressed gently under a

coverslip. Samples were imaged on a fully automated Zeiss

Axiovert M200 epifluorescence microscope with a cooled CCD

camera (Princeton Instruments Pixis). Phase contrast images as

well as fluorescence images using CFP and YFP filter sets

(Chroma) were acquired for each field of view. 8–15 fields were

imaged from a given sample, depending on the cell density. (A

small proportion of the imaging was performed on an Olympus

IX81 microscope in DIC and fluorescence modes; standard

calibration curves were used to match CFP and YFP values

between the Olympus and Zeiss instruments. Dual-feedback

oscillation experiments were conducted on the Zeiss system with

an altered camera gain for improved signal.) Images were analyzed

using the MATLAB image processing toolbox (Mathworks). Phase

contrast or DIC images were used to generate a binary cell mask,

with morphological constraints used to filter out non-cell objects.

The mask was then applied to fluorescence images to calculate the

average CFP and YFP intensity per pixel of single cells, for a

population of ,500 cells in each sample. Single-cell fluorescence
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values were approximately log-normally distributed; population-

averaged fluorescence signals were calculated as the geometric

mean of single-cell values, and error bars were determined as

standard deviations between means over replicates.

Model-independent predictions
We estimated the relevant input-output characteristic using

power-law interpolation of the measured PLF [40], then

determined its intersection(s) with the relevant line of equivalence

to generate predictions. Rec-RFB: On a log-log plot of CFP vs.

LuxR::YFP (determined from the PLF by holding aTc, therefore

LuxI::CFP, fixed), we connected datapoints by straight lines and

enumerated all the intersections with the line of equivalence. Aut-

RFB: Here, IPTG is used to modulate the regulator LuxI::CFP,

which takes on values distinct from those used to determine the

PLF. To account for this, we first generated predicted intersections

for each aTc-induced LuxI::CFP level of the PLF, as with Rec-

RFB. We then used power-law interpolation to find predicted

values at the desired IPTG-induced LuxI::CFP level. Aut-IFB: On

a log-log plot of CFP vs. LuxI::CFP (determined from the PLF

holding IPTG, therefore LuxR::YFP, fixed), we connected

datapoints by straight lines and enumerated all the intersections

with the line of equivalence. In all instances, we conservatively

extrapolated below and above the domain of measurement using

flat lines. By repeating the log-log interpolation and intersection

procedure 1000 times with noise added to the datapoints based on

standard errors of measurement, we generated a list of predicted

intersections.

AHL calibration
Rec-FF cells were grown in LB for 10 h, transferred to 3 ml

glucose-M9 minimal medium prepared with 20 mM of synthetic

AHL (Sigma-Aldrich), then grown for varying periods (0, 4, 8, and

12 h) to a target density OD600 = 0.1. The culture was centrifuged

at 8000 rpm for 20 min at 4uC. AHL from the supernatant was

extracted twice using an equal volume of ethyl acetate. Extracted

samples were dried using a centrifugal evaporator (Labconco) at

35uC for 30 min. Pellets were resuspeneded in 1 ml solution of

MilliQ water (60%) and methanol (40%). Samples were analyzed

by HPLC (Shimadzu) using an RP-18e column (Purospher STAR,

25064.6 mm, 0.5 mM). Components were isocratically eluted with

60:40 water/methanol (v/v) at a total flow rate of 0.4 ml/min, and

the absorption at 253 nm was recorded (Fig. S4A, inset). All

solvents and samples in this protocol were acidified with 0.1 ml/l

acetic acid, as AHL is unstable at alkaline pH. The same protocol

was then repeated omitting the introduction of Rec-FF cells at the

first step. We obtained a linear calibration between AHL

concentration and peak area (Fig. S4A), and found that the

measurement was sensitive down to an AHL concentration of

,1 mM. Rec-FF cells did not appreciably affect AHL degradation,

which occurs with a half-life of 4.360.2 h in the absence of cells,

and 4.060.1 h in their presence (Fig. S4B). Terminal AHL levels

in our feedforward and feedback experiments were below the

detection limit of the HPLC protocol, and could not be directly

measured. We therefore titrated synthetic AHL against the

response of Rec-FF cells, with LuxR induced using 500 mM

IPTG. Cells were grown in glucose-M9 medium with varying

AHL concentrations for 12 h, upto a target density OD600 = 0.1,

and their CFP expression was determined by imaging. The

response curve is best fit with a Hill coefficient of 1.960.5, and a

half-saturation value of 825 nM AHL (Fig. S4C). This half-

saturation value is an over-estimate as AHL decays over the 12 h

duration of the experiment; biochemical measurements [12]

suggest a value closer to 85 nm (Fig. S4D).

Dual feedback experiments
The construction of the dual positive/negative-feedback system

has been described in Anand et al [48]. Briefly, the Aut-RFB

construct was extended by placing LacI downstream of an

additional copy of the pR promoter, while LuxI was expressed

downstream of a CRP-dependent pLac promoter. This ampicillin-

resistant plasmid construct was transformed into the lacI deleted

kanamycin-resistant E. coli strain JW0336-1 (CGSC, Yale Univer-

sity). Cells from fresh colonies were first grown in 3 ml LB for 5 h; a

1 ml aliquot was then diluted to a final volume of 100 ml using 1%

succinate-M9 medium containing 1 mM AHL, and grown for 5 h to

a density of OD600,0.15. Cells were extracted by centrifugation at

5000 rpm for 4 minutes at 25uC, and re-suspended in 2 ml warm

nitrogen-limited (1 mM NH4Cl) succinate-M9; 1 ml portions were

transferred into two replicate flasks and diluted upto 50 ml with

nitrogen-limited succinate-M9 medium containing 1 mM AHL. A

nitrogen-limited chemostat culture was established at 37uC at a

dilution rate of 0.15/h, operating at a steady-state OD600 = 0.185.

During first 12 h, the source flask was replenished every 4 h with

fresh medium containing 1 mM AHL; this was done to ‘prime’ the

system into a high LuxR state. At this 12 h timepoint in the

oscillation experiment, AHL-absent medium was provided in the

source flask, causing AHL in the growth flask to dilute out. In

control experiments, the source flask continued to be replenished

every 4 h with AHL-containing medium. All growth media in these

experiments contained 100 mg/ml ampicillin. OD600 was measured

every 3 h, and cells were imaged every 45 min as described above.

Supporting Information

Figure S1 LuxI/LuxR quorum-sensing systems. LuxI

(blue circle) is an enzyme that synthesizes acyl-homoserine lactone

(AHL; white square). LuxR (orange circle) is a transcriptional

activator. (A) At low cell densities, LuxR is expressed at high levels

from the pL promoter, while LuxI is expressed at a basal level

from the pR promoter. AHL is synthesized at low levels, and

diffuses freely across the cell membrane. LuxR remains in an

inactive form. (B) At high cell densities, the aggregate synthesis of

AHL from many cells drives up its extracellular and intracellular

concentration, promoting LuxR-AHL binding. AHL-bound LuxR

activates transcription of LuxI at the pR promoter, driving a

positive feedback loop.

(TIF)

Figure S2 Measuring lines of equivalence. We determined

CFP, LuxR::YFP, and LuxI::CFP values for proteins expressed

from pLac with IPTG = [0 5 10 50 100 500] mM. Each datapoint

gives either the (A) LuxR::YFP or (B) LuxI::CFP level against the

corresponding CFP level at equal IPTG concentrations; error bars

represent standard errors of measurement over replicates. The

lines of equivalence (red) are determined by affine fits.

(TIF)

Figure S3 Promoter logic parameter estimation. (A) We

estimated the parameters of Eq. 6/Eq. S14 by non-linear least-

squares fitting. We observed for an unconstrained fit that the value

of the LuxR-AHL binding Hill coefficient m increased without

bound; but if the value of m was fixed, the algorithm robustly

converged to a set of best-fit parameters. Here we show fitted

parameter values as a function of m. The chi-square error (top left

graph) decreases monotonically with m; this underlies the numerical

instability. Throughout the paper, parameter values are those

determined for m = 2. The value of the LuxR-DNA binding Hill

coefficient n is only weakly dependent on m (bottom right graph). (B)

Predicted vs. observed CFP values for the 42 datapoints of the PLF,
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from a 5-parameter fit. (C) The histogram shows the distribution of

chi-square values found for 1000 Monte Carlo trials using synthetic

datasets. A fraction Q = 0.8 of these values are greater than value

from the actual fit (vertical red line), showing that the deviations in

Fig. S3B are within measurement error.

(TIF)

Figure S4 AHL calibration. (A) The area under the curve

from HPLC measurements of absorption at l= 253 nm, plotted

against synthetic AHL concentration. The inset shows the

absorption peak. (B) AHL decay measured using HPLC. The

exponential fit shows that AHL decays with a half-life of ,4 h,

independent of the presence or absence of cells in the medium. (C)

Titration: the CFP levels of Rec-FF cells (with LuxR induced using

500 mM IPTG) plotted against the initial levels of synthetic AHL

in the medium. The curve shows a Hill fit, with the best fit Hill

coefficient m = 1.9460.5. (D) Data from gel-shift experiments of

LuxR-to-AHL binding for 3.5 nm total LuxR, as a function of

AHL levels. The curve shows a fit with the Hill coefficient fixed at

m = 1.94. Datapoints estimated graphically from figures in

Urbanowski et al. [12]. (E) Data from DNA protection experiments

probing the binding of LuxR-AHL to DNA as a function of LuxR

levels, when AHL is in excess (10 mM). The curve shows a fit with

the Hill coefficient fixed at n = 1.45, as estimated from our PLF

measurements. Datapoints estimated graphically from figures in

Urbanowski et al. [12].

(TIF)

Figure S5 Dynamic predictions and responses. We

predicted the entire density-dependent response of the two

autonomous loop constructs (using Eqs. S17 and S18, with

parameters from Table S3), starting from low density and going up

to the carrying capacity of our media (OD600,1). As expected

given the high rates of change of cell density under these

conditions, the observed feedback response lags the predicted

DDR at all times. Nevertheless, the predictions correctly capture

how changes in the regulator level accelerate the induction

dynamics. Grey curves show the DDR predicted from Eqs. S17

and S18, with parameters from Table S4. In principle the

parameter ~mm should be re-calculated for these new high-density

growth conditions, but we have used ~mm [Sen] directly (Table S3).

Datapoints show the observed responses for (A) the Aut-RFB

system and (B) the Aut-IFB system. We determined responses at

two different IPTG concentrations (hence two different levels of

the regulator LuxI::CFP or LuxR::YFP, respectively). Measure-

ments were made at 2 h intervals until the cultures entered

stationary phase.

(TIF)

Figure S6 Mapping the boundary between monostable
and bistable regions. Using autonomous loop parameters from

Table S3 and a fixed value of cell density r, we can find the

regions of fa,ng space that admit bistable solutions (regions within

the taper emanating from a critical point, bounded by a set of

black and red curves). As r is increased up to the level rmax, these

tapers move toward lower values of a. Any given point will

transition from the un-induced (below taper) to the bistable (within

taper) to the fully induced (above taper) regions, thus mapping out

the DDR as a function of r. Once we reach rmax, any point above

the taper would have already been induced (B+); any point still

inside the taper would be hysteretic (B6); and any point below the

taper would be un-induced (B2); Fig. 6 was generated for

rmax = 0.05. By tracing out the critical points as cell density is

increased from 0 to ‘, we can find the line that separates the type

M and type B regions.

(TIF)

Figure S7 The dual positive-feedback system. (A) Dual

positive feedback is achieved by placing both LuxR and LuxI

downstream of pR. This system has no regulator, but is still

sensitive to extracellular AHL levels. (B) We model the system

using the autonomous loop parameters from Table S3. We further

allow the relative translational efficiencies of LuxI and LuxR to be

tuned: the condition yR=yI~1 means we use the directly

measured translation rates, while yR=yI~0:1 is equivalent to

LuxR having a 10-times reduced translation rate (Eq. S27). As in

Fig. 1 of the main text, we solve for the density-dependent

response (DDR) of the system for various values yR=yI , and of the

Hill coefficient n. As n is increased, the system moves from type M

(white), through type B+ (grey) and eventually to type B6 (white).

(C) Sample DDRs, for yR=yI~0:1, and n~0:5, 0:8, 1:3 (shown as

open circles in panel B).

(TIF)

Figure S8 Fluorescence loss measurements. (A) We

sampled Aut-IFB cells from various timepoints of the density-

dependent protocol (see Materials and Methods: Autonomous

loop density-dependent measurements). Cells were extracted for

imaging, then re-diluted, just prior to the 0 h, 12 h, and 24 h

timepoints; the OD600 values indicated correspond to pre-dilution

densities. Three replicates of the same experiment are shown.

Maximal LuxI::CFP fluorescence values increase throughout the

first 12 h growth phase; however, a sub-population of cells show

loss of fluorescence. Addition of AHL and subsequent growth to

the 24 h timepoint does not lead to fluorescence recovery,

indicating that the loss is irreversible. (B) Our constructs are

carried on an ampicillin-resistant plasmid backbone. We measured

the number of colony-forming units (CFUs) per ml of sample from

the 0 h and 12 h extracts, in the presence and absence of

ampicillin; errorbars represent standard error of the mean over

triplicates. At 0 h all cells are ampicillin resistant (no significant

difference between the two counts, p = 0.89), while at 12 h the

fraction of resistant cells has fallen to less than a fifth (p = 0.003),

suggesting plasmid loss is responsible for loss of fluorescence.

(TIF)

Table S1 List of BioBrick parts.

(PDF)

Table S2 Construct maps.

(PDF)

Table S3 pR promoter logic parameter values.

(PDF)

Table S4 Inducible promoter parameter values.

(PDF)

Text S1 Supporting theory, tables, and figures.

(PDF)
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