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Abstract

Networks play a crucial role in computational biology, yet their analysis and representation is still an open problem. Power
Graph Analysis is a lossless transformation of biological networks into a compact, less redundant representation, exploiting
the abundance of cliques and bicliques as elementary topological motifs. We demonstrate with five examples the
advantages of Power Graph Analysis. Investigating protein-protein interaction networks, we show how the catalytic
subunits of the casein kinase II complex are distinguishable from the regulatory subunits, how interaction profiles and
sequence phylogeny of SH3 domains correlate, and how false positive interactions among high-throughput interactions are
spotted. Additionally, we demonstrate the generality of Power Graph Analysis by applying it to two other types of networks.
We show how power graphs induce a clustering of both transcription factors and target genes in bipartite transcription
networks, and how the erosion of a phosphatase domain in type 22 non-receptor tyrosine phosphatases is detected. We
apply Power Graph Analysis to high-throughput protein interaction networks and show that up to 85% (56% on average) of
the information is redundant. Experimental networks are more compressible than rewired ones of same degree distribution,
indicating that experimental networks are rich in cliques and bicliques. Power Graphs are a novel representation of
networks, which reduces network complexity by explicitly representing re-occurring network motifs. Power Graphs
compress up to 85% of the edges in protein interaction networks and are applicable to all types of networks such as protein
interactions, regulatory networks, or homology networks.
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Introduction

In recent years, novel high-throughput methods, such as yeast

two-hybrid assays [1] and affinity purification techniques [2,3],

have been used to characterize protein interactions at a large scale

and have produced a wealth of data in the form of networks of

interacting proteins. Comprehensive protein interaction networks

have been assembled for several species: S. cerevisiae [4–6], C. elegans

[7], D. melanogaster [8,9], H. pylori [10], H. sapiens [11,12], and P.

falciparum [13]. Networks are also obtained with other high-

throughput data collection methods, either experimentally or in

silico, such as ChIP-on-chip [14] experiments, whole interactome

scanning experiments (WISE) [15], sequence homology networks

[16] and others. The challenge remains to obtain biological

insights through the analysis of these networks.

In the case of protein interaction networks, their topology has

been explored through the clustering of proteins into groups that

share the same biological function, are similarly localized in the

cell, or are part of a complex. To this end, several algorithms have

been developed, such as socio-affinity clustering [4], the Restricted

Neighborhood Search Clustering (RNSC) algorithm [17], the

MCODE algorithm [18], statistical sub-complexes [19], modular

decomposition [20] or the MULIC clustering algorithm [21].

How does the underlying biology manifest itself in protein

interaction networks? Fig. 1 illustrates three recurrent motifs that

have been reported in the literature. The first motif is the star,

representing a hub protein, which is frequently present in scale-free

biological networks [22]. Evolutionary models based on gene

duplication, divergence [23] and preferential attachment [24] can

explain the abundance of hub proteins. The second motif is the

biclique, also referred to as complete bipartite graph: all proteins in

one group interact with all proteins in another group. Domain

interactions have been reported to induce the occurrence of bicliques.

Models of protein interaction networks based on interacting domains

have been proposed in which complementary domains are shown to

induce bipartite structures [25,26]. Similarly, bicliques detected in

protein interaction networks were used to discover motif pairs at

interaction sites [27]. In general, domain interactions and protein

interactions have been shown in many studies to be sufficiently

correlated to allow domain bindings to be used to predict protein

interactions, and conversely, protein interactions to predict domain

interactions [28–38]. The third motif is the clique, also referred to as

complete graph: a set of completely interconnected proteins. In the

core of molecular complexes, where the distinction between direct

and indirect physical interactions is often blurred, protein interactions

are observed to organize into cliques and bicliques. Indeed, the

completion of quasi-cliques and quasi-bicliques has been shown to

successfully predict missing interactions between proteins [39].

Cliques are a special case of reflexive bicliques. Similarly, stars are

also a special case of bicliques in which one node is connected to

several other nodes.

The abundance of stars, cliques, and bicliques suggests that

modeling protein interaction networks as a collection of binary

interactions is an obstacle toward a detailed analysis of the wealth of

information contained in high-throughput networks. These net-

works have many edges that redundantly diffuse the information
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instead of highlighting it. In this study we introduce a new network

representation and analysis paradigm that not only groups proteins

into biologically relevant modules but also conveys in all detail–

without loss of information–and with fewer symbols, the subtle

connection patterns within and between groups of proteins.

Results and Discussion

Power Graph Analysis
Power Graphs are novel representations of graphs that rely on two

abstractions: power nodes and power edges. Power nodes are sets of nodes

brought together and power edges connect two power nodes thus

signifying that all nodes contained in the first power node are

connected to all the nodes contained in the second power node.

These language primitives allow for the succinct representation of

stars, bicliques and cliques.

As Fig. 1 shows, a star is expressed as a node connected via a

power edge to a power node, a biclique is expressed as two power

nodes connected by a power edge, and a clique is a power node

connected to itself by a power edge. In Fig. 1, the power graph

representation reduces the number of edges needed to represent

the network, groups together highly connected nodes as well as

nodes having similar neighbours, and this without any loss of

information. In the following, we will often use the notion of edge

reduction i.e. the proportion of edges that are abstracted from the

original network in the power graph representation.

Power Graph Analysis is the computation and analysis of power

graphs. We propose an algorithm that computes power graphs.

Node clustering, module detection, network motif composition,

network visualization, and network models can be recast in terms

of Power Graph Analysis. In the following we demonstrate how

power graphs facilitate the task of uncovering underlying biology.

Understanding Interactions within Molecular Complexes
with Power Graphs

Some recent large-scale experiments [4] specifically aim at

identifying complexes instead of binary interactions. Complexes

are difficult to interpret from the point of view of binary

interactions: are two proteins p1 and p2 participating in a complex

C but not in direct physical contact, interacting?

This point is crucial for the interpretation of results from pull-

down assays where whole complexes are identified rather than

binary interactions [2,3]. In a pull-down assay, a purified and

tagged protein, the bait, is used to capture other proteins: the

preys. These observed complexes are either modelled as cliques in

the matrix model, or as stars in the spoke model [40]. In the case of

the spoke model the bait is at the centre of the star, and the preys

are linked to it. In the matrix model, all proteins are linked

together, signifying that they belong to the same observed

complex.

The problem with this perspective is that the spoke model

underestimates, and the matrix model overestimates the number

of true physical interactions between the members of a complex.

For both models the use of binary interactions does not convey

succinctly an otherwise simple connection pattern. Let n be the

number of proteins in the complex. The matrix model represents

the complex with a quadratic number of interacting pairs: n(n21)/

2. The spoke model requires only n21 interacting pairs to

represent the same complex. Fig. 1 shows that the power graph

representation mitigates this problem: in both cases only one

power edge is needed. In the case of the matrix model all proteins

are brought together in one power node, whereas in the spoke

model the bait protein is on its own and all preys are together in a

power node. Let us consider two examples.

Example 1—Casein kinase II complex. A recent survey of

the yeast proteome investigated the modularity of the yeast cell

machinery [4]. Fig. 2 shows the casein kinase II complex and its

neighbouring complexes. Casein kinase II has been implicated in

cell cycle control, DNA repair, regulation of the circadian rhythm

and other cellular processes. It is a tetramer of two catalytic alpha

subunits CKA1, CKA2 and two regulatory beta subunits CKB1

and CKB2. Remarkably, the power graph representation conveys

Figure 1. The Three Basic Motifs: Star, Biclique, and Clique.
Stars often occur because of hub proteins or when affinity purification
complexes are interpreted using the spoke model. Bicliques often arise
because of domain-domain or domain-motif interactions inducing
protein interactions [25]. Power nodes are sets of nodes and power
edges connect power nodes. A power edge between two power nodes
signifies that all nodes of the first set are connected to all nodes of the
second set. Note that nodes within a power node are not necessarily
connected to each other.
doi:10.1371/journal.pcbi.1000108.g001

Author Summary

Networks play a crucial role in biology and are often used
as a way to represent experimental results. Yet, their
analysis and representation is still an open problem.
Recent experimental and computational progress yields
networks of increased size and complexity. There are, for
example, small- and large-scale interaction networks,
regulatory networks, genetic networks, protein-ligand
interaction networks, and homology networks analyzed
and published regularly. A common way to access the
information in a network is though direct visualization, but
this fails as it often just results in ‘‘fur balls’’ from which
little insight can be gathered. On the other hand,
clustering techniques manage to avoid the problems
caused by the large number of nodes and even larger
number of edges by coarse-graining the networks and
thus abstracting details. But these also fail, since, in fact,
much of the biology lies in the details. This work presents a
novel methodology for analyzing and representing net-
works. Power Graphs are a lossless representation of
networks, which reduces network complexity by explicitly
representing re-occurring network motifs. Moreover,
power graphs can be clearly visualized: they compress
up to 90% of the edges in biological networks and are
applicable to all types of networks such as protein
interaction, regulatory networks, or homology networks.

Unraveling Protein Networks with Power Graphs

PLoS Computational Biology | www.ploscompbiol.org 2 July 2008 | Volume 4 | Issue 7 | e1000108



immediately the difference between the alpha and beta pairs of

subunits: the two alpha subunits are grouped together by one

power node, and the beta subunits are grouped together by

another power node. The reason for this is that the two alpha

subunits have almost identical neighbours, which are in turn

different from the neighbours shared by the beta subunits. The

beta subunits are connected to the eIF3 sub-complex (NIP1,

RPG1, PRT1) known to stimulate the binding of mRNA to

ribosomes, and through the intermediary protein UTP22 to a

power node consisting of proteins ROK1, RRP7 and YLR003C

that do not correspond to a known complex but that are all related

to RNA processing, possibly a small complex. In contrast, the

alpha subunits do not interact with these two groups, but instead

with YKL088W an uncharacterized enzyme.

Other complexes are visible in the power graph representation.

For example, the proteins POB3 and SPT16 are grouped together

in one power node. They form a complex known as the

heterodimeric FACT complex SPT16/POB3, a complex involved

in the transcription elongation on chromatin templates. It is

known that the casein kinase II complex activates the FACT

complex [41]. Finally, a group of two power nodes linked by a

power edge, all of them interacting with the protein PAF1, form

the PAF1 complex–a complex that associates with RNA

polymerase II [42].

Overall we see that the power graph representation manages to

give an insightful picture of the underlying biology. It should be

stressed that these representations are obtained without the

addition of biological background knowledge but instead based

on the network topology alone. Power Graphs thus provide useful

hints into the existence of complexes, their internal organization,

and their relationships.

Importantly, the power graph representation is a lossless

representation, meaning that all and only interactions from the

original network are represented faithfully, which is usually not the

case for most clustering methods.

Example 2—Untangling the nucleosome. Similarly to the

survey of the yeast proteome by Gavin et al. [4], Krogan et al. [6]

have investigated protein interactions using tandem affinity

purification (TAP). Fig. 3A shows a subgraph of proteins

surrounding the H1, H2A, H2B, H3 and H4 histone proteins.

These proteins form the nucleosome, an octameric complex

responsible for the packing of DNA into chromosomes.

Interestingly, the subunits H2A, H2B, H3, and H4 come in

pairs: HTA1/HTA2 HTB1/HTB2 HHT1/HHT2 and HHF1/

HHF2. This is an example of gene duplication [23] inducing a

complete bipartite subgraph (biclique) of interactions between

proteins expressing duplicated genes. In yeast, HTA1, HTA2,

HTB1, and HTB2 are nearly identical, with two and respectively

four amino acids differing. HHF1 and HHF2 are identical

proteins coded by different genes.

Interacting with histones is the ORC Complex (Origin

Recognition Complex) responsible for marking origin regions

prior to DNA replication. On Fig. 3B the corresponding power

graph is shown. The ORC complex is a clique of six proteins,

which appears in the power graph representation as three power

nodes linked by three power edges. One of these power nodes–

ORC1/ORC4/ORC5–interacts with HTB2 and is enriched in a

specific domain: a nucleotide binding P-loop domain containing

nucleotide triphosphate hydrolases.

Surprisingly, histones HTA2, HTB2 and HHF1 are segregated

from their twin subtypes HTA1, HTB1 and HHF2, as subunits

ORC2 and ORC6 interact with HTA2, HTB2 and HHF1 and

not with the HTA1, HTB1, and HHF2. This is contradictory to

the identity/near identity of these pairs of histones. The power

graphs shows the separation between these two types of histones.

Why have these mostly identical proteins different interaction

partners? In the case of H2A histones, each subtype has been

shown to be sufficient for cell viability, and no clear functional

difference were reported apart from homozygous strains for hta12

exhibiting a slower growth [43]. Despite the near identity of these

proteins, their interaction profiles are different which suggests that

the interactions with ORC2 and ORC6 are false positives or false

negatives–all or none of the histones interact with ORC2 and

ORC6.

Figure 2. Casein Kinase II Complex. Two catalytic alpha subunits (CKA1, CKA2) and two regulatory beta subunits (CKB1, CKB2) interacting with
the FACT complex, with sub-complex NIP1-RPG-PRT1, and with the PAF1 complex. The graph representation (A) consists of 80 edges whereas the
power graph representation (B) has 30 power edges, thus an edge reduction of 62%. This simplification of the representation makes the separation of
the regulatory subunits from the catalytic subunits immediately apparent without loss of information on individual interactions.
doi:10.1371/journal.pcbi.1000108.g002

Unraveling Protein Networks with Power Graphs
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Yet, this hypothesis does not explain that co-regulated HTA2 and

HTB2 are both seen interacting with ORC2 and ORC6, whereas the

differently co-regulated HTA1 and HTB1 do not [44]. Moran et al.

[45] show that the promoter region of HTA2 and HTB2 is regulated

by the amount of effective H2A+H2B expression. This mechanism is

essential for ensuring a sufficient and balanced amount of histones

during the S phase–when DNA replication takes place. An excess of

H2A+H2B induces a 10-fold decrease in RNA production for HTA1

and HTB1. Thus, a possible explanation for not observing

interactions between ORC2/ORC6 and HTA1/HTB1 is that

under some circumstances–that might be triggered by the TAP

methodology (the fusion of the TAP tag to the C-terminus)–the

production of subtypes HTA1 is depressed. Moran et al. argue that

the same regulation feed-back takes place for HTB1 as well as for all

variants of HHT and HHF [45]. Power Graph Analysis helps to

analyze high-throughput data by automatically highlighting the

important information: in this case the separation of histones proteins

into two differentially co-regulated groups, the P-loop domain

containing subunits of the ORC complex and the FACT complex.

Interaction Profiles of Motif Binding Domains
Example 3—Power Graph Analysis of a domain-peptide

binding network. In reference [15], Landgraf et al. have used a

combination of phage display and SPOT synthesis to discover

peptides in the yeast proteome that have the potential to bind to

eight SH3 domains. Fig. 4A shows a power graph representation

of the interaction network of SH3 domain carrying proteins

(SHO1, ABP1, MYO5, BOI1, BOI2, RVS167, YHR016C and

YFR024). The power graph representation achieves a reduction in

complexity by diminishing the number of edges necessary for the

representation by 80%. Proteins RVS167, YHR016C and

YFR024 are in a power node together showing the similarity of

their neighbourhoods. YHR016C and YFR024 are even more

similar and have a power node of their own. Proteins that carry

the SH3 domain are filled in gray. Power nodes of proteins bound

by SH3 carrying proteins are enriched either in motifs of class 1

(RxxPxxP) or in motifs of class 2 (PxxPxR) [15].

Domain-interaction profiles correlate to sequence

similarity. We investigated how the interaction profiles of

these eight SH3 carrying proteins relate to the domain sequences.

Fig. 4B shows a strong correlation between the phylogenetic tree of

the SH3 domain sequences and the neighbourhood similarity tree

of interaction partners. The neighbourhood similarity tree is

computed using the proportion of common interaction partners as

a similarity measure between two proteins (cf. neighbourhood

similarity in methods). As described in the methods section, the

hierarchical clustering of nodes according to their neighbourhood

similarity is the main principle behind the power graph algorithm.

The pair of SH3-carrying proteins YHR016C/YFR024 that are

grouped in one power node in Fig. 4A are also close in the

neighbourhood similarity tree. Note how they are also close in the

phylogenetic tree. The same holds for the pair BOI1/BOI2.

However, we also notice two discrepancies. Proteins ABP1 and

MYO5 are grouped together in the neighbourhood similarity tree

- whereas they are not in the phylogenetic tree. Protein RVS167

has different placements in the two trees - RVS167 and

YHR016C/YFR024 have similar interaction partners but dissim-

ilar sequences.

Power Graph Analysis Reveals Hidden Structures in
Protein Interaction Networks

As we have seen previously on specific examples, power graph

analysis can help disentangle complex protein interaction

networks. A quantitative analysis requires the definition of

measures. Here we introduce the edge reduction measure:

edge reduction~
edges{power edges

edges

Figure 3. Histone Protein Interactions and Neighbouring Proteins according to Krogan et al. [6]. (A) Standard graph representation. (B)
power graph representation. The ORC complex is visible with a power node of proteins–ORC1/ORC4/ORC5–carrying a nucleotide binding P-loop
domain [SCOP:52540]. Histones subtypes HTA1/2, HTB1/2, HHT1/2, and HHF1/2 share the same color. Histones HTA2, HTB2 and HHF1 are segregated
from their twin subtypes HTA1, HTB1 and HHF2. The FACT complex SPT16/POB3 is again delineated.
doi:10.1371/journal.pcbi.1000108.g003

Unraveling Protein Networks with Power Graphs
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which is the proportion of edges collapsed in the power graph

representation. Representing cliques and bicliques with power

nodes and power edges allows to trade many edges for a hierarchy

of power nodes. Power graphs have less power edges than edges in

the original network as these get replaced by power nodes. To take

into account the introduction of power nodes, we also compute the

removed edge to power node conversion rate:

conversion rate~
edges{power edges

non singleton power nodes

From a visual complexity standpoint, trading edges for a

hierarchy of sets of nodes is advantageous since the edges of a

clique or biclique necessarily cross in two dimensions, whereas the

circles delineating power nodes–by definition–do not.

Table 1 shows the results for 13 protein interaction networks

[4,6,9,12,13,46–53]. The conversion rate is correlated to both the

average degree and edge reduction and thus adds little extra

information. To evaluate how significant these edge reduction

values are, we randomly rewired these networks and then

recomputed the corresponding power graphs–thus providing us

with a convenient null-model (see methods for random rewiring).

Fig. 5 shows the edge reduction for 13 protein interaction networks

together with the box-plots for 1000 randomly rewired networks.

Computing the power graphs for 1000 rewired networks per

protein interaction network allows us to estimate the variance of

the edge reduction and thus a z-score. The z-scores obtained

indicate that the original networks have significantly higher edge

reductions than their rewired counterparts. At one extreme, we

have Gavin et al. (2006) with a z-score of 242.

The edge reduction and conversion rate are dependent on the

abundance of stars, cliques and bicliques in the network–as these

motifs require just one power edge to represent arbitrarily many

edges. In particular, from the example previously discussed (casein

kinase II complex, nucleosome) we would expect cliques and

bicliques to be the culprit. To ascertain that their abundance is

Figure 4. Interactions of SH3 Carrying Proteins. (A) Protein interaction network showing the 105 interaction partners of the SH3 domain
carrying proteins: SHO1, ABP1, MYO5, BOI1, BOI2, RVS167, YHR016C and YFR024. The underlying network consists of 182 interactions represented
here as 36 power edges–a reduction of 80%–leaving all but only the core information. Class 1 motif (RxxPxxP) proteins are shown in black. Class 2
motif (PxxPxR) proteins are shown in light grey [15]. Note how power graphs group proteins having similar binding motifs together. (B) Phylogeny
and interaction profiles. Comparison of the phylogenetic tree of the SH3 domains sequences with the neighbourhood similarity tree of interaction
partners. The neighbourhood similarity implied by the power graph reflects the sequence similarity of the SH3 domains.
doi:10.1371/journal.pcbi.1000108.g004

Table 1. Power Graph Analysis for 13 Protein Interaction
Networks.

Protein Interaction
Network # Nodes # Edges

Avg.
Degree e.r. c.r

Lim et al. (2006) [46] 571 701 2.45 85% 12.1

Hazbun et al. (2003) [47] 2243 3130 2.79 79% 13

Kim et al. (2006) [48] 577 1090 3.78 67% 4.1

Gunsalus et al. (2004) [49] 281 514 3.6 65% 4.6

Gavin et al. (2006) [4] 1462 6942 9.4 64% 7.2

Ewing et al. (2007) [50] 2294 6449 5.62 54% 6.6

Ito et al. (2001) [51] 3243 4367 2.69 53% 5.3

Rual et al. (2005) [12] 1527 2529 3.31 50% 4.5

Krogan et al. (2006) [6] 2708 7123 5.26 49% 4.5

Stanyon et al. (2004) [9] 478 1778 7.43 48% 5.3

Stanyon et al. (2004) [9] 478 1778 7.43 48% 5.3

Butland et al. (2005) [52] 1277 5324 8.33 43% 6.0

Arifuzzaman et al. (2006)
[53]

2457 8663 7.05 39% 5.4

Lacount et al. (2005) [13] 1272 2643 4.16 38% 3.8

Average degree, edge reduction (e.r.), and edge to power node conversion rate
(c.r.).
doi:10.1371/journal.pcbi.1000108.t001

Unraveling Protein Networks with Power Graphs
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indeed the explanation for the higher edge reductions, we examine

the count of power edges of different sizes. Fig. 6 shows that power

edges representing cliques and bicliques are abundant in the Gavin

et al. network, and absent for the corresponding rewired networks.

Stars constitute most power edges found in the rewired networks at

the exception of bicliques between groups of two nodes. This

shows that protein interaction networks have significantly more

cliques and bicliques than randomly rewired networks having the

same number of nodes, and the same degree distribution.

Having observed an abundance of cliques and bicliques, there

remains the possibility that this is solely caused by experimental or

methodological artifacts. However, we know of at least one case

for which this cannot be the explanation: the Structural

Interaction Network (SIN) by Kim et al. is a set of interactions

carefully curated using structural information: all interactions

reported are direct physical interactions explained by a known

structural binding [48]. This network exhibits a z-score of 54, Fig. 7

shows a close-up of a connected component of the SIN that

illustrates its richness in structures: we see three cliques and two

bicliques. The three cliques are enriched in Gene Ontology [54]

terms related to the spliceosome and to 35S primary transcript

processing, thus the proteins of this component are most likely part

of the the ribosome and spliceosome machinery. Moreover, it must

be said that the examples previously given (casein kinase II

complex, nucleosome, domain mediated interactions) in which

power graphs give relevant insights on the structure of the

networks are often the rule and not an exception. For instance,

when analyzed with power graphs, the interaction network of

Gavin et al. is–as suggested by the high z-score–very rich in

structures that can be related to the known biology.

Figure 5. Comparison of 13 Protein Interaction Networks to Corresponding Randomly Rewired Networks. The edge reduction of the
rewired networks is represented using a a box-plot. 50% of edge reduction values are inside the box. Most networks exhibit a significant deviation
from the null model as indicated by high z-scores between 2.2 and 242.
doi:10.1371/journal.pcbi.1000108.g005

Figure 6. Stars, Bicliques, and Cliques Counts as Obtained
through Power Graph Analysis. The area of each disc is
proportional to the logarithm of the number of corresponding cliques
(diagonal) and bicliques (non-diagonal). Stars are found along the first
column or row. For example, there are 11 bicliques between two nodes
and 4 nodes, and 34 bicliques of 6 nodes. The diagram is symmetric
along the diagonal. Protein interaction networks from Gavin et al. (red)
compared to corresponding rewired networks (blue). The high z-score
(242) can be explained by significant abundance of cliques and
bicliques compared to a random null-model obtained through rewiring.
Note that despite the fact that the number of edges is constant, the
total count of cliques, bicliques, and stars, is not necessarily constant.
doi:10.1371/journal.pcbi.1000108.g006

Unraveling Protein Networks with Power Graphs
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These results corroborate studies that looked at network motifs

identified as functional units in the context of biological networks

[55]. Network motifs have been shown to admit generalizations

composed of bicliques and stars [56]. These patterns of interaction -

characterized by a high connectivity - have been shown to be

evolutionary conserved in the yeast protein interaction network [57].

Questioning the scale-free hypothesis. It has been argued

recently that other distributions than the power-law are a better fit

to the observed degree distributions of protein interaction

networks [26,58]. It has also be shown that the scale-free

property is not necessarily an intrinsic property of the networks,

but could be an artifact caused by selection regularities in the

sampling procedures [59,60]. Other models for protein interaction

networks, such as geometric random networks [61] have been

shown to be a better fit when looking at the motif composition of

protein interaction networks. Our results show that the degree

distribution does not characterize completely the idiosyncrasies of

protein interaction networks: abundance of stars, cliques and

bicliques is an important signature.

Domain and Gene Ontology Term Enrichment of Power
Nodes

To further support the idea that power nodes are not artifacts of

the networks topology but have in fact a biological interpretation,

we analyzed the enrichment of power nodes in InterPro domains

[62,63] and Gene Ontology (GO) terms [54]. In the previous

example on histone proteins, we have an example of a power node

of three proteins: ORC1, ORC4, and ORC5, that have in

common a P-loop domain.

Our null hypothesis is that ‘‘annotations are randomly

distributed’’ following an hyper-geometric distribution. In order

to take into account missing domain annotations, only power

nodes for which more than two thirds of the proteins are

annotated with at least one term or domain are considered.

Moreover we use the Bonferroni correction since we do multiple

hypothesis testing. Table 2 shows that sufficiently annotated power

nodes are significantly enriched in domains, with most p-values

below 0.001. Similarly, Table 3 shows the distribution of e-values

for the enrichment in GO terms. The p-values for GO terms are

not as low as for domains, which would indicate that domains are

a better explanation for the occurrence of cliques and bicliques as

identified by power graph analysis. Interestingly, when comparing

the z-scores found previously and the levels of enrichment both

seem to be correlated. For example, the Gavin, Krogan and Kim

networks that have the highest z-scores also have the highest

overall enrichments of domains and go terms. The Kim et al.

network (SIN) has the best overall enrichments for both domains

and GO terms, this is in line with the fact that this network is

known to be of high quality. Conversely, the power graphs for the

Lacount and Lim networks have low z-scores and their power

nodes are poorly enriched in InterPro domains or GO terms.

These results further confirm the relevance of power graph

analysis for analyzing protein interaction networks, in particular

the relationship between protein domains and protein interactions.

Figure 7. Structural Interaction Network (SIN). (A) Close-up of a 25 node, 68 edges, connected component of the Structural Interaction Network
(SIN) [48]. (B) Power graph consisting of 17 power edges, thus an edge reduction of 73%. Three cliques enriched in GO terms related to 35S primary
transcript processing and to the spliceosome become explicit in the representation.
doi:10.1371/journal.pcbi.1000108.g007

Table 2. Percentage of Power Nodes That Are Significantly
Enriched in InterPro Domains.

Network p,0.001 p,0.01 n.s.a.

Kim et al. (SIN)(2006) [48] 90% 96% 0%

Krogan et al. (2006) [6] 78% 88% 6%

Gavin et al. (2006) [4] 70% 90% 3%

Rual et al. (2005) [12] 65% 80% 1%

Ewing et al. (2007) [50] 54% 80% 8%

Ito et al. (2001) [51] 51% 86% 7%

Arifuzzaman et al. (2006) [53] 46% 73% 0%

Hazbun et al. (2003) [47] 43% 69% 17%

Butland et al. (2005) [52] 41% 76% 0%

Lim et al. (2006) [46] 39% 56% 10%

Lacount et al. (2005) [13] 20% 54% 29%

Stanyon et al. (2004) [9] 15% 47% 13%

See [62,63]. Non-sufficiently annotated (n.s.a.) power nodes are not considered
(less than two thirds of proteins have annotations). Most power nodes turn out
to be enriched at a level of statistical significance of 1 per-thousand. The table is
sorted by decreasing overall enrichment.
doi:10.1371/journal.pcbi.1000108.t002
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Beyond Protein Interactions
Other biological networks benefit from Power Graph Analysis,

too. Examples are protein homology networks [16] in which nodes

are proteins and edges represent BLAST E-values below a given

threshold. These networks are geometric networks defined on the

space of sequences with the BLAST E-value as a distance.

Geometric networks are known to be saturated in cliques and

bicliques [61]. Another example is the analysis of raw gene

regulatory networks that also benefits from the Power Graph

representation - in particular since gene duplication events tend to

create biclique motifs [55,64]. Fig. 8 illustrates a typical example, in

which bicliques arise from the sharing of regulatory motifs. For

example, in yeast the genes for histone subunits HTA1 and HTB1

share the same promoter region and are thus under the regulation of

the same transcription factors. In the case of homology networks,

cliques are often found for groups of highly similar proteins.

Bicliques arise between otherwise more distant proteins that share

similarity on a specific region i.e. because of a shared domain (Fig. 8).

A general principle by which cliques and bicliques occur in

biological networks is now apparent: it can be explained by the

sharing of sequence regions such as domains, regulatory motifs

across different proteins/genes and in general the reuse of building

blocks and their subsequent possible combinatorial matchings.

Example 4—Bipartite Regulatory Networks
Beyer et al. presented an integrative approach for assigning

transcription factors to target genes in S. cerevisiae using data from

chIP-chip experiments, known binding motifs, clusters of co-

expression and other evidences [65]. The result is a probabilistic

model with high prediction accuracy, and thus a bipartite network

between transcription factors and target genes. The authors

Table 3. Percentage of Power Nodes That Are Significantly
Enriched in GO Terms.

Network p,0.001 p,0.01 n.s.a.

Kim et al. (SIN)(2006) [48] 63% 89% 0%

Gavin et al. (2006) [4] 58% 73% 0%

Krogan et al. (2006) [6] 51% 60% 1%

Hazbun et al. (2003) [47] 21% 33% 1%

Rual et al. (2005) [12] 19% 35% 1%

Ito et al. (2001) [51] 16% 29% 0%

Ewing et al. (2007) [50] 15% 28% 5%

Butland et al. (2005) [52] 15% 35% 1%

Lim et al. (2006) [46] 11% 29% 0%

Arifuzzaman et al. (2006) [53] 7% 22% 1%

Stanyon et al. (2004) [9] 7% 21% 9%

Lacount et al. (2005) [13] 5% 39% 59%

See [54]. Non-sufficiently annotated (n.s.a.) power nodes are not considered
(less than two thirds of proteins have annotations). The table is sorted by
decreasing overall enrichment.
doi:10.1371/journal.pcbi.1000108.t003

FIgure 8. Examples of Occurrences of Bicliques in Gene Regulatory Networks and Homology Networks. Bicliques can occur in
regulatory networks due to two reasons: some transcription factors operate within complexes–combinatorial regulation–and regulatory motifs in
promoter regions can be shared and repeated for different genes. In the case of homology networks, proteins sharing a sequence region of high
similarity–i.e. a domain–induce cliques. Bicliques are similarly induced between sub-groups of similar proteins due additional region of sequence
similarity.
doi:10.1371/journal.pcbi.1000108.g008
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identified–among others–YAP1, YAP7 and MSN2 as part of a

transcription factor module related to the stress response of S.

cerevisiae. To investigate if a similar module could be identified

with Power Graph Analysis, we computed the power graph of the

whole network and searched the region of the power graph

containing YAP1, YAP7 and MSN2. As shown on Fig. 9 a group

of transcription factors–SKN7, MSN2, MSN4, YAP1, YAP2(-

CAD1), and YAP7 are found to have similar gene targets. Two

sub groups are identified with differing regulation profiles: SKN7/

MSN2/MSN4 and YAP1/YAP2/YAP7. Also shown in Fig. 9,

target genes are grouped according to common transcription

regulators. For example MSN2 and MSN4 both regulate 26 target

genes predominantly involved in protein folding (p-value,1025)

and heat shock proteins (p-value,10210). Interestingly, YAP1,

YAP2 and YAP7 have in common 19 target genes involved in

detoxification (p-value,1026).

The transcription factors MSN2, MSN4, and SKN7 are known

to regulate the expression of genes in response to stresses, such as

heat and osmotic shock, oxidative stress, low pH, glucose starvation,

sorbic acid and high ethanol concentrations [66]. YAP1, YAP2 and

YAP7 are similar bZIP proteins of the YAP family characterised by

unusual amino acid substitutions of their bZIP domains [67]. It is

known that YAP1 and YAP2 are involved in the transcriptional

response to drugs, oxidative stress and metal detoxification [66].

YAP7 is however a poorly characterised transcription factor most

similar–within the YAP family–to YAP6 whose over expression

increases sodium and lithium tolerance [68]. The strong overlap of

gene targets of YAP1, YAP2, and YAP7 and the common metal

detoxification function of YAP1/YAP2 and YAP6, suggests that

YAP7 also plays a role in metal detoxification.

Power Graph Analysis is useful for its ability to decompose a

bipartite network into an union of bicliques. This decomposition

leads naturally to a hierarchy of clusters of transcription factors

linked to a hierarchy of clusters of target genes.

Example 5—Human Protein Tyrosine Phosphatase
Homology Network

The protein tyrosine phosphatase (PTP) family [69] has a

central role in signal transduction by controlling the phosphory-

lation state of tyrosine residues. Tyrosine-specific protein phos-

phatases (EC:3.1.3.48) catalyse the removal of a phosphate group

attached to a tyrosine residue.

The power graph of the protein tyrosine phosphatase homology

network is shown in Fig. 10A. The network consists of 279 nodes,

each one representing a protein. Edges between two proteins

correspond to highly significant alignments of the sequences with a

BLASTP E-value of at most 10246. PTPs are usually classified into

classical specific phosphatases, dual specificity phosphatases, and

other minor classes, such as low molecular weight phosphatases

and myotubularins. Classical specific phosphatases are further

subdivided into receptor type and non-receptor type. Unsurpris-

ingly, because of their sequence similarities, the categories of

receptor, non-receptor, and dual-specificity phosphatases are

delineated by the power graph representation. For example the

receptor type PTPs are grouped in one power node signifying that

they all are similar to one another with E-values below 10246,

same for different classes of non-receptor type PTPs, and other,

such as myotubularins. Interestingly, the different classes of

receptor PTPs, such as types A, B, C, D, F, H, T are discriminated

solely on the basis of shared similarity to non-receptor PTPs.

The choice of a threshold for the E-value has an impact on the

representation. We observe that for the value of 10246 the power

graph reveals the most details. In this case, the lossless reduction in

complexity achieved by the power graph representation reaches

95% edge reduction–from 4849 edges to 209 with 95 power nodes.

The clustering of proteins in the power graph corresponds to the

known classification of PTPs: 82% of leaf power nodes (that do not

contain power nodes) have all of their proteins belonging to exactly

the same sub-family. While the previous results could have been

Figure 9. Power Graphs Analysis of a Transcription Regulation Network. (A) Power node hierarchy of the complete bipartite network
between 158 transcription factors and 4217 target genes consisting of 13239 assignments between them. (B) Gene targets landscape of a group of
transcription factors–SKN7, MSN2, MSN4, YAP1, YAP2(CAD1), and YAP7–regulating the general stress response of S. cerevisiae. Target genes are
grouped within power nodes and linked with power edges signifying the assignment of transcription factors to targets. Dominant GO categories in
target gene sets are indicated with the order of magnitude of the p-value.
doi:10.1371/journal.pcbi.1000108.g009
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obtained through the hierarchical clustering of the sequences,

Power Graph Analysis reveals additional details.

The cross-links between different regions of the hierarchy

constitute a new insight with respect to traditional clustering

methods. For example, a group of 6 type B receptor PTPs are

linked by a power edge to two type 2 non-receptor PTPs. Fig. 10B

shows the multiple alignment of the corresponding sequences.

While the common PTP domains are aligned for the six sequences,

we also observe that the second copy of the tyrosine phosphatase

domain of the two type G PTPs align to an un-annotated region of

about 370 amino acids with a sequence identity of 14% and a

similarity of 39% (BLOSUM 62). This region corresponds with

high probability (NorMD = 1.014) to a non-receptor phosphatase

domain listed in ProDom–a database of automatically generated

clusters of homologous sequence fragments [70]. To verify that

this region is responsible for the high similarity (E-value,10246)

between the type G receptor PTPs and type 22 non-receptor PTP,

we compared the sequences of type G PTPs to a group of proteins

to which they are not connected in the power graph: type 20

PTPs. As Fig. 10B shows, there is no region aligning with the

second copy of the phosphatase domain. The previous result

suggests that the second phosphatase domain of type 22 PTPs got

eroded though the accumulation of mutations following a release

in selection pressure.

The detection of similarity cross-links in the hierarchy is the

contribution of Power Graph Analysis to the analysis of homology

networks. These cross-links constitute a weak signal in networks

and are difficult to detect. In this case the evidence for this domain

erosion is carried by only eight similarity links between four and

two proteins whereas the original network has 4849 edges. In the

power graph representation it is one power edge among only 209.

Robustness Analysis
Protein networks, and in particular protein interaction networks

from high-throughput measurements are known to suffer from

many false positives and negatives. To investigate the robustness of

power graph analysis, we compare a network’s power graph to the

power graphs with increasing levels of noise modelled with the

addition, removal or rewiring of edges. Fig. 11 shows the results of

random rewiring which preserves the degree distribution (see

Methods). We used two different evaluation methods and explored

the whole range of noise level from 0% to 100%. The first method

consists of evaluating the precision and recall of power nodes of

power graphs computed on the rewired networks. Note that the

F1-measure does not drop to zero at the 100% noise level, this is

due to the expectation of random matchings between power nodes

which is not zero. The second method focuses on pairs of nodes

and aims at evaluating the extent to which nodes remain together

Figure 10. Power Graph Analysis of the Human Protein Tyrosine Phosphatase Homology Network. (A) The original homology network
has 279 nodes and 4849 edges. The power graph has 209 power edges - with the addition of 95 non-singleton power nodes. Each node represents a
human protein tyrosine phosphatase, with an edge between two proteins corresponding to highly significant alignments with E-values of at most
10246. The network is obtained by an all against all BLASTP scan using the NCBI BLASTP tool [90]. Greyed power nodes correspond to totally
connected sets of proteins, for example, all receptor type protein tyrosine phosphatases have an alignment E-value of at least 10246. Black power
edges represent many edges of low E-values (lower than 10246), light-gray power edges abstract fewer edges and correspond to less significant
sequence similarities. (B) Multiple sequence alignment for type G against type 22 and type G against type 20. The similarity observed in the power
graph between type G and type 22 is explained by the homology between a region of type 22 non-receptors and the second copy of the tyrosine
phosphatase domain of type G receptors. Negative control: type G and type 20 - which are not linked - do not share this similar region.
doi:10.1371/journal.pcbi.1000108.g010

Figure 11. Robustness of Power Graph Analysis through Random Rewiring. Noise level is defined as the number of edges different from the
original networks. Random rewiring leaves the total number of edges unchanged, thus a noise level of 100% means that all edges have changed. (A)
Comparison of the power node hierarchies. The F1-measure of the precision and recall is computed between the power nodes found for the original
network, and power nodes found for the rewired networks. (B) Comparison of the proximity of nodes in the power node hierarchies. Recall is
obtained by comparing pairs of nodes together in a power node with the corresponding pairs of nodes in the power graph after random rewiring,
the more distant in the power node hierarchy the lower the recall. Precision is obtained by starting from pairs of nodes together in power nodes
found in the rewired networks and looking how far–in the power node hierarchy–are the corresponding nodes in the original network. The F1-
measure of precision and recall is reported.
doi:10.1371/journal.pcbi.1000108.g011
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in the power node hierarchy after the addition of noise. In both

cases, we find that the F1-measure drops proportionally to the

level of noise, which shows that power graph analysis is robust to

the addition of noise. For some networks such as Gavin et al. the

initial losses are higher–characterized by higher tangent slopes

around a zero noise level. Whereas other networks such as Ito et al

exhibit a stable decrease in the F1-measure. This is in agreement

with the previously discussed result in which Gavin et al. was

found to contain many cliques and bicliques (high z-score),

whereas Ito et al. does not. The high clique and biclique content of

Gavin et al. makes it more sensitive to the initial addition of noise.

Similar results are obtained for the removal or addition of edges

(data not shown).

Summary and Conclusion
Power Graph Analysis lies at the crossing point of clustering,

network motif analysis, information compression, and visualisa-

tion. In the previous results, we showed that Power Graph Analysis

reveals known underlying biology when applied to protein

interaction networks, regulatory and homology networks. It also

leads to new insights and new hypotheses. In particular, we

presented evidence that the similarity of interaction profiles for

peptide-binding SH3 domains correlates with the sequence

similarity of these domains. We also discussed how the difference

of interaction profiles of otherwise near-identical histone subtypes–

visible in the power graph representation–suggests that the TAP

methodology interfered with the histone regulatory mechanisms

and led to low expression levels of histones subtypes HTA1 and

HTB1. Examining other types of networks, we showed that Power

Graph Analysis of predicted transcription factors for target genes

by Beyer et al. [65] led to the hypothesis that YAP7 is involved in

metal detoxification. Finally, Power Graph Analysis, applied to a

human phosphatase homology network, reveals similarity cross-

links in the hierarchy that are used to spot domain erosion in type

22 non-receptor protein phosphatases.

The main reason behind the usefulness of Power Graph

Analysis is the observation that experimental protein interaction

networks, bipartite regulatory networks, protein homology net-

works, and other biological networks have an abundance of cliques

and bicliques. Moreover, for small-scale interaction networks and

some high quality networks, such as SIN [48] the cliques and

bicliques are not solely attributable to noise. The significant

enrichment of power nodes in protein domains and Gene

Ontology terms further confirms that the cliques and bicliques,

that Power Graph Analysis detects, are relevant in the networks. In

the case of bipartite regulatory networks, the bipartite nature of

the network is ideal for Power Graph Analysis.

Cliques and bicliques in biological networks have been noticed

in the past [25–27,71]. Here we argue that this abundance

constitutes an important aspect of biological networks in general.

Power Graph Analysis distinguishes itself from clustering tech-

niques (socio-affinity clustering [4], RNSC algorithm [17],

MCODE algorithm [18], statistical sub-complexes [19]) in that

it is specifically designed to identify these cliques and bicliques.

Clustering algorithms on graphs often rely on the identification of

highly connected regions, abstracting the patterns of connection

between groups of nodes. This approach works well for the

detection of complexes and other regions of higher connectivity,

but it fails for example in the case of the bipartite regulatory

networks. In the case of transcriptional regulatory networks,

meaningful clusters of transcription factors are not connected to

each other but only to target genes. In protein interaction

networks, it is also the case that interesting clusters of proteins are

defined by their neighbouring proteins and not by their

connectivity. For homology networks, we saw that the group of

type G receptor PTPs was found because of its similarity to type 22

non-receptor PTPs and not because of a higher level of

connectivity.

With Power Graph Analysis it is possible to decompose and

represent biological networks as combinations of two simple

elements: cliques and bicliques. New analysis methodologies and

algorithms can be developed to leverage the information

compression made possible by Power Graphs. These directly

operate on Power Graphs instead of traditional node-and-edge-

graphs. Indeed, one important finding is that the information

contained in diverse biological networks, such as protein

interaction networks, regulatory networks, and homology networks

is highly compressible–even up to 95% for some homology

networks. We argue that avoiding this excess of redundant

information is possible and desirable.

The advantages and uses of Power Graph Analysis are:

N The simpler representation of complex networks without loss

of information.

N Network analysis methodologies and algorithms can be

reformulated on top of Power Graph Analysis.

N Cliques and bicliques–which are abundant and relevant for

biological networks–are explicitly represented.

N As a side effect of the decomposition, nodes are clustered by

connectivity and neighbourhood similarity.

N The connectivity information between these clusters is

preserved.

Other graph formalisms have been proposed, such as hypergraphs

in which hyper-edges are n-tuples of nodes [72,73], or compound

graphs and metagraphs in which nodes are collapsed into metanodes

[74]. Despite the similarities–such as the collapsing of nodes into

metanodes–Power Graphs are different. First, Power Graphs are

about decomposing networks using cliques and bicliques. Second,

this decomposition is done without loss of information which is

usually not the case of compound graphs or metagraphs.

As we showed, Power Graph Analysis is a novel network

analysis paradigm that provides a basis for new methodologies.

One immediate example is visualisation. Several tools exist to

visualise biological networks, such as Cytoscape [75], Pajek [76],

Osprey [77], Navigator [78], VisANT [74], ProViz [79], MOVE

[80] and GraphViz [81]. However, it is often the case that the

amount of information being visualised–the number of edges and

edge crossings–makes it difficult to visually explore the networks

and mine the desired information. By removing redundant

information in the networks, Power Graphs lead to clearer and

insightful visualisations. Tools, such as VisANT [74] support the

grouping of nodes into clusters which would make the integration

of Power Graph Analysis possible. Power graph based visualisation

is already available as a plugin for Cytoscape using the described

algorithm. Software for computing Power Graphs is available at:

http://www.biotec.tu-dresden.de/schroeder/group/powergraphs.

Methods

Formal Definition of Power Graphs
Given a graph G = (V,E) where V is the set of nodes and E#V6V

is the set of edges, a power graph G9 = (V9,E9) is a graph defined on the

power set of nodes V9#P(V) whose elements–power nodes–are

connected to each other by power edges: E9#V96V9. Hence Power

Graphs are defined on the power sets of nodes and power set of

edges. The semantics of Power Graphs are as follows: if two power

nodes are connected by a power edge in G9, this means that in G all

Unraveling Protein Networks with Power Graphs

PLoS Computational Biology | www.ploscompbiol.org 12 July 2008 | Volume 4 | Issue 7 | e1000108



nodes of the first power node are connected to all nodes of the

second power node. Similarly, if a power node is connected to itself

by a power edge in G9, this signifies that all nodes in the power node

are connected to each other by edges in G.

The following two conditions are required for simplifying the

representations:

N Power node hierarchy condition: Any two power nodes are

either disjoint, or one is included in the other.

N Power edge disjointness condition: Each edge of the original

graph is represented by one and only one power edge.

N Relaxing the previous two conditions leads to abstract Power

Graphs that are difficult to visualize.

Power Graph Algorithm
We have developed an algorithm for computing near-minimal

power graph representations from graphs. The first phase of the

algorithm collects candidate power nodes and the second phase

uses these to search and add power edges abstracting a maximum

number of edges from G, which are successively added to the

power graph G9.

First phase: Identifying potential power nodes with

hierarchical clustering based on neighbourhood

similarity. A set of nodes is a candidate power node if its

nodes have neighbours in common. We use a hierarchical clustering

algorithm [82] based on neighbourhood similarity to identify such

sets. The similarity of two neighbourhoods is the Jaccard index of

these two sets [83] (other neighbourhood similarity measures are

conceivable). It is always between zero and one: it is zero if the sets U

and V have no common neighbours, and one if both have identical

neighbourhoods. Neighbourhood similarity clustering is an intuitive

way to identify candidate power nodes. Fig. 12 shows how clustering

nodes having identical and similar neighbourhoods provides

candidate sets for cliques and bicliques.

To detect stars and other highly asymmetric bicliques in phase

two, additional to the hierarchy of sets of nodes achieved with the

clustering we add to the candidate power nodes for each node u

two sets: Its neighbourhood set N(u) and the set of common

neighbours of the nodes in N(u) that contain at least u.

Second phase: Greedy power edge search. The minimal

power graph problem is to be seen as an optimization problem in

which the power graph achieving the highest edge reduction is

searched. The greedy power edge search follows the heuristic of

making the locally optimum decision at each step with the hope of

finding the global optimum, or at least a close approximation [84].

Among the candidate power nodes found in phase one each pair

that corresponds to a power edge is a candidate power edges. The

candidates abstracting the most edges are added successively to the

power graph.

Figure 12. Power graph algorithm. First a neighbourhood similarity
clustering of the nodes is performed providing candidate power nodes.
In a second step power edges are searched between nodes and
candidate power nodes. Note that modular decomposition would not
consider as a module the set of nodes having similar but non-identical
neighbourhoods. The power graph algorithm finds this candidate and
uses it to succinctly represent the biclique.
doi:10.1371/journal.pcbi.1000108.g012

Figure 13. Scalability of Power Graph Analysis. (A) Edge reduction versus edge density. Edge reduction attains a minimum for an edge density
between 0.1 and 0.2 and the raises linearly (B) Edge to power node conversion rate versus edge density.
doi:10.1371/journal.pcbi.1000108.g013
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Related algorithms. The power graph algorithm shares

similarities to existing algorithms, such as modular decomposition

[2,85] and spectral clustering [86].

Modular decomposition identifies modules as sets of nodes

having exactly the same neighbours and builds a tree representation

of modules. Algorithms used for modular decompositions can be

used for computing Power Graphs, yet they do not achieve as

much edge reduction since only modules with strictly identical

neighbourhoods are found. For example in Fig. 12 sets of nodes

having similar but not identical neighbourhoods are found by the

power graph algorithm and used to represent a biclique of three

times three edges in the power graph representation, something

that would not be found with modular decomposition. Spectral

clustering techniques rely on the spectrum of the network’s

incidence matrix and detect cliques and bicliques as these produce

Table 4. Gene and Protein Database Identifiers Mentioned in
the Text.

Name Description Database ID

CKA1 Alpha catalytic subunit of casein kinase 2 [SGD:YIL035C]

CKA2 Alpha’ catalytic subunit of casein kinase 2 [SGD:YOR061W]

CKB1 Beta regulatory subunit of casein kinase 2 [SGD:YGL019W]

CKB2 Beta’ catalytic subunit of casein kinase 2 [SGD:YOR039W]

NIP1 Subcomplex (Prt1p-Rpg1p-Nip1p) of eIF3 [SGD:YMR309C]

RPG1 Subcomplex (Prt1p-Rpg1p-Nip1p) of eIF3 [SGD:YBR079C]

PRT1 Sbcomplex (Prt1p-Rpg1p-Nip1p) of eIF3 [SGD:YOR361C]

UTP22 Possible U3 snoRNP protein [SGD:YGR090W]

ROK1 ATP-dependent RNA helicase of the DEAD box
family

[SGD:YGL171W]

RRP7 Involved in rRNA processing and ribosome
biogenesis

[SGD:YCL031C]

YLR003C Uncharacterized, may participate in DNA
replication

[SGD:YLR003C]

YKL088W Predicted phosphopantothenoylcysteine
decarboxylase

[SGD:YKL088W]

POB3 Subunit of the FACT complex (RNA Pol II trans.
elong.)

[SGD:YML069W]

SPT16 Subunit of the FACT complex (RNA Pol II trans.
elong.)

[SGD:YGL207W]

HHO1 Histone H1 [SGD:YPL127C]

HTA1 One of two nearly identical histone H2A
subtypes

[SGD:YDR225W]

HTA2 One of two nearly identical histone H2A
subtypes

[SGD:YBL003C]

HTB1 One of two nearly identical histone H2B
subtypes

[SGD:YDR224C]

HTB2 One of two nearly identical histone H2B
subtypes

[SGD:YBL002W]

HHT1 One of two identical histone H3 proteins [SGD:YBR010W]

HHT2 One of two identical histone H3 proteins [SGD:YNL031C]

HHF1 One of two identical histone H4 proteins [SGD:YBR009C]

HHF2 One of two identical histone H4 proteins [SGD:YNL030W]

HTZ1 Histone variant H2AZ of histone H2A in
nucleosomes

[SGD:YOL012C]

ORC1 ORC complex subunit 1, binds on replication
origins

[SGD:YML065W]

ORC2 ORC complex subunit 2, binds on replication
origins

[SGD:YBR060C]

ORC3 ORC complex subunit 3, binds on replication
origins

[SGD:YLL004W]

ORC4 ORC complex subunit 3, binds on replication
origins

[SGD:YPR162C]

ORC5 ORC complex subunit 3, binds on replication
origins

[SGD:YNL261W]

ORC6 ORC complex subunit 3, binds on replication
origins

[SGD:YHR118C]

RVB1 Essential protein involved in transcription
vregulation

[SGD:YDR190C]

RVB2 Essential protein involved in transcription
bregulation

[SGD:YPL235W]

ARP4 Nuclear actin-related involved in chromatin
remodeling

[SGD:YJL081C]

ARP5 Nuclear actin-related involved in chromatin
remodeling

[SGD:YNL059C]

SWR1 Swi2/Snf2-related ATPase, SWR1 complex [SGD:YDR334W]

Name Description Database ID

SWC6 Nucleosome-binding component of the SWR1
complex

[SGD:YML041C]

PIL1 Primary component of eisosomes [SGD:YGR086C]

SHO1 Transmembrane osmosensor [SGD:YER118C]

ABP1 Actin-binding protein, cortical actin cytoskeleton [SGD:YCR088W]

MYO5 One of two type I myosins [SGD:YMR109W]

BOI1 Polar growth related, functionally redundant
with Boi2

[SGD:YBL085W]

BOI2 Polar growth related, functionally redundant
with Boi1

[SGD:YGL171W]

RVS167 Actin-associated protein [SGD:YGL171W]

YSC84 Actin cytoskeleton organization related. [SGD:Yhr016c]

LSB3 ATP-dependent RNA helicase of the DEAD
box family

[SGD:YFR024C-A]

YAP1 bZIP T.F, mediates resistance to cadmium [SGD:YML007W]

YAP2 AP-1-like bZIP, involved in stress responses [SGD:YDR423C]

YAP6 Putative bZIP T.F, sodium and lithium tolerance [SGD:YDR259C]

YAP7 Putative bZIP T.F [SGD:YOL028C]

MSN2 Transcriptional activator, response to stress [SGD:YMR037C]

MSN4 Transcriptional activator, response to stress [SGD:YKL062W]

SKN7 Nuclear response regulator,response to oxidative
stress

[SGD:YHR206W]

P23470 Protein-tyrosine phosphatase gamma [SP:P23470]

A6NEQ4 Uncharacterized Protein-tyrosine phosphatase
gamma

[SP:A6NEQ4]

Q9P0U2 Protein tyrosine phosphatase, non-receptor
type 22

[SP:Q9P0U2]

Q5TBC0 Protein tyrosine phosphatase, non-receptor
type 22

[SP:Q5TBC0]

Q9Y2R2 Tyrosine-protein phosphatase non-receptor
type 22

[SP:Q9Y2R2]

A0N0K6 Protein tyrosine phosphatase, non-receptor
type 22

[SP:A0N0K6]

Q9Y406 Protein tyrosine phosphatase, non-receptor
type 20

[SP:Q9Y406]

Q5SRF2 Protein tyrosine phosphatase, non-receptor
type 20

[SP:Q5SRF2]

Q4JDL3 Tyrosine-protein phosphatase non-receptor
type 20

[SP:Q4JDL3]

doi:10.1371/journal.pcbi.1000108.t004

Table 4. Cont.
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recognizable signals in the spectrum. Other algorithms aim at

finding locally maximal bicliques but do not aim at obtaining a

balanced decomposition of the whole network [87].

Scalability of Power Graph Analysis
We have conducted experiments to understand the behaviour of

the edge reduction for two important classes of networks: synthetic

random networks generated according to the Erdös-Rényi model

[88] (ER model) and synthetic scale-free networks generated

according to the preferential-attachment model of Barabási and

Albert (BA model) [24]. Fig. 13 shows how the edge reduction and

conversion rate behave for the full range of edge densities. The

edge density is the number of edges in the network divided by the

maximum number of edges (n(n21)/2 where n is the number of

nodes in the network). For the same edge density, networks

generated according to the BA-model are in general more

compressible than networks generated using the ER-model. For

low edge densities the edge reduction is anti-correlated, it reaches

a minimum for an edge density between 0 and 0.2 and then

steadily increases toward an edge reduction of 1 for near-clique

graphs of edge density close to 1. Increasing the number of edges

seems to reduce the border regions (edge density close to 0 or 1)

and shifts the curves down to lower edge reductions.

Random Network Rewiring
Network rewiring is done by choosing randomly two edges (u,v)

and (w,t) and rewiring these to (u,t) and (w,v), taking care that these

two new edges are not already present in the network. This

rewiring step can be repeated a number of times proportional to

the number of edges (in our case we chose 16 times). This

preserves the degree distribution but removes all correlations

between nodes, and thus allows the construction of a null-model

for a given network [89].

Hypergeometric Test
We evaluate the enrichment of a cluster’s proteins with domains

using p-values assuming an hyper-geometric distribution [17]. The

p-value for a cluster of size C containing k#C proteins with

domain X is:

p~1{
Xk{1

i~0

C

i

� �
G{C

n{i

� �

G

n

� �

This is the probability that the cluster has k or more proteins

with domain or GO term X, if the cluster’s contents were drawn

randomly from the set of known proteins. Where G is the size of

the set of known proteins among which n#G have domain X. To

further take into account the fact that we do multiple tests, we use

Bonferroni’s correction and compute a corrected p-value pc = np,

where n is the number of annotations tested for a power node.

Gene and Protein Database Identifiers
The biological function and complex assignments for the

examples where obtained through SGD [44] online database.

Table 4 recapitulates the names, description and database

identifiers of the proteins mentioned in the text.
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