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Abstract

Biomarker discovery aims to find small subsets of relevant variables in ‘omics data that correlate with the clinical syndromes
of interest. Despite the fact that clinical phenotypes are usually characterized by a complex set of clinical parameters,
current computational approaches assume univariate targets, e.g. diagnostic classes, against which associations are sought
for. We propose an approach based on asymmetrical sparse canonical correlation analysis (SCCA) that finds multivariate
correlations between the ‘omics measurements and the complex clinical phenotypes. We correlated plasma proteomics
data to multivariate overlapping complex clinical phenotypes from tuberculosis and malaria datasets. We discovered
relevant ‘omic biomarkers that have a high correlation to profiles of clinical measurements and are remarkably sparse,
containing 1.5–3% of all ‘omic variables. We show that using clinical view projections we obtain remarkable improvements
in diagnostic class prediction, up to 11% in tuberculosis and up to 5% in malaria. Our approach finds proteomic-biomarkers
that correlate with complex combinations of clinical-biomarkers. Using the clinical-biomarkers improves the accuracy of
diagnostic class prediction while not requiring the measurement plasma proteomic profiles of each subject. Our approach
makes it feasible to use omics’ data to build accurate diagnostic algorithms that can be deployed to community health
centres lacking the expensive ‘omics measurement capabilities.
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Introduction

The aim of biomarker discovery is to find small subsets of

measurements in ‘omics data that correlate with the clinical

syndromes or phenotypes of interest. Despite the fact that most

clinical phenotypes (e.g. diseases) are characterized by a complex

set of clinical parameters, with a variable degree of overlap,

current computational approaches do not take into consideration

the multivariate nature of the phenotypes. The challenges arise

both from the dependence of the diseases on several proteins and

from the complexity of the symptoms. To overcome this

limitation, in our framework, the data to be analysed is

represented by two views, namely a plasma proteomics profile,

and a set of clinical data composed of patient history, signs,

symptoms and clinical laboratory measurements of the individuals

with syndromes of interest. This type of problem can be described

as multivariate in both the views, and the aim is to discover a

sparse set of ‘omic variables (proteomic-biomarkers) that correlates

with a combination of clinical variables (clinical-biomarkers).

Given the typically high number of variables and small number

of patient samples in clinical ‘omic studies, dimensionality

reduction techniques such as Principal component analysis

(PCA) and Canonical Correlation Analysis (CCA) have become

popular. PCA allows one to discover a set of latent variables in the

data that explain most of the variance but they may not correlate

with the clinical syndrome of interest. In contrast, CCA performs

dimensionality reduction for two co-dependent datasets simulta-

neously so that the latent variables extracted from the two datasets

are maximally correlated. Thus, the latent variables computed

from one of the datasets can be used to predict the ones computed

from the other, which is the basic goal in biomarker discovery.

However, in both PCA and CCA, the latent variables depend on

all variables and therefore hinder clinical interpretation and

biomarker discovery and validation. To address these computa-

tional limitations sparse variants of PCA (SPCA) and CCA

(SCCA) have been independently developed [1–3]. These methods

use a L1-norm penalization to variable weights which favours

models with a small set of variables having a non-negligible weight.

Sparse approaches impose the penalisation in both views of the

data, thus generating latent variables depending on small sets of

variables [2,3]. Recently we have proposed an asymmetrical
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algorithm that imposes sparsity only in one of the data views [1] by

penalizing dual variables related to the latent variables of the other

dataset. This asymmetrical approach favours latent variables that

relate to small clusters of data points.

Here we use our asymmetrical SCCA algorithm for the

unsupervised discovery of candidate biomarkers by correlating

plasma proteomics data to multivariate clinical parameters from

two human infectious diseases namely, tuberculosis and malaria,

which present with overlapping complex clinical phenotypes in the

affected host.

Tuberculosis is the leading bacterial cause of death worldwide,

with an estimated 8.8 million new cases of active disease and 1.6

million deaths per year [4]. The global burden of TB occurs in a

background of complex disease phenotypes that range from the

presence of latent TB to respiratory and constitutional symptoms

overlapping with those of pulmonary active TB. Latent TB

infection is thought to affect one third of the world’s population

and a higher proportion of the population of TB-endemic areas

[5]. In this scenario the challenge is to distinguish symptomatic

patients with active TB from those with latent disease but whose

presenting symptomatology is attributable to some other infectious

or inflammatory process [6].

Cerebral malaria (CM) and severe malarial anemia (SMA) are

the major severe disease syndromes in African children with a high

level of mortality in the under-five age group. The current WHO

case definitions for severe malaria combine P. falciparum blood

stage parasitemia with coma, severe anemia or respiratory distress

[7], and it is well documented that there is significant overlap

across these syndromes [8].

To validate the biomarkers discovered by the SCCA approach,

we study the prediction of diagnostic classes using the biomarkers.

In particular we study a scenario were the expensive proteomics

data is only available during the training time of the models, whilst

in prediction time, clinical data and a previously learned

biomarker model is available. In our belief this is a realistic setup

considering possible real-world deployment of decision support

systems into resource-poor health care centres.

Materials and Methods

Datasets
The active TB dataset [6] consists of 412 patient data with three

datasets: serum proteome profiles measured by SELDI-ToF mass-

spectrometry [6,9] (270 variables), clinical data (19 variables) and

diagnostic classes (Active TB, Symptomatic Control, Asymptom-

atic Control).

The childhood severe malaria dataset consist of 944 patient data

with three datasets: plasma proteome profiles measured by mass-

spectrometry (774 variables), clinical data (57 variables) and

diagnostic classes (Cerebral Malaria (CM), Severe Malaria

Anaemia (SMA), Uncomplicated Malaria (UM), Disease Control

(DC) and Community Control (CC)).

Plasma was subjected to high-throughput proteomic profiling by

mass spectrometry as previously described [6,9]. The proteomics

and clinical variables were standardized by subtracting the mean

and dividing by standard deviation. Standardized proteomics and

clinical profiles were converted to unit norm vectors by dividing by

the Euclidean norm (Figure 1).

Biomarker extraction by sparse canonical correlation
analysis

Figure 1 shows a workflow of the algorithmic and experimental

framework used for biomarker extraction. We assume data in two

views, represented by da x m matrix Xa = (xa
(1),…,xa

(m)) and db x m

matrix Xb = (xb
(1),…,xb

(m)), where da and db are the dimensions of

the feature vectors in the two views. The i’th example is thus given

by a pair (xa
(i),xb

(i)).

Canonical correlation analysis (CCA) is a family of statistical

algorithms designed to situations where there are two available

views or measurements of the same phenomenon and the goal is to

find latent variables that explain both views (‘the generating

model’) [10]. The CCA algorithm aims to find projection

directions wa and wb that maximize the correlation of the projected

data, the scores sa
(i) = wa

Txa
(i) and sb

(i) = wb
Txb

(i), in the two views:

r~
wa

T Cabwb
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T Caawak k w

T
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where Cab = XaXb
T is the empirical covariance matrix of the views

over the dataset. The first expression gives the correlation

computed with explicit feature weights. The second expression

gives the dual representation in terms kernel matrices Ka = Xa
T Xa

and Kb = Xb
T Xb, as well as dual variables a = (a1,…, am) and

b = (b1,…,bm) giving weights to the examples in the two views. The

corresponding projection directions are given in the dual

representation by linear combinations of examples, wa = Xaa and

wb = Xbb. When CCA is performed in dual representation, it is

commonly called Kernel Canonical Correlation Analysis (KCCA).

CCA can be applied to the data iteratively via deflation, that is,

the projection of the data to the orthogonal complement of wa and

wb, respectively, and performing the CCA analysis for the

projected data. This process results in a sequence of projections

(wa(1), wb(1)), (wa(2), wb(2)),…, (wa(r), wb(r)), where r denotes the

minimum of the numerical ranks of Xa and Xb. The resulting

projections are orthogonal to each other: wc(i)
Twc(j) = 0 if i?j,

where by c we denote either of the two views a or b. We call the

pair (wa(1), wb(1)), the leading pair of projections. By definition,

the leading pair has the maximum canonical correlation in the

Author Summary

Many infectious diseases such as tuberculosis and malaria
are challenging both for scientists trying to understand the
biochemical basis of the diseases and for medical doctors
making diagnosis. The challenges arise both from the
dependence of the diseases on sets of proteins and from
the complexity of the symptoms. Biomarkers denote small
sets of measurements that correlate with the phenotype of
interest. They have potential use both in advancing the
basic biomedical research of infectious diseases and in
facilitating predictive diagnostic tools. We propose a new
method for biomarker discovery that works by finding
canonical correlations between two sets of data, the
plasma proteomic profiles and clinical profiles of the
subjects. We show that the method is able to find
candidate proteomic biomarkers that correlate with
combinations of clinical variables, called the clinical
biomarkers. Using the clinical biomarkers improves the
accuracy of diagnostic class prediction while not requiring
the expensive plasma proteomic profiles to be measured
for each subject.
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sequence. The sequence of CCA projections is compactly

represented by the matrices Wa = (wa
(1),…, wa

(r)) and

Wb = (wb
(1),…, wb

(r)).

Sparse canonical correlation analysis differs from KCCA in that

it aims to find sparse projection directions, those that only depend

on a small number of variables. We use an asymmetric

Figure 1. Algorithm framework for biomarker extraction.
doi:10.1371/journal.pcbi.1003018.g001

Biomarker Discovery of Complex Clinical Phenotypes

PLOS Computational Biology | www.ploscompbiol.org 3 April 2013 | Volume 9 | Issue 4 | e1003018



formulation of SCCA [1], where sparse projection directions are

aimed for in one view, while in the other view dual sparsity is

aimed for, meaning that each projection direction can be

expressed as a linear combination of a small number of examples.

The optimization to be solved is the following:

min
w,e

X T
a w{Kbe

�� ��2
zm wk k1zc ek k1

s:t: ek k?~1,

where w denotes the projection direction in the first view, and e

denotes a vector of dual coefficients, where the coefficient ek,

k = 1…m, denotes the weight of xb
(i).

The first term of the objective aims to make the projection

scores sa = wa
TXa and sb = Kbe to match, the second term penalizes

the feature weights in the first view by 1-norm (thus imposing

sparsity), and the final term penalizes the dual variables by 1-norm

(thus imposing dual sparsity). The infinity norm in the constraint

ensures that at least one example will have non-zero dual

coefficient. This is achieved by fixing one example, indexed by

k, to have coefficient ek = 1 and allowing the rest of the coefficients

el, l?k vary. The fixed example is called the seed example. The

SCCA hyperparameters m and c control the balance between

primal and dual sparsity, in the respective views. We used m = 1

and c = 1 in our experimental framework.

SCCA can be applied iteratively to extract a series of projection

directions by using one of two alternative approaches. In the

deflation approach, like in CCA, deflation is used to arrive at a

sequence (w(1),e(1)), (w(2),e(2)),…,(w(r),e(r)) of r pairs of projection

directions that are orthogonal to each other. In other approach, by

selecting a set of different seed examples {s1,…,sk} one obtains a

set of (w(1),e(1)), (w(2),e(2)),…,(w(k),e(k)) projection directions, which,

in contrast to the deflation approach, are in general not

orthogonal. The rationale of not requiring orthogonality of the

components is two-fold: First, the deflation approach to generate

orthogonal components is an order of magnitude slower method,

due to the need to search for the best seed after each deflation

operation. Secondly, when using the projection directions as input

features to classification, there is no obvious benefit from the

orthogonality. The non-deflating approach produces a set of latent

variables that may have some redundancy due to near collinearity,

however, machine learning methods such as SVM are not

expected to be hampered by this. Indeed, in our tests, the SVM

accuracy on SCCA features with and without deflation was very

similar (data not shown).

Without loss of generality, we assume that the sequence is sorted

so that the pair (w(1),e(1)) has maximal canonical correlation in the

sequence. Analogously to CCA, this pair is called the leading pair.

In our experimental framework we selected seed examples by k-

means clustering of the clinical data and choosing the cluster

centers as the seeds. The value k = 3 was used for number of

clusters in the biomarker extraction experiment and the value

k = 30 in the diagnostic class prediction experiment.

Diagnostic class prediction
Figure 2 shows the workflow in diagnostic class prediction. We

assume as input clinical data and the biomarker model built by

canonical correlation analysis. In the experiments we use a model

with 60 projection directions, 30 from SCCA and 30 projection

directions from KCCA. The clinical data is projected onto the

biomarker model Wb to obtain biomarker scores zb
(i) = Wb

Txb
(i) for

each example. The Radial Basis Function (RBF) kernel

Kb(i,j)~exp { z
(i)
b {z

(j)
b

���
���=s2

� �

is used as a non-linear transformation of the biomarker scores. We

trained a Support Vector Machine (SVM) to predict diagnostic

classes by using the RBF kernel as input and the predefined

diagnostic classes as the output. As the SVM requires a binary

classification problem, we use a one-against-one scheme to train a

separate classifier for each pair of diagnostic classes. For

evaluation, 10-fold cross validation was used. The RBF kernel

parameters and the margin softness of SVM were tuned by

internal 10-fold cross-validation in each training fold.

We compared the CCA-based methodology to using raw

clinical data as the input to SVM without making use of the

biomarker model and using proteomics data processed with

principal component analysis. We used 30 first principal compo-

nents as the input to SVM.

Statistical significance testing
Statistical significance of the results was estimated using

randomization tests. In randomization, a background data

distribution consistent with the null hypothesis is generated by

simulation, where the statistical connection to be tested has been

broken, but the data distribution is otherwise kept close to the

original data. In the case of canonical correlation analysis, we want

to test if the correlation of the two views is significant, we use the

null hypothesis H0: The data Xa and Xb are not correlated’’. To

generate a sample of canonical correlation values consistent with

the null hypothesis, we generated randomized versions of the data

by permuting the rows of the data matrix Xb, and performed

canonical correlation analysis for the randomized data. This

process was repeated 500 times to generate a set of canonical

correlation values representing the distribution under the null

hypothesis. The significance level of the test is given by the fraction

of the distribution that is above the canonical correlation value

obtained on the original data. We note that the randomization

setup used here also automatically corrects for a possible multiple

testing bias.

Results

Firstly, we assessed the capabilities of SCCA for extracting

biomarkers from data that is organized in two views, ‘omics data

and clinical profile data. For this purpose, we used the leading pair

of SCCA projection directions as it encapsulates the highest

correlation between the ‘omics and clinical views. Secondly, we

assessed the utility of the extracted biomarkers in predicting

diagnostic classes. Specifically, we studied a scenario where we

assume that ‘omics data is not available in prediction phase, but

only in training phase.

Tuberculosis dataset biomarker extraction using SCCA
The leading pair of projection directions extracted from the

proteomics (view a) and clinical data (view b) by sparse canonical

correlation analysis showed a statistically significant correlation

coefficient of 0.79 (0.01% significance level). Figure 3 depicts the

correlation of the data in the directions corresponding to the

leading pair of SCCA projections. The class clusters are relatively

tight and do not overlap significantly. The leading pair of

projection directions can be seen to pick up the properties in the

data that separate active TB from symptomatic and asymptomatic

controls.

Biomarker Discovery of Complex Clinical Phenotypes
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The proteomic profile, given by the weights in the leading

projection direction wa
(1) (Figure 4) included 8 proteomic variables

with non-negligible coefficients, selected out of 271 (3%), whilst in

the clinical profile, given by the weights in wb
(1), 13 out of 18

variables had non-negligible coefficients. C-reactive protein (CRP),

has by far the largest positive weight in the clinical profile,

persistent cough (Cought7), serum amyloid protein (SAA) are other

discernible variables with positive weights, indicating that high

values for them associate more frequently with active TB cases

than the other two groups. BCG vaccination, PPD skin test, interferon-

Figure 2. Algorithm framework for diagnostic class prediction.
doi:10.1371/journal.pcbi.1003018.g002

Biomarker Discovery of Complex Clinical Phenotypes
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Figure 3. Sparse canonical correlation between proteomics and clinical profiles in the TB dataset. The x-axis gives the score in the
proteomics profile while the y-axis gives the score in the clinical profile. Data points labeled based on the three diagnostic classes Active TB (red),
Symptomatic Control (green) and Asymptomatic Control (blue). Ellipses denote the mean and covariance of the class clusters.
doi:10.1371/journal.pcbi.1003018.g003

Figure 4. TB clinical variables (a.) and plasma proteome m/z clusters (b.) with non-negligible coefficients in the SCCA model.
doi:10.1371/journal.pcbi.1003018.g004

Biomarker Discovery of Complex Clinical Phenotypes
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gamma level (IFG), and previously case of TB (PastTB) have

discernible negative weights, and thus intuitively correspond to

variables less often found among active TB cases than the other

two groups. Body mass index (BMI) and height appear with

opposite signs, consistent with the definition of BMI.

In the plasma proteomic profile the proteins at mass peaks m/z

11,475, m/z 20,884 and m/z 43,541 have the largest positive

weights (presence makes the proteomic score higher). The protein

at mass peak m/z 8,908 has the largest negative weight (absence

makes the proteomic score higher).

Malaria dataset biomarker extraction using SCCA
Figure 5 depicts the projection of the malaria data onto the

leading pair of SCCA directions. The canonical correlation

showed a statistically significant correlation coefficient of 0.75,

(0.01% significance level). The data projection clearly clustered

non-malaria community controls (CC) apart from malaria cases

UM, SMA and CM. Figure 6 shows the weights of the proteomic

and clinical variables in the leading SCCA projection directions.

Eleven proteomic variables out of 774 (1.4%) were present in the

proteomic profile wa
(1), whilst all variables were present in the

clinical profile wb
(1). The highest weights in the clinical profile,

were temperature, and O-positive blood type (BloodOPOS). In

addition, 10 other clinical variables had positive weights, roughly

indicating more abundant among the community controls than

the other classes. The highest negative weights are with presence of

malaria parasites (MP) and the presence of convulsions (HowMa-

nyConvulsions). In addition, 42 other clinical variables had negative

weights, thus intuitively less abundant among the community

controls. In the proteomic profile, the proteins at mass peaks m/z

Q10_1600_1,528, Q10_2800_8,547 and H50_1800_8,765 had the

highest positive weights and in addition three other variables had

positive weights (presence makes proteomic score higher). The

proteins at mass peaks m/z Q10_2800_4,614 and

H50_3000_20,188 had the highest negative weights (absence

makes proteomic score higher).

Diagnostic class prediction
Table 1 depicts the results of classification of the tuberculosis

data in five classes defined by the latency and the presence of

symptoms. We compared three different data: using proteomics

data processed with principal component analysis (PCA-Proteomics),

using clinical data only (Raw-Clinical) and using the clinical

projections extracted by canonical correlation analysis (K+SCCA-

Clinical). First, we observed that K+SCCA-Clinical had higher

accuracy than Raw-Clinical in distinguishing non-TB subjects from

symptomatic cases with no latent TB (85% vs. 77%) and from

symptomatic cases with latent TB (90% vs. 79%) and in

distinguishing non-TB subjects from non-symptomatic latent TB

cases (85% vs. 78% accuracy). In the other classification tasks, the

K+SCCA approach generally achieved similar level of accuracy as

using the clinical data alone. In six of the experiments PCA-

proteomics was the most accurate method, achieving 98% accuracy

or higher. In contrast, in the other four experiments the accuracy

Figure 5. Sparse canonical correlation between proteomics and clinical profiles in the childhood severe malaria dataset. The x-axis
gives the score in the proteomics profile while the y-axis gives the score in the clinical profile. Data points labeled based on the four diagnostic
classes Community Controls (black), Uncomplicated Malaria (purple), Severe Malaria Anaemia (blue) and Cerebral Malaria (red). Ellipses denote the
mean and covariance of the class clusters.
doi:10.1371/journal.pcbi.1003018.g005
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Figure 6. Malaria clinical variables (a.) and plasma proteome m/z clusters (b.) with non-negligible coefficients in the SCCA model.
doi:10.1371/journal.pcbi.1003018.g006
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of PCA-Proteomics ranges between 52%–77% and it is the least

accurate method.

Table 2 shows similar experiments for the malaria data. Here,

we considered one-against-one classification within five classes

(SMA, CM, UM, DC, and CC). We first notice that Raw-Clinical

obtained significantly higher accuracy than PCA-Proteomics alone

for all class pairs. The K+SCCA-Clinical approach achieves higher

accuracy than Raw-Clinical in two important cases: distinguishing

Severe Malaria Anaemia from Uncomplicated Malaria (90% vs. 85%)

and Severe Malaria Anaemia from Disease Control (97% vs. 92%). For

the class pairs CC vs. SMA, CC vs. UM and DC vs UM, Raw-Clinical

and the K+SCCA-Clinical achieve 99%–100% accuracy. For the

pairs CC vs. CM, CC vs. DC, and CM vs. UM, the K+SCCA-Clinical

approach is slightly inferior, and for the pairs CM vs. DC and CM

vs. SMA significantly inferior to Raw-Clinical. We also noticed that

the K+SCCA-Clinical approach was able to improve on the

proteomics data in all cases.

Discussion

In this paper, we have put forward an approach for discovering

biomarkers from plasma proteomic data by canonical correlation

to clinical data collected from the same subjects. We have also

shown an approach to predict diagnostic classes based on the

selected biomarkers.

We analysed a set of data consisting of plasma proteome and

clinical profiles. Sparse canonical correlation analysis was shown

to be effective in extracting small sets of proteomic variables, each

representing a plasma protein, that correlate with clusters of

similar clinical phenotypes in statistically significant manner (p-

value 0.01). Sparsity of the extracted biomarker models is shown

by the fact that 1.5% and 3% of the proteomics variables had non-

negligible coefficients in the malaria and TB models, respectively.

The sparsity of the ‘omic view of the SCCA model is deemed to be

crucial for interpretation by human experts, as the set of proteomic

variables to be studied remains tractable. Unlike SCCA, the

KCCA method does not impose sparsity, so the KCCA is less

amenable to human analysis.

In diagnostic class prediction, we show that via canonical

correlation analysis, it is possible to make use of proteomic data in

order to improve on the diagnostic classification, even if no

proteomics data is available at the time of prediction, only at the

time of training the model. This is a close match to a real-world

scenario of deploying a diagnostic tool to health care centres

without expensive ‘omics measurement capabilities.

In our experiments, the proposed approach appears to be

advantageous (a) when proteomics data contains a strong signal

predictive of the classification (i.e. PCA-Proteomics accuracy

higher than Raw-Clinical) that can be mediated by the K+SCCA

model, or (b) when proteomics data alone does not predict well (i.e.

PCA-Proteomics accuracy lower than Raw-Clinical) but there is a

synergistic latent signal between the proteomic and clinical profiles

that K+SCCA can pick up. In the case of TB, a strong proteomics

signal (case a) is found in six of the ten comparisons. In four of

those six cases, K+SCCA matches the performance of Raw-

Clinical, improves on Raw-Clinical on two of the cases and

marginally loses in one of the cases. Evidence of a synergistic signal

(case b) is found in four of the ten comparisons, in three of which

K+SCCA matches Raw-Clinical and in one it exceeds the

accuracy of Raw-Clinical: determining the presence of latent TB

when there are no symptoms (85% accuracy versus 77% with

clinical data alone). In malaria, first we note that the clinical data is

very strong, there are no comparisons where PCA-proteomics

exceeds the accuracy of Raw-Clinical (i.e. case a). Thus, in this

data set, the K+SCCA is required to pick out a synergistic latent

signal (case b) between the proteomic and clinical variables, in

Table 1. Diagnostic class prediction in the TB dataset.

PCA-Proteomics Raw-Clinical K+SCCA-Clinical

ACC ± s.d. ACC ± s.d. ACC ± s.d.

Active TB vs. Symptomatic Latent TB 0.7760.07 0.8760.07 0.8660.05

Active TB vs. Symptomatic No-Latent TB 0.7660.05 0.9060.04 0.9160.04

Active TB vs. No-Symptomatic Latent TB 0.9860.03 0.9260.08 0.9260.08

Active TB vs. No-Symptomatic No-Latent TB 0.9960.02 0.9460.04 0.9460.04

Symptomatic Latent-TB vs. Symptomatic No-Latent TB 0.5260.18 0.6860.16 0.7060.15

Symptomatic Latent-TB vs. No-Symptomatic Latent TB 1.0060 0.7460.14 0.7560.15

Symptomatic Latent-TB vs. No-Symptomatic No-Latent TB 1.0060 0.7960.11 0.9060.11

Symptomatic No-Latent TB vs. No-Symptomatic Latent TB 1.0060 0.9060.09 0.8760.06

Symptomatic No-Latent TB vs. No-Symptomatic No-Latent TB 0.9960.02 0.7760.13 0.8560.05

No-Symptomatic Latent TB vs. No-Symptomatic No-Latent TB 0.5960.10 0.7860.11 0.8560.10

doi:10.1371/journal.pcbi.1003018.t001

Table 2. Diagnostic class prediction in the Malaria dataset.

PCA-Proteomics Raw-Clinical K+SCCA-Clinical

ACC ± s.d. ACC ± s.d. ACC ± s.d.

CC vs. CM 0.9460.06 0.9860.02 0.9660.03

CC vs. DC 0.9160.04 0.9760.03 0.9460.04

CC vs. SMA 0.9860.04 0.9960.02 0.9960.02

CC vs. UM 0.9260.03 0.9960.01 0.9960.02

CM vs DC 0.7560.08 0.9960.02 0.8860.06

CM vs. SMA 0.6160.12 0.8860.07 0.7660.08

CM vs UM 0.7360.06 0.9360.04 0.8960.04

DC vs SMA 0.7960.09 0.9260.05 0.9760.03

DC vs UM 0.7960.06 1.0060 0.9960.02

SMA vs UM 0.7160.07 0.8560.05 0.9060.05

doi:10.1371/journal.pcbi.1003018.t002
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order to improve on the predictions from clinical data alone. This

appears to take place in two experiments: in the separation of

severe malaria anemia from both uncomplicated malaria and from

disease controls. In the comparisons involving cerebral malaria

(CM), we note that proteomics data seems to be weak in three of

the four cases, and its seems that K+SCCA is hampered by this:

Although it significantly improves over PCA-proteomics, it loses

out to Raw-Clinical.

Another observation of the experiments is that K+SCCA

benefits the prediction of the difficult class pairs more than the

easier ones: in all of the comparisons where Raw-Clinical accuracy

is below 85%, K+SCCA improves on the Raw-Clinical model.

Finally, we note that the canonical correlation analysis can also

be used in the opposite way, namely to use the clinical data to

extract more predictive biomarkers from proteomics data, and

thus enhance the understanding of the systems biology underlying

the complex phenotypes. Although this particular application was

not the main focus in the present work, in our experiments the

K+SCCA method often improved over the accuracy obtained

with proteomics data alone.
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