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Abstract

The emergent behaviors of communities of genotypically identical cells cannot be easily predicted from the behaviors of
individual cells. In many cases, it is thought that direct cell-cell communication plays a critical role in the transition from
individual to community behaviors. In the unicellular photosynthetic cyanobacterium Synechocystis sp. PCC 6803, individual
cells exhibit light-directed motility (‘‘phototaxis’’) over surfaces, resulting in the emergence of dynamic spatial organization
of multicellular communities. To probe this striking community behavior, we carried out time-lapse video microscopy
coupled with quantitative analysis of single-cell dynamics under varying light conditions. These analyses suggest that cells
secrete an extracellular substance that modifies the physical properties of the substrate, leading to enhanced motility and
the ability for groups of cells to passively guide one another. We developed a biophysical model that demonstrates that this
form of indirect, surface-based communication is sufficient to create distinct motile groups whose shape, velocity, and
dynamics qualitatively match our experimental observations, even in the absence of direct cellular interactions or changes
in single-cell behavior. Our computational analysis of the predicted community behavior, across a matrix of cellular
concentrations and light biases, demonstrates that spatial patterning follows robust scaling laws and provides a useful
resource for the generation of testable hypotheses regarding phototactic behavior. In addition, we predict that degradation
of the surface modification may account for the secondary patterns occasionally observed after the initial formation of a
community structure. Taken together, our modeling and experiments provide a framework to show that the emergent
spatial organization of phototactic communities requires modification of the substrate, and this form of surface-based
communication could provide insight into the behavior of a wide array of biological communities.
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Introduction

The collective migration and spatial organization of cellular

communities are often the result of integration of chemical signals

[1,2], spatial cues, and epigenetic differentiation within the

population [3]. In natural environments, microbes live in

communities that range from relatively simple to very complex

in terms of species diversity [4–10], structure [11–13], and

metabolic functions and pathways [14–16]. In complex commu-

nities, such as medically relevant biofilms [17,18], swarms of social

bacteria such as Myxococcus xanthus [19,20], or microbial mats in

the environment [4–6], community structure can be dynamic,

involving the collective migration of cells in response to

environmental cues [21,22], and may depend on the production

of an extracellular matrix, which can facilitate stabilization of

spatial structure [23–27]. In the face of this complexity,

mechanistic models of cellular interactions that recapitulate

environmentally relevant community behaviors can enhance our

understanding of structure-function relationships, particularly

those that are at the interface of biological and physical

phenomena. Since many of these interactions are dynamic and

not easily amenable to standard genetic and molecular analysis,

biophysical models built on experimental observations have the

potential to make testable predictions by connecting cellular

behaviors to community-scale architectures.

One such example of community behavior is the directed

surface-dependent motility of cyanobacteria either toward or away

from a light source [28,29]. This phenomenon, known as

phototaxis, is easily visualized in the unicellular cyanobacterium

Synechocystis sp. PCC 6803 (hereafter Synechocystis). In a typical

phototaxis assay, cells spotted on a wet surface such as a low

concentration agarose plate and placed in a directional light

source begin to move in coordinated groups, followed by the

formation of finger-like projections [30,31]. To explore the
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molecular underpinnings of this striking community behavior we

have previously used a combination of forward and reverse

genetics [32–34]. These approaches have revealed that motility

requires Type IV pili (TFP). TFP are multifunctional appendages

found in many bacterial phyla and are required for surface-

dependent motility, adhesion, and competence [35–38]. In

addition, a number of photoreceptors [28,39,40], surface proteins

[41], and signaling molecules such as cyclic AMP [41] appear to

be involved in this highly regulated behavior. However, it remains

unclear how single cells with a limited light bias [42] eventually

organize into large groups of cells that exhibit predictable,

coordinated phototactic behavior.

To dissect this community behavior, we developed a minimal

biophysical reaction-diffusion model based on our experimental

observations in which cells undergo a light-biased random walk

with motility dictated by the local concentration of a cell-secreted

substance. Simulations based on this model recapitulate the wide

range of observed motility patterns. Furthermore, exploration of

the phase space of this model showed that varying the cell density,

light bias, and persistence of the cell-dependent surface modifica-

tion could tune the shape, dynamics, and steady-state speed of the

community, consistent with experimental observations. Based on

physical arguments and our computational modeling, we present

heuristics for the scaling of these features that could apply to a

broad class of motile, structured communities. We were also able

to confirm key qualitative predictions of our model by performing

experiments in which we systematically varied the initial cellular

concentration of the community. Thus, the computational models

developed in this study predict that the physical properties of

cellular microenvironments play a critical role in regulating single-

cell behavior and that these behaviors are transduced into

community organization.

Results

Cyanobacterial motility is coupled to surface
modification

We used a well-established phototaxis assay in which a small

volume of exponentially growing Synechocystis cells was spotted onto

a low-concentration (0.4%) agarose plate, which was subsequently

placed in the path of a directional light-emitting diode (LED) light

source and imaged using time-lapse microscopy (Materials and

Methods) [41,42]. Typically, cells were initially randomly distrib-

uted across the surface and exhibited motility within 30 minutes

after spotting. Within a 12–24 hour period many cells had

migrated to the edge of the spot closest to the light, resulting in a

typical crescent-shaped grouping of cells; next, a ruffled edge

formed, indicating a transition in which cells begin to separate into

spatially distinct groups. After 24 hours, long (mm-scale), finger-

like projections were formed in which the majority of the cells

accumulated at the tip and the group moved in a nearly straight-

line path toward the light source (Fig. 1).

The spatially separated, finger-like projections were surrounded

by an optical halo distinguished by a different index of refraction

from the surface (Fig. 2A inset). Moreover, cells at the front of a

moving finger left behind a trail that was subsequently followed by

other cells. This suggested that the material in the trail might have

specific properties that affect cellular motility. To test this

hypothesis, we reoriented the light direction by rotating the plate

90 degrees. The tips of the fingers, where the cell concentration

was highest, reoriented and moved toward the new direction of the

light source within a few minutes after rotating the plate

(Fig. 2B,C), indicating that the time scale of change in the

direction of light bias was short compared to that of finger

formation. Using custom tracking software to measure the

instantaneous velocities of single cells in the fingertip (Materials

and Methods), we determined that the cells re-established their

previous steady-state velocity distribution within approximately

5 minutes after turning (Fig. 2C).

When the cells in one finger encountered the trail left by cells in

a neighboring finger, we observed two changes that indicated that

the trail affected motility. First, cells in the merging finger sped up

upon encountering the trail left by a neighboring finger: both the

mean and width of the velocity distribution increased approx-

imately three-fold, indicating a faster and less coordinated group of

cells (Fig. 2D). Second, the cells in the merging finger became

more dispersed, indicating a reduction in the need for group

coherence during movement. These observations indicate that

trails left by cells locally enhance the motility of other cells, and

groups of cells intersecting these trails can maintain their motility

without maintaining the same levels of aggregation. Thus, our

results suggest that cells secrete an extracellular substance that

alters the agarose surface properties to increase motility. Although

the composition and specific nature of this extracellular substance

are unknown, we will refer to it as extracellular polymeric

substance (EPS), by analogy with other community-forming

species [16,43] such as Myxococcus xanthus in which secreted

substances play an important role in motility and group behaviors

[44]. These observations of cell-mediated surface modification

motivated the development of a biophysical model that could

reveal the minimal requirements for finger formation.

A minimal biophysical model that reproduces observed
community dynamics during phototaxis

Our finger merging experiments indicated that the motility and

coherence of cellular groups at the tips of Synechocystis fingers

change on the time scale of minutes once cells encounter a pre-

existing EPS trail, suggesting that cell movement is dependent on

the local EPS concentration (Fig. 3A). In contrast to previous

models that rely on direct cell-cell communication or variable

single-cell behavior to produce fingering patterns [30,31,45], we

hypothesized that the observed spatiotemporal community

dynamics could be explained simply by cell-mediated physical

alteration of the surface (Fig. 3B). To test this prediction, we

developed a reaction-diffusion model linking cellular and EPS

Author Summary

Communities of bacterial cells exhibit social behaviors that
single cells cannot engage in alone. These behaviors are
often a product of direct interactions that allow cells to
communicate with each other. In the unicellular photo-
synthetic cyanobacterium Synechocystis, groups of cells
collectively move along a surface toward a light source in
characteristic, spatial patterns that do not seem to require
that cells directly communicate or change their individual
behavior. By varying the direction of the light source, we
show experimentally that cells indirectly interact by
secreting a substance that allows them to move more
rapidly and to follow the paths left by other cells. We
develop a biophysical model demonstrating that this form
of interaction is sufficient to reproduce our experimental
observations, and complement this model with simula-
tions and physical scaling laws that provide a useful tool to
design and interpret future experiments. Based on our
results, we propose that physical modification of the
cellular microenvironment may play an important role in
inducing group behaviors in other systems.

Surface-Mediated Cyanobacterial Collective Motion
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concentrations to motility and the motion bias due to a directed

light source.

We assume that cells produce EPS at a constant rate ks such that

d

dt
S(x,t)~ksC(x,t), ð1Þ

where S(x,t) is the EPS concentration at a point x on the two-

dimensional surface at time t, and C(x,t) is the cellular

concentration. Both concentrations are measured as the height

that the EPS or cells would occupy if locally spread with a uniform

thickness. In the absence of a directed light source, previous single-

cell tracking experiments revealed that cells move in an

approximately random walk fashion [42]. To incorporate our

observations of EPS-mediated motility, we defined a phenomeno-

logical function M that is an effective diffusion constant that can

vary in space and time; we assume that its spatiotemporal

dependence is incorporated through the EPS concentration S(x,t).
By analogy with physics nomenclature, we term M(S) the cellular

mobility, since it describes the ease with which cells move across a

surface. Based on our experimental observations that cells exhibit

increased movement at higher EPS levels, the mobility should be a

monotonically increasing function of the EPS concentration, and

we assume the mobility saturates at high levels of EPS. To limit the

number of parameters in this function, we assume a simple

functional form

M(S)~m0 1{e{S=s
� �

, ð2Þ

where s is the saturation depth above which additional EPS does

not significantly increase the mobility, and m0 is the maximum

mobility in the presence of saturating EPS.

In the absence of a directed light source, we assume based on

the observed, approximately random walk behavior that the

cellular concentration spreads diffusively over time [42]. The effect

of light is to bias the random walk toward the light source, and

thus we model the cellular flux J as

J~{M+C{MbC, ð3Þ

where the first term on the right hand side corresponds to the flux

from diffusive random motion of the cells, and the second term

corresponds to the flux driven by a force vector b pointed toward

the light source whose magnitude corresponds to the strength of

the light bias. Since the distance to the light source is much larger

than the cellular community even after fingering, we assume that b
has constant magnitude and direction throughout the typical time

scale of an experiment, except in simulations designed to mimic

our finger merging experiments. The flux from Eq. 3 determines

the dynamics of the local cellular concentration through

dC

dt
~{+:J : ð4Þ

For simplicity, we ignore reproduction in all of the following

simulations in order to define the phase space of community

patterns in terms of a fixed total cellular mass Ctot; we note that

our model can easily be modified to account for nonzero rates of

reproduction. For a light source incident from the y direction, with

corresponding net motion also in the y direction and spatially

Figure 1. Synechocystis cells on a surface accumulate in finger-like projections when moving toward a directional light source. A)
Time-lapse imaging of a Synechocystis community in the presence of a directional light source; images were taken at 0, 11, 24, 36, and 49 hr. White
rectangles indicate regions highlighted in (B–F). Scale bar is 1 mm. B) Cells are initially randomly distributed across the surface. (phase contrast image
taken at 106magnification, scale bar is 10 mm.) C) Regions of heterogeneity are evident where the local cell concentrations are slightly higher than in
the rest of the initial deposition area. D) Regions of higher cell concentrations start to form small finger-like projections within the initial deposition. E)
Cells collect at the edge of the initial deposition and create a ruffled interface, from which finger-like projections will emerge. F) Finger-like
projections form as distinct, motile groups of cells that move toward the light source, leaving behind a trail of lower density cells.
doi:10.1371/journal.pcbi.1003205.g001

Surface-Mediated Cyanobacterial Collective Motion
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Figure 2. Cells secrete an extracellular substance that enhances their motility. A) Typical fingering of a Synechocystis community toward a
light source during a phototaxis assay. The contrasted inset shows EPS deposited by motile groups. B) Phase-contrast microscopy of motile groups
immediately before, and then at specified intervals after a change in the light direction (orange arrows). The white dashed lines indicate the bounds
of a region through which a finger recently passed. The motile group changes course after a change in the light direction, and upon intersection with
the EPS trail of a neighboring finger, group speed toward the light increases and the cells become more dispersed. C) Median velocity of cells in the
motile group in both the x and y directions with respect to the coordinate system shown in (B); dashed horizontal lines indicate 95% confidence

Surface-Mediated Cyanobacterial Collective Motion
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varying mobility M, Eq. 4 becomes the biased diffusion equation

dC

dt
~

L
Lx

M
LC

Lx

� �
z

L
Ly

M
LC

Ly

� �
zMb

LC

Ly
, ð5Þ

with nonlinear behavior emerging from feedback to the local EPS

production rate through the spatially varying mobility M. With

these assumptions, our model has four parameters: ks, m0, s, and

the magnitude of the constant bias vector, b~ bj j. However,

dimensional reduction reduces the number of free parameters

without any loss in descriptive power. We define a natural time

scale by ~tt~tks, a natural length scale by ~xx~x=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
m0=ks

p
, and a

natural density scale for cell mass and EPS by ~CC~C=s and
~SS~S=s. The model is therefore reduced to two dimensionless

parameters: (i) the mean initial cellular concentration, Ctot,

normalized by the mobility saturation concentration s, and (ii)

the bias strength, b, normalized by
ffiffiffiffiffiffiffiffiffiffiffiffiffi
ks=m0

p
. The model then

takes a simpler form where variables marked with a tilde are

understood to be dimensionless. The EPS concentration evolves

according to

d

d~tt
~SS~~CC ð6Þ

and relates to the mobility by ~MM~1{e{~SS , where ~MM~M=m0 is

the normalized mobility. The cellular concentration field evolves

according to

d ~CC

d~tt
~~++: ~MM ~++~CCz~bb ~CCn̂n

� �h i
, ð7Þ

with ~bb~b
ffiffiffiffiffiffiffiffiffiffiffiffiffi
m0=ks

p
and the spatial derivatives normalized byffiffiffiffiffiffiffiffiffiffiffiffiffi

m0=ks

p
. This reduction of the parameter space to two free

variables, ~CCtot and ~bb, dramatically simplifies the comprehensive

mapping of system behavior without any loss of information or

generality.

In order to determine the conditions under which our model

predicts phototactic fingering to occur and the types of spatio-

temporal dynamics that are accessible, we explored the phase

space of emergent behaviors by solving our reaction-diffusion

model (Eqs. 6 and 7) numerically for a wide range of values of ~CCtot

and ~bb. Although the equations are deterministic, we introduce

stochasticity by initiating each simulation with a random

distribution of cells over a fixed, contiguous portion of the

simulation area with a given mean value ~CCtot. Each simulation

started with zero initial EPS concentration. To mimic a directed

light source in the far field, a constant light bias was oriented

toward the top of the rectangular simulation area (Fig. 3A). For a

moderate value of the mean cellular concentration ~CCtot~0:03125

and a bias force ~bb~2:56, our simulations recapitulated the initial

gathering of cells at the front of a spot and the subsequent ruffled

edge, and eventually developed distinct, finger-like projections

similar to those observed in experiments (Fig. 3B). To link our

dimensionless parameters to the length and time scales exhibited

by our experiments, we obtained estimates of the microscopic

parameters ks~0:03 min{1 and mo~0:25 mm2=s from the

expansion of the EPS halo and single-cell movements, respectively

(Materials and Methods). This predicted a time scale for fingering

of approximately 24 hours, in agreement with our experiments. In

addition, the natural length scale
ffiffiffiffiffiffiffiffiffiffiffiffiffi
m0=ks

p
*200 mm, which

defines the distance over which motion due to cellular diffusion

is limited by the rate of EPS secretion, was in agreement with the

characteristic widths of fingers in our experiments. Finally, our

model reproduced the dynamic changes that we observed

experimentally when one motile group encounters the EPS trail

of a neighboring motile group (Fig. 4); the concentration field of

the incident motile group exhibited both the rapid increase in

speed and group de-coherence (Fig. 2B).

These simulations of cellular and EPS concentrations exhibited

morphological and dynamic properties that were amenable to

quantification (Fig. 5). Simulated cell density images were

computationally segmented to track the size (measured in units

of volume), position, and velocity of each distinct motile group

(finger) over time, and the corresponding EPS concentration field

was used to track when two nearby fingers merged. We also

measured the time scale associated with the transition from a

random distribution of cells to steady-state motion of motile

intervals. Left: prior to the change in light direction, cells have positive velocity toward the light source (top), and approximately zero net velocity
perpendicular to the light (bottom). Middle: following the change in light direction, the cells reorient and velocity in the x direction rises to a value
comparable with the y velocity prior to the light change (bottom), while the net y velocity approaches zero (top). Right: when the group of cells
merges with the trail of the neighboring finger (dashed vertical lines), the spread in y velocities increases (top) and the median x velocity increases by
approximately three-fold (bottom). D) Histograms of speeds for the same cells (n = 95) before and soon after merging with the trail of secreted
extracellular substance, with mean speed and standard deviation indicated in the legend. E) Individual cells experience an increase in speed after the
group merges with the trail of another finger, indicating that the change in group dynamics upon merging is coupled to a change in the motility of
individual cells.
doi:10.1371/journal.pcbi.1003205.g002

Figure 3. Biophysical model of EPS-based mobility enhance-
ment captures the observed fingering behavior during photo-
taxis. A) As shown schematically, each cyanobacterium (green) is
assumed to undergo a biased random walk toward the light source
(LED). Each cell secretes EPS (blue), whose local concentration increases
the cell’s mobility M (red). B) The cell deposition, crescent formation,
and finger formation observed in experiments (top) are recapitulated by
simulations using our model (bottom) with ~CCtot~0:03125 and ~bb~2:56;
cells are shown in green, EPS in red. Immediately after deposition (left),
cells are distributed randomly and the boundary with the substrate is
smooth (inset). Cells collect at the edge of the initial deposition area as
they migrate toward the light source (middle, 20 hr), with small
variations at the interface (inset). The front matures into discrete groups
of cells that separately migrate toward the light source (right, 45 hr).
Scale bars are 1 mm.
doi:10.1371/journal.pcbi.1003205.g003

Surface-Mediated Cyanobacterial Collective Motion
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groups toward the light source, which we refer to as the ‘‘ramp

time.’’ This comprehensive exploration allows us to map the phase

space of possible behaviors, and determine scaling laws linking

features such as finger speed to mean cellular concentration that

provide insight into the physical consequences of motility feedback

via surface modification.

Phase diagram of community morphologies and
behaviors

To quantify the extent of the region of parameter space for

which our model produces morphologies relevant to the biological

system, we used simulations to comprehensively map the space of

possible community behaviors by varying the dimensionless total

cellular biomass and the dimensionless light bias strength (Fig. 6A;

Materials and Methods). Within the range of parameters studied, a

region emerged in which our model generated motile groups of

varying sizes and speeds, with a wide range of time scales for the

establishment of steady state motion. In addition, large subsets of

simulations with other parameter values exhibited qualitatively

different morphologies from the characteristic finger-like projec-

tions typically seen in experiments (Fig. 6B).

Given the complex range of behaviors represented in our

simulations, we wrote custom software to quantify the community

morphologies at every simulation time point (Materials and

Methods). Simulations were split into three classes according to

the overall degree of cellular movement and the magnitude of non-

uniformity of the advancing front, forming a phase diagram with

dimensionless cellular concentration and bias force as the

independent parameters (Fig. 6A). For every pair of values ~CCtot

and ~bb, we performed three simulations with different initial

random distributions of cells. For all cases, the classification of

resulting morphologies was consistent across initial conditions;

finger speed and ramp time typically varied by only ,5% and

,10%, respectively. In the first class (colored dots in Fig. 6A), cells

had sufficient EPS production to become motile, and sufficient

bias force to generate finger-like projections; the number and size

of the motile groups varied depending on the parameters (Fig. 6B,

frames 1–4). In the second class (gray dots in Fig. 6A; Fig. 6B,

frame 5), the community was motile, but the high concentration of

cells led to high levels of EPS production, causing the front to

advance uniformly without splitting into distinct groups. In the

third class (black dots in Fig. 6A; Fig. 6B, frame 6), the community

was non-motile due to a relatively weak light bias and/or a low

cellular concentration that was insufficient to produce enough EPS

for movement over the time scale of the simulation. Therefore, our

simulations predict that for a range of cellular concentrations and

light biases outside the finger formation region, cells should exhibit

uniform and/or non-motile fronts.

Scaling of group size, speed, and ramp time with cellular
concentration

For the subset of parameters that exhibited finger-like projec-

tions, we quantified motile group size, speed, and ramp time as a

function of mean cellular concentration (Fig. 7) to extract general

rules that underlie community behavior. In addition, we used

physical arguments to predict the scaling properties of each of

these variables that could be compared with our numerical

simulations. Based on our measurements of m0 and ks, the natural

length scale,
ffiffiffiffiffiffiffiffiffiffiffiffiffi
m0=ks

p
*200 mm, sets the approximate width of a

finger-like projection, independent of the cellular concentration or

bias force. In our simulations mimicking a 2 mm wide region of

the surface, we expected approximately 10 distinct finger-like

projections, with some amount of random variation. Indeed, over

the relevant region of phase space in Fig. 6A, the number of

distinct motile groups ranged from 5–20, with only a slight

dependence on mean cellular concentration, which varied by

more than three orders of magnitude in the simulations, and bias

Figure 4. Biophysical model reproduces key features of group
motility during finger merging. In these simulations, the direction
of light bias (white arrows) is rotated 90 degrees between frames 1 and
2. The cells (green) leave an EPS trail (red), and when a finger intersects
the EPS trail left by a neighboring finger, the group of cells speeds up
and spreads out (blue arrows, frame 3). We observed the same
qualitative changes in finger merging experiments (Fig. 2).
doi:10.1371/journal.pcbi.1003205.g004

Figure 5. Quantitative analysis of community morphologies
from a representative simulation. Using computational image
processing at each time point, we quantified the number of fingers and
their ramp time, size, and speed. The inset shows the cells (orange), cell
front morphologies at evenly-spaced time points (blue contours), the
group center positions over time (green lines), and the EPS field at the
final time point (grayscale). These data provide a set of quantitative
metrics for mapping model parameters to community behaviors.
doi:10.1371/journal.pcbi.1003205.g005

Surface-Mediated Cyanobacterial Collective Motion
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force, which varied by an order of magnitude. Thus, by linking

cellular-scale properties (m0 and ks) to the patterning of commu-

nity-scale motility, this physical argument successfully predicts that

the number of fingers should remain relatively constant as the

mean cellular concentration increases, while the number of cells in

each finger increases approximately linearly (Fig. 7A).

In our simulations, each finger reaches a steady-state velocity

that approximately scales as the mean cellular concentration to the

1/3 power (Fig. 7B). This scaling can also be explained via the

relationship between EPS production and cellular concentration.

The rate at which a group of cells secretes EPS is proportional to

the size of the group (Eq. 6). At steady state, this rate is balanced

by the rate at which the front of cells in each group deposits EPS

onto virgin substrate during the forward motion of the finger,

which is proportional to (i) the depth of the EPS trail, (ii) the width

of the trail as dictated by the finger width, and (iii) the forward

velocity of the finger. If we assume that cells cluster at the tip of an

individual finger in a shape that can be reasonably approximated

by a hemisphere, then the width of the trail should scale as the

number of cells to the 1/3 power. Taken together, the

conservation of EPS secretion and deposition rates for a single

finger at constant velocity dictates that

N*N1=3dvf , ð8Þ

where N is the number of cells in the finger, d is the depth of the

EPS trail, and vf is the steady-state velocity of the finger. For the

low values of the dimensionless mean cellular concentration ( ~CCtot)

that produce finger-like projections, cellular mobility is linear in

the depth of the EPS trail (d*M ). Likewise, the velocity of a

finger moving under light bias is proportional to the mobility (Eq.

3; vf *M ), and therefore the depth of the EPS trail is proportional

to the velocity (vf *d). In combination with Eq. 8, this analysis

gives N1=3*vf ; since N*~CCtot (Fig. 7A), the predicted scaling

relationship is vf *~CC
1=3
tot , which is demonstrated empirically in

Fig. 7B.

For the initial, transient phase of our simulations, when cells

begin to aggregate into distinct fingers, the ramp time is the time

scale over which the fingers reach a terminal velocity. In this

phase, the bias force leads small collections of cells to move

forward with an approximately constant velocity as they travel

over the EPS left by cells in front of them. The cells eventually

collect at the leading edge of the initial cellular deposition, a

behavior that mimics the crescent morphology observed experi-

mentally in Figs. 1 and 3B. The rate at which cells accumulate at

the leading edge is proportional to the velocity of these small

groups of cells and the mean cellular concentration, such that the

concentration of cells at the leading edge increases as

d

dt
~CCLE*~CCtot

vc

w
ð9Þ

where ~CCLE is the concentration at the leading edge, vc is the

constant velocity of cells heading toward the leading edge, and w is

the relatively fixed width of the crescent zone. Thus, the

concentration of cells at the leading edge scales roughly as
~CCLE*~CCtott, and hence the concentration of EPS at the leading

edge ~SSLE scales quadratically in time as ~SSLE*~CCtott
2. The

transient phase ends when enough EPS has been deposited at

the leading edge such that a finger achieves terminal velocity, and

therefore the ramp time to reach a fixed level of EPS should scale

as *~CC
{1=2
tot . Our simulations predict a similar scaling (Fig. 7C),

indicating that a higher initial concentration of cells will lead to the

faster development of fingers.

These physical arguments indicate that the rate of finger

development, number of cells in a finger, and finger speed are all

positively related to mean cell concentration and to each other, at

all relevant bias forces (Fig. 7D). Similarly, increasing light bias is

Figure 6. Computational determination of the phase space of
collective motility behaviors. A) Simulations grouped into classes as
a function of dimensionless bias force and mean cellular concentration,
resulting in the phase diagram shown on logarithmic axes. Colored
circles represent parameters with a sufficient degree of directed
movement and cell front instability to result in simulations with
finger-like morphologies. Different shades correspond to the values of
the bias force. In the simulations represented by the grey circles, cells
move in a directed fashion toward the light source but do not
spontaneously gather into groups due to high cell density, and thus
high local EPS production. For the simulations represented by the black
circles, little to no cellular movement resulted due to insufficient EPS
production and/or bias force. Numbers correspond to the frames in (B).
B) Representative morphologies at the end of simulations with
parameters from different regions of the phase diagram. In numbered
frames, cells are shown in green, EPS is shown in red, and orange
indicates co-localization of cells and EPS. The simulations in frames 1–4
have finger-like morphologies with varying group sizes and spacing.
The simulation depicted in frame 5 has a moving but uniform cell front
(i.e., no distinct groups), while frame 6 reflects a simulation of essentially
non-motile cells.
doi:10.1371/journal.pcbi.1003205.g006
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correlated with decreased ramp times, increased finger speeds, and

a slight reduction in motile group size. To test these predictions,

we performed experiments in which we systematically varied the

initial cellular concentration and measured the community

morphologies over time. As predicted by our model, the ramp

time decreased and the number of cells in each finger increased

with increasing initial cellular concentration (Fig. 8).

Effects of a time-dependent decrease in EPS efficacy
While all experiments performed with sufficient initial cell

number and in the presence of a directed light source showed the

formation of distinct fingers at the front edge of the spot of cells,

some experiments also displayed fingers forming within the

deposition area (Fig. 9A, inset). We hypothesized that a time-

dependent decrease in the efficacy of EPS-enhanced mobility, as

would be the case if the EPS decayed or relied on a volatile

component, contributed to this separation between the internal

fingers and the front edge. To test whether this mechanism could

produce multiple fronts, we introduced time-dependent EPS decay

into our model by

d

d~tt
~SS~~CC{

~SS

~tt
, ð10Þ

where ~tt~tks is a dimensionless time constant such that S

decreases according to e{t=t in the absence of cellular production

of EPS.

For a given cellular concentration, the EPS concentration

plateaus at a steady-state value ~tt ~CC. This limitation on the

maximum value of the EPS concentration can cause a thresh-

holding effect on the ability of a group of cells to move. If the

relationship between mobility and EPS concentration, M(S), were

switch-like (e.g. sigmoidal), cells in groups below a critical size

would not be able to move because the steady-state EPS

concentration would be too low. In contrast, in the absence of

EPS decay, any group could move given enough time to produce

Figure 7. Scaling laws reveal simple relationships among cell concentration, light bias, and community morphology. A) The number
of cells in each motile group as a function of initial cellular concentration follows an approximately linear relationship independent of bias force (gray
dashed line). B) The mean speed of cellular groups approximately follows a 1/3-power law. C) The ramp time associated with the formation of finger-
like morphologies follows an approximately inverse square-root power law. D) The number of cells in each finger and the speed toward the light
source are positively correlated for all bias forces. In all panels, colors refer to the bias force legend and correspond to dots in the phase diagram of
Fig. 6A.
doi:10.1371/journal.pcbi.1003205.g007
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sufficient levels of EPS. For the mobility function in Eq. 2, it is

similarly the case that in the presence of EPS decay, the maximum

mobility is no longer determined by how long a group of cells

produces EPS at a particular location, but instead by how many

cells are present in the group.

We performed simulations using our reaction-diffusion model

with Eq. 6 modified to Eq. 10, with randomly distributed initial

densities and the same motility relationship used for Figs. 4–7, at a

fixed bias force of ~bb~4 to ensure that the simulations encom-

passed a fingering region in Fig. 6A. We sampled values of the

dimensionless time constant and mean cellular concentration to

calculate a new phase diagram of system behaviors (Fig. 9B); these

behaviors were divided into the same three classes depicted in

Fig. 6A. For a wide range of cellular concentrations and EPS

decay time constants, we found a region where cells split into

distinct motile groups (red dots in Fig. 9B). Within that region,

longer time constants resulted in slower decay of EPS that led to a

single unstable front (Fig. 9C, frame 1), similar to Fig. 6B, frames

1–4. For shorter time constants, the initial mass of cells split into

multiple non-uniform fronts, creating staggered motile groups

(Fig. 9C, frames 2–4). We also identified a motile region without

any fingering that resulted from high levels of EPS at higher cell

concentrations (gray dots in Fig. 9B and Fig. 9C, frame 5). Finally,

we identified a non-motile region caused by cell densities

insufficient to sustain the EPS levels required for motility when

decay times were short (black dots in Fig. 9B and Fig. 9C, frame 6).

Interestingly, in simulations that resulted in multiple fronts,

motile groups that formed later and hence lagged behind the most

Figure 8. Model successfully predicts effects of increased cellular concentration of finger ramp time and biomass. Phototaxis time-
lapse of Synechocystis cells deposited on an agarose surface with increasing initial concentrations with OD730 (from left to right) of 0.6, 0.8, 1.0, 1.2,
and 1.4. Time-lapse images were taken at 0, 11, 24, 36, and 49 hr. The images show a negative correlation between initial cell density and time to
finger formation, and a positive correlation between initial cell density and number of cells in each finger, both of which are trends predicted by our
biophysical model. Scale bar is 1 mm.
doi:10.1371/journal.pcbi.1003205.g008

Figure 9. EPS decay results in multiple cell fronts and preferred paths for cellular groups. A) Experimental example of cells splitting into
multiple fronts that head toward the light source. B) Phase diagram of the EPS decay model at a constant bias force. In the red region, cells form
discrete, motile groups that head toward the light source in one or more cellular fronts. In the gray region, cells move toward the light source but do
not form discrete groups. In the black region, cells are essentially non-motile due to insufficient EPS production and/or rapid decay of EPS. C) Late
time-point snapshots of simulations from regions of the phase diagram in (B), with a light source at the top (green, cells; red, EPS; orange,
colocalization of cells and EPS). Frames 1–4 depict results from simulations in the red region in (B), in which multiple fronts with finger-like
morphologies can form similar to (A) with varying group sizes and numbers of distinct cell fronts. Groups of cells behind the primary front often catch
up by following EPS trails left by forward groups (inset of frame 2). Frame 5 is from a simulation in the gray region of (B), in which cells move toward
the light but do not form discrete groups. Frame 6 depicts the result from a simulation in the black region of (B); the cells are essentially non-motile.
Scale bars are 1 mm.
doi:10.1371/journal.pcbi.1003205.g009

Surface-Mediated Cyanobacterial Collective Motion

PLOS Computational Biology | www.ploscompbiol.org 10 September 2013 | Volume 9 | Issue 9 | e1003205



forward groups often advanced by following the transient EPS

trails of earlier fingers. Upon catching up, the two groups

coalesced to form a larger, faster moving group that even more

easily followed other transient EPS trails (Fig. 9C, inset of frame 2).

This resemblance to our experimental data (Fig. 9A) suggests that

the EPS trail can both separate cells into distinct groups (fingers)

within a front, and gather separated fronts of cells into a single

front via this dynamic coarsening mechanism.

Discussion

We have developed a minimal biophysical model of the

phototactic motility of Synechocystis cells whose behavior is

regulated by cell density and the strength of the bias created by

a directed light source. Our finger merging experiments, which

indicated that modification of the agarose surface increases cell

motility (Fig. 2), suggest that the two major factors underpinning

fingering pattern formation are a positive bias towards light

exhibited by single cells in combination with modification of the

substrate surface. The close agreement between our model of

Synechocystis motility and experimental observations of finger

formation and subsequent reorganization after the plate was

rotated relative to the light direction (Figs. 3, 4) suggest that

phototactic fingering patterns are a consequence of how the

physical properties of the surface, which are dynamically

remodeled by the local population of cells, affect cell motility; no

change in single cell behavior or direct cell-cell communication is

required. The community swarming behavior of the bacterium M.

xanthus has many similar features to Synechocystis phototaxis,

including TFP-dependent motility and central role of EPS

[20,46,47]. Agent-based models have shown that maximal outflow

of cells from a M. xanthus swarm relies on regular reversals of EPS-

mediated gliding [48] and a flexible, rod-like cell shape [49]. By

contrast, Synechocystis phototactic patterns form independent of a

known reversal mechanism, and cells are spherical in shape.

Moreover, light provides a unique switchable cue with which to

manipulate behavior, for example by rapidly altering finger

trajectories (Fig. 2), making Synechocystis an excellent system for

probing general properties of community motility.

Our model predicts the formation of distinct groups of cells

(fingers) under a variety of light intensities (bias) and cell densities

(Fig. 6). Finger volume is predicted to increase linearly with the cell

density (Fig. 7A); in our simulations, larger fingers have a shorter

ramp time (Fig. 7C) and collectively move more quickly toward

the light with a speed that scales with the cell density (Fig. 7B). In

contrast with extremely low cell densities, these results indicate

that fingers can move in a more directed fashion toward light and

at speeds that single cells cannot achieve. These conclusions are

even more accentuated in simulations with increased rates of EPS

decay, in which the motility of an individual cell toward a light

source may be negligible in comparison with a group that can

maintain a high local density of EPS (Fig. 9). Therefore, the model

predicts that under a wide range of combinations of light bias, cell

concentration, and EPS decay conditions, cells that are part of a

finger are likely to exhibit increased motility [30]. Given that our

analysis is based on a dimensionless set of reaction-diffusion

equations, we note that the emergent behaviors predicted by our

model are general properties of any system that uses surface

enhancement and biased diffusion for motility. Several of these

predictions corroborate what we have observed empirically in the

laboratory. Our model now provides a rigorous framework in

which various predictions can be further tested and refined using

specific mutants or defined conditions. For example, our studies

predict that EPS released into the medium by cell cultures or

collected from the surface of the agarose may be provided

exogenously to alter motility in spatially dependent patterns, and

our computational model provides a useful tool for predicting the

effects of such exogenous EPS addition.

Secreted EPS provides information about the concentration of

cells that have recently resided at a particular location on the

surface, a situation similar to chemical quorum sensing in which

autoinducer molecules indicate the cell density of the population

[50]. As Synechocystis groups develop, EPS trails provide a persistent

mechanism of long-range, indirect communication that guides the

coalescence of lagging groups with cells at the front of the drop.

This dynamic coarsening of group size as cells move toward the

light source is similar to water droplets on a window that follow the

paths of previous droplets and coalesce to form larger water

droplets that move even faster down their gravitational potential.

Our model also suggests that EPS decay may play an important

role in group motility by providing only a transient trail to guide

other groups of cells that are farther from the light source (Fig. 9).

While it may be advantageous to guide the groups immediately

behind a leading group toward a light source, it is possible that

changing environmental conditions such as light quality or

direction may make it disadvantageous to have all cells exclusively

follow the trail of cells at the leading edge.

Our goal is to connect the microscopic cellular properties

incorporated into our model with the macroscopic, observable

behavior of cellular communities. Whereas previous models

explicitly assumed that neighboring cells experience local interac-

tions or that cells switch between discrete states associated with

different behaviors [30,31,45], our model seeks to reproduce the

observed phototactic behavior using a minimal set of assumptions

about the underlying factors controlling motility at the single-cell

level. While our results do not rule out the possibility of chemical

communication or changes in gene expression as contributors to

the phototactic response of Synechocystis, our model provides a

mechanistic explanation for finger formation that does not require

these elements, and yet correctly predicts several trends in

experimental data. In particular, we experimentally verified our

model prediction that increasing the density of cells in the initial

colony decreases the time required for finger formation and

increases the subsequent finger size, with comparatively little

variation in the number of fingers along the front of the spot

(Figs. 7, 8).

Our use of a mean-field reaction-diffusion model assumes that

the stochasticity of single-cell movement can be averaged over the

population of cells; similar models have been applied to

intracellular protein networks [51,52] and have also been used

to describe a combination of phototaxis and chemotaxis observed

in Dictyostelium slugs [53], to model multiple competing cell

populations [54], to explain phototaxis in non-equilibrium

chemical systems [55], and to decipher the morphology of

dendritic bacterial colonies [56,57]. In each case, these models

clarified the important factors for generating a particular behavior

by demonstrating the sufficiency of a subset of potential variables.

Although discrete, agent-based models can be used to study the

behavior of a group of cells [42,53,58], we have focused on a

continuous, mean-field model in order to map the behavior of an

entire community across a large region of parameter space in a

computationally tractable manner. It is relatively straightforward

to introduce other factors into our model, including a diffusive

chemical signal, cell-cell interactions mediated by Type-IV pili

[35], crowding, or EPS production levels [59]. Future experiments

examining single-cell behaviors will also help to elucidate whether

these factors and/or stochasticity in single-cell motility are

manifested. Moreover, quantitative characterization of community
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morphologies as a function of light intensity, direction, and

wavelength should provide a calibration for the effective strength

of the light bias in different conditions. Finally, targeted mutants in

the synthesis of extracellular polysaccharides and varied surface

properties will provide the opportunity to tune community

dynamics and test predictions of our model.

The role of the local microenvironment in regulating both

motility and the structure of the community can have a strong

impact on a wide range of biological systems, including the

migration of germ layer progenitor cells in the developing

zebrafish embryo [60] and cancer cell metastasis [61]. The

contribution of EPS to Synechocystis motility investigated in this

study suggests that modification of surfaces as cells move across

them may be an important parameter for understanding emergent

community structure. The use of biophysical models to evaluate

the physical basis of collective cell migration provides new avenues

for further experiments and may underlie future efforts to control

community behavior.

Materials and Methods

Growth conditions
Synechocystis sp. PCC 6803 cells were grown from an original

single colony of phototaxis-positive cells in BG-11 media [62] at

30uC with continuous shaking at 100 rpm under overhead warm

white fluorescent light (Super Saver Warm white F40WW/SS,

34W, Osram Sylvania Inc., MA, USA). All imaging experiments

were performed using exponentially growing cells with

OD730 = 0.6–1.3 (25,000–55,000 cells/mL; measured with an

Ultrospec 3100 pro spectrophotometer, Amersham Biosciences,

Sweden).

Motility assay
Motility assays were carried out on 0.4% (w/v) agarose in BG-

11 in 50-mm plastic petri dishes (BD Falcon, New Jersey, USA) at

30uC. One microliter of cells (OD730 = 0.8, or ,40,000 cells) was

placed in the center of a plate, and then inverted to minimize

evaporation of the agarose. In Fig. 8, cells were diluted with fresh

BG-11 media and one microliter of cells from each dilution was

placed on a plate. A warm white LED (5 mm, 7000 mcd, 35u
spread; Super Bright LEDs, MI, USA) was used to illuminate each

plate. To induce directed phototaxis, the LED was placed 50 mm

away from the center of the cell droplet, which was approximately

2.5 mm in diameter, at the level of the agarose. The incident light

intensity was approximately 20 mmol photons/m2s, as measured

with an LI-189 light meter (LI-COR Biosciences, NE, USA).

Time-lapse imaging and cell tracking
Entire drops (Figs. 1, 2, 3, 8, and 9) were imaged using a Canon

60D DSLR camera (Canon U.S.A., Inc., New York, USA)

attached to a Leica MZ12 stereoscope (Leica Microsystems, IL,

USA). To induce cells to move into an existing EPS trail (Fig. 2), a

Petri dish containing cells that had been under directional light for

24 hours was rotated by 90u. Time-lapse imaging at single-cell

resolution was conducted at 206magnification, 1 frame/sec, and

30uC using a Coolsnap-Pro Monochrome camera (Photometrics,

Arizona, USA) attached to a Nikon TE-300 inverted microscope

(Nikon Instruments Inc., Melville, NY, USA).

Cell tracking was performed using custom MATLAB (The

Mathworks, Natick, MA, USA) software to quantify the positions

and velocities of individual cells over time. In each frame,

individual cells were segmented using thresh-holding and a

watershed transform, and the locations of their centers of mass

were recorded. The track of each cell was found using probabilistic

nearest-neighbor connected-component analysis across frames.

The average speeds of single cells were calculated from the total

path length traveled over the preceding 50 seconds.

Simulations of the reaction-diffusion model
Simulations were performed with custom code written in

MATLAB. Simulations were carried out on a rectangular grid

264 mm in physical size, corresponding to 3606720 simulated

grid elements with a grid spacing of 0.25 natural length scale units.

In all instances, the simulation area was subject to zero flux

boundary conditions and the EPS concentration was initially set to

zero everywhere. The initial cellular mass was spread in a uniform

random distribution over a region covering the bottom 20% of the

simulation area. The cellular and EPS concentrations were

calculated using a forward Euler method with a spatial and

temporal resolution high enough for numerical stability. The time

step (dt = 0.01) was chosen to be small in comparison to the

dimensionless time scale of the system set by the EPS production

rate, and simulations were carried out for 600,000 s (300

dimensionless time units), or until motile groups reached the end

of the physical simulation area. To compute phase diagrams, free

parameters were sampled in log-base 2 across a large range to

ensure that all possible classes of relevant behaviors were

comprehensively explored. For each point in the phase space,

three distinct random initial conditions were tested. We performed

a total of 570 simulations for Fig. 6A and 504 simulations for

Fig. 9B, varying initial biomass and bias force over the ranges

shown.

Parameter estimation
The EPS production rate ks and the maximum cellular mobility

m0 set the fundamental length and time scales of the biophysical

model. Both of these parameters were estimated from time-lapse

imaging data. We assume that the optical halo around groups of

cells is formed by the liquid (EPS)/air interface under which the

cells reside. For regions where the width of the halo was small

compared with the size of the EPS covered region, we assumed

that the movement of this interface resulted from production of

new EPS, and thus used this edge to approximate the area covered

by EPS. We estimated the EPS production rate at ks^0:03

min{1 by observing the rate of increase of this area over time, and

by assuming that the EPS was approximately as thick as the 1-mm

thick monolayer of cells from which it was secreted. We estimated

the maximum cellular mobility at m0^0:25 mm2=s by measuring

the root-mean-squared displacements of single cells over time in

the absence of light and in a region where EPS had clearly been

deposited, thereby assuring that cells could move relatively freely

and in unbiased directions.

Morphological analysis of simulation data
Custom MATLAB software was written to quantify the

morphological features of the simulations. Simulations in which

less than 50% of the cell mass had moved into fresh territory by

the end of the simulation were considered non-motile (black dots

in phase diagrams). For the majority subset that was motile, we

used an adaptive threshold to determine the position of the moving

cellular front as a function of time. We calculated the standard

deviation of the points forming the cell front normalized by the

mean distance that the cell front had moved, yielding a

dimensionless metric of the growth rate of the morphological

instability; a perfectly flat cell front would have a value of zero, and

a highly unstable front with finger-like projections would have a

value close to 1. Simulations that showed an instability growth rate
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below 0.01 were considered to have a stable front without distinct

groups (gray dots in phase diagrams). Simulations with front

instability .0.01 exhibited distinct cellular groups that moved

toward the simulated light source. In Fig. 6A these points were

colored according to their bias force, while in Fig. 9B these points

were colored red since the bias force was fixed. For simulations

without EPS decay (Figs. 3–7), the distinct motile groups (if

present) were segmented to quantify their biomass (measured as an

integral from the beginning of the EPS trail), speed (measured

from the group center-of-mass), and ramp time.
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