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Abstract

Many sensory or cognitive events are associated with dynamic current modulations in cortical neurons. This raises an urgent
demand for tractable model approaches addressing the merits and limits of potential encoding strategies. Yet, current
theoretical approaches addressing the response to mean- and variance-encoded stimuli rarely provide complete response
functions for both modes of encoding in the presence of correlated noise. Here, we investigate the neuronal population
response to dynamical modifications of the mean or variance of the synaptic bombardment using an alternative threshold
model framework. In the variance and mean channel, we provide explicit expressions for the linear and non-linear frequency
response functions in the presence of correlated noise and use them to derive population rate response to step-like stimuli.
For mean-encoded signals, we find that the complete response function depends only on the temporal width of the input
correlation function, but not on other functional specifics. Furthermore, we show that both mean- and variance-encoded
signals can relay high-frequency inputs, and in both schemes step-like changes can be detected instantaneously. Finally, we
obtain the pairwise spike correlation function and the spike triggered average from the linear mean-evoked response
function. These results provide a maximally tractable limiting case that complements and extends previous results obtained
in the integrate and fire framework.
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Introduction

Intracellular recordings of multiple neurons have shown that

dynamical sensory stimuli can modulate input currents to cortical

neurons. For example, visual stimulation with moving gratings can

lead to oscillatory modulation of the membrane potential in visual

cortical neurons [1]. While it is important to identify the role such

dynamic modulations play in neural coding [2–4], it is also

important to understand how their encoding depends on

physiological parameters such as the background noise or the

firing rate. The incoming external signals can be encoded in the

mean or variance of the synaptic current to each neuron in a

cortical network. In a single neuron the maximal firing rate limits

the highest faithfully encoded frequencies. Yet the spike rate is

remarkably low, often below 1Hz in cortical neurons [5,6].

Therefore, the representation of perceptually important fast-

varying stimuli has to emerge at the population level. In neuronal

populations the frequency response function quantifies the fidelity

of signal representation [7–10]. Intuitively, the frequency response

function measures how well the population firing rate is modulated

by the incoming signal of a specific frequency. If the amplitude of

the rate modulation is zero then that frequency cannot be encoded

in the population rate.

An early study by Knight showed that a population of

independent (perfect) integrate and fire neurons can faithfully

encode any input frequency, but if finite memory is introduced to

the single neuron dynamics, the population rate is no longer a

perfect copy of the stimulus [7]. Subsequent studies established

that two factors play a particularly important role for the

frequency response: the noise statistics and the spike generation

mechanism [9–13]. Brunel and colleagues have shown that in the

leaky integrate and fire model high-frequency mean-modulating

signals are represented faithfully in the population rate only on the

background of colored noise [10]. Substituting colored for white

noise background, on the other hand, leads to 1=
ffiffiffi
f

p
decay of the

frequency function for input frequencies f much larger than the

stationary firing rate [9,14]. The analytical complexity of the

colored noise results, however, necessitates a largely numerical

treatment and generally allows for explicit expressions in specific

limits only, e.g. the linear regime of weak amplitudes [10,15]. One

notable exception are the recent results obtained by Ostojic,

Richardson and colleagues for the non-linear response functions of

the exponential integrate and fire model [16,17]. Notably for

variance modulations, the leaky integrate and fire model neurons

can faithfully encode any high-frequency input even for white

noise [9,14]. So far, only specific limits of the frequency response

function could be calculated in the integrate and fire framework

for a limited set of temporal correlation functions. The linear

response for mean modulating signals has been obtained

analytically in the limit of white or almost white Ornstein
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Uhlenbeck currents by Brunel and colleagues in the leaky integrate

and fire model [10]. Also Brunel and Latham obtained a linear

response for mean modulating signals in the limit where the

correlation time is much larger or much smaller than the membrane

time constant in the quadratic integrate and fire model [18]. The

high-frequency limit of the response function for mean modulations

has been studied in various integrate and fire type models. Brunel

and colleagues obtained in the exponential and quadratic integrate

and fire model the response amplitude in the high-frequency limit

and showed that it decay !1=f for frequencies f beyond the cut-off

determined by the inverse spike initiation time [11,15,16,18,19].

More generally, integrate and fire type models with a variable spike

onset initiation time have shown that for white as well as colored

noise the representation of high-frequencies in the mean channel is

successively enhanced if the spike onset time is reduced [11,20]. For

the variance modulation, however, the analytical results appear

much more sparse in the literature and are available so far only in the

white noise limit and in the linear regime of the leaky integrate and

fire model [9,21] or the perfect integrate and fire model [22]. In

summary, these previous model studies have shown that the structure

of the noise background can fundamentally change the response

properties- particularly the difference between a perfect white noise

and colored noise can be profound. The sharpness of the spike onset

has little effect on the low and intermediate frequencies but strongly

determines the high-frequency cut-off above which the decay of the

frequency response function sets in [11,12,20]. Notably, recent

experimental evidence indicates that cortical neurons can indeed

encode input frequencies that are tens of times faster than the firing

rate of individual neurons, in both mean- and variance-encoding

schemes in the presence of in vivo-like correlated background noise

[23–25]. This suggests that a threshold-based model that is driven by

different types of colored noise can be a promising starting point to

understand the fundamental determinants of the frequency response

function for the physiologically important intermediate frequency

range up to a few hundred hertz [23–25].

Here, we show that an alternative threshold-based framework

can be used to obtain explicit and tractable results for the linear as

well as non-linear response to mean- and variance-encoded

stimuli. The explicit results derived here for the frequency

response function, pairwise spike correlations and spike triggered

averages constitute a maximally tractable limiting case that

complements and extends the results obtained in the integrate

and fire framework. Importantly, this framework does not limit the

accessible current correlation functions to white noise or Ornstein

Uhlenbeck process, thereby allowing us to explore a wide variety

of shapes and time constants that can occur in vivo [26–28].

The manuscript is organized as follows: we start with the

introduction of the mean and variance signaling in cortical networks

in Section ‘‘Signal representation in cortical networks’’. We then

introduce the population firing rate response dynamics in Section

‘‘Key definitions of dynamical population response’’. Subsequently,

we define the model setting and compute basic quantities such as the

firing rate of individual neurons in Section ‘‘Dynamical response in

threshold model neurons’’. In Section ‘‘Population response to

mean and variance oscillations in the threshold model’’ we obtain

the population rate dynamics in response to oscillatory changes of

mean and variance. In Section ‘‘Response to step-like input current

changes’’ we address the population response to step-like input

changes. In Section ‘‘Weak pairwise spike correlations’’ we quantify

the spike correlations in two neurons that are subject to a common

fluctuating mean signal. Finally, we focus on the statistics of spike

triggering events in Section ‘‘Spike-triggering events’’. In discussion

section we present a discussion of our results and their relation to

previous theoretical and experimental findings. A nomenclature

overview can be found in Table 1.

Results

Signal representation in cortical networks
Neurons in the mammalian cortex form an interconnected

network, where each neuron receives inputs from many thousands

Author Summary

Sensory stimuli in our environment are represented in the
brain as input current changes to neurons. For example, a
periodic bar pattern in the visual field leads to periodic
current modulations in the visual cortex. Therefore, models
describing the ability of neurons to represent incoming
stimuli can offer important clues about how sensory
stimuli are processed by the brain. As anyone who has
used an old-fashioned radio can attest, there is not just
one but multiple ways to encode a signal, e.g. the familiar
AM and FM channels. But what are the potential encoding
channels in the cortex? A signal could modify the neuronal
input current in two distinct ways: it could act either on
the mean or the variance of the current. Using a minimal
model framework, which can reproduce many features of
neuronal activity, we find that both encoding schemes
could be equally potent in transmitting slow and fast
signals. This allows us to describe how input signals of any
functional form give rise to collective firing rate changes in
populations of neurons.

Table 1. Symbol nomenclature in the order of appearance.

Symbol Description

nE Excitatory input firing rate of a neuron in a balanced network

nI Inhibitory input firing rate of a neuron in a balanced network

K Average number of synaptic inputs

V (t) Voltage of a single neuron

s(t) Spike train of a neuron

n Firing rate of a neuron

n(t) Time dependent population firing rate

y0 Threshold voltage

tM Membrane time constant

CI (t) Current auto correlation in a single neuron

s2
I

Current variance in a single neuron

tI Temporal width of current correlation function

C(t) Voltage auto correlation in a single neuron

s2
V

Voltage variance in a single neuron

ts Temporal width of voltage correlation function; for Ornstein
Uhlenbeck drive ts~

ffiffiffiffiffiffiffiffiffiffiffi
tI tM
p

C’’(t) Correlation function of V ’(t), equal to the second derivative of
C(t)

s2
_VV

Variance of V ’(t), equal to s2
V=t2

s

nm,1(v) Mean evoked linear response function

nv,1(v) Variance evoked linear response function

ncond (t) Conditional firing rate of two neurons

A Signal amplitude

STA(t) Spike triggered average

doi:10.1371/journal.pcbi.1002239.t001
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of presynaptic neurons. The excitatory and inhibitory inputs at

each neuron counteract each other [29,30]. What results is an

excitation-inhibition balance which is schematically illustrated in

Fig. 1 A(left). In Fig. 1 A (left) the mean excitatory (grey) and mean

inhibitory (black) currents are counteracting each other and result

in a zero-mean net current at the soma of a neuron. Yet, the

subtraction of excitatory input by inhibition is not perfect and the

remaining net current has a sizable variance. What could be the

benefit of operating in this way? Theoretically, it is understood

that a neuronal population in such a state could encode and relay

incoming signals via two channels (1) modifications of the mean

synaptic bombardment and (2) modification of the synaptic

fluctuation variance. These two encoding channels are schemat-

ically illustrated in Fig. 1 (A). In case (1) the signal is added to the

input of neurons, in case (2) the signal modulates the variance of

the background fluctuations in neurons, similar to the amplitude

modulation strategy which is widely used in radio communication.

To employ strategy (1) a sensory stimulus could alter the mean

current by adding an external signal to the network generated

background fluctuations. On the other hand, in a cortical

population where the fluctuations in the activity of excitatory

and inhibitory populations accurately track each other [30,31] the

effect of excitation and inhibition can be precisely balanced. In this

case, any perturbation would result only in a change of input

variance to each neuron and a balance of inhibition and excitation

would compensate any mean current changes. To rapidly encode

modulations of the input current in the population firing rate, the

strategy employed by neurons needs to be susceptible to subtle

changes of either mean or variance. Now let us formalize the

definitions and define the mean and variance of net input currents

in a cortical network in the absence of external signals. According

to the calculations outlined in Methods Section ‘‘Current mean

and variance in a cortical network’’ the input current mean and

variance for all neurons in a cortical network can be described by:

Imean~(nE{nI )
ffiffiffiffi
K
p

, ð1Þ

s2
I ~nEznI : ð2Þ

In the mean channel, the activity of excitatory neurons needs to be

increased by A while the activity of inhibitory neurons is decreased

by the same amount A. Fig. 1 (right, green) illustrates that this

procedure modifies the mean but leaves the variance of the net

current unaffected.

Imean~(nE{nI )
ffiffiffiffi
K
p

?Imean
0~(½nEzA�{½nI{A�)

ffiffiffiffi
K
p

, ð3Þ

dImean~2A
ffiffiffiffi
K
p

: ð4Þ

s2
I ~nEznI ?s2

I ~½nEzA�z½nI{A�, ð5Þ

ds2
I ~0: ð6Þ

In a second independent encoding scheme, a signal is encoded in

the variance of the net current. As demonstrated in Fig. 1 (right,

red) this could be achieved by increasing the excitatory and

inhibitory firing rates simultaneously by an amount A:

Imean~(nE{nI )
ffiffiffiffi
K
p

?Imean
0~(½nEzA�{½nIzA�)

ffiffiffiffi
K
p

, ð7Þ

dImean~0: ð8Þ

s2
I ~nEznI ?s2

I ~½nEzA�z½nIzA�, ð9Þ

ds2
I ~2A: ð10Þ

It is plausible to assume that in live cortical networks, both mean

and variance signaling act simultaneously. For the physiologically

plausible regime of small but simultaneous mean and variance

changes, the resulting population response is simply a superposi-

tion of the mean and variance responses. For large simultaneous

modulations of mean and variance, the resulting population

response needs to be computed on a case-by-case basis, because it

can potentially depend on the stimulus form, and the amplitude

ratio of mean and variance signals.

Effective independence assumption for cortical

populations. To understand how interconnected cortical

populations respond to mean or variance signals, two ingredients

are crucial: 1) response of independent neurons and 2) the influence

of topology. Before 2) can be addressed, the response of independent

cortical neurons in 1) needs to be clarified. Notably, several recent

studies have shown that the net input current and spike correlations

observed in vivo cortical are predominantly weak, with spike

correlation coefficients v0:1 in awake animals [5], see Fig. 1.

Additionally, recent studies have proposed active decorrelating

mechanisms based on a precise temporal correspondence between

excitation and inhibition in each neuron in a network, which result in

pairwise decorrelated spiking activity [31,32]. These exceptionally

weak correlations suggest that the assumption of independent

neurons can be a promising starting point for the investigation of

response dynamics of cortical populations. Therefore, we focus in

this study on the population firing rate dynamics of independent

neurons subject to mean or variance modulating signals. The

fluctuating background currents, which in a live network results from

a sum of inhibitory and excitatory currents, will be synthesized

independently for each neuron as a random realization of a random

Gaussian process and modulated either in their mean or variance. In

the following Sections we introduce the threshold-based single

neuron model that we use to characterize the dynamical response in

such a population of independently encoding neurons.

Key definitions of dynamical population response
Before we start with the specific representation of dynamical

signals in the threshold model, let us first specify model-

independent definitions for the dynamical population response,

such as linear response function or spike triggering events. A

nomenclature summary can be found in Table 1.

In the previous Section we established that signals in a cortical

network can be encoded in the mean or in the variance of input

currents. If this signal constitutes only a small perturbation of the

system, as can be expected for example from thalamo-cortical

projections [33], then the population firing rate n(t) is directly

proportional to the signal A:exp(ivt):

n(t)~nznm,1(v):A exp(ivt)zO(A2) (mean modulation), ð11Þ

n(t)~nznv,1(v):A exp(ivt)zO(A2) (variance modulation): ð12Þ

Dynamical Stimulus Encoding in Threshold Neurons
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Figure 1. Encoding in the mean and variance channel. (A) Simultaneous increase of excitatory and reduction of inhibitory activity (or vice
versa) results in a mean current change (right, green). On the other hand, simultaneous increase (or reduction) in excitatory and inhibitory spiking
activity results in modifications of the net current variance (left, red). These modifications constitute two primary channels of communication in a
cortical network. (B) In a cortical network the excitatory and inhibitory currents add up such that the net somatic current is only weakly correlated
across neurons [31,32].
doi:10.1371/journal.pcbi.1002239.g001
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The proportionality factors nm,1(v) or nv,1(v) are referred to as the

linear response functions. Each of these functions essentially describes

how each signal frequency is affecting the firing rate. Note, that

Eqs. 11 and 12 are model-independent, and that linear response

dynamics for weak enough signals can be derived for any non-

linear system. Also note that the linear response derives its name

from the fact that the output rate n(t) is linearly related to the

input in Eqs. 11 and 12. Fig. 2 (top) schematically demonstrates

the encoding of periodic mean signals in the presence of

background noise. The resulting spikes collectively lead to a

periodic modulation of the firing rate described by Eq. 11. In

addition to the oscillatory changes in mean and variance another

group of changes bears particular physiological significance. These

are the step-like changes in mean and variance. To compute the

population rate response to a step-like signal, we first formally

describe that by a Heaviside h-function:

step(t)~h(t), ~hh(v)~½i=(
ffiffiffiffiffiffi
2p
p

v)z
ffiffiffiffiffiffiffiffi
p=2

p
d(v)�: ð13Þ

~hh(v) is the Fourier transform of h(t). This model independent

relation describes the contribution of each frequency to the step-

like signal. To compute the neuronal response to the mean-

encoded weak step-like stimulus, it is sufficient to consider each

frequency separately, compute the respective output and sum up

all contributions. The response to a step signal of size A can then

be formally written as a convolution:

n(t)~(n10step)(t)~

A

ð?
{?

n1(v)
{iffiffiffiffiffiffi
2p
p

v
z

ffiffiffi
p

2

r
d(v)

� �
exp(ivt)ffiffiffiffiffiffi

2p
p dv:

ð14Þ

In the case of mean channel and weak signals, the linear response

function and its inverse Fourier transform n̂nm,1(t)~F{1(nm,1(v))
are the only functions [34] we need to predict the population

response to any weak dynamical current stimulus I(t):

n(t)~nz

ð?
{?

n̂nm,1(t)I(t{t)dt: ð15Þ

For signals which constitute a larger dynamical perturbation,

successively higher order Wiener kernels [34] may be necessary.

Furthermore, the linear response function determines not only the

response to dynamical signals but it also shapes the weak spike

Figure 2. Computational role of mean-encoded signals. (Top) Representation of periodic mean stimuli in the population rate of noisy,
independent neurons. (Left) Representation of step-like mean signals in the population rate of noisy, independent neurons. (Bottom) Common
fluctuating currents from presynaptic partners represent a common mean signal that leads to pairwise spike correlation function ncond (t). (Right) The
average voltage before a spike is shaped by the linear mean response. CI (v) denotes the input current correlation function. The role of the linear
response function nm,1(v) is indicated by a dashed green line. Results obtained in the alternative threshold model are discussed in the indicated
Sections of this manuscript.
doi:10.1371/journal.pcbi.1002239.g002
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correlations in two statistically identical neurons driven by a

fluctuating Gaussian current [34]:

ncond (t)~Ss1(t)s2(tzt)T=n,

F (ncond{n)(v)~rjnm,1(v)j2CI (v)=n:
ð16Þ

Here, CI (v) is the Fourier transform of the current correlation.

The input current correlation strength is 0vr%1. Eqs. 11–16

show that the response to variance and mean modulating signals

are critical to a number of phenomena, from the processing of

periodic stimuli to inter-neuron synchronization.

Dynamical response in threshold model neurons
Here, we use a previously introduced threshold-based model

[35–38] that identifies the spike times tj of a neuron with positive

threshold crossings of a correlated, stationary Gaussian voltage

V (t) as it is illustrated in Fig. 3 (left):

s(t)~
X

j

d(t{tj)~d(V (t){y0)j _VV (t)jh( _VV (t)),

C(t)~SV (t)V (tzt):T
ð17Þ

S:T denotes the ensemble average and y0 the spike threshold. A

nomenclature overview can be found in Table 1. The voltage

correlation function C(t) is characterized by its peak value C(0)~s2
V

and the finite correlation time constant ts~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C(0)=jC’’(0)j

p
. The

correlation time ts, which is related to the autocorrelation time [37],

describes the width of the correlation function in the vicinity of zero

and is proportional to the zero crossings of a parabolic fit to the

correlation function in the vicinity of zero. The second derivative

of the correlation function C’’(t) has a variance s2
_VV
~{C’’

(0)~s2
V=t2

s . For simplicity we will assume a linear Resistor Capacitor

(RC) membrane filter such that the Fourier transforms of the

voltage and current correlation functions are related through

C(v)~CI (v)=(1zt2
Mv). Our results, however, are not specific to

this current voltage transformation, but can accommodate other

filters that give rise to smooth voltage correlation functions [37,38].

Note that this model does not have fixed-reset condition, but a silence

period after each spike emerges from the regularity of the voltage

trajectory [37]. The firing rate of a single threshold neuron is:

n~Ss(t)T~exp {y2
0=(2s2

V )
� �

=(2pts), ð18Þ

where y0 is the threshold voltage, d(:) and h(:) are the Dirac delta

and Heaviside theta functions, respectively. In this approach the

firing rate n is a particularly tractable expression which depends only

on two parameters: the correlation time ts and the threshold-to-

variance ratio y2
0=s2

V , but not on the specific functional choice of the

correlation function. Unless stated otherwise, we use the correlation

function C(t)~s2
V=cosh(t=ts) which is compatible with the power

spectra of cortical neurons [26] for simulations using digitally

synthesized Gaussian processes [39] or numerical integration of

Gaussian integrals. Numerical simulations were implemented in

Matlab 2010a (The MathWorks, USA) and analytical calculations

were partially implemented in MATHEMATICA 5.2 and 8.0

(Wolfram Research Inc, USA). Let us note that the dependences on

the threshold or current variance in Eq. 18 are consistent with the

predictions in the leaky integrate and fire model, as we have shown in

[37]. Note, that this threshold model operates only in the fluctuation

driven, low firing rate nv1=(2pts) regime that is particularly

important for visual cortical neurons [5,6,29,30]. The mean-driven

regime escapes the validity regime of this model.

Population response to mean and variance oscillations in

the threshold model. We compute the population rate

dynamics in response to changes of the mean and variance for

the full range of input frequencies. First, we start with the mean

modulations. As shown schematically in Fig. 3 (B) this paradigm

subjects each neuron to a current which consists of a periodic

signal and a fluctuating background background noise which is

unique to each neuron. To calculate the response evoked by a

sinusoidal modulation A:exp(ivt) of the mean in the threshold

model framework, the signal is low-pass filtered in the cell

membrane:

tM
_ff (t)~{f (t)zA:exp(ivt),

f (t)~
A

t2
Mv2z1

cos(vt)ztMvsin(vt)ð Þ:
ð19Þ

Following the steps outlined in the Methods Section ‘‘Mean

modulation’’, Eq. 17 can be modified to accommodate the

oscillating voltage-to-threshold distance. The complete non-linear

population firing rate response reads:

nm(t)~

exp {
(y0{f (t))2

2s2
V

� � ffiffiffiffiffiffi
2p
p

Erf
_ff (t)ffiffi
2
p

s _VV

� �
_ff (t)z

ffiffiffiffiffiffi
2p
p

_ff (t)z2s _VV exp {
_ff (t)2

2s2
_VV

 ! !

4psV

:ð20Þ

Note that the firing rate modulation in response to periodic mean

current is independent of a particular functional form of the current

correlation function, because C(t) does not enter Eq. 20. We also

find that Eq. 20 can be generalized to describe the population

response to any signal k(t). In this case the membrane filtered signal

f (t) in Eq. 20 only needs to be replaced with the corresponding

solution of the inhomogeneous differential equation in Eq. 19. From

Eq. 20 we identify the linear mean evoked response:

nm,1(v)~
ny0

s2
V

1ziv
ffiffi
p
2

p sV ts
y0

1zivtM
: ð21Þ

Here, we find that the linear mean response is determined by only

two time constants that shape the interplay between a low- and a

high-pass. The amplitude of the linear response function for mean

modulating signals in Eq. 21 is finite for any input frequency

regardless of the stationary firing rate, see Fig. 4 (A). In the cross-over

regime where the high-pass filter of the fixed threshold (nominator in

Eq. 21) starts to counteract the low-pass filter of the membrane

(denominator in Eq. 21) the response function transitions to a new

firing rate dependent constant level. It is conceivable that the low-pass

filtering by the membrane RC-circuit carries over to the firing rate

dynamics, however, in this model even the highest frequencies can be

relayed almost unattenuated. When is the linear approximation

valid? As demonstrated in Fig. 4 and Fig. 5 linear response can be a

good approximation for very small signal-to-threshold ratios of a few

percent. In Fig. 6C we observe that for a signal-to-threshold ratio of

A=y0~0:3 the linear approximation in Eq. 21 starts to be less

accurate and non-linear effects kick. For A=y0§0:5 we observe that

the linear approximation in Eq. 21 substantially overestimates the

population response to hyperpolarizing (negative) transients and

underestimates the response to depolarizing (positive) transients.

Now, we address the population rate response to periodic

modulation of the current variance. The membrane filtered

voltage signal f (t) is then given by:

ð20Þ

Dynamical Stimulus Encoding in Threshold Neurons
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Figure 3. Spike generation and signal representation in the single spiking threshold neuron. (A) Spike generation from a temporally
correlated Gaussian voltage trace in a single threshold neuron. (B) Encoding of common signals by the population firing rate n(t) of independent
threshold neurons. Note, that n(t) can be either linearly related to the stimulus (linear regime for weak signals, Eq. 11, 12) or be described by a non-
linear response function (e.g. see Eq. 20).
doi:10.1371/journal.pcbi.1002239.g003
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tM
_VV (t)~{V (t)zI(t):(1zA:exp(ivt)): ð22Þ

Using sV (t)2, s _VV (t)2 and SV (t) _VV (t)T as given in the Methods

Section in Eq. 48,49 and 51 we obtain the population firing rate:

nv tð Þ~exp
y2

0s _VV tð Þ2

{2sV tð Þ2s2
_VV
z2SV tð Þ _VV tð ÞT2

 !
2sV tð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sV tð Þ2s2

_VV
tð Þ{SV tð Þ _VV tð ÞT2

q
4ps3

V

z

2
4

z

exp
y2

0
SV tð Þ _VV tð ÞT2

2sV tð Þ4 s2
_VV

{2sV tð Þ2SV tð Þ _VV tð ÞT2

 ! ffiffiffiffiffiffi
2p
p

y0SV tð Þ _VV tð ÞT 1zErf
y0SV tð Þ _VV tð ÞT

sV

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2sV tð Þ2 s2

_VV
{2SV tð Þ _VV tð ÞT2

q
0
@

1
A

0
@

1
A

4psV tð Þ3

3
7777775
:

ð23Þ

The linear response function is:

nv,1 vð Þ~
ny2

0

�
2s2

V

� �
1ziv

ffiffiffiffiffiffiffiffi
p=2

p ffiffiffiffiffiffiffiffiffiffi
tI tM
p

sV

�
y0

� �
1zivtM=2ð Þ 1zivtMtI= tIztMð Þð Þ

z
n 1ziv

ffiffiffiffiffiffiffiffi
p=2

p ffiffiffiffiffiffiffiffiffiffi
tI tM
p

sV

�
y0ztMs2

V

�
y2

0

� 	� �
2s2

V

�
y2

0 1zivtM=2ð Þ
:

ð24Þ

Here, the ts~
ffiffiffiffiffiffiffiffiffiffi
tMtI
p

corresponds to the width of the voltage

correlation function, tI is the current correlation time, and tM is

Figure 4. Linear response to mean and variance modulations in a population of independent threshold neurons. (A) Normalized
amplitude r(f )=r(0) vs. f in response to mean current modulations, simulations (circles) and analytical results in Eq. 21 (solid line). (B) r(f )=r(0) vs. f in
response to current variance modulations, simulations (circles) and analytical results in Eq. 24 (solid lines). Regimes of high-pass and low-pass
behavior for linear response function for mean (C) and variance modulations (D). Note, vector strength r in (A) and (B) is proportional to the linear
response n1(v), see Eq. 53.
doi:10.1371/journal.pcbi.1002239.g004

ð23Þ
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the membrane time constant. Note, that Eq. 24 has been derived

for an Ornstein Uhlenbeck current correlation of the form

exp({abs(t)=tI ). We find that Eq. 24 is characterized by an

interplay of two high and low-pass functions each with an

individual time constant. In the mean modulating channel, on the

other hand, we identified only one high- and one low-pass, and

only two effective time constants. Fig. 4 (B) shows that the response

for variance modulating signals is finite for any frequency,

regardless of firing rate. A comparison between Fig. 4 (A) and

Fig. 4 (B) reveals that mean and variance modulation can relay

both slowly and fast varying signals.

Response to step-like input current changes. Abrupt

changes in input current statistics can convey the onset of a sensory

stimulus. Therefore, the time it takes for a population of neurons to

alter its firing rate can impose limits of the detection and operation

speed of cortical rate encoding [11]. It is conceivable that the

membrane low-pass filtering could carry over to the firing rate

dynamics and lead to a detection time scale in the order of the

membrane time constant. Here we show, however, that the threshold

model defies this intuition and can signal instantaneously the onset of

mean- or variance-encoded step-like signals, even if they are

subthreshold. Using the linear response function for mean

Figure 5. Firing rate response to a step-like current signal at time t~~0 in a population of independent threshold neurons. (A,B) Firing
rate change dn(t) in response to a mean current step-like increase of amplitude A, amplitude-to-threshold ratio A=y0~0:02. Analytical solution in Eq.
25 (solid lines) and simulation results (circles) are superimposed. (A) dn(t) for n~5Hz, tM~20ms and varying current correlation times
tI~1,5,10,15 ms. (B) dn(t) for tI~5ms(ts~10ms), tM~20ms and n~1,2,5,8,10 Hz. (C,D) Firing rate change dn(t) in response to an step-like increase
of the current variance s?s(1zds),ds~0:02. (C) n~5Hz and tI ~1,5,10,15 ms, tM~20ms. (D) dn(t) for tI ~5ms(ts~10ms), tM~20ms and
n~1,2,5,8,10 Hz. Analytical solution in Eq. 26 (solid lines) and simulation results (circles) are superimposed. Note that the evoked change of the
stationary firing rate in A and C, B and D is the same.
doi:10.1371/journal.pcbi.1002239.g005
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modulations n1(v)~nm,1(v) in Eq. 21 we obtain the following

population rate change in response to step-like signals of amplitude A:

n(t)~
2nAh(t)

y0

½jlog(n2pts)jzexp
{t

tM

� �
({jlog(n2pts)jz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pjlog(n2pts)j

p
ts

2tM
)�:
ð25Þ

Here, n(t) describes the population rate transient in response to a

step-like increase of mean current (zA) at t~0. Eq. 25 and Fig. 5

(A,B) demonstrate that the response dynamics consists only of two

components: an instantaneous component and an exponential

governed by a single time scale tM . We recognize that a similar

instantaneous component has been reported for Ornstein Uhlenbeck

drive in the leaky integrate and fire model [10], but not for white

noise drive [10,14,15]. For the white noise drive in the leaky as well as

exponential integrate and fire model the response time scale is

generally slower than the instantaneous component reported here.

But their response time scale can, depending on input variance and

firing rate, also be fast and substantially below the membrane time

constant (see Fig. 1 F in [15]).

As the stimulus amplitude increases, the linear approximation

in Eq. 25 breaks down and needs to be replaced by the

Figure 6. Fidelity of the linear approximation in relation to the complete non-linear response. (A) Schematic illustration of how well the
linear approximation of the population rate derived for low amplitudes (as in Eqs. 25,26) captures the complete response dynamics. (B) Differences in
linear and non-linear population firing rate in response to mean current steps of different amplitudes. Here, the linear response corresponds to Eq. 25
and the non-linear response derives from Eq. 20; stationary firing rate 5Hz and ts~10ms. (C) Differences between the complete population firing rate
(solid line, Eq. 20) and its linear approximation (dashed line, Eq. 21) in response to periodic mean modulations of 3Hz of different amplitudes. For an
illustration of how the population dynamics n(t) emerges in response to a dynamic stimulus see Fig. 3B.
doi:10.1371/journal.pcbi.1002239.g006
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corresponding full response dynamics in Eq. 20. Fig. 6 schemat-

ically illustrates the range of amplitude strengths for which the

non-linear effects kick in. Fig. 6B shows that already at an

amplitude-to-threshold ratio of 0:3 sizable deviations of

*0:5Hz~0:1n from the linear approximation are to be expected.

Now, we come to the population rate dynamics evoked by variance

changes. Using the linear response function for variance modulations

nv,1(v) (Eq. 24) we obtain the population firing rate transient in

response to a step-like increase ds of the standard deviation:

n tð Þ~ tI ny2
0ds

2s2
V tI {tMð Þt2

s

(h tð Þ½exp
{t

tM

{
t

tI

� �
{2t2

s z

ffiffiffiffiffiffi
2p
p

sV ts tI ztMð Þ
y0

 !
z

2exp {
2t

tM

� �
tM tMz

s2
V

y2
0

tI {tM{

ffiffiffiffiffiffi
2p
p

y0ts

sV

 ! !
�z tI {tMð ÞtM 1zsign tð Þð ÞÞ,

ð26Þ

where ts~
ffiffiffiffiffiffiffiffiffiffi
tI tM
p

. Fig. 5 shows the population rate transients in

response to step-like changes in mean and variance predicted by Eqs.

25 and 26 alongside simulated results. Similarly to mean current

steps, we find that for any n or ts the variance evoked response

dynamics consists of an instantaneous component and exponential

transient. The magnitude of the instantaneous component is

increasing with firing rate but is largely unaffected by the correlation

time ts. Thus, the response to mean and variance steps reported here

is in line with the rapid response time observed in vitro cortical neurons

[14,25] and also with the instantaneous response observed in the

leaky integrate and fire model driven by colored noise [9,10,21].

Weak pairwise spike correlations. The common fluctuating

current component shared by two neurons in a network can be

viewed as a superposition of different frequencies. As such, it can be

analyzed using the same tools as oscillatory or step-like signals

studied in the previous chapters. Before we start, let us briefly review

why we include pairwise spike correlations among the most crucial

phenomena shaped by response functions. In cortical ensembles,

pairwise spike correlations are known to play an important role in

influencing population encoding strategies [40] and even predicting

multi-neuronal firing patterns at larger distances [41]. Here, we focus

on linear, weak pairwise spike correlations of two neurons firing at

the same rate n. For simplicity, we assume the same statistical

structure for the common fluctuating component nc(t) and the

individual noise components ni(t) which make up the total input

currents I1(t) and I2(t) in the two neurons. To account for the weak

input correlations [5,31,32] we assume a weak correlation strength r,

r%1, between the two input currents:

I1(t)~
ffiffiffiffiffiffiffiffiffiffi
1{r
p

n1(t)z
ffiffi
r
p

nC(t), I2(t)~
ffiffiffiffiffiffiffiffiffiffi
1{r
p

n2(t)z
ffiffi
r
p

nC(t):ð27Þ

The current correlation function CI (t) and the corresponding

voltage correlation function C(t) are the same for both noise

components. We characterize the spike correlations via the con-

ditional firing rate ncond(t):

ncond(t)~Ss1(t)s2(tzt)T=n: ð28Þ

Because the contribution of nC(t) to the overall spiking activity is

small and we can express it as a convolution of the linear impulse

response function nm,1(t) as in Eq. 15 [34]:

Ss1(t)s2(tzt)T~

S
ffiffi
r
p ð?

{?
n̂nm,1(t{s)nc(s)ds:

ffiffi
r
p ð?

{?
n̂nm,1(tzt{k)nc(k)dkTzO(r2),

ð29Þ

F (ncond{n)(v)~

Srnm,1(v)~nnc(v)n�1(v)~nn�c(v)T=n~rjnm,1(v)j2CI (v)=n
ð30Þ

~rjnm,1(v)j2(1zt2
Mv2)C(v)=n~

nr

2

2y2
0

s4
V

z
pv2t2

s

s2
V

 !
C(v) ð31Þ

ncond(t)~nz
rn

2
2

C(t)y2
0

s4
V

{
pt2

s C’’(t)

s2
V

 !
zO(r2): ð32Þ

The key ingredient in the calculation above is the property of the

Fourier transforms of temporal derivatives, which for any function

C(t) are F (Cn(v))~(iv)nC(v). The peak value of this pairwise

spike correlation is given by

ncond (0){n~rn(2jlog(2pnts)j{p=2): ð33Þ

Fig. 7 illustrates ncond (t) as a function of firing rate and time constant.

We find that peak spike correlations increase with firing rate (Fig. 7

A) and decrease with increasing time constant ts. Furthermore, the

firing rate dependence of spike correlations captured by Eq. 33

corresponds to the firing rate dependent increase reported in the

leaky integrate and fire model driven by white and correlated noise

[42,43]. Furthermore, we can relate the correlated activity in Eq. 32

to the response dynamics evoked by oscillatory and step-like stimuli

that we presented in previous sections. As we can see in Eq. 31 the

firing rate dependent high-pass filter in Eq. 21 contributed the two

terms proportional to C(t) and C’’(t) to the pairwise correlation

function in Eq. 32. Therefore, we can conclude that the firing rate

dependence of linear mean evoked response function n1,m(v) is

directly related to the firing rate dependent shape of the pairwise

spike correlations, in particular their firing rate dependent peak

height and width.

Spike-triggering events. The dynamical response explored

in the previous chapters results from the collective spike decisions

of many neurons. As such it is intimately linked to the spike times

and the spike triggering events on the level of single neurons. Here

we explore the link between the dynamical population response

and the voltage events which lead to the spike decision in

individual neurons. Let us first formally define the spike triggered

average voltage STA(t), a time lag t before a spike:

STA(t)~S
ð?

{?
s(t)V (t{t)dtT=n: ð34Þ

Considering the spike train s(t)~
Ð?
{? n̂nm,1(t{s)I(s)ds and the

Fourier transform of the voltage correlation function C(v) we obtain:

~SSTA(v)~S~ss(v): ~VV�(v)T=n

~nm,1(v)(1zitMv)C(v)=n~nm,1(v)
CI (v)

n(1{itMv)
,
ð35Þ

~
(
ffiffiffi
2
p

s _VV y0ziv
ffiffiffi
p
p

s2
V )C(v)ffiffiffi

2
p

s2
V s _VV

, ð36Þ

ð26Þ
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STA(t)~
1ffiffiffi

2
p

s2
V s _VV

(
ffiffiffi
2
p

C(t)s _VV y0zC’(t)
ffiffiffi
p
p

s2
V ): ð37Þ

The key ingredient in the calculation above is the property of the

Fourier transforms of temporal derivatives, which for any function

C(t) are F (Cn(v))~(iv)nC(v). An alternative derivation of this

result via the Gaussian integrals is also shown in the Methods Section

‘‘Spike triggered average voltage’’. Fig. 8A demonstrates STA(t) as a

function of firing rate n. As expected, we find in Fig. 8 that the spike

triggered average voltage is mostly increasing towards the spiking

threshold as the time to the spike is reduced. We also recognize that

the spike triggered average exhibits a firing rate dependent transient

hyperpolarization which is more pronounced for higher firing rates.

We also note that the increasingly pronounced hyperpolarizing

transient emerges even in the absence of any oscillatory component in

the voltage correlation function. Notably, the rate dependent

hyperpolarizing transients prior to spikes have been previously

observed in cortical neurons [44]. The more pronounced

hyperpolarizing transient has been interpreted as the possibility that

properly timed hyperpolarizing events may increase the firing

probability, potentially through a reduction of sodium channel

inactivation or spike frequency adaptation [44]. We find here, that

the transient hyperpolarization is mediated by the second term in Eq.

37 that is proportional to C’(t). It originates from the high-pass

contribution of the response function nm,1(v). Let us also compare

the result in Eq. 37 with the spike triggered average reported for the

integrate and fire framework. Even though no analytical form exists

for the complete spike triggered average in the integrate and fire

model driven by colored noise, we can compare the large time limit

(t&0) of Eq. 36 with the result reported by Badel and colleagues for

the passive membrane. Eq. 17 in [45] reports STA(t)!exp
({abs(t)=tM ) for an Ornstein Uhlenbeck current in the limit of

low rates. Similarly, for very low rates we obtain via Eq. 36 that

STA(t)!C(t). For a RC-filtered Ornstein Uhlenbeck current the

voltage correlation function C(t) is a sum of exponentials where the

longest time scale is tM , C(t)~s2
V=(tM{tI )½tM exp({abs(t)=tM )

{tI exp({abs(t)=tI )�. Taking this into account, we find for large t
that STA(t)!exp({abs(t)=tM ) which is consistent with the

integrate and fire result.

The spike triggered voltage covariance (STC(t)) is an

additional popular and easily accessible measure for the

characterization of a neuronal model or live neurons in vitro

[44,46,47]. It is related to the second order Wiener (e.g. see p.330

in [48]) and could therefore serve well in future model-model or

neuron-model comparisons. Using calculations similar to those of

Burak and coworkers [36] and standard Gaussian integrals we

obtain STC in the threshold model:

STC(t1,t2)~
1

n
S(V (t{t1){STA(t1))

(V (t{t2){STA(t2))d(V (t){y0)j _VV (t)jh( _VV )T
ð38Þ

Figure 7. Weak spike correlations in the threshold model. (Top) Illustration of spike correlations resulting from common input that are studied
in A and B. (A) Cross conditional firing rate ncond (t){n vs. time t in the limit of weak input correlations (r~0:05). Both neurons have the same voltage
correlation function C(t)~s2

V=cosh(t=ts), firing rate n~5Hz. Fixed firing rate and varying correlation times ts~5,10,20ms (A, left) or fixed correlation
time ts~10ms and varying firing rates n~1,3,15Hz (A, right). (B) Peak spike correlation ncond (0){n as a function of firing rate n. Symbols denote the
corresponding peak spike correlations from (A).
doi:10.1371/journal.pcbi.1002239.g007
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Figure 8. Statistics of spike triggering events in the threshold neurons. (A) Spike triggered average voltage STA(t) for ts~10ms and firing
rates n~1,5,10Hz; simulated results (circles) and analytical solution in Eq. 37 (solid lines). (B) Spike triggered voltage covariance STC(t1,t2) for
n~5Hz, ts~10ms, the cross section STC(20ms,t2) is shown at the right. Simulated results (circles) and analytical solution in Eq. 39 (solid lines). The
solid vertical black line indicates t1~20ms.
doi:10.1371/journal.pcbi.1002239.g008
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~C(t1{t2){
C(t1)C(t2)
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(p{2)C’(t1)C’(t2)

2s2
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: ð39Þ

If t1~t2 we find the spike triggered variance STV (t)~s2
V {

C(t)2

s2
V

{ (p{2)C’(t)2

2s2
_VV

.

Discussion

Here, we examined the relation between the frequency response

functions in the mean and variance channels and the physiological

parameters of single neurons, such as the functional form of the

input current correlation, firing rate and membrane time constant.

The threshold-based single neuron model we considered belongs

to the class of spiking models that initiate a spike instantaneously

after the threshold voltage is crossed. Instead of using the Fokker

Planck framework we obtained the frequency response function

via a direct integration of Gaussian probability densities that were

modified to accommodate the mean or variance signals. This

allowed us to systematically quantify the complete as well as linear

frequency response in both channels, along with a number of

related quantities such as population response to step signals,

pairwise spike correlation function and spike triggered average.

We confirmed all analytical results in numerical simulations of

corresponding spiking neurons.

Frequency response functions in the mean and variance
channels

We derived the complete as well as linear frequency response

function for mean modulating signals (Eq. 20,21). As can be

expected from models with an instantaneous spike generation, the

frequency response functions had a finite high-frequency limit. In

the linear regime the mean evoked frequency response could be

reduced to an interplay between a low-pass and a high-pass filter

which were governed by only two independent time constants: the

membrane time constant tM and an effective threshold-dependent

time constant. Furthermore, both linear and non-linear response

functions did not depend on the specific functional form of the

voltage correlation function C(t), only its temporal width ts was

important for the dynamical response. Notably, the population

response to a mean current step could be described by an explicit

tractable expression consisting of two components: the instanta-

neous component governing the immediate response and an

exponential transient described by the membrane time constant

(Eq. 25). We also found that the linear step-response function can

be a good approximation for the population rate response if the

signal-to-threshold ratio is below 0:1.

For variance modulating signals we were also able to provide

the complete as well as linear frequency response function (Eq.

23,24). We observed that the frequency response function

remained finite in the high-frequency limit. In the linear regime,

the variance evoked response could be described by an interplay

between two high- and low pass functions. As in the mean channel,

we found that population response exhibited two components: the

instantaneous component that occurs immediately after the step

onset and a combination of exponential functions that were

governed by three time constants (Eq. 26). For the pairwise spike

correlations that were obtained using the mean evoked linear

response, we observed that the spike correlation peak increased

and the temporal width decreased with firing rate (Fig. 7). The

spike triggered average voltage and current could be described by

an explicit expression as a sum involving the correlation function

and its second derivative. Here, we found that with increasing

firing rate the spike triggered average exhibited an increasingly

pronounced undershoot shortly before a spike (Fig. 8 A).

Model limits
The model framework that we used here to describe the spiking

activity of each neuron in a cortical population is based on three

major assumptions. The first is the confinement to the fluctuation-

driven regime, second the Gaussian voltage statistics [49] and third

the assumption that spikes are instantaneously generated upon the

crossing of a fixed threshold voltage. The confinement of this

model to the fluctuation-driven regime and Gaussian voltage

statistics is in line with the recent experimental evidence that the

fluctuation rather than mean depolarization driven regime is the

primary operation scheme in cortical neurons. The first line of

support is the remarkable cortical balance of excitation and

inhibition such that neuronal firing is driven by fluctuations that

transiently escape this cancellation [29,30]. The second line of

evidence are the exceptionally low firing rates v1Hz [5,6]. Mean

and fluctuation driven regimes can differ significantly in their spike

train regularity, yet they seem to exhibit very similar spike cross

correlation [42] and dynamical response properties [23]. There-

fore, numerous features of dynamical population response could

already be understood by studying only the fluctuation-driven

regime. Even though skewed input current distributions that

violate the Gaussian assumption can be of interest in specific cases,

experimental evidence suggests that the Gaussian distribution can

be a good match for in vivo background fluctuations in the

prevalent cortical cell type of pyramidal neurons, e.g see Box 1

(top) in [26]. The third assumption, that spikes are instantaneously

generated upon the crossing of a fixed threshold voltage, is

motivated by the observation that time scales of spike onset can be

very short, e.g. the onset rise time *1{2ms and the spike slope

factor that is proportional to the radius of the curvature of the I–V

curve at its minimum is *1mV [50,51]. As predicted by the

previous models, the instantaneous threshold-based spike gener-

ation assumed in our model leads to a non-decaying frequency

limit in the response functions [11,19,20]. These studies indicated

that the frequency response function for low and intermediate

frequency range are largely unaffected by the spike onset time and

their properties can be could be explored in a model with an

instantaneous spike generation mechanism. Alternative neuron

models with more involved spike generation mechanisms such as

quadratic or exponential integrate and fire indicate the possibility

that the frequency response functions in a pair of neurons can

depend on the model specifics [15,52]. Yet, realizing how

remarkably accurate many cortical spike synchrony features and

response dynamics can be modeled by a clearly barebone-

threshold model, we are convinced that this model will find its

place alongside the classical integrate and fire models and offer a

valuable maximally tractable limiting case for future studies.

Comparison with previous theoretical studies
The linear and non-linear response functions are basic tools for

the description of any physical system. In theoretical neuroscience

several earlier studies have quantified the response functions in

various model types, particularly in the integrate and fire models.

To our knowledge, our study is the first to provide explicit

expressions for the complete linear and non-linear response

functions for both mean and variance channels in the presence of

correlated noise, and also to derived from them tractable

expressions for the step-evoked population response function, the

full pairwise spike correlation function and the spike triggered

averages. In the mean channel we showed for the first time that

Dynamical Stimulus Encoding in Threshold Neurons

PLoS Computational Biology | www.ploscompbiol.org 14 October 2011 | Volume 7 | Issue 10 | e1002239



the frequency response function and all derived quantities can be

independent of the functional form of the input correlations. The

only important parameter determining in our formalism the

frequency response function, step response dynamics or correla-

tion gain was the width of the correlation function, but not its

functional specifics.

Brunel and colleagues showed analytically in the integrate and

fire model driven by the correlated Ornstein Uhlenbeck current

that the linear frequency response function has a finite high-

frequency limit [10]. Furthermore, the authors obtained numer-

ically the functional form of the linear response function and the

corresponding step-evoked transient and observed that two factors

increase the high-frequency response and the instantaneous

component of the step response: the firing rate and the temporal

width of the correlation function. In our threshold model, we

observe the same functional dependence of the linear response

function on firing rate and temporal width. Here, however, we

could show that this behavior is not unique to the Ornstein

Uhlenbeck current. In fact, these effects can be observed for a wide

range of colored input because the functional form of input

correlation does not influence the frequency response function.

This is important news, because it indicates that results obtained

for the Ornstein Uhlenbeck current in the integrate and fire model

[10,15,21,52] could also be valid for more general current

correlation functions. Let us also note, that the instantaneous

response component in the leaky integrate and fire model vanishes

for the physiologically remote choice of white noise drive (see Fig. 3

(top left) in [10]). In this case, the response dynamics is a

superposition of different time constants [10,15]. Therefore, the

presence or absence of the instantaneous response component is

model specific and some models such as the exponential integrate

and fire lack an instantaneous component, but their response time

is finite and can be faster than the membrane time constant (Fig. 1

F in [15]).

In the variance channel, Lindner and colleagues showed that

the leaky integrate and fire model supports a faithful transmission

of high-frequency inputs for white noise drive, see Eqs. 4–6 [9].

Also a number of follow-up studies confirmed this in the leaky,

quadratic and exponential integrate and fire models [9,12,14,

19,21]. However, these results focused on white noise background

and provided the linear response function for colored noise only in

specific limits, such as the infinitesimal or infinite input frequency

limit [19] and did not address the full linear or non-linear response

functions. Therefore, Eqs. 23 and 24 are, to our knowledge, the

first to describe the complete as well as linear frequency response

function in the presence of correlated noise. Also for the step

response dynamics in the variance channel, only the slope of the

initial response phase could be obtained so far, e.g. see Eq. 28 in

[19]. Here, however, we provide the complete step-evoked

response function Eq. 26 that can be generalized to the non-

linear response regime using Eq. 24.

Relation to experimental data
Starting in 1970s a number of studies have addressed the

frequency response functions in cortical neurons. The majority of

these studies [23,53,54] were conducted in the mean channel

under a variety of different noise conditions. Bair and colleagues

have shown that neurons in the medial-temporal (MT) area of the

monkey cortex reliably transmitted input frequencies in the range

30{100Hz [55]. Also, three subsequent experimental studies in

more controlled in vitro conditions have demonstrated that the

reliably encoded frequency range can be tens of times larger than

the firing rate of individual neurons. For a firing rate of *5Hz this

can mean a reliably encoded frequency rage of up to 200{300Hz

[23–25]. This is consistent with broad reliably encoded frequency

range of the threshold model presented here, as well as the

integrate and fire model for colored noise. Notably, the class of

models with threshold-based instantaneous spike initiation are so

far the only model types that enable reliable transmission of inputs

that are much higher than the firing rate of individual neurons

[11,19,20]. A key, prediction of our model framework is that

response to high frequencies in the mean channel can be enhanced

by a higher correlation time of the noise background. Notably, this

correlation time dependence of the response function has been

shown in vitro [25]. Here, we conclude that essential properties of

the mean evoked frequency response function can be understood

within the results derived from the threshold model. In fact, this

model goes a step further and predicts that these properties

observed in vitro for the Ornstein Uhlenbeck drive could be

generalized to other type of input correlations.

In the time domain, the threshold model predicts an

instantaneous response to step-like stimuli. Yet surprisingly, early

experimental evidence presented by Silberberg and colleagues did

not support the presence of an instantaneous response component

[14]. However, this study did not quantify the response time scale

and its conclusions might be biased by the use of a 4AP induced

noise of unspecified correlation time or an almost white noise

background, which in theoretical studies has been shown to lack

an instantaneous component. The lack of rapid population

response to step input, on the one side, and remarkably broad

range of encoded frequencies on the other side presented an

apparent contradiction. A recent study, however, has confirmed

the broad reliably encoded frequency range in vitro and in vivo and

has shown that in the presence of correlated noise cortical neurons

in vitro can detect the step onset within milliseconds after its onset

for a variety of conditions [25]. Also, a recent in vivo study by

London and colleagues reported remarkably fast detection of

subtle 25pA mean current pulses into a single neuron in the local

cortical circuit in vivo [56]. This rapid response onset and the broad

reliably encoded frequency range in vitro and in vivo that depends

on the correlation time of the background can be understood using

the theoretical results obtained here in a threshold model

framework. Let us also note that the pairwise spike synchrony

properties derived from the mean response function in the

threshold framework, such as the firing rate dependence of

correlation gain, are consistent with the experimental observations

in vivo and in vitro [5,38,42]. For variance-encoded signals, the only

experimentally study by Boucsein and colleagues reported a

remarkably broad range of encoded frequencies in vitro [24]. The

ability to rapidly detect the step-like change of input current

variance in a population of neurons has, however, been shown

only for large changes of variance (for doubling [14] or tripling

[25] of the input current variance). In summary, while the

existence of a fast response component in response to step-like

variance changes could be confirmed in vitro it may require a larger

amplitude than predicted by this threshold model. This could be

due to additional cellular threshold adaptation mechanisms or

voltage dependent conductance changes-effects that are not

included in this threshold model framework.

Outlook and novel model predictions
Here, we have shown that an alternative threshold model

framework can capture many important features of the frequency

response functions in vivo and in vitro. Importantly, this framework

also offers novel predictions that can be tested experimentally.

One important new prediction is the independence of the mean

evoked response function on the functional form of the input

correlations. In Eq. 21 the mean evoked response function
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depends only on the width ts of the input correlation in the vicinity

of zero, but not on any other functional specifics. For live neurons,

this prediction means that any change in ion channel composition

that affects the periphery rather than the central peak of the

correlation function will not affect the frequency response function.

This prediction can be directly tested in vitro with two current

correlation functions which share the same ts but have otherwise

very different functional forms. On the theoretical side, we provided

a number of tractable expressions for the complete spike triggered

average and complete linear pairwise spike correlation function, and

mean as well as variance evoked response functions. This analytical

tractability framework will make it a useful addition to the

theoretical toolkit of integrate and fire models and facilitate future

model-model as well as model-experiment comparisons.

Methods

Current mean and variance in a cortical network
According to shot noise theory [57], the population average of

the total, network generated input to a neuron in the kth

population, e.g. where k = 1 stands for the excitatory and k = 2 for

the inhibitory population is characterized by its mean Imean,k and

variance s2
I ,k. These are:

Imean,k~
X2

l~1

(Jkl=
ffiffiffiffi
K
p

)nlK~
ffiffiffiffi
K
p X2

l~1

Jklnl , ð40Þ

s2
I ,k~X

X2

l~1

(Jkl=
ffiffiffiffi
K
p

)2nlK~X
X2

l~1

J2
klnl : ð41Þ

Here, each spike evokes a postsynaptic current pulse described by

the function f (t) which is normalized

ð?
{?

f (t)dt~1,

ð?
{?

f (t)2dt

~X . nk is the population averaged firing rate for neurons of type

k, Jlk is the unit connection strength, Jlk~O(1). The connection

strength between two neurons of type k and l is Jkl

ffiffiffiffi
K
p

with

probability K=Nk and zero otherwise. On average, K excitatory

and K inhibitory neurons project to each neuron and the total

number of neurons Nl of any type l is large with regard to K ,

K%Nl . Let us note that an excellent derivation of the above

equations for a balanced network can be also found in [58].

For the sake of tractability, let us focus on X~1, Jkl~1 and

denote the excitatory rate by nE and inhibitory by nI . We obtain

the mean and variance for all neurons in the network:

Imean~(nE{nI )
ffiffiffiffi
K
p

, ð42Þ

s2
I ~nEznI : ð43Þ

We use these simplified equations in Section ‘‘Signal representa-

tion in cortical networks’’ to investigate two statistically indepen-

dent ways to encode a signal in a population of cortical neurons.

Mean modulation
Here we calculate the full response function for mean modulating

signals. First, the membrane filtered signal f (t) from Eq. 19

f (t)~
A

t2
Mv2z1

cos(vt)ztMvsin(vt)ð Þ ð44Þ

is added to the membrane potential V (t) and offsets the threshold in

the spike train s(t):

s(t)~d(V (t)zf (t){y0)j _VV (t)z _ff (t)jh( _VV (t)z _ff (t)): ð45Þ

Solving for the periodically modulated population firing rate we

obtain:

nm tð Þ~Ss tð ÞT~

ð?
{?

dV tð Þ
ð?

{ _ff tð Þ
d _VV tð Þd V tð Þzf tð Þ{y0ð Þ: _VV tð Þz _ff tð Þ



 

exp {
1

2

V tð Þ2

s2
V

z
_VV tð Þ
� �2

s2
_VV

 ! !

2psV s _VV

~
1

2psV s _VV

ð?
{ _ff tð Þ

d _VV tð Þ _VV tð Þz _ff tð Þ
� �

exp {
1

2

y0{f tð Þð Þ2

s2
V

z
_VV tð Þ
� �2

s2
_VV

 ! !
:

ð46Þ

This integral can be solved analytically using standard Gaussian

integrals. It yields the complete response function given in Eq. 20.

Variance modulation
Here we calculate the voltage correlations sV (t), s _VV (t) and the

cross correlation SV (t) _VV (tzt)T which we use in Eq. 24 to express

the population firing rate response to oscillatory variance

modulations. We start with the definition of the periodic current

variance modulation and the resulting voltage V (t):

tM
_VV (t)~{V (t)zI(t):(1zA:exp(ivt)),

V (t)~e
{ t

tM=tM

ðt

{?
e

t0
tM (I(t0)zAeivt0I(t0))dt0:

ð47Þ

To calculate the firing rate modulation we need to choose a

current correlation function. We choose I(t) to be the Ornstein-

Ulenbeck current and the current correlation function CI (t) to be

an exponential with correlation time tI , as in previous leaky

integrate and fire studies. For this functional choice all integrals

are analytically solvable. First, we address SV (t)V (t)T:

s2
V tð Þ~S V tð Þ{SV tð ÞTð Þ2T

~exp {2t=tMð Þ
ðt

{?

ðt

{?
e t0zs0ð Þ=t

M CI t0{s0ð Þ 1zA eivt0zeivs0
� �

zA2eiv s0zt0ð Þ
� �

ds0dt0
�

t2
M,

~
s2

I tI

tM ztI

zs2
I tI

2Aeivt 2tMztI 2zivtMð Þð Þ
tI ztMð Þ 2zivtMð Þ tMztI 1zivtMð Þð Þz

s2
I tI A2exp 2ivtð Þ

tMzivt2
MztI 1zivtMð Þ2

:

ð48Þ

Let us now address S _VV (t) _VV (t)T

s2
_VV

tð Þ~S _VV tð Þ{S _VV tð ÞT
� �2

T~S _VV tð Þ2T

~
1

t2
M

S {V tð ÞzI tð Þ: 1zA:exp ivtð Þð Þð Þ2T

~
1

t2
M

½s2
V tð Þ{2 1zA:exp ivtð Þð ÞSV tð ÞI tð ÞTzs2

I 1zA:exp ivtð Þð Þ2
i
:

ð49Þ

Using SV (t)I(t)T~s2
I tI ( 1

tMztI
z A exp(itv)

tMztI zitMtI v ) we obtain

s2

V& tð Þ~ s2
I

tM tMztIð Þz
2Aeitvs2

I tM vtI{ið Þ vtM{2ið Þ{2tIð Þ
tM tMztIð Þ vtM{2ið Þ tM vtI{ið Þ{itIð Þz

z
A2e2itvs2

I vtM vtI{ið Þ{1ð Þ
tM vtM{ið Þ tM vtI{ið Þ{itIð Þ :

ð50Þ

We now address SV (t) _VV (t)T:

ð46Þ

ð48Þ
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Figure 9. Demonstration of population firing rate modulation and phase locking. (A) Simulated population firing rate n(t) for mean current
modulation for n~5Hz, ts~10ms, tM~20ms and v~2p:12 Hz, time bin 1=(1200)s. This results in r~0:1228, w~0:4251 and in the amplitude of the
firing rate modulation of Ajn1(v)j~0:226n~2rn. Solid lines denote the envelop of n(t) (red) and the current modulation (black). Black and red arrows
indicate the phase relation between the input current and the evoked firing rate response. (B) Theoretical distribution of phase lags w for varying
modulation depth a~Ajn1(v)j=n, for illustration we chose w~0:4251 (from (A)). The solid curves are the distribution envelop for a~1 (red), a~0:5
(black), a~0 (blue). The arrows indicate the corresponding mean phase w.
doi:10.1371/journal.pcbi.1002239.g009
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SV (t) _VV (t)T~
SV (t)(I(t)(1zA:exp(ivt)){V (t))T

tM

~
{s2

V (t)zSV (t)I(t)T(1zA:exp(ivt))

tM

:

ð51Þ

Taking s2
V (t) and s2

_VV
(t) allows us to calculate the firing rate

C~
s2

V (t) SV (t) _VV (t)T
SV (t) _VV (t)T s _VV (t)2

� �

n(t)~

ð?
0

_VV (t)exp {
y0

_VV (t)

 !T

C{1
y0

_VV (t)

 !0
@

1
Ad _VV (t)=(2p

ffiffiffiffiffiffiffiffiffiffiffi
detC
p

)

ð52Þ

Solving this integral using standard Gaussian integrals and

covariances obtained above we obtain Eq. 23.

Quantification of oscillatory firing rate modulations
We use the vector strength r [8] to obtain the linear response

function numerically:

r~
XN

i~1

exp(ivti)=N

~

ðT

0

exp(ivt)(1za:cos(vt{w)=Tdt~
a

2
exp(iw),

ð53Þ

where ti are the spike times, N their number, T~2p=v is the

period length and a is the relative amplitude of the firing modulation

evoked by the signal A exp(ivt). Taking a~Ajn1(v)j=n we can

directly identify the vector strength as r~An1(v)=(2n). Here n1(v)
represents either nm,1(v) or nv,1(v). Fig. 9 illustrates the relation

between the linear response function n1(v) and the vector strength

r. Because the vector strength r is constructed directly from the spike

times, it omits a sinusoid fit of the peristimulus time histogram,

which can potentially be biased by the fitting algorithm or the bin

size chosen.

Spike triggered average voltage
Here, we obtain the spike triggered average voltage STA(t) a

time lag t before a spike in the threshold model via a direct

calculation of Gaussian integrals:

STA(t)~S
ð?

{?
s(t)V (t{t)dtT=n ð54Þ

STA(t)~
1

n
S(V (t{t){V0)d(V (t){y0)j _VV (t)jh( _VV )T ð55Þ

~
1

n

ð?
0

V (t{t)j _VV j
exp({ 1

2
~VVT C{1~VV )ffiffiffiffiffiffi

2p
p 3 ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

det(C)
p dV (t{t)d _VV , ð56Þ

where the correlation matrix is

C~

s2
V 0 C(t)

0 s2
_VV

C’(t)

C(t) C’(t) s2
V

0
BBBB@

1
CCCCA: ð57Þ

Using standard Gaussian integrals we obtain the result in Eq. 37,

which reads:

STA(t)~
1ffiffiffi

2
p

s2
V s _VV

(
ffiffiffi
2
p

C(t)s _VV y0zC’(t)
ffiffiffi
p
p

s2
V ): ð58Þ
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56. London M, Roth A, Beeren L, Häusser M, Latham PE (2010) Sensitivity to
perturbations in vivo implies high noise and suggests rate coding in cortex.

Nature 466: 123–7.
57. van Kampen NG (2007) Stochastic Processes in Physics and Chemistry. North

Holland, third edition.

58. van Vreeswijk CA, Sompolinsky H (1998) Chaotic balanced state in a model of
cortical circuits. Neural Comp 10: 1321–1371.

Dynamical Stimulus Encoding in Threshold Neurons

PLoS Computational Biology | www.ploscompbiol.org 19 October 2011 | Volume 7 | Issue 10 | e1002239


