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Abstract

Attractor networks successfully account for psychophysical and neurophysiological data in various decision-making tasks.
Especially their ability to model persistent activity, a property of many neurons involved in decision-making, distinguishes
them from other approaches. Stable decision attractors are, however, counterintuitive to changes of mind. Here we
demonstrate that a biophysically-realistic attractor network with spiking neurons, in its itinerant transients towards the
choice attractors, can replicate changes of mind observed recently during a two-alternative random-dot motion (RDM) task.
Based on the assumption that the brain continues to evaluate available evidence after the initiation of a decision, the
network predicts neural activity during changes of mind and accurately simulates reaction times, performance and
percentage of changes dependent on difficulty. Moreover, the model suggests a low decision threshold and high incoming
activity that drives the brain region involved in the decision-making process into a dynamical regime close to a bifurcation,
which up to now lacked evidence for physiological relevance. Thereby, we further affirmed the general conformance of
attractor networks with higher level neural processes and offer experimental predictions to distinguish nonlinear attractor
from linear diffusion models.

Citation: Albantakis L, Deco G (2011) Changes of Mind in an Attractor Network of Decision-Making. PLoS Comput Biol 7(6): e1002086. doi:10.1371/
journal.pcbi.1002086

Editor: Tim Behrens, University of Oxford, United Kingdom

Received January 21, 2011; Accepted April 27, 2011; Published June 23, 2011

Copyright: � 2011 Albantakis, Deco. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The authors were supported by the Spanish Research Project BFU2007-61710/BFI and CONSOLIDER-INGENIO 2010 Programme CSD2007-00012
(‘‘Bilingualism and Cognitive Neuroscience’’). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the
manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: larissa.albantakis@upf.edu

Introduction

In our lives, we constantly are required to make decisions. Some

of these decisions are irretrievable, while others are not binding

and can be adjusted if we change our mind. The brain processes

leading to decisions, have occupied neuroscientists during the last

decades (reviewed in: [1,2]). Perceptual decision-making para-

digms, like the random-dot motion (RDM) task [3–5], were

designed to study decision-making behavior and brain activity of

decision-associated brain areas, like the dorsolateral prefrontal

cortex and lateral intraparietal (LIP) cortex, in the simplest

context. Traditionally, the decision process is regarded as a

decision variable evolving in time, until a termination criterion is

reached. Firing rates of LIP neurons gradually increase during

motion-viewing in the RDM task and correlate with subjects’

choices and reaction times [3,6], making LIP activity a possible

candidate for a neural decision variable. Recently, more complex

aspects of decision-making received increasing attention, involving

multiple choices [6,7] or confidence [8] and also: What happens in

our brains if we change our mind?

To elucidate this question, Resulaj et al. [9] developed a

psychophysical RDM task, where humans had to indicate their

choice by moving a handle towards a left or right target (Fig. 1A).

Because this hand movement is continuous, contrary to ballistic

saccades or pressing a button [10], changes of mind could be

directly observed by recording the handle traces. Changing

improved the overall accuracy, but depended on task difficulty:

most correcting changes were observed at intermediate levels,

while erroneous changes increased monotonically with difficulty.

These findings pose a challenge for a class of models that

implement decision-making by diffusion in a nonlinear landscape

of stable fixed points, which act as decision-attractors. Once a

decision-attractor is reached, this state will persist except for high

levels of noise or perturbations and is thus rather counterintuitive

to a change of mind. On the other hand, due to the stable

attractors, those models account for persistent activity frequently

observed in decision-related neurons. Moreover, biophysically-

realistic attractor models, as introduced by Brunel and Wang [11],

successfully simulate animal behavior and neural activity of LIP

neurons during various versions of the RDM task [2,12–14].

Here we show that changes of mind (after a first decision) are

entirely consistent with attractor dynamics. In particular, they arise

naturally during the itinerant transients following sensory perturba-

tion, if the system lies close to a bifurcation (or phase boundary) that

separates a neuronal state of categorical decision-making from a

multi-stable region. There, the decision process is impeded by a

second attractor, where both populations encoding the possible

alternatives fire at high rates. This facilitates changes of mind.

Moreover, by replicating the psychophysical data of Resulaj et al. [9]

with a biophysically-realistic attractor network with spiking neurons,

we gained neurophysiological predictions on neural firing rates

during the change process. In all, our results offer testable predictions

on the attractor concept and general principles of decision-making

like the speed-accuracy trade-off and a fixed decision threshold.
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Results

With the objective to gain understanding of the actual brain

processes during changes of mind, in the following we apply a

biologically-inspired cortical model, first introduced by X.J. Wang

[14], to the psychophysical findings of Resulaj et al. [9]. The

experimental task sequence is illustrated in Fig. 1A. While the

human participants were holding a handle at the starting position,

a patch of randomly moving dots appeared after a random delay

(0.7–1.0 s). Depending on the trial difficulty, a certain percentage

of these dots were moving coherently to the left or right. The

subjects had to decide within 2 s on the net direction of dot-

motion and to report their choice by moving the handle towards a

target (Fig. 1A, red dots) in the corresponding direction, within a

time limit of 700 ms after they initiated the hand movement.

Importantly, the moving-dot display was switched off when the

handle left the starting position, which also determined the

reaction time. Although the motion stimulus was no longer visible,

on the way towards the target participants occasionally changed

their mind and turned to the opposite target [9].

In the present attractor model, the two decision alternatives are

implemented by two subpopulations (pools) of excitatory neurons,

each selective for one of the two target directions (Fig. 1B, red).

The decision process corresponds to the transition from a

symmetric state, where both selective populations fire with about

equal rates, to a decision state where they compete with each other

in a winner-take-all manner, resulting in one pool firing at higher

(winner), the other at lower rates (loser). The stability of the

different attractor states (or fixed points) depends on the amount of

input applied to the selective pools and the recurrent connectivity

of the network populations. Consistent with a Hebbian rule,

neurons within one selective pool have strong recurrent connec-

tions v+, as their activity was supposedly correlated in the past,

while the connections between selective pools are weaker than

average v2,1. A nonselective excitatory population represents

activity of surrounding LIP neurons that are not selective to either

direction. Competition arises in the network due to global

feedback inhibition by a population of inhibitory neurons,

connected to all neurons with weight vI. To accurately simulate

LIP activity, the network neurons are modeled as integrate-and-

fire neurons with synaptic currents mediated by AMPA, NMDA

Figure 1. Experimental design, network architecture and
stimulation protocol. (A) RDM paradigm with manual indication of
choice as in Resulaj et al. [9]. See text for task details. In the majority of
trials the subjects moved the handle directly to one of the targets.
Some trajectories, however, revealed a change of mind during the
movement: they started towards one direction but terminated at the
opposite target. (B) Diagram of the binary attractor model for decision-
making [14]. The network consists of a population of excitatory
pyramidal neurons, structured into 2 selective pools (red, each contains
20% of the excitatory neurons) and a nonselective population, that
inhibit each other through shared feedback from an inhibitory pool of
interneurons (orange). Unlabeled arrows denote a connectivity of 1
(baseline). Recurrent connectivity within a selective pool is high,
v+ = 1.51, whereas the connection weight between the selective pools
is below average v2 = 0.8725. Inhibitory connections have a weight
vI = 1.125. The network consists of 1,000 Neurons. (C) Time course of
target and motion input to the selective populations in order to model
the experimental design of the RDM task. The target input starts with a
latency of 100 ms, the motion signal 200 ms after the respective
stimulus onset (see methods).
doi:10.1371/journal.pcbi.1002086.g001

Author Summary

A recent psychophysical experiment showed that partic-
ipants do adjust their decisions (change their mind) based
on further evidence, which was processed only after the
first decision was made. The established notion of
(perceptual) decision-making as a decision variable evolv-
ing in time until a termination criterion is reached does not
incorporate these changes of mind. In the biophysically-
realistic attractor model, the mean firing rates of neural
populations encoding the decision alternatives act as the
decision variable. In line with neurophysiological evidence
from decision-related neurons in the lateral intraparietal
cortex, a decision is made if a fixed firing rate threshold is
crossed. We propose here that a change of mind is
induced if this decision threshold is crossed a second time,
namely by the neural population encoding the initially
losing alternative, which thus overtakes the population
that first crossed the decision threshold. Interestingly, we
found this more likely to happen the further the system is
pushed towards a regime where decision-making is no
longer unambiguous, but both neural populations can fire
at elevated rates. This, besides, corresponds to higher
incoming activity and thus faster and less accurate
decisions and suggests that the brain operates over the
whole range of inputs enabling decision-making.

Changes of Mind in an Attractor Network
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and GABAA receptors with biophysically-realistic conductances

and time constants (Table S2).

During the simulation, each neuron individually receives

stochastic excitatory Poisson inputs from several external sources.

The noise fluctuations around the mean external input applied to

each neural population thus depend on the amount of neurons in

the respective pool (‘‘finite size’’ effect) and would be zero for an

infinite number of neurons. For the two selective populations

(consisting of 160 neurons in the present network) the standard

deviation is 17 Hz given a total external input of about 2.4 kHz

(see below ‘‘Input fluctuation analysis’’). These 2.4 kHz, equal to

800 afferent neurons firing at 3 Hz, simulate the spontaneous

activity in the cerebral cortex outside the local network. On top of

this background activity, an external target and motion input are

applied to the selective neural populations only (Fig. 1C). They

correspond to the sensory stimuli during the RDM experiment:

the visually shown target signal and the random-dot motion

respectively. In Resulaj’s experiment [9] the two possible targets

were visible throughout the trial. During neurophysiological single

cell recordings combined with the RDM task, one target is always

placed in the response field of the recorded LIP neuron. Thus, the

selective populations are supposed to respond not only to the

motion evidence in favor of one of the two target directions, but

also to the targets themselves. The time course of the target input

aims to replicate the evolution of LIP firing rates after target

presentation. In previous neurophysiological studies [6,8,15], LIP

firing rates were found to rise steeply with the appearance of the

possible targets, followed by a ‘‘dip’’ in activity at the onset of the

motion stimulus. Correspondingly, in the simulations the target

signal (Fig. 1C, red) is composed of initially high inputs and a

subsequent decline of inputs, emulating an attentional shift or

upstream inhibition of the target signal at motion-stimulus onset

[13,16].

As LIP neurons are mostly associated with saccadic motor

responses, while participants in the experiments of Resulaj et al.

[9] performed arm movements, it is worth emphasizing that the

neural activity described above and in the following is not confined

solely to LIP neurons. Other areas in the posterior parietal cortex

(PPC), especially the parietal reach region (PRR), involved in the

preparation of arm movements, share those neural characteristics.

In particular, neurons in PRR show sustained activity during

delayed reach to target tasks and also exhibit huge responses to the

appearance of a visual reach target in their response field, very

similar in size and time course to LIP neurons for saccades in the

same paradigm [17–19]. Besides, Cui and Andersen [18] reported

that, although generally LIP seems to respond more to eye and

PRR more to arm movements if monkeys are free to choose the

motor response, a substantial number of LIP neurons responded

preferably to arm movements for instructed motor responses. In

sum, the assumptions and predictions on neural activity presented

in this study apply generally to both LIP and PRR. Note however,

that the presented network is generally capable of decision-making

and changes of mind even in the absence of a target signal (Fig.

S1).

The motion input represents activity of middle temporal (MT)

area neurons projecting to PPC. MT neurons fire dependent on

the amount of coherent motion towards their preferred direction

[20]. Accordingly, the different motion coherence levels are

translated into a bias of the motion input to one of the selective

populations: for 0% coherence in the random dot motion, both

selective pools receive the same amount of motion input (70 Hz,

Fig. 1C blue), while for 100% coherence only one pool would

receive the maximum motion input (140 Hz). In the following we

refer to both the target and motion input as ‘‘selective inputs’’.

With the start of the motion input the system dynamically

evolves towards the decision state, where one of the two selective

pools fires at a high rate, the other at a low rate. During this

transition, a (first) decision is made when one of the firing rate

transients crosses the decision threshold (44 Hz) with the

additional condition that the difference between populations is at

least 10 Hz. A trial was considered a change of mind, if the firing

rate of the initially losing selective pool exceeded the (same)

decision threshold after the first pool crossed, and their rates

differed again by 10 Hz or more. Our main motivation to use a

difference criterion in addition to the fixed threshold was to avoid

very occasional joint threshold crossings to count as decisions (see

example in Fig. S2E). As fluctuations in the firing rate of the

selective populations are rather anticorrelated because of the

global feedback inhibition and typically larger than 10 Hz, given

the amount of noise present in the network, that constraint has

only little effect on the simulation results. In Fig. S2 we show the

robustness of our simulation results to variations in the decision

criteria.

The motion stimulus in the experiments was turned off when

the handle left the starting position. At that point, new evidence

that was not taken into account for the first decision could already

have arrived in LIP during motor preparation and initiation

(,180 ms [17,18]). In addition, the last evidence shown to the

subject would reach LIP only after a sensory latency of about

200 ms [3,6]. Taken together, after the first decision, new, yet

unprocessed evidence on the motion direction, was possibly

available to LIP for a time equivalent to the non-decision time

tND = 380 ms of a trial, i.e. for the duration of motor initiation,

plus the latency for the evidence to arrive in LIP. The assumed tND

value of 380 ms for the non-decision time is in agreement with the

fit of a simple accumulation-to-bound model to the experimental

data of the three participants [9]. Resulaj et al. [9] indeed found,

that random fluctuations in the motion stimulus during this time

period correlated with changes of mind, indicating that the new

evidence caused the subjects to change. In the model, a change of

mind without motion input is very unlikely (see below: Verification

of mean-field prediction). For computational and analytical

reasons (as we were interested in the further progression of the

transients to the attractor states), the motion input in the model

lasted until the end of the trial simulation (3,500 ms). Therefore,

we imposed a timeout of tND for changing after the first threshold

crossing, which implements the experimental time limit for new

evidence, caused by switching off the motion stimulus at

movement initiation. Note that the simulations are still perfectly

congruent with the experiment up to the first threshold crossing

plus tND, and also thereafter, as neither in the model nor in the

experiment further changes (or threshold crossings) are expected.

Comparison to behavioral data
Fig. 2A shows the simulated behavioral data. In the experiments

the reaction time was set by the initiation of the hand movement.

Accordingly, the simulated reaction time is composed of the

time of first threshold crossing, plus the non-decision time

tND = 380 ms. The reaction times and percentages of correct

choices fit the experimental results well (Fig. 2, left and middle

panel, for further comparison see [9]). Moreover, the model also

replicated the frequency of changes observed experimentally

(Fig. 2, right panel). Taking the changes of mind into account

improves the performance (Fig. 2A, left panel, red line), as changes

from wrong to correct choice are more frequent for all coherence

levels, but especially for intermediate difficulty. Changes to the

wrong alternative, however, are most frequent for low motion

strengths and do not occur for high motion coherence. In

Changes of Mind in an Attractor Network
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comparison to the experimental findings, the model predicts

slightly more changes to correct and less to the wrong choice,

which also explains the larger difference of performance with and

without changes (see discussion). Resulaj et al. [9] further noted

that a seemingly optimal strategy to opt for or against a change

would be to always wait until the end of tND after the first decision

and, thus, to consider all possibly available evidence. This,

however, was not consistent with their experimental observations.

Along that line, we analyzed the time distribution of changes of

mind in the attractor model (Fig. 3). In the simulations, the

changes are broadly distributed across tND, with the exception that

hardly any changes occur during the first 50 ms after the first

decision. The distribution peak depends on the motion coherence

level, with earlier changes for higher coherences (Fig. 3B).

Interestingly, the time difference between threshold crossings for

erroneous changes is not considerably shorter than for correcting

changes, although there is more evidence in favor of changing in

the case of an initially wrong choice. Erroneous changes just

become overall less frequent with increasing coherence.

Moreover, in the simulation in at most 1.6% of the trials two

changes occurred during tND (Fig. 2 right panel, dashed line). The

second change was then neglected. Notably, these double-changes

were indeed occasionally found in the experiments (M.N. Shadlen,

personal communication). In summary, although we did not aim

for a perfect quantitative fit to the experimental data, the

psychometric functions obtained by our model simulations match

the experimental observations very well in all relevant aspects.

Predictions on neural activity
In Fig. 4A and E single trial examples of network simulations

are displayed with and without changes of mind. In the trials with

identical inputs to both selective pools (0% motion coherence), the

decision which population activity will rise or decay is stochastic

due to the Poisson inputs and finite-size noise fluctuations. The

general temporal structure of the network activity matches single

neuron recordings of primate LIP neurons [6,8,15] with a high

response to the target signals, a subsequent dip of activity and a

build-up of the firing rate after the onset of the moving dots, which

is steeper with higher motion coherence (Fig. 4C, D average of

correct trials at first threshold crossing). Except for the highest

motion coherence, this firing rate build-up is biphasic: after an

initial steep increase independent of motion strength, the slope of

the ramping activity decreases with lower motion coherence. To

obtain sufficient changes of mind in the model simulations, the

decision threshold was set relatively close to the divergence of the

Figure 2. Simulated psychometric functions, reaction times
and rates of changes compared to experimental data. (A)
Simulation data. The firing rate threshold to determine the first decision
(and also a subsequent change) was set to 44 Hz in the simulations. The
reaction times include a non-decision time (tND) of 380 ms; tND also set
the time limit for changes of mind. A trial was considered a change of
mind, if the firing rate of the initially losing selective pool crossed the
decision threshold within tND after the first crossing of the other pool,
and their rates differed by more than 10 Hz. The probabilities of correct
responses were fitted to a logistic function, the reaction time to a
hyperbolic tangent function. The model parameters were adjusted by
hand to fairly fit the average performance of the three subjects that
participated in the experiments by Resulaj et al. [9]. For comparison, the
experimental performance of one of the subjects (Subject S) is shown in
(B) with permission from Resulaj et al. [9]. (Left panel) As in the
experimental data, the performance improves through the changes.
The first decision (black trace, corresponding to choice at movement
initiation) is less accurate than the final choice (red trace, corresponding
to the finally chosen target). (Middle panel) The model fits the
experimental reaction times well. (Right panel) In the simulations and
the experiments, changes to the incorrect choice (black, solid line)
decayed monotonically with increasing motion coherence, while
changes to the correct choice (red, solid line) peaked at intermediate
motion strength and were generally more frequent. Double changes in
the simulations are shown on a ten times smaller timescale (right) (open
circles, dashed lines). Black (red): proportion of erroneous (correcting)
changes that switched a second time. Error bars denote SEM.
doi:10.1371/journal.pcbi.1002086.g002

Figure 3. Distribution of change times. (A) Histogram of the time
difference between the first and second threshold crossing (change of
mind) for all change trials. The change times are broadly distributed
from about 50 ms after the first decision to the timeout tND for
changing. (B) Same as (A) separated into coherence levels. All changes
are shown in dark grey. The correcting changes are overlaid in red,
except for 0% coherence, where changes are neither correcting nor
erroneous.
doi:10.1371/journal.pcbi.1002086.g003

Changes of Mind in an Attractor Network
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mean build-up activities for different motion coherences, which led

to rather small differences in reaction times between the easiest

and more difficult trials (see discussion). Nevertheless, the firing

rate slopes clearly diverge with motion strength already before the

threshold is reached (Fig. 4D).

In Fig. 4F we averaged all simulation trials with changes of mind,

aligned to the first threshold crossing, which, if a constant non-

decision time is assumed, corresponds to aligning to reaction time in

the experiments. Thus, we show that the predicted rise and fall of

activity during changes of mind might actually be observed

experimentally, even if neural activities obtained in single cell

recordings need to be averaged over trials to obtain reliable firing

rates. In fact, even for a normally distributed non-decision time with

moderate standard deviation, the switch in firing rates should still be

discernible in neurophysiological experiments (see Fig. S2H).

Input fluctuation analysis
As most of the dots in the experimental RDM stimulus are

moving randomly, the actual momentary level of coherent motion

towards the target direction fluctuates around the set mean

Figure 4. Model prediction of LIP firing rate. (A, E) Simulated temporal evolution of population-averaged firing rates for single trials. The dotted
lines mark times of threshold crossings. The black line at 44 Hz indicates the threshold. (A) Example for a regular trial without change. As observed in
recent neurophysiological studies of LIP [6,8,15], the firing rates of the selective populations show a high increase during target presentation (from
500 to 1,300 ms), followed by a dip after the onset of the motion stimulus. The activities of both selective populations ramp up with the application
of the motion input (beginning at 1,500 ms), while the transients compete for the higher attractor state. (C, D) Mean of correct trials from 1,000
network simulations, shown for all motion coherences (Color code according to B). For each motion strength the firing rates were averaged according
to the ‘‘winners’’ and ‘‘losers’’ of the first decision. After an initial joint build-up, the slope of the ramping activity is flatter with smaller motion
coherence. (D) Blow up of dotted rectangle from (C). (E) In some cases the initially winning population (first threshold crossing) is overtaken by the
other transient, which is counted as a ‘‘change of mind’’ trial. (F) Mean of all trials with changes (correct and error trials, all motion coherences)
aligned to the first threshold crossing (dotted vertical line). Black: initially winning selective pool, red: finally winning selective pool.
doi:10.1371/journal.pcbi.1002086.g004

Changes of Mind in an Attractor Network
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coherence. A measure of these stimulus fluctuations with respect to

the monkeys’ choices, the ‘‘motion energy’’, was found to support

the initial decisions as well as the change of mind [9]. More

precisely, the fluctuations in the first 150 ms after stimulus onset

acted as additional evidence in favor of the first decision (positive

motion energy). In change trials the motion energy subsequently

became negative, indicating that stimulus fluctuations played a

causal role in switching through weakening or even reversing the

preceding evidence in favor of the initial choice. In the model

simulations, the Poisson noise around the mean input rate

corresponds to the experimental stimulus fluctuations. Fig. 5

shows the variation from mean input difference of the selective

populations aligned to first threshold crossing and changes of mind

(insets). In line with the experimental motion energy, the average

input fluctuations across all change trials became negative after the

first threshold crossing. Input fluctuations thus act as evidence

against the initial choice. Note however, that for high coherence

levels the changes do not depend on random fluctuations of the

input, since it is mostly initial errors that are reversed by the

designated input bias to the correct selective population.

Interestingly, the fluctuation strength necessary to reverse a

decision is in general not substantially higher than that causing

the initial decision.

Mean-field analysis indicates proximity to bifurcation
While the model can match the experimentally obtained

reaction times and performances for a large range of selective

inputs, if the threshold is adapted accordingly (Fig. S3), the feasible

range of network inputs is greatly reduced by the additional

constraint to match the changes of mind. Using a mean-field

approximation of the model [11], we analyzed the dynamical

behavior of the network as a function of the selective input

amplitude for the parameters that fit the changes of mind.

Simulating populations of individual and realistic neurons as

described above is necessary to simulate realistic neuronal

dynamics, physiological responses and behavior. However, to

understand the underlying attractor and dynamical structures

prescribing the behavior of population dynamics, we had to use a

simpler model that summarized the average activity of these

populations. The number of integration variables in the mean-field

approximation is reduced to one for each neural population. Thus,

it can be solved much more quickly and the parameter space can

be scanned (Fig. 6A). Clearly, this obliged us to check the

consistence of the mean-field calculations with the simulated

activity of the full spiking network. We did this by running both

sorts of simulations with the same parameters at key points in their

parameter space (see below).

By solving the mean-field equation for a set of initial conditions

(here the initial firing rates of each neural population) one obtains the

approximated average firing rate of each pool, when the system has

settled into a stationary state. These stationary states correspond to the

stable states or attractors of the system (Fig. 6A, thick black lines). The

unstable fixed points denote the border of the ‘‘basins of attraction’’ of

the stable states (Fig. 6A, dotted black lines). The present model has

three qualitatively different dynamical regions across the range of

symmetric inputs to the selective populations from 0 to 200 Hz, which

are separated by fixed-point bifurcations (where a stable fixed point

becomes unstable or vice versa). For small inputs the spontaneous state

(QQ), where both selective pools fire at low firing rates, is still stable

(Fig. 6A, blue shaded region). At about 20 Hz the system crosses the

first bifurcation and the spontaneous state becomes unstable. The

network then operates in a region of categorical decision-making,

where one selective pool will settle at the upper branch and the other

will decay to the lower one. With sufficiently high selective inputs

(.125 Hz) a symmetric ‘‘double-up’’ state becomes stable (qq),

where both selective populations fire with intermediate, elevated rates.

Because of the strong recurrent connections within the selective

populations, the decision state is stable over the whole range of inputs

shown and the spontaneous- and symmetric-state bifurcations are

‘‘subcritical pitchfork bifurcations’’.

The above conclusions still hold if, instead of symmetric

selective inputs as in Fig. 6A, biased inputs are applied, favoring

one selective population against the other. In that case the double-

up state still exists, but the pool with positive bias will fire at a

higher rate than the one with negative bias. The higher the bias,

the more will the firing rates of the two selective populations differ

in the double-up state. In addition, the basin of attraction of the

decision state grows for the favored population at the expense of

the other, making wrong choices less likely [16,21].

The mean-field approximation in general provides an accurate

qualitative picture of the attractor landscape. Nevertheless, also

quantitative conclusions can be drawn from the analysis. However,

there is typically a shift of the predicted fixed-points in comparison

to the attractors of the spiking network [11,22]. To obtain a

Figure 5. Influence of input noise on changes of mind. The
variation from the mean input difference of the selective populations,
signed according to which pool first crossed the decision threshold, was
averaged, aligned to first threshold crossing, for all trials and all change
trials. The insets show the input variation for change trials aligned to
the second threshold crossing. (A) Mean across all coherence levels. (B)
Separated by motion coherence. Overall and for low coherences, the
input fluctuations change sign before a change. For high motion
coherence neither correct initial choices, nor changes depend on noise
fluctuations (see text).
doi:10.1371/journal.pcbi.1002086.g005

Changes of Mind in an Attractor Network
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measure for this discrepancy, we performed network simulations to

determine the fixed points of the full spiking model for some

discrete selective input amplitudes (see methods), shown as blue

crosses in Fig. 6A. At 150 Hz selective inputs the symmetric state

was first found to be stable for more than 3,000 ms in 9 out of 100

trials. The real second bifurcation point of the spiking network is

Figure 6. Proximity to bifurcation is important to obtain changes of mind. (A) Mean-field analysis of attractor network. For the parameters
used in the spiking model simulation, the stable (solid black line) and unstable (dotted black line) fixed points were calculated with the mean-field
approximation over a range of external inputs, applied symmetrically to both selective pools (0% coherence) from 0 to 200 Hz in steps of 1 Hz, in
addition to the background input of 2.4 kHz to all neurons. There are three qualitatively different regions to distinguish, separated by bifurcations. In
the blue shaded region up to about 20 Hz the spontaneous state (both pools firing at low rates, QQ) and the decision state (one pool firing at high,
the other at low rates Qq) are simultaneously stable. The spontaneous state becomes unstable for higher inputs (white region) until at about
125 Hz a symmetrical state with both pools firing at elevated rates appears (grey shaded area, qq). The blue crosses show the fixed points of the
spiking-neuron model for several discrete selective input amplitudes (see methods). The second bifurcation there is shifted by about 25 Hz to higher
selective inputs (to the right) for the spiking simulations with respect to the mean-field approximation. The input used in the spiking simulation (blue
vertical line, 155 Hz) lies close to the real second bifurcation point. Also, the double-up symmetric state lies below the decision-threshold (44 Hz,
horizontal dashed line) while the upper branch of the decision attractor (‘‘winner’’) lies above. (B, C) Changes of mind and single trial examples for
lower (B) and higher (C) network inputs (yellow and orange lines in (A)). All parameters and the motion input were the same as in the other
simulations, only the target input after motion onset was set to 25 Hz for (B) and to 125 Hz for (C). Dashed lines in the left panels give changes of
mind from Fig. 2A for comparison. Red: changes to correct, black: changes to wrong choice. With less selective inputs (B), fewer changes of mind are
obtained, although the threshold was adapted to fit the reaction times and performance (Fig. S2). With higher selective inputs (C) too many changes
are predicted for low motion coherences and the selective transients no longer separate, but stay in the symmetric state. Color of single trial firing
rates are the same as in Fig. 3. Error bars denote SEM.
doi:10.1371/journal.pcbi.1002086.g006
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thus shifted by about 25 Hz to higher inputs (i.e. to the right) with

respect to the mean-field predictions. The input amplitude of the

spiking simulation for which changes of mind can be obtained with

the attractor model (155 Hz) lies close to this second bifurcation

point. Note that in the spiking simulation the dip of firing activity

at motion onset marks the start of the transition to the decision

state. The initial firing rates of the selective populations (about 25–

30 Hz) are therefore located close to the symmetric attractor.

As a consequence of the proximity to the symmetric attractor, the

decision process is prolonged [21,23], making changes of mind

more probable. A change of mind is possible until one pool crosses

the unstable fixed point (Fig. 6, dotted line between symmetric state

and the decision branches) and falls too deep into the basin of

attraction of the decision state, where only strong input fluctuations

can pull it out again. Taking the shift between the mean-field and

spiking-network attractors into account, the decision threshold of

44 Hz coincides approximately with the unstable fixed point and

thus with the border between the basins of attraction of the double-

up and the decision state. A change of mind can consequently be

interpreted as a transient that comes very close to or even surpasses

the unstable fixed point, but, because of contrary evidence or

fluctuations, does not escape towards the upper decision state and

eventually loses the competition.

Verification of mean-field prediction by spiking
simulations

Although the above-presented notion of changes of mind is

consistent with the mean-field attractor picture, the accuracy of

the approximation is known to be especially weak close to

bifurcation points [11,22]. The mean-field conclusions on the

frequency of changes of mind thus have to be validated by

simulations with the full spiking network.

Therefore, we performed spiking simulations for all coherence

levels for different selective inputs (Fig. 6B, C, yellow and orange

lines in Fig. 6A) to further demonstrate the importance of the

system’s proximity to the symmetric-state bifurcation. All network

parameters and the motion input were kept identical to the

simulations presented above. The selective inputs were changed by

varying the target input after motion onset. The decision

thresholds were adjusted so that the model with altered selective

inputs fit the experimental reaction times and performances (Fig.

S3). For 25 Hz target input (and thus a total selective input of

95 Hz at 0% motion coherence), considerably less changes of

mind were obtained, especially for low motion strength, despite

the low decision threshold of 30 Hz. By contrast, with a target

input of 125 Hz the model predicted too many changes at low

motion coherence. More importantly, in most of the low

coherence trials with high target input the selective pools did not

leave the symmetric state (Fig. 6C, Fig. S3B). Contrary to the

concept of using the attractor states to determine the decision

outcome, here, even large fluctuations do not necessarily lead to a

transition towards the decision attractors. By contrast, close to the

bifurcation point, fluctuations will eventually lead to an escape

from the symmetric state.

These additional simulations also justify the use of tND as a

timeout for changes: Turning the motion stimulus off with

movement initiation would correspond to stopping the motion

input in the simulations at tND after the first decision. The

remaining symmetric target input of 85 Hz would be even lower

than the selective inputs in the 95 Hz simulations with symmetric

inputs (Fig. 5B). Thus, even if changes of mind were possible after

tND they would be very unlikely.

Apart from the input to the selective populations, changing

other network parameters will affect the location of the

bifurcations. The general shape of the attractor landscape,

however, is robust to gradual parameter changes. For example

increasing (decreasing) the inhibitory connectivity vI shifts the

whole attractor landscape to the right (left), which has a similar

effect as decreasing (increasing) the selective inputs (Fig. 6) and

likewise leads to fewer (more) changes (Fig. S4 and S5). This

further confirms the crucial role of the symmetric state bifurcation

for changes of mind in the attractor network.

Model predictions on bidirectional random-dot motion
As shown above, the frequency of changes of mind, as well as

the simulated reaction times and performance of the attractor

model, depend on the amount of common external input applied

to both selective populations (Fig. 6). In Fig. 7 we give a more

detailed analysis of simulated behavior with respect to common

and biased external inputs, if the decision threshold is fixed at the

standard decision criteria (44 Hz, 10 Hz difference). More

precisely, we performed additional network simulations starting

from various levels of equal external baseline inputs to both

selective pools, indicated by different colors in Fig. 7: from 120 Hz

in steps of 8.75 Hz to 155 Hz (the standard input close to the

second bifurcation, used above to model the experimental changes

of mind). On top of that, we varied the bias between the selective

populations, again in steps of 8.75 Hz from 0 to 43.75 Hz

Figure 7. Model predictions for different levels of common
selective inputs. The baseline external input, common to both
selective populations, as well as the input bias to one of the selective
populations were varied in steps of 8.75 Hz. Different colors indicate
the amount of common inputs, starting from 120 Hz to 155 Hz
(standard input to model the experimental changes of mind). Mean
reaction times (A), performance (B) and changes to correct (C, solid
lines) and wrong (C, dashed line) alternative are plotted against the
input bias between the selective populations. The decision threshold
was fixed at the standard decision criteria (44 Hz, 10 Hz difference).
1,000 trials were simulated for each data point. The pink and red dots
correspond (approximately) to the standard input parameters used
above at 0% and 25.6% (here actually 25%) motion coherence.
Increasing the baseline inputs leads to faster reaction times, lower
performance and overall more changes. (D) Evolution of the mean firing
rate variance across trials for one selective population, starting from
shortly before motion input onset (1,500 ms). The firing rate variances
increase quite linearly with time. With increasing baseline inputs to
both selective populations, the variance across trials becomes lower
from ,150 ms after motion onset.
doi:10.1371/journal.pcbi.1002086.g007
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(abscissa). In this input scheme, the pink and red dots correspond

(approximately) to the standard input parameters used above at

0% and 25.6% (here actually 25%) motion coherence. Increasing

the baseline inputs leads to faster reaction times and overall more

changes. Performance is less affected, but still decreases uniformly

regardless of input bias.

An experimental equivalent for higher inputs to both selective

populations might be obtained by increasing the overall dot

density or with bidirectional random-dot motion, similar to the

three-alternative experiment by Niwa and Ditterich [7]. Inde-

pendent coherent motion in two opposed directions allows

comparing differences in the total sensory input while keeping

the bias fixed. As an example, in the case of 10% dots moving to

the right and 20% to the left, fewer changes, larger reaction times

and higher performance would be expected than for 30% of dots

to the right and 40% to the left. Such an experiment should

generally help to distinguish the nonlinear attractor model from

linear diffusion models as used by Resulaj et al. [9], which

implement the accumulation of evidence as a single decision

variable, encoding only the difference in sensory evidence, but

not the absolute value for each direction. Still, changes in the

input variance might affect the diffusion model in a similar way as

changes in the baseline input affect the attractor network (Fig. 8).

Less variance in the input to the diffusion model leads to fewer

changes, higher reaction time and better performance. Thus, to

unambiguously distinguish the two types of models based on

behavioral data, the experimental stimulus fluctuations should be

controlled for. Nevertheless, the two scenarios, input variation in

the attractor model versus variance changes in the diffusion

model, also differ in their predictions on the variance of the

output firing rates across trials (compare Fig. 7D with Fig. 8D).

While the variance across trials in the diffusion model intuitively

increases with increasing input variance, in the attractor model it

actually decreases with higher baseline inputs to the selective

populations. The reason is again the approximation to the second

bifurcation, which impedes the escape to the decision attractors

more the higher the inputs, leading to smaller variation in firing

rate across trials. Neurophysiological recordings could thus

distinguish the two mechanisms based on this higher order

measure.

Discussion

Given the previous success of attractor models to simulate and

explain behavioral and neurophysiological data of the RDM task

[12,14,16] and decision-making in general [2,24], in this article we

made use of a binary attractor model with biophysically-realistic

neural dynamics to shed light on brain processes during changes of

mind. We showed that, despite their fixed-point stability, attractor

models are capable of capturing the essential aspects of changes of

mind during the dynamic transitions to the steady states.

Moreover, a mean-field analysis revealed that the working point

of the network, which fitted the experimentally observed changes

of mind, is located close to a bifurcation, where a symmetric

elevated state becomes stable. In the following we will discuss this

and further model predictions on brain dynamics during changes

of mind.

Distinction against alternative concepts for changes of
mind

The presented attractor model offers a simple, yet biologically

detailed, explanation for changes of mind with predictions on

physiological recordings and the dynamical state of the brain

region involved in the decision-making process. As in the

bounded-accumulation model of Resulaj et al. [9], a threshold

crossing determines the initial choice, which can then be reversed

by further processing of the remaining available information.

Importantly, the linear accumulator model is not a reduced one-

dimensional version of the attractor model. The mechanism

behind the changes of mind is quite different. The attractor model

is highly nonlinear: once the transient falls into the basin of

attraction of the decision state, it is captured by the attractor and a

change of mind is no longer possible, except for very strong

fluctuations.

Comparison with previous studies of the attractor

model. The original publication by X.J. Wang [14] discussed

decision reversal in the attractor model due to signal reversal, i.e.

by explicitly inverting the motion input to the network. Similarly,

Wong et al. [16] studied the model behavior if short (100 ms)

motion pulses were applied to the selective populations enhancing

or weakening the coherent motion. There are two crucial

differences between the ‘‘changes of mind’’ observed by Resulaj

et al. [9] (which we dealt with in the present study) and the

previous approaches on ‘‘choice reversal’’: first, changes of mind

here arise without explicitly inverting the motion evidence, solely

by noise fluctuations in the RDM stimulus or, for the simulations,

in the external selective input. Second, the inverted inputs in

Wang [14] and Wong et al. [16] acted mainly before the decision

threshold was crossed a first time and thus affected primarily

performance. For a ‘‘true’’ change of mind, i.e. a first decision with

a subsequent second threshold crossing, reversing inputs had to

surmount the initial motion coherence substantially [14]. In the

present study, the input fluctuations inducing changes of mind are

of about the same size as the fluctuations preceding the first

threshold crossing (Fig. 5). This can be explained by the proximity

Figure 8. Modifying the variance in the diffusion model.
Behavioral predictions of an extended linear accumulator-to-bound
model, as used in Resulaj et al. [9] (see methods) for three different
levels of input variance (0.7, 1.0, 1.3). Increasing the input variance leads
to faster mean reaction times (A), worse performance (B) and more
changes of mind (C). (C) Solid lines indicate changes to the correct
alternative, dashed lines erroneous changes. 10,000 trials were
simulated for each data point. (D) Evolution of the output variance
with time. As expected for the diffusion model, the variance rises
linearly with time. More input variance leads to more variance across
the trials in the output.
doi:10.1371/journal.pcbi.1002086.g008
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to the second bifurcation, which delays the ultimate transition to

the decision attractors and allows for initial fluctuation in the

output firing rate. Changes of mind, without explicitly reversing

the input to the selective populations, are therefore not self-evident

in the attractor model and occur only rarely, except for the

dynamical regime close to the second bifurcation.

Comparison with the diffusion model. In order to reduce

the free parameters and for physiological considerations, we set the

non-decision time tND as timeout for changing after the first

decision and used the same threshold for the first choice and a

change of mind. By contrast, Resulaj et al. [9] imposed a second

independent threshold and an adaptable timeout for changes to fit

their experimental results with an extended diffusion model.

Thereby, they could account well for the participants’ behavior

and the frequency of changes. The predictions on neural activity

by the one-dimensional model are, however, quite limited. In turn,

we did not attempt a perfect quantitative fit to the data, but

provided a neurodynamical explanation for changes of mind,

based on the shape of the attractor landscape, which is robust to

gradual parameter changes. Still, the simulated behavior fits the

experimental data well. The attractor model only predicts slightly

less erroneous changes and, hence, a larger difference in

performance with and without changes in comparison to the

participants’ behavior and the diffusion model. This minor

discrepancy might be accounted for by modifying the

implementation of motion coherence: for simplicity we modeled

coherent motion with a balanced input bias that affects both

selective populations equally and grows linearly with increasing

coherence (see methods, eq. 1). Nonetheless, an unbalanced more

positive bias, or a nonlinear increase with coherence (initially less

for low coherence and more for higher coherence levels) would be

plausible alternatives that could provide a closer fit to the

experimental data, without changing any of the predictions or

conclusions presented in this study.

Although the validity of the two models cannot be distinguished

based on their fits to the behavioral data of Resulaj et al. [9], a slightly

modified version of the RDM task with independent coherent motion

in two opposed directions [7], which allows comparing differences in

the total sensory input while keeping the difficulty fixed, might give

more information in that regard. The proposed attractor model

predicts that the frequency of changing increases with higher sensory

evidence for both alternative directions.

Apart from that, both of the above models assume that the brain

continues to process incoming information after the initial

decision. This hypothesis still needs to be verified by electrophys-

iological recordings. Another plausible mechanism is a reset of

neural activity after the first threshold crossing. In the attractor

model that would cause more changes of mind. This can be

understood easily for the 0% motion coherence case: a reset there

means starting the decision process from scratch with again equal

probability for both choices, while, in order to change decision for

continuous processing, the transient first has to escape from the

initial attractor. Moreover, resetting neural activity necessarily

involves further mechanisms from external brain regions. In this

article, however, we aimed to explain the changes of mind as an

intrinsic feature of the decision-making process, based on

nonlinear evidence accumulation with typical noise fluctuations.

Two mechanisms for speed emphasis to obtain changes
of mind

One requirement for intrinsic changes of mind in the attractor

model is a relatively low (first) decision threshold. A low threshold

implies fast reaction times and comparatively low performance

and thus corresponds to an emphasis on speed against accuracy

[10,25,26]. Indeed, Resulaj et al. [9] suggest that time pressure

induces changes of mind, as fewer changes were observed when

participants were instructed to perform more slowly. Moreover, a

low threshold in the attractor model leads to the experimental

prediction of a bimodal build-up of the mean firing rates (Fig. 4C).

After an initial uniform ramping activity that terminates already

close to the threshold, the slopes of the average firing rates diverge

rapidly for the various motion coherences. As coherence-

dependent differences in mean ramping activity only set in near

the decision threshold, differences in reaction time with motion

strength are rather small. The reaction times of the three

participants from Resulaj’s experiments are in fact very fast and

differ by less than 150 ms between 0% and 51.2% motion strength

in comparison to over 400 ms in previous studies with well-trained

monkeys [3] or human subjects without explicit instructions on

speed or accuracy [10]. More generally, neurophysiological

recordings along the lines of our predictions in Fig. 4F could

yield further experimental evidence on the existence and value of

an absolute decision threshold in LIP.

Apart from the decision boundaries, the speed-accuracy trade-

off can, theoretically, be controlled by a second mechanism: Roxin

and Ledberg [23] showed that, in a reduction of the attractor

model to a one-dimensional nonlinear diffusion equation, higher

common inputs to both selective populations lead to a decrease in

performance and reaction times (Fig. 7, see further Note 1 in Text

S1). Supporting experimental evidence comes from several recent

fMRI studies, where an increase in the activity of neural

integrators was observed with speed emphasis (reviewed in:

[27]). The mean-field analysis and complementary simulations

with different selective inputs (Fig. 6) revealed that, in order to

explain the frequency of changes found by Resulaj et al. [9], high

common inputs to the selective pools are required in addition to a

low threshold. Therefore, we suggest that, physiologically, both

mechanisms to implement a speed emphasis are essential to

explain the experimentally observed changes of mind: high

selective inputs and a low decision threshold.

Physiological relevance of the bifurcation between
decision-making and double-up state

Previous analyses of the binary attractor model for decision-

making [14,21,22] all focused on a region in the vicinity of the first

bifurcation, where the spontaneous state becomes unstable. There,

performance is high and reaction times are rather long, because of

long stimulus-integration times. Recently, also the ‘‘double-up’’

symmetric state gained relevance in connection with target

presentation [12,13,16], since consistent experimental evidence

was found for high firing rates just before stimulus presentation

[3,6,8,15]. Assuming high selective inputs with target onset, the

double-up state can explain neural activity prior to the decision-

making period. Furthermore, in Soltani and Wang [28] cue inputs

that arrive while the system is in the symmetric up-state add up to

determine the network’s starting point for subsequent decision-

making, thereby implementing probabilistic inference.

If neural activity in decision-related areas actually evolves

according to an attractor landscape, as proposed by this and

previous studies (reviewed in: [2]), the dynamical system has to cross

a bifurcation in order to switch between the double-up state, effective

during target presentation, and the decision-making regime, during

random-dot motion. Yet, experimental indications that would

suggest any physiological relevance of this second bifurcation for

brain dynamics during decision-making have been lacking.

In this study, we found that the attractor model best captures

the behavioral data and changes of mind observed in the

experiments of Resulaj et al. [9], if the system lies in the proximity
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of the second bifurcation. We thus proved that all input regimes of

the binary attractor model are consistent with particular aspects of

the decision-making process and thereby confirmed the suitability

of the attractor model to describe neural dynamics. Consequently,

we predict that the brain operates over the whole range of inputs

that enable decision-making, dependent on the pressure for speed

or accuracy, instead of switching between two discrete input levels

for decision-making and target representation. This could be

tested pharmacologically by gradually blocking inhibition in the

decision-related brain areas: decreasing inhibition shifts the

working point of the system closer to the bifurcation (Fig. S5).

Thus, decreasing reaction times, lower accuracy and more

changes would be expected, until the double-up symmetric state

becomes stable, where decision making might consequently be

impaired completely for low coherence levels.

Taken together, we showed that changes of mind arise naturally

in an attractor model of perceptual decision-making by empha-

sizing reaction speed against accuracy. We suggest that this speed-

accuracy trade-off is physiologically implemented by both,

threshold adaptation and increasing symmetric inputs. Moreover,

we found evidence for the physiological relevance of a so far

unregarded bifurcation in the binary attractor model and thereby

confirmed the general accordance of attractor networks with

neural processes. Finally, we provided predictions on a new

experimental paradigm, which might help to distinguish between

nonlinear attractor and linear diffusion models.

Methods

The presented attractor network with biophysically-realistic

synaptic dynamics was first introduced to model binary decision-

making in [14]. The network kinetics are summarized in Table S1.

For details, as well as the mean-field approximation, please refer to

the original publications [11,14] and Suppl. Methods in Text S1.

To account for the changes of mind, we adapted the weight

parameters and inputs within biologically plausible boundaries (see

below). All default simulation parameters are listed in Table S2.

Neurons and synapses
The network consists of NE = 800 (80%) excitatory pyramidal

neurons, NI = 200 (20%) inhibitory interneurons and is all-to-all

connected. Single neurons are modeled as leaky integrate-and-fire

neurons [29] with conductance-based synaptic responses, charac-

terized by their sub-threshold membrane potential (V) dynamics:

Cm
dV (t)

dt
~{gm(V (t){VL){Isyn(t),

with resting potential VL, membrane capacitance Cm and membrane

leak conductance gm. A spike is emitted, when the membrane

potential reaches the firing threshold Vth. Consequently, V is reset to

Vreset with an absolute refractory period tref. Isyn denotes the total

synaptic current flowing into the cell. It is composed of excitatory

recurrent post-synaptic currents (EPSCs), mediated by fast AMPA

(IAMPA.rec) and slow NMDA glutamate (INMDA.rec) receptors, and

inhibitory post-synaptic currents (IPSCs), mediated by GABAA

receptors (IGABA). External inputs are assumed to be driven only by

AMPA receptors (IAMPA,ext). In summary:

Isyn(t)~IAMPA,rec(t)zINMDA,rec(t)zIGABA(t)zIAMPA,ext(t):

Please see Table S1 for the mathematical description of the receptor

kinetics following Brunel and Wang [11]. The parameters for

neuronal and synaptic capacities, time constants and conductances

are mostly adopted from the original publications [11,14], except

for the recurrent AMPA to NMDA ratio: to better fit the relatively

high neural firing rates observed in recent neurophysiological

studies [6,8,15], we decreased gNMDA by 8% and adapted gAMPA

accordingly to preserve the spontaneous spiking rates of about 3 Hz

for excitatory neurons and 9 Hz for inhibitory neurons [12].

Network connectivity
The connections in the network (Fig. 1B) are kept fixed during

the simulation and are normalized so that the overall excitatory

recurrent synaptic drive remains constant if only baseline input is

applied to the network (spontaneous state) [11], by calculating v2

according to v{~(1{f vz)=(1{f ), where f = 0.2 is the fraction

of excitatory neurons in one selective pool, or ‘‘coding level’’.

Simulation of sensory inputs
External inputs are modeled as uncorrelated Poisson spike

trains. All neurons receive a background input of next = 2.4 kHz,

equivalent to 800 excitatory connections from external neurons

firing at 3 Hz (Fig. 1B). In the spiking simulation, sensory inputs

evoked by the target and motion stimuli (Fig. 1C) are applied

(only) to the selective pools. They are present until the end of the

simulation (3,500 ms), starting at ttarget = 400 ms and tmotion

= 1,300 ms plus an assumed latency of 100 ms and 200 ms,

respectively, for the signal to arrive in area LIP [6]. The time

course of the target input (Fig. 1C, red) follows the approach of

Wong et al. [16]:

ntarget~

0 Hz 0vtvttargetz100 ms

(350z100 exp ({(t{

ttarget{100 ms)=t1)) Hz

ttargetz100 ms ƒ t

vtmotionz80 ms

(85z265 exp ({(t{

tmotion{80 ms)=t2)) Hz
t§ tmotionz 80 ms

8>>>>><
>>>>>:

:

It is in accordance with experimental findings [6,15] and has since

been used in several models of LIP activity during the RDM

paradigm [12,13]. The initial exponential decay t1 = 100 ms can

be explained by short term adaptation. Due to the exponential

decrease of the target input with t2 = 15 ms, starting with a latency

of 80 ms after motion-stimulus onset, the target input is already

decaying for 120 ms, before the motion input arrives in LIP with a

latency of 200 ms. This causes the dip of firing rate in the

simulations. Note that the specific parameters of the target input

are irrelevant as long as, first, the initial inputs are high enough to

shift the network from the spontaneous to the symmetric state with

high firing rates in both selective populations and, second, the

target input is reduced sufficiently with motion onset to allow

competition (Fig. 5).

The random-dot motion stimulus is simulated as:

n1,2~nmotion 1+
c

100%

� �
: ð1Þ

with a time invariant rate of nmotion = 70 Hz for 0% coherence.

Coherent motion thus corresponds to a positive bias to one

selective pool, balanced by a reduction of the motion input to the

other. We simulated six coherence levels: c = 0%, 3.2%, 6.4%,

12.8%, 25.6%, and 51.2%.

Simulations
1,000 trials of 3,500 ms were run for each parameter set and

motion coherence. We used a second-order Runge-Kutta routine
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with a time-step of 0.02 ms to perform the numerical integration

of the coupled differential equations that describe the dynamics

of all cells and synapses. The population firing rates were

calculated by counting all spikes over a 50 ms window and

dividing this sum by the number of neurons in the population

and the window size. The time window was shifted with a time

step of 5 ms. We filtered the external input spikes in the same

way to obtain input firing rates for the fluctuation analysis of the

external Poisson inputs (Fig. 5). The ‘‘variation from mean input

difference’’ was calculated by subtracting the mean input rate

across trials from each selective population. The remaining input

difference between the selective populations in each trial was

then signed with respect to the first pool that crossed the decision

threshold.

According to recent experimental findings [3,6], we assumed a

fixed decision threshold independent of motion coherence: a

(first) decision was reached when one selective pool crossed a

threshold of 44 Hz and surpassed the other by at least 10 Hz.

The same conditions applied for a change of mind. To confirm

the mean-field approximation (see below), additional simulations

were run for different target inputs after motion input onset

(25 Hz and 125 Hz instead of 85 Hz), and also for higher and

lower inhibitory weights (vI = 1.425 and vI = 0.825 instead of

1.125). The respective threshold values were: 30 Hz for 25 Hz

target input, 50 Hz for 125 Hz target input, 38 Hz for the

simulations with vI = 1.425 and 50 Hz for vI = 0.825. All

threshold values used were determined within 1 Hz accuracy in

order to match the experimental reaction times and percentage of

correct choices (A threshold alteration of 61 Hz roughly

corresponds to a 63% variation in reaction time and about

+10% in the frequency of changes). For the simulations shown in

Fig. 7, the standard threshold parameters were used (44 Hz with

10 Hz difference). The additional condition of a minimal

difference of 10 Hz between the firing rates of the two selective

populations avoids occasional joint crossings to count as decisions

or changes (Fig. S2E). Reaction times were calculated as the time

of threshold crossing plus a non-decision time tND = 380 ms,

which consists of a latency of 200 ms for the motion signal to

arrive in LIP [3,6] and 180 ms to account for movement

initiation and execution [17,18]. tND also set the time limit for the

changes of mind. The robustness of the model simulation to

variations in the decision criteria and the non-decision time is

shown in Fig. S2.

To obtain the stable states of the standard spiking-neuron

model in comparison to the mean-field analysis (Fig. 5A, blue

crosses), we simulated 100 trials each, without target inputs, but

for constant symmetric inputs to the selective populations,

ranging from 0 to 200 Hz in steps of 10 Hz for 3,500 ms. The

stable fixed points of the decision state were found by averaging

the last 500 ms of all trials in which the decision attractor was

reached. For (very) low and high inputs, in some (most) of the

trials the symmetric spontaneous or double-up state was stable

and no decision was formed. The mean firing rate from 1,000 to

2,000 ms of these trials determined the fixed point of the

respective symmetric state.

Numerical integration of the mean-field equations was per-

formed using a second-order Runge-Kutta routine with a time-

step of 0.1 ms. Stable fixed points were found by terminating

integration when the firing rates did not differ by more than 1028

from the mean over the last 40 ms. Unstable fixed points were

determined by the boundary of the basins of attraction between

two stable states, searched by iterating the initial values between

two stable branches to find the change of dynamic flow towards

one or the other stable state.

Both, the mean-field analysis and the spiking simulations were

implemented in custom-made C++ programs. Custom-made MA-

TLAB programs were used for later analysis, fits of the simulation

results and the numerical integration of the diffusion model.

Diffusion model
The results shown in Fig. 8 were obtained by numerically

integrating a diffusion model with an added second threshold and

timeout for changing as described in [9]. For the drift and

boundary parameters, we used the average fitted value of Subject

S from Resulaj et al. [9]: a drift rate m~coh:k, with k = 0.3, a first

decision bound B = 13.2, tND = 324 ms and BD= 23.3, without

any bias in starting point or drift (m0 = 0, y0 = 0). The increments of

evidence were obtained from normal distributions with several

variance levels. To obtain the predictions on alterations in input

variance, we simulated 10,000 trials for each of the six coherence

levels, with input variances of 0.7, 1.0 and 1.3, respectively, at time

steps of 1 ms.

Fits to simulated behavioral data. Psychometric functions

(Fig. 2 left panel) were fitted by a logistic function:

Fraction correct ~ 1z exp { azb|cohð Þð Þð Þ{1
,

with motion coherence coh, a and b as free parameters. The

reaction time curve (Fig. 2 middle panel) was fitted by:

RT~
A

k|coh
tanh (Ak|coh)ztR,

with the free parameters A, k and tR.

Error bars denote SEM over all correct trials for simulated

reaction times. In the case of probabilities for correct choice and

changes of mind the theoretically estimated SEM was calculated

according to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p(1{p)=n

p
with n = 1,000 trials.
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Figure S4 Spiking simulation with increased inhibition.
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Table S1 Model summary (according to Guidelines in Nordlie et
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Table S2 Default parameter set used in the integrate-and-fire

simulation.
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Text S1 Supplementary Notes. Note 1: On the reduction of the

attractor model by Roxin and Ledberg (2008). Supplementary

Methods. Mean field approximation (following Brunel and Wang

(2001)).
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