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Abstract

Cellular networks multitask by exhibiting distinct, context-dependent dynamics. However, network states (parameters) that
generate a particular dynamic are often sub-optimal for others, defining a source of ‘‘tension’’ between them. Though
multitasking is pervasive, it is not clear where tension arises, what consequences it has, and how it is resolved. We
developed a generic computational framework to examine the source and consequences of tension between pairs of
dynamics exhibited by the well-studied RB-E2F switch regulating cell cycle entry. We found that tension arose from task-
dependent shifts in parameters associated with network modules. Although parameter sets common to distinct dynamics
did exist, tension reduced both their accessibility and resilience to perturbation, indicating a trade-off between ‘‘one-size-
fits-all’’ solutions and robustness. With high tension, robustness can be preserved by dynamic shifting of modules, enabling
the network to toggle between tasks, and by increasing network complexity, in this case by gene duplication. We propose
that tension is a general constraint on the architecture and operation of multitasking biological networks. To this end, our
work provides a framework to quantify the extent of tension between any network dynamics and how it affects network
robustness. Such analysis would suggest new ways to interfere with network elements to elucidate the design principles of
cellular networks.
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Introduction

Decades of experimental studies have established detailed

‘‘wiring diagrams’’ of diverse cellular networks. A striking

property of many networks is multitasking – the ability to

generate different dynamics according to their operating

context (Figure 1A). For example, the mitogen-activated

protein kinase (MAPK) pathway involving RAF-MEK-ERK

responds to epidermal growth factor (EGF) by triggering

transient ERK activation in a graded fashion whereas nerve

growth factor (NGF) induced sustained ERK in bistable

manner [1]. These tasks directly underlie contrasting biolog-

ical outcomes: EGF induces proliferation whereas NFG

induces differentiation into neurons. Another example con-

cerns the p53 stress response network that mediates arrest,

death, and DNA repair functions [2]. In response to ionizing

radiation, the network generates multiple pulses of p53 with

constant amplitude (i.e. digital) [3] whereas UV-radiation

generates a single, broad pulse whose amplitude follows a

graded dose-response (i.e. analog) [4]. Insight into how distinct

p53 tasks translate into biological outcomes is just beginning to

emerge [5].

Multitasking networks are speculated to have arisen through

successive elaboration on pre-existing ‘‘core’’ processes, represent-

ing an evolutionarily feasible route to generate novel biological

attributes [6]. Intuitively, reusing a common set of components to

multitask can be an economical way to accomplish multiple

biological goals. Yet, such a strategy can pose an operational

challenge: A dynamic may require network states (each being

defined by a set of parameter values) that are ill suited for other

dynamics. This concept is related to applications of multi-objective

optimization (MOO) algorithms in engineering [7], where two or

more, possibly conflicting design aspects are considered. Recently,

these approaches have been adopted for biology in problems

involving classification, system optimization, and gene regulatory

network inference [8]. Here, we use ‘‘tension’’ to describe the

difference in parameter spaces for distinct dynamics. Intuitively,

tension increases with the number of tasks that a network is

charged with as each task invariably requires a different subset of

parameter values. In the extreme, tension can constrain a network

to the point that few additional changes to the network can be

tolerated.

A full understanding of network design principles requires an

appreciation of where such tensions can arise within networks,

their consequences on the robustness of each dynamic, and the

strategies used to overcome them. Thus far, however, such

concepts have been neglected in quantitative analysis of natural

and synthetic pathways. To this end, we have developed a generic

computational framework to allow streamlined examination of

these questions. We illustrate the use of this framework by

analyzing a well-studied RB-E2F network, which plays a pivotal

role in regulating cell cycle entry.
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Results

The multitasking RB-E2F network
The RB-E2F network has been examined in detail under both

normal [9] and pathological [10] circumstances (Figure 1B and

supporting text (Text S1)). In quiescent cells, E2F is silenced by RB

[9] whereas E2F expression and activity is modulated by growth

stimulation through four ‘‘modules’’ – interconnected subsets of

the network with a distinct regulatory effect. A sensor module links

extracellular growth stimulation and E2F activity: Upon growth

stimulation, the MYC level increases and facilitates E2F ex-

pression [11] directly and via D-type Cyclins (CYCD), which

potentiate kinases (CDK4/6) to inactivate RB. A positive feedback

module (PFB) reinforces E2F expression by two routes: E2F can

bind to its own promoter and maintain an activated state [12] and

E2F increases expression of Cyclin E (CYCE) [13], which activates

another RB-kinase (CDK2). A negative feedback module (NFB) consists

of E2F-regulated genes that include Cyclin A [14] and SKP2 [15]

that inactivate E2F binding and induce proteolysis, respectively.

Finally, a repression module (R) consists of MYC-regulated genes that

down-regulate E2F expression, which may include microRNAs

within the miR-17-92 cluster [16] and the ARF tumor suppressor

[17].

Three distinct E2F dynamics underlie the response to growth

stimuli, depending on the operating context of the network. First,

E2F is bistable with respect to serum. Once activated, E2F remains

ON even if serum is reduced below the threshold required to

activate E2F [18]. In particular, the serum response of E2F ex-

hibits hysteresis, whereby activation of E2F from the OFF state (by

increasing serum) and shutting-OFF from the ON state (by

decreasing serum) follow different trajectories (Figure 1B). This

property provides a mechanism for cells to enforce two distinct

states, quiescence and proliferation [19]: Cells will commit to the

cell cycle when a growth stimulus exceeds an activation threshold

and to quiescence when signals drop below a maintenance

threshold.

Second, E2F exhibits biphasic response to direct MYC stimulation:

E2F expression increases with the MYC level when the latter is

low, but is repressed when the MYC level is too high [20]. This

response restricts the range of MYC levels that can activate E2F.

It may represent a safeguard mechanism that allows cells to

distinguish physiological levels of MYC induced by serum from

transient, potentially oncogenic levels resulting from gene

mutation or stochastic gene expression.

Third, in normal cells strongly stimulated by serum, E2F

expression exhibits temporal adaptation: It increases to a high level

leading up to the end of G1 before being down-regulated as cells

enter the S-phase [21]. As E2F controls expression of many genes

involved in DNA synthesis [22], adaptive E2F can both promote

coherent induction of DNA replication activities and restrict them

to a brief period in S-phase. Indeed, precocious or prolonged

E2F activity has been shown to cause replicative stress resulting

from deregulated DNA synthesis followed by a DNA damage

checkpoint [23,24].

Modeling framework
The starkly different dynamics generated by the same network

led us to hypothesize the existence of conflicts that constrain its

operation. To examine this issue, we probed several questions by

modeling: How (dis)similar are the solution set of parameters that

underlie different dynamics? What is the relative difficulty in

identifying such parameter sets and what properties do they

demonstrate in terms of network performance? In short, for a

specific set of dynamics, what is the relationship between tension

and robustness?

Here, we have developed a generic computational approach to

examine these questions (Figure 1C). Candidate parameter sets

were used to simulate from the model and assigned a score based

upon an objective function (Figure S1A). In a single iteration of the

algorithm, randomly initialized parameter sets were subjected to

successive rounds of ‘mutation’ followed by scoring. If a solution

was identified, the iteration was terminated or it was terminated

without a solution after a defined number of consecutive mutations

(in this case 100) without an improvement in the objective score.

This analysis allowed us to enumerate parameter sets that satisfy

each particular task (i.e. single) or biologically relevant pairings (i.e.

dual). For two tasks (e.g., A and B), tension is calculated as

the weighted sum of the log-ratio of median parameter values

(Figure 1D). In the case that each parameter receives equal

weighting (i.e. 1/n, where n is the number of free parameters),

tension is the average extent each parameter shifts between single

tasks. We evaluate robustness according to the ‘‘accessibility’’ of

dual solutions and ‘‘resilience’’ of single-task or dual solutions to

parameter perturbation. Accessibility is defined as the fraction of

single-task solutions identified as dual. A decrease in accessibility

indicates increasing difficulty in locating dual solutions. Resilience

is defined as the ability of a solution to maintain some minimal

performance after a perturbation (in this case at least 10% of the

objective score). This framework can be applied to any kinetic

model of cellular networks where objective functions can be

quantified.

Tension and coordination between bistable and biphasic
responses

We first compared the bistable response to serum and the

biphasic response to MYC. From 10,000 iterations we identified a

large fraction of solutions for each single task (Figure 2A).

However, only 146 dual solutions were present amongst 4,541

for hysteresis and 14 dual solutions were present in the 4,878 for

biphasic. This result corresponds to a dual-solution accessibility of

AHB = 0.017, that is, dual solutions represent 1.7% of the total.

The rate of solutions identified per iteration and dual accessibility

was similar even when only 500 iterations were performed

(Figure S1B), indicating that the result from 10,000 iterations is

representative.

Reduced accessibility may reflect tension in the network that

arises because single dynamics may adopt disparate states. To

examine the correlation between shifts in dynamics and corre-

sponding changes in parameters, we determined the median value

of each parameter from all the solutions. By using the values for

Author Summary

Multitasking pervades our daily lives. For example, the
technological devices that we increasingly rely upon are
now engineered with such multifunctionality or ‘‘integra-
tion’’ in mind. Similarly, cellular networks also multitask in
that they generate multiple, distinct dynamics according
to their operating context. Here we show that differences
in parameter spaces that underlie different dynamics thus
cause a ‘‘tension’’, which ultimately constrains network
operation. In particular, our analysis reveals that tension
negatively impacts robustness by reducing accessibility of
parameters able to accomplish two tasks and reduces their
ability to withstand perturbations. The presence of tension
and its negative impact on network robustness represents
a fundamental, generic constraint on the operation of
different multitasking networks.

Tension in Multitasking Networks

PLoS Computational Biology | www.ploscompbiol.org 2 April 2012 | Volume 8 | Issue 4 | e1002491



Figure 1. Multitasking networks. (A) (Left) A generic pathway consisting of system inputs (I); upstream and downstream mediators (black bars); a
core network; and outputs (O). (Middle) The mitogen-activated protein kinase (MAPK) cascade mediates a myriad of growth factor signals and elicits,
sometimes opposing responses in a cell-type specific manner. (Right) The p53 network responds to a variety of cell stresses and elicits an appropriate
course of gene expression that mitigates uncontrolled proliferation. (B) The RB-E2F switch, partitioned into four modules: Sensor (cyan edges);
repression (R, red); negative feedback (NFB, purple); and positive feedback (PFB, green). This pathway performs at least three dynamic tasks in

Tension in Multitasking Networks
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hysteresis as a reference, we isolated changes specifically associated

with biphasic response. According to their influence on each

module (i.e., synthesis rates are proportional whereas degradation

constants are inversely proportional to module strength), param-

eters were grouped into four modules (sensor, NFB, PFB, and R).

This analysis identified biases in the solution parameters associated

with sensor, NFB, and R modules (Figure 2B), whereas changes to

the PFB parameters were divergent (see supporting Text S1,

Discussion). Note that the overall distribution of NFB values were

quite similar between different dynamics despite a change in

median (Figure S2A). The changes across all median parameter

values resulted in a tension of 0.34 (i.e. average shift in parameter

value) between hysteretic and biphasic tasks.

Parameter distributions may be highly irregular, raising the

issue of how the median may perform as a summary of each

solution set. An alternative approach to compare distributions is to

calculate the Kullback–Leibler (KL) divergence (Text S1).

Consistent with the results obtained using median values, the

largest KL divergence involved parameters of R (Figure S2B).

More subtle distances in NFB, Sensor, and NFB were also present.

In this case, the tension value (0.08) was calculated as the average

KL divergence. All subsequent analyses were done by using the

median values.

The difference between the two dynamics can be largely

accounted for by the strength of sensor and R modules - the

product of free parameters constituting each module (Figure 2C).

Given this observation, an effective strategy to reconcile the

tension is to dynamically configure these modules: Increasing

their strengths would favor biphasic response, while decreasing

them would favor hysteresis. In contrast, changes in other mod-

ules would be less critical. We term this dynamical ‘network

reconfiguration’.

The overlap between R and sensor (Figure 2C), however, also

suggests the possibility to accommodate the two dynamics by us-

ing common parameter sets, which, by definition, represent dual

solutions. We performed 10,000 search iterations using a

composite objective function that represents the product of

hysteretic and biphasic objectives (see Text S1, Materials and

Methods) which allowed us to identify an additional 1,290 dual

solutions (Figure 2A). Most dual solutions were concentrated in the

overlap between single-solution sets, consistent with the notion

that they represent a hybrid of parameters from single dynamics

(Figure S2C). To validate the distribution of these dual solutions,

we also attempted a search using a dual objective function

composed of the sum of individual objectives. In addition, we

performed a search with single hysteretic and biphasic solutions as

a starting point, mimicking the successive elaboration of network

tasks. In each case, the distribution of solutions parameters was

virtually indistinguishable (Figure S2 A and C). This supports the

notion that the distribution of dual solutions is representative.

Simulations show that a typical dual solution could indeed

generate both dynamics (Figure 2D). Consistent with Figure 2C,

weakening the R module (by substituting it with the median value

from hysteretic solutions) diminished the repression of E2F at

high MYC, thus diminishing the biphasic response. In contrast,

strengthening the R module (by substituting it with the median

value from biphasic solutions) maintained the biphasic response

to MYC but eliminated hysteresis by weakening overall E2F

response. Weakening the sensor shifted the hysteretic response to

higher serum inputs but diminished the E2F levels achieved

in response to MYC (Figure S2D); strengthening the sensor

eliminated hysteresis and broadened the biphasic response by

stimulating an increase in E2F at relatively low doses of input.

A caveat of such dual solutions is their reduced accessibility

(Figure 2A). In addition, it is interesting to examine if tension could

also impact their resiliency to perturbation. To examine this, we

selected fifty representative solutions from each category in the

vicinity of their respective medians, subjected each one to 10,000

parameter perturbations, and determined the fraction of pertur-

bations that retained at least 10% of the initial objective score.

This analysis revealed that biphasic response was a more resilient

property than hysteresis overall (Figure 2E and Figure S2E).

Although the median resiliency of dual solutions was slight-

ly lower than single solutions, this change was not significant,

suggesting this tension had a minimal impact on the perfor-

mance of dual solutions. As such, properly configured sensor and

R modules can accommodate both dynamics. This could be

achieved by engaging the R module only when MYC is sufficiently

high, yet simultaneously enhancing the sensitivity of E2F to MYC

stimulation. This notion is consistent with the distinct modes of

MYC regulation in physiological and pathological contexts.

Physiological stimulation, e.g., by serum, of arrested cells leads

to a pulse of MYC that drops to a low level throughout the cell

cycle [11], which is unable to trigger the R module. Still, a strong

sensor module would enable robust generation of E2F switching

behavior despite relatively low MYC levels (second column of

Figure 2D). In contrast, more elevated and persistent levels of

MYC, due to overexpression or stochastic gene expression, would

trigger the R module and result in biphasic response.

Tension and coordination between hysteretic and
adaptive responses

Using the same approach, we found that the accessibility of dual

solutions involving hysteretic and adaptive dynamics was 7-fold

lower compared to biphasic behavior (AHA = 0.0024 compared to

AHB = 0.0170) (Figure 3A). This decrease was accompanied by an

elevated tension between hysteresis and adaptation (THA = 0.48

compared to THB = 0.34). Compared to hysteresis, adaptation is

associated with parameters defining moderately enhanced sensor

and R modules, and a drastically stronger NFB module (Figure 3B

and Figure S3A). Changes in parameters associated with PFB were

without coherent bias (Text S1, Discussion). Consistent with these

results, the dominant shift in KL divergence involved NFB

parameters (Figure S3B). Furthermore, the tension (average KL

divergence) between hysteretic and biphasic dynamics (0.08) is

lower than that between hysteretic and adaptive dynamics (0.11).

These observations suggest that an effective strategy to reconcile

the drastic tension is to dynamically configure these modules,

particularly for the NFB: Increasing its strength favors adaptation,

while decreasing it favors hysteresis (Figure 3C). Reflecting their

‘hybrid’ nature, dual solutions were concentrated in the overlap

between individual dynamics when plotted as a function of sensor

and NFB strengths (Figure S3 A and C).

To examine the specific contribution of NFB and sensor in

modulating these dynamics, we varied its strength in a typical dual

solution. Simulations confirmed its ability to generate both

dynamics (Figure 3D). Weakening the NFB module (by substitut-

ing it with the median value from hysteresis solutions) eliminated

response to growth signals. (C) Algorithmic approach to search parameter space. (D) Calculating tension. Given a network, solution sets of parameters
able to generate each dynamic (A and B) are identified. Tension between tasks (TAB) is defined as the weighted sum of the log-ratio of median
parameter values.
doi:10.1371/journal.pcbi.1002491.g001

Tension in Multitasking Networks

PLoS Computational Biology | www.ploscompbiol.org 4 April 2012 | Volume 8 | Issue 4 | e1002491



Figure 2. Tension between hysteresis and biphasic dose-response. (A) Fraction of parameter sets resulting from 10,000 algorithm iterations
that generated hysteretic (n = 4,541), biphasic (n = 4,878) or dual dynamics (Dual(H/B); n = 1,290). Orange region within results for hysteresis and
biphasic are the subset that support dual behavior. Hysteresis is measured by calculating the path difference 24 hours after an increase in serum from
0.01% or after a decrease from 10%. Biphasic response is measured 36 hours after an increase in MYC synthesis (parameter keMC; Text S1). (B) Network
state for biphasic behavior. Median value of parameters that support biphasic dose-response using hysteresis as the baseline (i.e. zero value). Related
parameters were grouped into individual modules. (C) (Left) Distribution of solution module strengths (product over all parameters) for solutions to
hysteresis and biphasic behavior. Also indicated are median values for hysteresis (square), biphasic response (triangle), and Dual(H/B) (circle)
dynamics. (Right) Coordination of hysteresis and biphasic behavior. Relative module strengths are indicated by line thickness. I – growth inputs from
serum and MYC; E – E2F. (D) Simulations of a representative Dual(H/B) solution in the vicinity of the median. R module strength was modulated by

Tension in Multitasking Networks
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the adaptive response and strengthening it (by substituting it with

the median value from adaptive solutions) increased the precision

of adaptation, consistent with its requirement for this behavior

[25]. Weakening the NFB module also enhanced hysteresis to the

point that E2F expression became irreversible (i.e. the solid and

dotted curves do not meet at low serum). Yet, strengthening it

diminished hysteresis by interfering with maintenance of the E2F

ON state upon reduction in serum. The sensor strength had a

more general impact (Figure S3D). The sensor strength for the

dual solution seemed to be near optimal for hysteresis; either

weakening or strengthening it led to almost elimination of

hysteresis.

The strong tension between dynamics corresponds to a greatly

reduced dual accessibility and suggests that they may be oper-

ational over a much restricted parameter space (Figure 3C).

Indeed, here tension penalized the performance of individual dual

solutions: Dual solutions were significantly less resilient to per-

turbations than single solutions in maintaining both hysteretic and

adaptive dynamics (Figure 3E and Figure S3E).

The drastically reduced accessibility and robustness of dual

solutions suggests that they would be ineffective in accommodating

both dynamics. Instead, dynamic network reconfiguration is likely

critical, which is consistent with the operation of the network: the

negative feedback on E2F has a significant time-delay in its

operation. In the G1 phase, the Anaphase-Promoting Complex/

Cdh1 (APCCdh1) keeps negative feedback from both CYCA [26]

and SKP2 [27] low by targeting them for proteasomal-mediated

degradation. Upon progression to G1/S, E2F activity increases

and induces CYCE - which is resistant to APCCdh1 - engaging sole

positive feedback. SKP2 and CYCA levels are eventually allowed

to increase through E2F-mediated induction of Emi1 [28] which

targets APCCdh1 for destruction. This is reinforced through

positive feedback as CYCA itself can also target APCCdh1 for

destruction [29]. Delay is also achieved at the transcriptional level

through ordered release of Cyclin E and Cyclin A from RB-mediated

repression [30]. This temporal coordination has been speculated

to enforce a brief time window between DNA replication origin

licensing mediated by CYCE and origin deactivation and initia-

tion of DNA synthesis mediated by CYCA [31,32]. Sequential

triggering of positive and negative feedback appears to be a

generic, systems-level organizational principle of networks under-

lying cell cycle control conserved throughout evolution [33,34].

Our analysis suggests an additional role for the temporal co-

ordination: it represents dynamic network reconfiguration that

accommodates robust hysteretic and adaptive E2F responses.

In addition, the tension between dynamics can potentially be

alleviated by increasing network complexity. For example, eight

E2F members of the E2F family have been identified in mammals;

some members can functionally substitute for one another [35].

E2F1 and E2F3 are part of the ‘‘activator’’ subgroup required for

cell cycle entry of fibroblasts from quiescence [36]. We wondered

if such apparent redundancy could reduce tension. To test this

notion, we extended our model to include an additional E2F

member (E2F9) expressed in parallel with E2F (Figure 4A and Text

S1, Mathematical Model). In particular, the model includes

distinct parameters governing production and degradation of each

E2F copy. On the other hand, we assumed that the biochemical

activity of each E2F copy was indistinguishable and could

contribute in an additive manner to overall E2F output (i.e.

hysteresis and adaptation) as well as to downstream gene

expression (i.e. Cyclin E and Cyclin A) via shared parameters.

The added complexity indeed led to a 3.1-fold increase in dual

solution accessibility (A2xE2F
HA = 0.0052 compared to AHA =

0.0024) (Figure 4B). This was accompanied by a reduction in

network tension with dual E2F (T2xE2F
HA = 0.39 versus THA =

0.48) (Figure 4C). This is reflected in the more modest extent to

which the NFB and R modules shifted between hysteretic and

adaptive dynamics (Figure 4C and Figure S4A) and the greater

extent of overlap in their distributions (Figure S4B). Importantly,

inclusion of an additional E2F copy was sufficient to increase the

resilience of dual solution adaptation such that the median was not

significantly different from single task solutions (Figure 4D). In

contrast, this additional complexity did not have a significant

impact on the resilience of hysteresis associated with dual

solutions. Why this fragility of hysteretic dynamics persists in such

dual solutions is not clear. Nevertheless, these results are consistent

with the notion that increasing network complexity reduces

tension and the corresponding penalty on some aspects of

robustness.

Discussion

Quantitative modeling has been widely adopted to examine

design principles of biological networks. Many studies have

provided important insight into the ways networks generate

particular dynamic responses [25,37]. To date, however, how a

multitasking cellular network accommodates different dynamics is

poorly understood, despite the recognition of their wide presence

and importance. Here we have developed a general approach to

quantify tension between different dynamics, which we have

applied to a well-established network underlying cell cycle

progression. In general, our analysis is consistent with an inverse

relationship between tension and the overall robustness of network

operation (Figure 5). In the face of moderate tension, common or

‘one-size-fits-all’ parameter sets could be attractive as they avoid

the need for additional, possibly complex, mechanisms to

coordinate system parameters. However, dynamic network

reconfiguration may be critical to resolve strong tension. Though

dual solutions exist, there is a pronounced penalty on the

accessibility and resilience of these solutions. Our approach is

general in that it can be applied to any other network with

behaviors that are distinct and quantifiable. In the case where a

network demonstrates numerous tasks (including the RB-E2F

network), accessibility, tension, and resiliency can be reported by

an ‘‘adjacency matrix’’, reporting all interactions in a pair-wise

fashion.

Our findings have several implications for our understanding of

the RB-E2F switch as well as a variety of other multitasking

networks (Table 1). First, our generic framework provides

additional criteria to assess model selection, sometimes favoring

choices that are not intuitive. In the case of the RB-E2F network,

the relatively high tension between hysteretic and adaptive tasks

suggests a critical need for additional mechanisms able to delay

replacing it with median value from solutions for hysteresis (2R) or biphasic response (+R). E2F is expressed in mM. (E) Resilience of individual
solutions. Boxplots summarize the resilience of 50 solutions for hysteresis, biphasic, and Dual (H/B). Solutions were selected by identifying the
smallest box (values of sensor and R) centered on the median containing 50 solutions. Resiliency is defined as the ability to maintain at least 10% of
their objective score following parameter perturbation. Y-axis shows the fraction of 10,000 repeated perturbations to a particular solution that are
resilient. Circle indicates median; Medians are significantly different at the 5% significance level if there is no overlap between intervals defined by
their triangular notches.
doi:10.1371/journal.pcbi.1002491.g002
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Figure 3. Tension between hysteresis and adaptive response. (A) Fraction of parameter sets resulting from 10,000 algorithm iterations that
generated hysteresis (n = 4,541 solutions), adaptation (n = 3,353) or dual dynamics (n = 105). Temporal adaptation occurs in response to a shift in serum
from 0.01% to 10%. (B) Network state for adaptation. (C) (Left) Distribution of module strengths for solutions to hysteresis and adaptation. Also indicated are
median values for solutions to hysteresis (square), adaptation (triangle), and dual (circle) dynamics. (Right) Coordination of hysteresis and adaptation. (D)
Simulations of a representative Dual(H/A) solution in the vicinity of the median (circle in Figure 3C). The NFB strength was modulated by replacing it with
median values from hysteresis (2NFB) or adaptation (+NFB). For serum response, solid lines represent levels 24 hours after an increase from 0.01% serum;
dotted lines are levels when initial conditions were 10% serum. E2F is expressed in mM. (E) Resiliency of solutions in the vicinity of the median for hysteresis,
adaptation, and Dual (H/A) data. Each boxplot summarize the results from 50 solutions, each perturbed 10,000 times.
doi:10.1371/journal.pcbi.1002491.g003
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negative feedback (i.e. CYCA) or buffer parameter changes (i.e.

E2F duplication). Another example involves a study by Ashall et al.

[38] concerning how different pulsatile TNF-a input patterns

encode unique NF-kB nuclear translocation dynamics (Figure

S5A). The authors were prompted to propose an alternative

network model wiring when they were unable to find common

parameter sets that could satisfy all NF-kB tasks using a traditional

model. Using their data, we calculated that the tension between

two tasks (‘‘Continuous’’ and ‘‘60 minute’’) was reduced from

TCon/60 = 1.69 to T9Con/60 = 0.84 in the alternative model along

with a corresponding increase in accessibility from ACon/60 = 0 to

A9Cont/60 = 0.29 (Figure S5B). What system-wide values of tension

and accessibility are across all model parameters remains to be

seen. Nonetheless, our study suggests that dynamic shifting of

parameters is more desirable from the perspective of robustness.

Second, tension has the potential to affect network evolvability

[6]. In particular, coopting additional functions could interfere

with pre-existing network dynamics (i.e. partial overlap of solution

space), thereby reducing the ability of the network to tolerate

additional alterations. For example, Meir et al. [39] modeled the

ability of the Notch-Delta signaling network [40] to generate three

spatial cell fate patterns – ‘‘2-cell’’, ‘‘7-cell’’ and ‘‘Line’’ –attributed

to the pathway during animal development. They showed that the

solution spaces for these tasks were only partially overlapping

(Figure S5 C and D): Only 25% of solutions for the ‘‘2-cell’’ tasks

could accommodate a ‘‘7-cell’’ pattern while nearly 80% of ‘‘7-

cell’’ solutions could also produce ‘‘2-cell’’ patterning correspond-

ing to an accessibility of A2–7 = 0.51 for dual solutions. Also,

parameters for ‘‘Line’’ overlap to an even lesser extent with so-

lutions for the two other tasks. From this, the authors speculated

that existence of universal parameter sets represent an evolution-

arily feasible route towards the goal of achieving novel functions.

On the other hand, these same observations offer direct support

for our argument that tension reduces robustness and constrains

a network’s capacity to adopt additional tasks. An intriguing

possibility is that dynamic shifting, increased complexity, or other

Figure 4. Network complexity mitigates tension. (A) Extended model includes duplicated E2F species (E2F9) with independent regulation of
synthesis and degradation. E2F dynamics are the sum of E2F and E2F9. All other interactions described in Figure 1B are maintained but omitted here
for clarity. (B) Fraction of parameter sets resulting from 10,000 algorithm iterations that support hysteresis (n = 2,508), adaptation (n = 3,704) or dual
dynamics (n = 182). (C) Network configuration for adaptation relative to hysteresis. Parameters specific to E2F9 are shown by open bars and all others
are shared between the two E2F species. (D) Resilience of solutions in the vicinity of the median for hysteresis, adaptation, and Dual(H/A) data. Each
boxplot summarize the results from 50 solutions, each perturbed 10,000 times.
doi:10.1371/journal.pcbi.1002491.g004
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strategies may enable a network such as this to increase its

workload [41].

Third, by focusing on the coordination of different tasks, our

methodology can provide novel, experimentally testable hypoth-

eses concerning what mechanisms are tied to potential conflicts

between dynamics and how they are resolved. For example,

Santos et al. [42] showed that the MAPK cascade, consisting of

RAF, MEK1/2, and ERK1/2, demonstrates distinct dynamics

and contrasting phenotypes in response to EGF and NGF (Figure 1

and Figure S6A). Importantly, EGF stimulated negative feed-

back between ERK and RAF whereas NGF stimulated positive

feedback. The growth-factor context-dependent MAPK topolo-

gies are a clear example of tension between dynamics and the

functional role of network reconfiguration. Analogous to our

results showing that modulating NFB strength could impact

hysteresis (Figure 3D), small-molecules used to constitutively

suppress and sustain positive feedback could swap ERK dynamics

and physiological effects of NGF and EGF. Furthermore, the

authors showed that partial activation of positive feedback via

interfering RNA (RNAi) generated an intermediate ability of EGF

to induce differentiation, suggesting a quantitative relationship

between tension and phenotypic outcome.

Another example involves the multifunctional response of the

p53 tumor suppressor. Batchelor et al. [4] demonstrated that

repeated, digital pulses stimulated by c-radiation (c-IR) required

WIP1-mediated negative feedback whereas UV radiation gener-

ated a single, graded p53 response (Figure S6B). Importantly,

suppression of negative feedback by RNAi against WIP1 was

sufficient for c-IR to generate a p53 response characteristic of UV

[43]. These observations represent a clear demonstration of

tension between dynamics attributed to negative feedback, and

its reconciliation through duplication and diversification of the

network (i.e. ATM and ATR). In retrospect, our framework

provides a rational means to identify such network tension, which

may not easily arise from intuition alone or even a deep knowledge

of the network, especially when tension arises from subtle and/or

multiple parameter shifts.

For the RB-E2F network, our detailed examination of tension

and robustness provide experimentally testable hypotheses. First,

our results suggest that the strength of negative feedback acting

upon E2F is inversely related to the extent of hysteresis. The

strength and timing of NFB could be realized through a small-

molecule inducible Cyclin A expression construct. Alternatively,

premature Cyclin A activity could be achieved through introduc-

tion of an N-terminal deletion mutant resistant to APC/C-

mediated destruction [44]. The effect of this on the E2F dose-

response to serum could be readily achieved using a previously

devised fluorescent reporter for E2f1 [45]. Second, this same

experimental system could be used to test the hypothesis that

additional copies of E2F insulate the hysteretic response from

premature or intensified NFB. Finally, our results lead directly to

the hypothesis that strong NFB will reduce the robustness of

networks able to accommodate both dynamics. Such a question

would be best suited using a synthetic biology approach and

predicts that circuits with both bistable and adaptive dynamics

would arise with relatively mild NFB.

Figure 5. Correlation between tension and robustness. (A) Relationship between tension and the accessibility of dual solutions for each pair of
dynamics examined. Abbreviations: H/B – hysteresis paired with biphasic; H/A – hysteresis paired with adaptation; 16E2F – single E2F model; 26E2F
– double E2F model. (B) Relationship between tension and resiliency to parameter perturbation. Boxplots span inter-quartile range and medians are
indicated with a circle for 50 dual solutions in each category. Two medians are significantly different at the 5% level if the interval between triangular
notches do not overlap. Data taken from results presented in Figure 2,3, and 4.
doi:10.1371/journal.pcbi.1002491.g005

Table 1. Examples of tension and coordination in biological
networks.

Network Stimulus Tasks Module Reference

RB-E2F Serum,
MYC

Bistable; Biphasic Sensor, R This study;
[30,32]

Serum Bistable; Adaptive Sensor, NFB

NF-kB TNF-a ‘‘Continuous’’; ‘‘60 min’’;
‘‘100 min’’;‘‘200 min’’

IKK
feedback

[38,49,50]

Notch/
Delta

Achete/
Schute

‘‘2 cell’’;‘‘7 cell’’;‘‘Line’’ ? [39]

p53 c-radiation Digital pulses NFB [4]

UV Analogue pulse

MAPK EGF Transient, graded NFB [42,51]

NGF Sustained, bistable PFB

doi:10.1371/journal.pcbi.1002491.t001
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If tension places a fundamental constraint on the operation and

architecture of multifunctional networks, it has implications for

engineering of synthetic biological systems. To date, most efforts

have focused on engineering of gene circuits with limited, de-

dicated functions. More complex functions can then be realized by

integrating well-defined modules [46,47]. For those functioning in

individual cells, however, this strategy is limited by the ability to

insulate different modules as well as the inevitable burden they

impose upon cells which can undermine desired functionality [48].

As such, it may be more effective to explore strategies that include

dynamic network reconfiguration to perform multiple functions

in a robust manner. In this case, synthetic biology may take a

cue from nature: Rather than attempting to generate an ever-

expanding toolkit of biological components, an emphasis will be

placed back upon the vast potential in differential regulation of

existing entities.

Methods

Numerical simulations
Simulations were performed with Matlab, version R12 (Math-

works, Natick MA) employing the ode15 solver.

Supporting Information

Figure S1 Objective functions for search algorithm and
convergence. (A) Objective functions used to quantify numerical

simulation output. (Left) Hysteresis is defined as a minimal path

difference (DP = 0.5) in E2Fm at 24 hours after an increase in

serum from 0.01% or decreasing from 10%. This was calculated

by applying the Matlab function trapz to the difference in steady-

state E2F values generated by decreasing and increasing serum.

(Center) The relative adaptation in E2Fp was calculated by DF/DI

over 25 hours and a minimum threshold of 0.80 defines a solution.

DI is the difference between initial and peak levels and a minimal

DI is enforced to filter out trivial solutions. DF is the difference

between peak and final levels. (Right) Biphasic behavior is defined

by the extent of E2Fm suppression relative to initial increase (DF/

DI) at 36 hours after a change in MYC synthesis rate (parameter

keMYC). A minimum threshold of DF/DI = 0.80 defines a solution.

A minimal absolute value of DI also applies in this case. It should

be noted that hysteresis, adaptation, and biphasic behavior could

be measured at the protein level without loss of generality. (B) (Left)

Fraction of algorithm iterations that lead to identification of a

solution for different total numbers of algorithm iterations. (Right)

Calculation of dual accessibility for different number of total

algorithm iterations. Data is a subset of data presented on left.

(TIF)

Figure S2 Raw data for solutions to hysteresis and
biphasic responses. (A) Distribution of solution parameters

supporting hysteresis, biphasic dose-response, dual tasks (Dual(H/

B)Product), dual tasks with initial parameters that were solutions of

single tasks (Dual(H/B)Single task IC), and dual tasks using an

objective composed of the sum of individual objectives (Dual(H/

B)Additive). Boxplots summarize distribution of values (logarithm)

for solution parameters. Medians are indicated by circles; lower

and upper end of boxes are 1st and 3rd quartiles, respectively;

Medians are significantly different at the 5% level if interval

between triangular notches are non-overlapping. Whiskers span

region 1.5 times the inter-quartile range; individual points outside

of this are shown and perturbed from the center for clarity.

Parameters are expressed such that value increases with strength of

module. Abbreviations: PFB –positive feedback; NFB – negative

feedback; R- repression. (B) Kullback-Leibler (KL) distance for

solution parameters of hysteretic and biphasic tasks. Tension is

the average distance over parameters. (C) Module strength for

solutions. Value along each axis is the logarithm of the product

over all module parameters. (D) Numerical simulations. The

Dual(H/B) solution is the same used in Figure 2D. Sensor strength

was decreased and increased by substituting median value for

hysteresis (2Sensor) and biphasic (+Sensor), respectively. The

value of dE2Fp
21 was increased (+dE2Fp

21) by using the median

value from hysteresis. (E) Evaluation of resilience for representative

solutions. The change in objective score relative to original is

plotted as a function of total parameter variation (K). Shown are

results of 10,000 perturbations. Resilience of a perturbed para-

meter set is that maintaining at least 10% of its score (i.e. log value

greater than 21).

(TIF)

Figure S3 Raw data for solutions to hysteresis and
adaptation. (A) Distribution of solution parameters values for

hysteretic and adaptive responses to serum. Boxplots summarize

the distribution of values (logarithm) of solution parameters. See

legend for Figure S2A for details. (B) KL divergence for solution

parameters of hysteretic and adaptive tasks. (C) Module strength

for solutions to each dynamic. Module strength on each axis is

the logarithm of the product over all module parameters. (D)

Numerical simulations of the same Dual(H/A) solution as

described in Figure 3D. Sensor strength was decreased and

increased by substituting median value from hysteresis (2Sensor)

and adaptation (+Sensor), respectively. The value of kE2Fm and

dE2Fp
21 were increased (+kE2Fm,dE2Fp

21) by using the median

value from hysteresis. (E) Evaluation of resilience for representative

solutions. See legend for Figure S2E for detailed description.

(TIF)

Figure S4 Raw data for solutions to hysteresis and
adaptation for model with duplicated E2F. (A) Distribution

of solution parameters values for hysteretic and adaptive responses

to serum. (B) Module strength for solutions to each dynamic.

(TIF)

Figure S5 Multifunctional networks with diverse, con-
text-specific dynamics. (A and B) Tension in the NF-kB

multitasking network. (A) The NF-kB pathway mediates stress

signals including those from the TNF-a cytokine. Cells treated

with different temporal patterns of TNF-a given in 5 minute

pulses display distinct NF-kB dynamic ‘tasks’. (B) A previous

‘traditional’ model of the pathway is unable to accommodate all

tasks with a common parameter set whereas an alternative,

‘‘Triple-feedback’’ model with Ikk feedback is able to. Tension

and accessibility of dual solutions involving the continuous and

60 minute TNF-a pulsing protocols were calculated from data

using the A20 degradation rate parameter. Adapted from Ashall et

al. [25]. (C and D) Tension in the Notch-Delta multitasking

network. (C) Notch-Delta signaling leads to differential expression

of Achete (AC)/Schute (SC) and binary cell fate patterning in

adjacent cells during fruit fly development. The network is able to

translate an initial pattern of AC/SC expressed at moderate levels

into a final ON/OFF pattern. (D) Calculation of accessibility of

dual 2- and 7-cell pattern. Orange bars indicate subset of para-

meters for each single task that are dual. Accessibility calculated

from data presented by Meir et al. [26].

(TIF)

Figure S6 Multifunctional networks with diverse, con-
text-specific dynamics. (A) The MAPK pathway multitasks.

Stimulation of neuronal precursor cells with EGF and NGF elicit

distinct dynamics and translate into opposite phenotypic out-
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comes. Protein Kinase C (PKC) is required but not sufficient for

positive feedback. Small molecules used to sustain positive

feedback (phorbol-12-myristate-13-acetate (PMA)) or preclude it

(Go7874) were sufficient to swap EGF- and NGF-mediated

dynamics and cellular outcomes. Adapted from [27]. (B) The

p53 stress response pathway multitasks. p53 can mediate cell stress

signals and controls the expression of genes that mitigate their

effects. Double-strand (ds) breaks induced by ionizing radiation

induce recurrent pulses of p53 that are whose amplitude is dose-

independent [28]; Single-strand (ss) DNA adducts induced by UV

cause a large pulse of p53 that is graded in terms of peak response

[29]. Colored links indicate interactions (i.e., synthesis rate in blue

and NFB in red) activated in a stimulus-specific fashion. The p53

network has also been shown to respond to a large panel of cell

stresses and other physiological contexts, with dynamics that are

poorly understood.

(TIF)

Text S1 Detailed description of modeling and mathe-
matical framework. The supporting text opens with a

discussion section describing the theoretical model of the RB-

E2F switch underlying mammalian cell cycle control along with a

discussion of the role of positive feedback module in the adaptive

and biphasic E2F responses. Following this is a materials and

methods section that describes the computational approach used

to identify parameter solutions that satisfy RB-E2F network

dynamics. Concluding this material are definitions of tension,

Kullback-Leibler divergence, and measures of robustness.

(DOC)
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