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Abstract

T-killer cells of the immune system eliminate virus-infected and tumorous cells through direct cell–cell interactions.
Reorientation of the killing apparatus inside the T cell to the T-cell interface with the target cell ensures specificity of the
immune response. The killing apparatus can also oscillate next to the cell–cell interface. When two target cells are engaged
by the T cell simultaneously, the killing apparatus can oscillate between the two interface areas. This oscillation is one of the
most striking examples of cell movements that give the microscopist an unmechanistic impression of the cell’s fidgety
indecision. We have constructed a three-dimensional, numerical biomechanical model of the molecular-motor-driven
microtubule cytoskeleton that positions the killing apparatus. The model demonstrates that the cortical pulling mechanism
is indeed capable of orienting the killing apparatus into the functional position under a range of conditions. The model also
predicts experimentally testable limitations of this commonly hypothesized mechanism of T-cell polarization. After the
reorientation, the numerical solution exhibits complex, multidirectional, multiperiodic, and sustained oscillations in the
absence of any external guidance or stochasticity. These computational results demonstrate that the strikingly animate
wandering of aim in T-killer cells has a purely mechanical and deterministic explanation.
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Introduction

The high specificity of the immune response depends in large

measure on direct cell-cell interactions. An example is the

interaction of a T-killer lymphocyte with a tumor cell, or with a

cell that has been infected and is producing new viral particles. It is

generally accepted (e.g., ref. [1]) that the T-killer cell patrols the

tissue, comes in contact with the abnormal cell, recognizes the

specific antigen on its surface, develops firm contact with the target

cell, and releases toxic compounds in its direction. The

directionality of the release, which makes the killing efficient and

spares the bystander cells, is arguably as important as the precise

molecular recognition of the antigen for the specificity of the

immune response [2,3].

The killing apparatus in T cells is structurally assembled around

the centrosome, the organelle in which the microtubule fibers of

the cytoskeleton are anchored. Experiments suggest that the killing

apparatus may be positioned next to the target cell by molecular

motors. According to this hypothesis, dynein motors anchored at

the T cell interface with the target ‘‘reel in’’ the centrosome by

pulling on microtubules that pass over the interface [4,5].

Surprisingly, large fluctuations of the centrosome next to the

cell-cell interface have been observed, as well as fluctuations

between interfaces with simultaneously engaged targets [4].

Is the pulling mechanism biophysically plausible? And what is the

nature of the apparent wandering of aim in T-killer cells? Here we

show by means of biomechanical modeling that the pulling

mechanism is indeed capable of bringing about the functional

orientation of the centrosome in a range of conditions. Our analysis

also predicts substantial and verifiable limitations of this mechanism.

Our calculations show that the complex fluctuations are an intrinsic

property of this mechanism and of the T-cell structure, in the absence

of any stochasticity or external guidance, suggesting a deterministic

mechanical explanation for one of the most ‘‘animate’’ cell behaviors.

Results/Discussion

Critical Assumptions
From the experimental videos [4] we obtain the following

idealizations to set up our numerical model (refer to the diagram in

Figure 1). The cell outline consists of an unattached round part

and of a flat part which is attached to the target cell (called

synapse, or synaptic plane). The large nucleus is coupled to the

aster of microtubules converging near its surface, and the mobility

of both is constrained by the cell outline. Microtubules slide along

the cell outline in the areas of contact with the targets. This active

sliding–specified in more detail below–drives all movements that

are observed. The movements are opposed by microtubule

bending elasticity and by viscous drag in the cytoplasm. This

condition completes the physical specification of our model; for its

exact numerical implementation, refer to the Methods section.

The active microtubule sliding in the model is meant to

represent the action of cortically anchored molecular motors.
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Idealizing what should happen when microtubules come in

contact with the cell cortex on which motor molecules are

anchored [4,5], we assume that the unit length of the contacting

part of the microtubule will experience a constant tangential force.

The mechanical property of the synapse with respect to a

microtubule is therefore characterized in our model by a one-

dimensional force density (units of force per length). It is

additionally assumed that the force exerted on the microtubule

is directed, along the local tangent to the microtubule, to the end

of the microtubule that is free (not attached to the centrosome).

This end is commonly referred to as the plus end of the

microtubule. The direction of the force so exerted on the

microtubule is the intrinsic property of the dynein-type molecular

motors that have been implicated in T cell polarization [5]. In the

more commonly considered situation of vesicular transport,

dynein motors ferry intracellular cargo to the so-called minus

end of the microtubule (the end that is anchored at the

centrosome). Considering the action and reaction forces, when

the intracellular vesicle is moved along the microtubule to the

minus end, the force exerted by dynein on the microtubule is

directed to the plus end. We assume that the force direction is the

same also in the case where the dynein-type motor is anchored at

the inner surface of the cell outline in the synapse area. The

arrangement of motors on this surface can be envisioned as

entirely random (uniform and isotropic). This is the implication

behind our cell-level model assumption that the direction of the

force acting on a microtubule depends only on the direction in

which the microtubule passes over the inner surface of the synapse.

Indeed, one can envision motor molecules that can pivot on their

cortical attachments and will therefore be aligned by their very

interaction with a microtubule. Alternatively, motors may be

randomly and stably oriented, and only the ones with a matching

orientation will engage with the microtubule passing over the

synapse in a certain direction. In both cases the pulling force

density experienced by the microtubule will be a constant, and the

resulting force will be tangential to the microtubule. The

effectively isotropic arrangement of motors is considered here

merely as the simplest possibility in the absence of empirical data

on what an anisotropic arrangement could be like. The model

assumption of the constant pulling force density also stipulates

that, in molecular terms, there should always be a sufficient

number of individual motor molecules in contact with the

microtubule. Then the pulling on that microtubule can be

processive (continuous), whether the individual motors are

processive or not: When some motor molecules disengage, others

engage, and the average pulling force is continuously exerted. We

would like to emphasize that all considerations regarding the

motors are not part of our quantitative model per se but are

plausible molecular interpretations of the actual model assumption

of the constant density and tangentiality of the pulling force.

Reorientation
Figure 2 and Video S1 show a simulation where the centrosome

is initially oriented at 90u to the developing cell-cell interface. This

orientation is the likeliest if the spherical T cell comes in contact

Figure 1. Schematic of the model. The cartoon depiction of the dynein motor molecules (red) is for visualization purposes only. Individual dynein
molecules are not modeled computationally, only the pulling force they produce. Microtubule thickness is greatly exaggerated in the diagram. The
centrosome (green) is merely a marker in the diagram; the centrosome in the model is identified with the common anchoring point of the
microtubules.
doi:10.1371/journal.pcbi.1000260.g001

Author Summary

Beyond the more widely known molecular recognition of
antigen, specificity of the cellular immune response relies
on the precise orientation of immune cells toward infected
and tumorous cells. We studied the mechanics of the
structural orientation of T-killer cells (a type of immune
cells) to their immunological targets. One of the most
remarkable features of this process as seen under the
microscope is the apparent ‘‘wandering of aim’’: instead of
pointing steadily at the intended target, the killing
apparatus inside the T-killer cell can wave around. When
two targets are engaged simultaneously, the killing
apparatus in the T cell can repeatedly oscillate between
the two. It might appear that the origin of this strikingly
animate behavior should lie in stochasticity of the
underlying mechanism. Our numerical model, however,
was able to reproduce the complex, continuing motion in
spite of the fact that the model was purely deterministic.
This result suggests that deterministic quantitative expla-
nations and supporting experimental evidence can be
sought in the other cases of extremely complex cell
motility that give the microscopist an acute sense that the
object is alive.

T-Cell Polarization Model
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with the target surface entirely at random. This is so for the

following reasons. Centrosomes facing any point around a

circumference on the T cell surface, which circumference is

parallel to the forming synapse, will all have an identical angular

separation from the synapse. Indeed, which way the centrosome is

facing around the axis perpendicular to the synapse, is of no

consequence for the magnitude of the reorientation that is

required to bring the centrosome into the functional orientation

toward the synapse. Such a circumference corresponding to the

identical orientation with respect to the synapse will be the longest,

when the angular separation of the centrosome from the synapse is

90u. Random orientation of the T cell cytoskeleton in three

dimensions would mean that the centrosome is equally likely to

point towards any small area on the spherical outline of the T cell

body. The longest circumference then corresponds to the likeliest

orientation with respect to the synapse, which is therefore 90u.
Our model reproduces the observation that the centrosome

becomes reoriented to the interface. Interestingly, stabilization of

the centrosome orientation in the model is soon followed by

development of pulse-like oscillations of the centrosome position

(Figure 2). The oscillations are in agreement with the experimental

observations [4], and are analyzed in more detail below. An

interesting prediction of the model is that the long-range

reorientation also results in an arrangement of microtubules that

is very asymmetrical. On the side of the microtubule aster that was

leading during the reorientation movement (i.e., on the side next

to which the synapse initially developed), a relatively tight

‘‘bundle’’ of microtubules is formed. The bundle is separated by

a distinctive gap from the microtubules that were trailing. There

exists a published three-dimensional experimental image of an early

T cell-target cell conjugate (Figure 6a in ref. [4]) that may arguably

show a similar gap. However, the gap formation has not been

specifically investigated experimentally, and therefore remains a

prediction to be verified. For the verification it will be important

that in the model the gap is a transient feature seen after

reorientation, not a static-equilibrium configuration. (Available

images of fully established T cell-target cell conjugates, e.g., in ref.

[4], show only a comparatively symmetric structure.) The induced

asymmetry in the model aster should be responsible for the

ratchet-like behavior of the microtubule cytoskeleton, which is

predicted by our model when the T cell develops a second

synapse. The centrosome readily reorients by another 90u in the

same direction as it did the first time, but does not reorient in the

opposite direction (Figure 2). In view of this, another testable

prediction can be made regarding the experimentally observed

oscillations of the centrosome between two synapses: The cortical-

pulling mechanism does not permit reversible intersynaptic

oscillations in cases where the centrosome undergoes a large

reorientation to the synapse that is the first to develop. Before

embarking on the analysis of the mechanical conditions that do

permit the intersynaptic oscillations, the capacity of the pulling

mechanism for achieving the functional polarity of the T-cell

cytoskeleton needs to be outlined more systematically.

The orientation of the centrosome is described here using an

angular measure. The rounded outline of the T cell makes the

angular measures and the terms ‘‘orientation’’ and ‘‘reorientation’’

convenient. It also makes the centrosome trajectory during the

long-range reorientation look at least partly like an arc. To show as

much of this movement as two-dimensional representation can

convey, we chose throughout our paper to show reorientation in

figures and videos from such an angle that the line of sight is

directed along the axis of the arc. From any other angle, the same

movement would appear only less arc-like, and more ‘‘vectorial’’.

In this sense, we feel that our model is compatible with the

vectorial description of translocation in experiments [4].

The movements in our model are, strictly speaking, a

superposition of the movements caused by pulling and of

movements caused by the deformation of the cell outline in the

beginning of each simulation. Simulations in which pulling force

density was set to zero (Figure S1) show, however, that the

Figure 2. Centrosome reorientation in the model. Dynamics of the centrosome orientation in a T cell developing sequentially two synapses is
shown. The insets are computer-generated snapshots of the actual numerical model cell. The graphic conventions are the same as in Figure 1.
Flattened interfaces with target cells are also depicted. The centrosome is initially pointing down (orientation 290u), and the first synapse develops
on the cell equator (orientation 0u). The evolution of the centrosome orientation with time is shown by the blue plot. Note the oscillations following
the stabilization of the equatorial position of the centrosome. After this (at t = 10 min) the model cell is set to develop the second synapse. In one
version of the simulation (green plot), the second synapse develops on the top of the cell, and the centrosome rapidly migrates to it. In the
alternative branch of the simulation (red plot), the second synapse develops on the bottom of the cell. In this case, the centrosome does not leave its
position near the middle of the first synapse (red line). Both of the alternative centrosome positions seen at the end of this graph persist for much
longer than plotted. Pulling force density, 40 pN/mm; microtubule length, 16 mm; effective cytoplasm viscosity, 2 pN s/mm2.
doi:10.1371/journal.pcbi.1000260.g002
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‘‘passive’’ component is small, usually not exceeding several

degrees of centrosome rotation. Thus, in the framework of the

present model, achieving any specific centrosome position, such as

next to the synapse (or at the rear in a migrating T cell), requires

the active pulling force.

Given the quasi-exponential kinetics of the reorientation to the

target, i.e., one characterized by a rapid beginning followed by a

slow stabilization at the final position (Figure 2), it is appropriate to

measure the rapidity of the reorientation by the time it takes to

reorient by one-half of the angle that separated the initial and the

functional orientations of the centrosome. This is analogous, for

example, to the widely used half-recovery time in photobleaching

experiments. The half-reorientation time achieved by the dynein-

pulling mechanism in our model is plotted in Figure 3A vs. the

initial misorientation of the centrosome, i.e., vs. the angular

separation of the initial centrosome orientation and the middle of

the forming synapse. This plot is essentially the structural

challenge – kinetic response curve for the T cell polarization

driven by the cortical dynein. It shows that for the comparatively

small required reorientations, up to about 70u, the rise of the

response time is nonlinear: the movement induced is actually the

slower the larger reorientation is needed. This can be attributed to

the spatial separation of the microtubules diverging from the

centrosome. As a result, a synapse of the given size that is formed

farther away will be contacted by fewer microtubules, and the

integral force exerted on the microtubule cytoskeleton by such a

synapse will be smaller. Figure 3A further shows that this

dependence breaks down for even larger ‘‘challenges’’: Between

about 70 and 110u of the initial separation of the synapse from the

centrosome, the half-reorientation time actually goes down with

the increasing reorientation range. This can be attributed to the

advantages of the tighter contact of microtubules with the pulling

surface. The microtubules can therefore experience a larger

pulling force. This apparently becomes the overriding factor in this

range of initial misorientations. (Notice in the initial, mechanically

relaxed cell structure shown in the first inset in Figure 2 that the

more distal parts of the microtubules are straighter and potentially

better aligned with a synapse that can form next to them than the

highly curved proximal parts can be.) The challenge-response plot

in Figure 3A shows further that for initial misorientations that are

larger still, the half-reorientation time displays a tendency to rise

and fall once more, but the kinetics becomes much more

dependent on the microtubule length, and the half-reorientation

may not then be achieved at all.

The complexity of outcomes reveals the limitations imposed by

the basic cell structure on the functional capacity of the pulling

mechanism. The chart of the simulation outcomes (Figure 3B)

shows that the functionally required reorientation up to about

100u can be completed by the cell with microtubules of any

plausible length (Figure 3B, region 1). However, as the initial

separation of the centrosome and the synapse increases, the

microtubule cytoskeleton is predicted to become jammed at

certain positions without reaching the fully functional orientation

Figure 3. Quantitative analysis of centrosome reorientation. (A)
The time it takes the model centrosome to reorient by one-half of the
initial angular separation, as a function of this initial separation, plotted
for the indicated values of the microtubule length. The segments of the
broken lines connect the points corresponding to the actual simulation
results; where the segments are dashed, it indicates that they connect
two data points between which a data point is missing because the
half-reorientation could not be achieved. Pulling force density, 40 pN/
mm; effective cytoplasm viscosity, 2 pN s/mm2. (B) Qualitatively different
predictions obtained with the different microtubule length and initial
angular separation between the centrosome and the middle of the
synapse. Regions in the two-dimensional parameter space are color-
coded and numbered. In region 1, the complete reorientation is
achieved. In region 2, the reorientation is ‘‘jammed’’ at around 30u of
remaining angular separation. In region 3, the reorientation is
‘‘jammed’’ at the characteristic angular separation of 100u. In region
4, reorientation does not commence because the microtubules are too
short to contact the synapse. In region 5, complete reorientation is
achieved after a catastrophic stability loss of the ‘‘locked’’ configuration
of antiparallel microtubules overlapping at the synapse. In region 6, the
same happens but the final reorientation is as incomplete as in region 2.
In region 7, the ‘‘locked’’ overlapping configuration is stable and no
reorientation occurs. Pulling force density, 40 pN/mm; effective
cytoplasm viscosity, 2 pN s/mm2. (C) Effect of microtubule dynamic
instability on the stability of the ‘‘locked’’ configuration such as
predicted in region 7 of (B). Angular position of the centrosome is
plotted vs. time as predicted by the purely deterministic model
analyzed throughout the paper (black curve) and with an additional
assumption of stochastic microtubule dynamic instability (colored
curves). The three stochastic simulations are independent (in the sense
of pseudo-random number generation on a computer) repetitions of a
simulation which was otherwise set up the same way as the

deterministic one. The angle plotted is defined as the angle formed
by the lines drawn from the nucleus center to the centrosome and to
the middle of the synapse. The deterministic prediction is that the
centrosome, having started facing the opposite side of the cell from the
synapse, will not be able to reorient to the synapse. The stochastic
predictions differ between runs: one is similar to the deterministic
prediction, in the other two the centrosome was able to reorient.
Pulling force density, 40 pN/mm; microtubule length (starting microtu-
bule length in stochastic simulations), 21.5 mm; effective cytoplasm
viscosity, 2 pN s/mm2.
doi:10.1371/journal.pcbi.1000260.g003
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(regions 2 and 3). This is apparently due to limits to the movement

of the microtubule aster in the space between the nucleus and the

outline of the cell. For certain microtubule lengths and initial

orientations (region 4), the microtubules are simply too short to

contact the synapse and initiate any movement. Interestingly,

examination of the boundary between regions 1 (‘‘success’’) and 2

(‘‘jammed’’) shows that making microtubules longer can actually

create impediments to complete reorientation, when the move-

ment could otherwise commence. The most interesting in this

regard are the predictions for the largest initial misorientations of

the centrosome with respect to the forming synapse, such as near

180u, which is commonly hypothesized to be the case in vivo (e.g.,

ref. [1]). If the microtubules are long enough to reach such a

synapse, they will also likely to be long enough to overlap there in

the anti-parallel fashion. The model shows that in this case, the

pulling will lock the microtubule system in place (with microtu-

bules wound tightly around the nucleus), rather than reorient it.

This can happen even if the synapse is quite far from being

symmetrically opposite the centrosome, provided only that the

microtubules are long enough to overlap at the synapse (Figure 3B,

region 7). However, for certain microtubule lengths and initial

orientations (regions 5 and 6), the locking, although it may initially

appear stable, is resolved through a catastrophic loss of stability,

and reorientation can then commence. Interestingly, the compar-

atively violent loss of stability may make possible final reorienta-

tion that is complete, even though this region in the parameter

space (region 5) is beyond the zone where functional orientation

was already impossible in the absence of any locking (region 3).

The predicted variability of the dynein-driven cytoskeleton

polarization in T cells, depending on the exact initial orientation

and individual cell structure, appears very life-like and demands

experimental testing.

Additional simulations where dynamic instability [6,7] was

included show that the jamming may be overcome if the

microtubule length is not constant but undergoes stochastic

fluctuations. Our model predicts that due to the very stochastic

nature of dynamic instability, the jamming may be overcome in

some cells and not in others (Figure 3C). Statistically, therefore,

dynamic instability of microtubules has the capacity to facilitate

reorientation driven by pulling.

The mechanically dead-locked state with the non-functional

orientation of the centrosome has not been experimentally

documented. This suggests three possibilities: (1) the specific initial

conditions that lead to it in the model (region 7 in Figure 3B) are

not encountered in reality; (2) the pulling mechanism is not the

correct mechanism, or should be translated substantially differ-

ently into quantitative model assumptions; (3) the pulling

mechanism is complemented by other mechanisms in reality.

The first possibility is likely because the locking is predicted only in

a small fraction of the feasible parameter space (region 7 in

Figure 3B). The second possibility is less likely, because the other

predictions reproduce a number of striking experimental observa-

tions. The third possibility is highly likely; in particular, our

simulations suggest that dynamic instability of microtubules is one

such additional mechanism that has the capacity to resolve the

locking. Disintegration of microtubules under load is another

possibility in this regard that our present model does not consider.

It is however made less likely by the fact that excessive bending is

not seen in our simulations. The axial stress induced by the pulling

force in our simulations is likely to be withstood. Measurements

suggested that microtubules have mechanical properties resem-

bling Plexiglas [8]. From this, M. W. Berns and colleagues [9]

estimated that, although the yield strength of a microtubule is not

known, it can be similar to that of polymethylmethacrylate, 40–

70 MPa. Considering the cross-section of microtubules 25 nm in

diameter, we conclude that microtubules should be able to bear

the tensile loads encountered in our model (up to ,100 pN)

without structural disintegration.

Intra-Synaptic Oscillations
Returning to the analysis of the purely deterministic effects of

pulling (without incorporating the dynamic instability of microtu-

bule length in the model), we analyzed further the mechanism of

the deterministic mechanical instability of the centrosome position

that followed the long-range reorientation. Video S2 shows a

generic case of oscillations developing after the functional position

of the centrosome next to the synapse is reached. It was found that

oscillations develop in the model even if the synapse is formed next

to the initial location of the centrosome. An otherwise insignificant

tilt of the synapse (such as 2u) will determine the initial phase of the

oscillations in our deterministic model. Engagement of the

microtubules with the pulling surface causes the model centrosome

to greatly ‘‘overshoot’’ and to continue moving beyond the center

point of the interface. It eventually stops and begins the reverse

motion, again approaching the center point and again overshoot-

ing (Figure 4A). The oscillations may persist without noticeable

systematic changes over at least 1 h of simulated physical time.

Typically it appears that there are overlapping and interfering

periodic motions (Figure 5B). Also, oscillatory movements that are

mostly tangential to the model cell-cell interface occur simulta-

neously with oscillatory movements that are orthogonal to it

Figure 4. Oscillations of the centrosome within the synaptic
area. (A) Graphs of the model cell structure at the indicated time
points. (B) The oscillating microtubule system shown in projection onto
the synaptic plane. The parts that are in contact with the synaptic
surface and are experiencing the pulling are highlighted in red. Pulling
force density, 20 pN/mm; microtubule length, 16 mm; effective cyto-
plasm viscosity, 2 pN s/mm2.
doi:10.1371/journal.pcbi.1000260.g004

T-Cell Polarization Model
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(Figure 5B). Gyrations (looping motions parallel to the interface)

can also be discerned in the complex trajectory of the model

centrosome (Figure 5A).

To determine the impact dynamic instability of microtubules

[6,7] and ring-shaped distribution of pulling motors [5] might

have on the deterministic oscillations, we performed additional

simulations that incorporated these structural and kinetic details.

The dynamic instability was modeled as in the simulations

described above (Figure 3C). The ring-shaped distribution of

dynein was modeled by assuming that only the annulus between

0.225R and 0.775R, where R is the synapse radius, could exert

pulling force on the microtubules. (The annulus is shown in Video

S3.) Results show that incorporation of these kinetic and structural

details does not dramatically affect the oscillations predicted by the

simple deterministic model (Figure 5C and Video S3). Overall our

results suggest that although dynamic instability of microtubules

and ring-shaped distribution of dynein may influence the exact

trajectory of the centrosome in living cells, they need not be the

root cause of the oscillations, nor do they necessarily have a large

impact on the oscillation pattern. It is interesting that, as can be

seen in Figure 4B and Video S4, when the pulling surface is

assumed to be a disk, the area actually contacted by the

microtubules is nonetheless a ring, due to how the microtubules

bend against the synapse. This may explain the absence of a

significant effect of the assumption of the shape of the pulling area

(ring or disk) on the oscillations dynamics. Also, the movement of

the centrosome to the edge of the synaptic area in the model is

restricted by bending of microtubules against the sides of the cell,

as discussed above. A similar effect restricting the centrosome

movement is predicted to arise, in the case of the ring-shaped

pulling area, from the reversion of polarity of microtubules

contacting the pulling annulus as the centrosome crosses it. It is

tempting to speculate that real T cells [4,5] may arrange their

cortical motors in the ring-shaped areas not to waste any in areas

not contacted by microtubules. In the rest of our analysis we refer

only to the case of purely deterministic and structurally simplified

modeling that does not incorporate the dynamic instability or the

ring-shaped distribution of dynein.

As regards the origin of the deterministic oscillations and of the

repeated overshooting which are exhibited by the centrosome, it is

important to point out that inertia plays no role in intracellular

movements due to the prevailing near-zero Reynolds number

conditions. In fact, like in models for comparable types of

intracellular movements (e.g., refs. [10–12]), there is no mass in

our mechanical model. Also, the model is strictly deterministic,

and therefore the deflections from the middle position of the

centrosome are not due to molecular stochasticity. Close

inspection of the model reveals that when the centrosome passes

the middle point during oscillations, the microtubule aster shows

significant asymmetry. This asymmetry is reversed when the

centrosome passes the middle point the next time (Figure 4B and

Video S4). Moreover, the microtubules are engaged with the

pulling surface more to one side of the centrosome than to the

other. The other side of the aster becomes engaged during the

reverse swing (Figure 4B and Video S4). Similarly to a model for

pronucleus oscillations in worm eggs [12], it can be observed that

the distal (‘‘plus’’) ends of microtubules hardly move during the

oscillation cycle. This should be attributed to the cytoplasm

viscosity dampening propagation of the elastic perturbation along

the microtubules from their proximal parts, which may be pulled

and which are coupled to the moving centrosome. As a result,

when microtubules on one side are pulled and the centrosome

shifts, the proximal parts of microtubules on the opposite side will

be lifted off the synaptic surface (Figure 4A and 4B and Video S4).

This makes the tug of war nonlinear: whenever one side is

winning, this weakens the opposing side. We ascribe to this effect

the fact that our model tends to swing through the middle position.

At the same time the movement appears to be limited by the

deformation of the microtubules on the winning side. Their distal

parts are bent against the side of the cell, and therefore the zone

where they can contact the pulling surface cannot extend very

close to the edge of the flat synaptic zone. Movement toward the

edge therefore diminishes the pulling force. This gives the elastic

relaxation of the trailing microtubules time to catch up and to

Figure 5. Typical trajectories of centrosomes oscillating within
a synaptic area. (A) A centrosome trajectory in projection onto the
synaptic area, with color denoting the height above it and arrows, the
direction. The directions of axes are as indicated in Figure 4. Pulling
force density, 40 pN/mm; microtubule length, 16 mm; effective cyto-
plasm viscosity, 2 pN s/mm2. (B) Positions of the centrosome along the
two horizontal axes and its vertical position plotted vs. time. Note the
phase shift between the oscillations along the x and y axes that leads to
gyrations visible in (A), and apparent beats. Pulling force density,
40 pN/mm; microtubule length, 16 mm; effective cytoplasm viscosity,
2 pN s/mm2. (C) Effect of microtubule dynamic instability and of an
annular shape of the pulling surface on the pattern of oscillations.
Position of the centrosome is plotted vs. time as predicted by the purely
deterministic model with the disk-shaped pulling surface, as analyzed
throughout the paper (black curve), and with stochastic microtubule
dynamic instability and annular pulling surface (colored curves). The
two stochastic simulations are independent in the sense of pseudo-
random number generation on a computer. The stochastic predictions
differ between runs but preserve the characteristic features of the
deterministic one. Pulling force density, 20 pN/mm in the deterministic
simulation and 36 pN/mm in the stochastic simulations. Microtubule
length (starting microtubule length in stochastic simulations) was
16 mm, effective cytoplasm viscosity, 2 pN s/mm2.
doi:10.1371/journal.pcbi.1000260.g005
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bring their proximal parts in apposition with the pulling surface.

At this point the microtubules that trailed are lying relatively flat

on the synapse. They are therefore experiencing a pulling force

that is greater than the force exerted on the microtubules which

led and which are now contacting the synapse only with their

highly curved parts. Movement in the reverse direction ensues

(Figure 4A and Video S4). It is important to point out that while

microtubule elasticity orchestrates the movement, the continued

oscillations are ultimately powered by the pulling forces, which

work ultimately against the energy-dissipating forces of viscous

drag. The source of energy is part of the present model only by

implication: it is ATP hydrolysis coupled to the working cycle of

the dynein motors that are behind the pulling force in the model.

Simulations with different pulling force densities show that the

basic frequency of the oscillations is fairly insensitive to this

parameter, although the overall pattern of oscillations changes

abruptly when a certain value of it is crossed (Figure 6). Below

approximately 140 pN/mm, the oscillations appear multiperiodic

and continuous (Figure 6A). Above approximately 150 pN/mm,

the oscillations are pulse-like (Figure 6C). In the relatively narrow

range of pulling force densities between approximately 140 and

150 pN/mm, the oscillations are continuous and pure, i.e., they

exhibit a single frequency and amplitude. Only in this narrow

intermediate range does the distance of the centrosome to the

synaptic plane not oscillate (Figure 6B). Based on the experimental

estimate of the force that can be exerted by a single cytoplasmic

dynein molecule interacting with a microtubule, 2.6 pN [13], we

limit the range of the pulling force densities that are of analytical

interest to between 20 and 200 pN/mm. Below this range, there

will be only a few molecular motors pulling on a given

microtubule, giving rise to stochasticity that our deterministic

approach cannot reflect. Above this range the number will reach

into the hundreds, which may not be realistic. The present model

shows that within the entire range of 20–200 pN/mm, the period

of oscillations parallel to the synapse remains near 15–20 s

(Figure 6D). This is close to the typical frequency seen in the

experimental videos [4]. This intrinsic frequency of oscillations

parallel to the synapse (x direction) is seen in its pure form when

the orthogonal (z direction) oscillations are absent between 140

and 150 pN/mm (Figure 6B). In the other two regimes (Figure 6A

Figure 6. Dependence of the oscillations within the synaptic area on the pulling force density. (A–C) The three types of oscillations that
are predicted correspondingly with low, intermediate, and high values of the pulling force density. The centrosome trajectory is plotted in the x and z
coordinates that are the same as in Figure 4 (x parallel and z perpendicular to the synapse). In (A), the pulling force density f = 100 pN/mm, in (B),
f = 143 pN/mm, and in (C), f = 200 pN/mm. Microtubule length, 16 mm; effective cytoplasm viscosity, 2 pN s/mm2. (D) The mean period of oscillations
parallel and perpendicular to the synapse, as a function of the pulling force density. The error bars are S.E. (insignificant in size for most data points).
Microtubule length, 16 mm; effective cytoplasm viscosity, 2 pN s/mm2. (E) The mean (solid line) and the characteristic minimum and maximum
(dashed lines) of the centrosome distance from the synapse, as a function of the pulling force density. The minimum and maximum attained during
each period were averaged over many periods to obtain the values of the minimum and maximum that are characteristic of the given force density.
The error bars in this plot show the standard error associated with the statistical estimation of the characteristic minimum and maximum values.
Microtubule length, 16 mm; effective cytoplasm viscosity, 2 pN s/mm2. (F) The peak deviation of the centrosome from the midpoint (amplitude) in
oscillations parallel to the synapse (x) vs. the centrosome distance from the synapse z at the moment when the peak deviation was achieved. The
datapoints are plotted for the indicated values of the pulling force density. Microtubule length, 16 mm; effective cytoplasm viscosity, 2 pN s/mm2.
doi:10.1371/journal.pcbi.1000260.g006
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and 6C), however, measurements show that the x-frequency is

approximately the same (Figure 6D). The period of the z-

oscillations is also mostly insensitive to the force density, except

that it is much longer for all values above 150 pN/mm than it is

below 140 pN/mm (Figure 6D). In the intervening range, the z-

oscillations are not sustained (Figure 6B), and their period,

therefore, not defined. The range of the distance (z) of the

centrosome from the synapse exhibits a similar step-like depen-

dence on the pulling force density, collapsing fully in the narrow

transition zone (Figure 6E). It can be observed that the farther

away from the synapse the centrosome is at any given time, the

smaller the amplitude of the movement parallel to the synapse will

be. Figure 6F shows that this dependence is essentially indepen-

dent of the force density and is quasi-linear. The exception to its

linearity appears related to the natural limit of zero amplitude.

When this limit is reached (this can happen only at high force

densities), the amplitude-distance relationship exhibits a break-

point at the axis intercept (Figure 6F). The zero amplitude of

motion parallel to the synapse is observed during the intervals

between the pulses, such as shown in Figure 6C. Notably, the

breakpoint of the x-amplitude vs. z-position curve (Figure 6F) is

near the centrosome-synapse distance of 1 mm, same as the

breakpoint in the dependence of the z-position on the force density

(Figure 6E). Close inspection shows that this transition corresponds

in individual trajectories to complete but temporary loss of contact

between the microtubule system as a whole and the synapse.

Explanation of this phenomenon proved challenging, although it

appears to arise from the viscous drag-induced ‘‘liftoff’’ of the

microtubules that was discussed above and illustrated in Figure 4A.

During particularly vigorous movement that can occur at the

higher force densities, not just one side but the entire microtubule

system may lose contact with the synapse (apparently due to the lift

force). In the absence of the active driving force it will take the

motile system considerable time to relax and contact the synapse

again. These periods of time correspond to the long, high arcs of

the z-trajectory and no x-movement, as seen in Figure 6C.

Intuition does not appear to keep up with the complexity of the

movement. It is satisfying that complexity exhibited in the

simulations compares favorably with the multi-periodic and

variable-amplitude movement seen in the experiments [4].

However, the mechanistic explanation of it offered by the model

will be difficult to test with the existing live-cell imaging

techniques, because it would depend on resolving optically the

small distances around the predicted breakpoint (,1 mm,

Figure 6E and 6F).

Inter-Synaptic Oscillations
Capacity to explain oscillations of the centrosome within a

synapse is a stringent test of a mechanism proposed for centrosome

polarization, and our computer simulation results indicate that the

empirical hypothesis of cortical dynein pulling [4,5] passes this test.

The immunological function of the oscillations within a synapse is

however unclear. (One can speculate that they might facilitate

extrusion of the toxic granules.) In contrast to this uncertainty,

oscillations between two synapses appear to be part of how a T cell

engages two targets simultaneously [4], no matter how illogical this

may seem from a ‘‘design’’ standpoint. We have therefore tested

the ability of the cortical pulling mechanism to produce oscillations

between two synapses as well.

Numerical solution shows that after simultaneous development

of two synaptic areas on two sides of the initial centrosome

position, the model centrosome goes to one of them. Which one it

goes to first in our deterministic model can be decided by an

otherwise insignificant deviation of the initial centrosome orien-

tation from the middle, such as by 2u. What is important is that

after pausing at the first synapse, which pause can last for a

significant period of time, the model centrosome spontaneously

moves to the other synapse (Figure 7A and Video S5). The cycle of

movement, pause, and movement to the other synapse appears to

continue indefinitely with a rather well-defined periodicity. The

characteristic delay before the reverse motion is as seen in the

experiments [4]. The model predicts that for the delay to take

place, the angle between the two synaptic planes must be narrower

than 150u (Figure 7B). The angle was indeed sharp in the

experiment [4]. By only crudely adjusting the pulling force density

and effective cytoplasm viscosity (to 40 pN/mm and 2 pN s/mm2,

respectively), it is easy to reproduce with remarkable precision

both the duration of the pause and the duration of the movement

phase (Figure 7B). Whereas the match of the absolute model time

scale to the experiment is a matter of (crude manual) data-fitting

and therefore not particularly significant, the fact that the

computed phase of pause and the computed phase of migration

can have the same relative duration as seen in the experiment is

very remarkable. The same viscosity was used in all other

simulations shown, including those that, as was discussed above,

reproduced closely the characteristic period of intra-synaptic

oscillations independently of the pulling force density. This

indicates that the deterministic mechanics of the cortical pulling

mechanism may indeed account for the relevant features of

centrosome motility in the T cell.

In the light of the model, the pause of the centrosome and of the

associated killing apparatus next to each of the engaged targets

appears to arise from the delayed relaxation of microtubules that

were trailing during the last period of centrosome migration. This

can be discerned by close examination of Figure 7A, and it is the

same factor that leads, in the extreme, to the irreversible, ratchet-

like behavior of the model cytoskeleton following very large

reorientations (Figure 2). In comparison, the migration between

the two synapses is medium-range, and it therefore can be

reversible. Comparing it on the other hand with the relatively

small-amplitude oscillations within a synapse (Figures 4 and 5), the

migration of the centrosome between the synapses winds up the

trailing microtubules much more around the nucleus, and it takes

them longer to relax and contact the other synaptic area after the

movement was limited by the deformation of the previously

leading microtubules. Irrespective of these mechanistic details that

are suggested by the model, it is notable that the time which the

killing apparatus spends next to the given target may be

determined so directly by mere elasticity of the cytoskeleton. It is

equally notable that, as the model suggests, the movement of the

killing apparatus to the other synapse is a direct mechanical

consequence of its previous movement to the synapse where it is

presently found.

Simulations in which the pulling force density at the two

synapses is unequal show that the centrosome can be retained at

the synapse which is the stronger, even if it visits the weaker

synapse first (Figure S2). This result suggests that the preferential

orientation of the centrosome and associated organelles to the

stronger synapse, which was observed experimentally [14,15] may

be a limiting case of the inter-synaptic oscillations.

In summary, a purely deterministic, biomechanical model is

capable of exhibiting complex, life-like centrosome movements in

a conceptually simple, three-dimensional computer simulation of

the dynein-pulling mechanism. Our computational results dem-

onstrate that the origin of the strikingly animate wandering of aim

in T-killer cells need not be sought necessarily in stochastic

dynamics of individual molecules, or in indecision that might be

exhibited by complex information processing in the T cell, or in
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indeterminate changes in the signaling input from the target cells.

Instead, the rigorous numerical demonstration that a purely

deterministic mechanical explanation exists for one of the most

animate behaviors exhibited by cells suggests that similar

explanations and supporting experimental evidence can be sought

for other types of cell behavior that appear strikingly far from

mechanistic.

Methods

Physical Model
The cell structure. The T-cell outline in our model is a

sphere 14 mm in diameter. It is truncated by a plane when

attachment to the target is modeled. The planar part of the model

cell surface is referred to as the synapse, or synaptic surface. The

entire cell surface is rigid and immobile. The nucleus is also a rigid

sphere (with radius Rn = 5 mm).

Microtubules. There are 24 microtubules, each 25 nm in

diameter. The microtubule length in the simulations was 16 mm,

except where indicated otherwise. Effective (hydrodynamic, see

below) microtubule diameters between 25 and 50 nm were tried,

with similar results. The model microtubules are inextensible and

respond elastically to flexure with the measured rigidity,

b = 26 pN mm2 [16]. (Rigidities between 5 and 50 pN mm2 were

tried, with similar results.) One end of every microtubule is clamped

at the same point on the nuclear surface. This point is referred to as

the centrosome. If unstressed, straight microtubules would emanate

from the centrosome in a uniform conical arrangement (70u wide

unless otherwise specified), but in the model they are always

constrained between the nuclear and the cellular surfaces.

(Unstressed microtubule divergence angles between 60 and 90u
were also tested, with similar results—see Figure S3.)

Model initialization. Elastic relaxation of microtubules

coupled with the nucleus inside the spherical cell outline comes

to a static equilibrium, which is the initial condition for the

dynamic simulations. A simulation is begun by intruding the

truncating plane at a constant speed into the cell over 25 s to a

point where it truncates the sphere by 2 mm. The cell volume is

kept constant by a corresponding (minor) increase of the radius of

the round part. (Intrusion depths between 1.8 mm and 2.6 mm

were tried, with similar results.)

Pulling. At all times after the beginning of the simulation,

microtubules can slide according to the following rules: When part

of a microtubule is within a small distance (15 nm) from the

synaptic surface, force is exerted on that part of the microtubule.

(Contact distances between 10 and 100 nm were also tried, with

qualitatively similar results.) The force is tangential to the

microtubule and directed towards its distal (‘‘plus’’) end. There is

a constant magnitude of force exerted per unit length of the

microtubule within the specified contact distance, which is referred

to as the pulling force density. These rules would describe

microtubules coming in contact with the cell cortex on which

Figure 7. Oscillations of the centrosome between two synaptic areas. (A) Graphs of the model cell structure. The angle between the two
synaptic planes is indicated by the red arc and equals 144u in this simulation. Pulling force density, 40 pN/mm; microtubule length, 16 mm; effective
cytoplasm viscosity, 2 pN s/mm2. (B) Trajectories of the centrosome predicted for the indicated angles between the two synaptic planes. An excerpt
from the experimental trajectory extracted from the supplementary video to the cited paper [4] is also shown (dashed). The illustration in (A)
corresponds to the red theoretical curve. Pulling force density, 40 pN/mm; microtubule length, 16 mm; effective cytoplasm viscosity, 2 pN s/mm2.
doi:10.1371/journal.pcbi.1000260.g007
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dynein molecules are anchored at a certain spatial density, if the

dynein is activated upon the synapse formation as hypothesized

[4,5]. The pulling force density was 40 pN/mm in most

simulations; the specific values are indicated in the

corresponding figure legends.

Drag. Movement of the microtubules and nucleus is opposed

by viscous drag (overdamped motion, see below). We chose the

effective viscosity of the cytoplasm so as to reproduce the

characteristic speed of the centrosome movements in T cells. To

arrive at this value, we proceeded from the drag coefficient value

that was similarly chosen in a comparable type of model that

approximated well the movements during cell division [10].

Viscosity was estimated from the consideration that nucleus in our

model would have the same translational drag coefficient. Our

best-fit value of 2 pN s/mm2, which was used in the simulations

shown, turned out to be four times lower. (Viscosities between 0.1

and 8 pN s/mm2 produced qualitatively similar results.)

Dynamic instability. As explained above, the length of the

each microtubule was kept constant, with the exception of special

additional modeling cases. In these special additional simulations

we tested the impact of dynamic instability (stochastic changes of

microtubule length [6,7]) on the otherwise deterministic dynamics

of our model. When dynamic instability was incorporated in the

model, it was assumed that a) length fluctuations in individual

microtubules were independent, and b) the variance in

microtubule length increased linearly with time, with the

apparent diffusion coefficient of microtubule length (by

definition, half the rate of variance growth) of 3.33 mm2/min.

This value was chosen to lie between those measured in PtK [17]

and melanophore cells [18]. It was shown previously that dynamic

instability can be adequately described on the cell scale by the rate

at which the length variance increases with time regardless of the

actual kinetic complexity (diffusion approximation of dynamic

instability as a stochastic process [19]).

Numerical Solution
Microtubules. Microtubules are represented numerically as

chains of straight segments that approximate the centerlines of the

microtubules. Each microtubule was approximated with 32

segments of equal equilibrium length.

Inextensibility. The essential inextensibility of microtubules is

implemented by assigning a high Hookean spring constant to the

segments. The value of 2000 pN/mm for this constant results in a

force restoring the length of the segment which becomes much larger

than other typical forces in the model before the segment length

change becomes noticeable. In effect, therefore, the microtubules in

our numerical model are inextensible and incompressible.

Bending. The restoring forces resulting from flexural rigidity

of a bent microtubule were calculated in a slightly more

generalized way compared to the previously developed mitotic

spindle model [20]. Let us number the segment joints (‘‘nodes’’) in

a microtubule sequentially by the index i, and denote the

Cartesian coordinates of the i-th node as xi. We calculate the

microtubule curvature at i, ki, approximately as the angle between

the directions of the two segments joined at i, divided by the

average of their lengths. Implementing the torque bki through

forces exerted at the neighboring nodes, and preserving the overall

force balance, we calculate the force exerted on node i which

reflects the microtubule bending stiffness as

b ki{1 ni{ki ni{1ð Þ= xi{1{xij jz kiz1 ni{ki niz1ð Þ= xiz1{xij j½ �,

where ni is the approximated inward normal to the microtubule at

i. ni was calculated by considering the plane determined by xi21,

xi, and xi+1. There are two co-planar unit vectors, u and v, which

are perpendicular to segments xi{1xi and xixiz1, respectively.

Furthermore, u and xixiz1
����!, and v and xixi{1

����!, form acute angles.

ni is the normalized average of u and v.

Clamping. To implement our assumption that the

microtubule ends are not merely anchored at the centrosome,

but clamped there, the above numerical treatment of microtubule

bending was applied not only to flexure between actual

microtubule segments, but also to the deflection of the first

proximal microtubule segment from the direction fixed with

respect to the nucleus in the manner described among the physical

assumptions.

Impenetrability. To implement impenetrability of the cell

outline to the microtubules, whenever a node on a microtubule

approaches the cell outline closer than the microtubule radius, a

reaction force is exerted on that node. The direction of this force is

inward normal to the cell outline at the point of its contact with the

microtubule. The force magnitude is calculated so that with the

drag coefficient associated with the node (explained below), the

node will just stop violating the impenetrability condition at the

next time step. This definition results in maximally precise

implementation of impenetrability without causing numerical

instability in our time-stepping scheme. Nucleus violating the cell

outline is treated in the same way. Any noticeable penetration of

the nuclear volume by microtubules is prevented similarly, with

the action and reaction forces similarly calculated and exerted on

the nucleus and the microtubule node.

Drag. Viscous drag on the nucleus and microtubules was

calculated using the same values of effective viscosity of the

cytoplasm, g, chosen as explained among the physical

assumptions. We used the widely accepted approximations for

the drag coefficient: With a translational velocity v and rotational

velocity v of the nucleus, the viscous drag and torque on the

nucleus were calculated as 26pgRnv and 28pgRn
3v, respectively,

where Rn is the radius of the nucleus as specified above. The

distribution of the drag force along a microtubule was calculated

using the numerical representation of microtubules as segmented

chains, which was described above. The velocity of a microtubule

node v was decomposed into the components locally normal (vH)

and tangential (vI) to the microtubule. The drag force on the node

was then calculated as 22pg(vI+2vH)l/log(l/2r), where r is the

microtubule radius as specified above, and l is the resting length of

the microtubule segment, per the above numerical specifications.

The time-stepping scheme. The forward Euler method

[21] was used to integrate the motion of the microtubules and

nucleus. The instantaneous velocities were derived from the

condition whereby all forces and torques exerted on the

microtubules and nucleus are balanced by the viscous drag

force that resists their motion through the cytoplasm. (I.e.,

overdamped, zero-Reynolds number conditions were assumed,

as in other models of intracellular movement of the microtubule

cytoskeleton and nucleus, e.g., as in refs. [10–12].) The time step

used was Dt = 0.0002 s. The following presents more details on

the calculations used to update the positions of the microtubules

and nucleus during a time step. First we consider a microtubule

node (see above) at position x in the three-dimensional Cartesian

coordinates. (This does not apply to the most proximal, or

centrosome, node on each microtubule, which is in fact part of

the rigid-body nucleus.) Forces acting on this node are calculated

as detailed in the corresponding subsections above. These forces

arise from (1) bending, (2) inextensibility, (3) impenetrability of

boundaries, and (4) pulling at the synapse. We denote the sum of

these forces by F. This force will be balanced by viscous drag

force. Since the drag coefficient of the microtubule segment
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represented by the node depends on the direction of movement,

in the following calculation F is decomposed into the

components that are locally parallel to the microtubule, FI,

and orthogonal to it, FH. When divided by the appropriate drag

coefficient, these components of force will yield the

corresponding components of the node velocity. Therefore,

using the widely accepted approximations for the drag coefficient

of a cylinder (see above), the position of the node should be

updated as follows:

x tzDtð Þ~x tð ÞzDt FEzF\=2
� �

log l=2rð Þ=2pgl

The following procedure is used to update the position and

orientation of the nucleus (together with the centrosome node and

the vectors representing the unstressed microtubule emanation

directions, see above). The total force Fn applied to the nucleus

arises from the conditions of impenetrability (see above) and from

the forces applied to the centrosome node. The latter are

calculated the same way as for the generic microtubule node

(see above). The position of the nucleus center xn is updated as

follows, in accordance with the above formula for drag and with

the forward Euler method:

xn tzDtð Þ~xn tð ÞzDt Fn=6pgRn

The total force moment is also calculated. It arises only from the

forces applied to the centrosome, at the distance Rn from the

nucleus center. (All other forces exerted on the nucleus arise from

the impenetrability conditions and are therefore directed to the

nucleus center.) Torque balance with the drag force determines

the angular velocity v of the nucleus:

v~r|Fn

�
8pgR3

n

where r is the vector from the centrosome to the nuclear center.

The obtained instantaneous value of v is then used to calculate the

displacement of the centrosome node that is due to the nucleus

rotation during the time step Dt, and to rotate the vectors of the

unstressed microtubule emanation directions.

Dynamic instability. In those special simulations that

incorporated the dynamic instability of microtubules, the

following algorithm was used. At each time step, a probabilistic

decision was made independently for each microtubule, whether

to add a new segment to its free end, remove the end segment, or

do nothing. A pseudorandom number was generated from a

uniform distribution between 0 and 1. If the number was smaller

than a small parameter p, a segment was added. If the random

number was larger than 12p, a segment was removed. Otherwise,

no changes were made. The nondimensional parameter p was

chosen so that when multiplied by the dimensionality constant l2/

Dt, where l is the unstressed length of a microtubule segment and

Dt is the time step size, it would be equal to D, the apparent

diffusion coefficient of microtubule length (see physical

assumptions above). This algorithm is a discrete implementation

of a diffusion-type stochastic process that is used to approximate

dynamic instability of microtubules [19]. New segments added

were parallel to the segment that was previously the end segment

of the microtubule. When this resulted in a violation of any of the

impermeable boundaries, the same rules applied to the new

segment as to any microtubule segment that violated the

boundaries (see above).

Supporting Information

Figure S1 Centrosome reorientation that is caused by cell

outline deformation alone, in the absence of the pulling force.

Centrosome orientation is measured as the angle formed by the

vector drawn from the nucleus center to the centrosome and by

the outward normal to the synapse. (I.e. 0 means centrosome

pointing at the synapse and 180u, at the opposite side of the cell.)

The thin straight line is drawn for reference; it indicates where the

simulation results would lie if there would be no reorientation. To

generate these results, the pulling force density in the model was

set to zero. Microtubule length, 16 mm; effective cytoplasm

viscosity, 2 pN s/mm2.

Found at: doi:10.1371/journal.pcbi.1000260.s001 (0.45 MB TIF)

Figure S2 Stabilization of the centrosome next to the stronger

synapse. Plotting conventions are as in Figure 7. The simulations

were set up as in Figure 7A, except for a slightly larger symmetry-

breaking tilt of both synaptic planes (5u). In the simulation shown

by the blue curve, pulling force on both synapses was 40 pN/mm,

and symmetric oscillations between the synapses developed. In the

simulation shown by the red curve, one synapse had pulling force

density 4 pN/mm, the other 80 pN/mm. In both simulations,

microtubule length was 16 mm and effective cytoplasm viscosity,

2 pN s/mm2. The centrosome migration from the weaker to the

stronger synapse appeared irreversible. The large strength

difference was tested because in the experiments that inspired this

test, the antigen load of the target cells differed by a factor of

,1000 [14,15].

Found at: doi:10.1371/journal.pcbi.1000260.s002 (0.76 MB TIF)

Figure S3 Sensitivity of the model to the value of the unstressed

microtubule divergence angle. (A) Centrosome reorientation

plotted for the indicated values of the unstressed microtubule

divergence angle. The ordinate is the angle formed by the vector

drawn from the nucleus center to the centrosome and the outward

normal to the synapse. (The 90u starting angle means that

centrosome in these simulations was initially on the side of the cell

with respect to the synapse.) The plots illustrate relative

insensitivity of the reorientation trajectory to the divergence angle.

Pulling force density, 40 pN/mm; microtubule length, 16 mm;

effective cytoplasm viscosity, 2 pN s/mm2. (B) Intra-synaptic

oscillations plotted for the indicated values of the unstressed

microtubule divergence angle. x is the coordinate axis directed

across the synapse, as shown in Figure 4A. The plots illustrate

relative insensitivity of the oscillation trajectory to the divergence

angle. Pulling force density, 20 pN/mm; microtubule length,

16 mm; effective cytoplasm viscosity, 2 pN s/mm2.

Found at: doi:10.1371/journal.pcbi.1000260.s003 (0.99 MB TIF)

Video S1 Reorientation of the centrosome to the synapse. This

video corresponds to the first part of Figure 2 and follows the

graphical conventions in that figure. Pulling force density, 40 pN/

mm; microtubule length, 16 mm; effective cytoplasm viscosity,

2 pN s/mm2.

Found at: doi:10.1371/journal.pcbi.1000260.s004 (3.37 MB

MOV)

Video S2 Reorientation followed by oscillations of the centro-

some. Pulling force density, 20 pN/mm; microtubule length,

16 mm; effective cytoplasm viscosity, 2 pN s/mm2.

Found at: doi:10.1371/journal.pcbi.1000260.s005 (6.06 MB

MOV)

Video S3 Oscillations in a model which in addition to our usual

assumptions incorporates also dynamic instability of microtubules

and a ring-shaped pulling surface. The area of the synaptic surface

T-Cell Polarization Model
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where pulling is activated is shown in black, the parts of the

synapse that are inactive as far as pulling are shown in white. The

cell surface is cut out for a clearer view (only in graphics, not in

actual simulation). Pulling force density, 36 pN/mm; starting

microtubule length, 16 mm; effective cytoplasm viscosity, 2 pN s/

mm2.

Found at: doi:10.1371/journal.pcbi.1000260.s006 (1.33 MB

MOV)

Video S4 Oscillations in detail. This video is an animation of

Figure 4 and follows its graphical conventions. On the left is a side

view of the entire model and on the right is the bottom view

(looking through the synaptic surface but not showing this surface).

In the view on the right, the parts of the microtubules that are in

close contact with the inner synaptic surface and therefore

experience pulling are highlighted. The video shows two

oscillation cycles before it ends. Pulling force density, 20 pN/

mm; microtubule length, 16 mm; effective cytoplasm viscosity,

2 pN s/mm2.

Found at: doi:10.1371/journal.pcbi.1000260.s007 (8.61 MB

MOV)

Video S5 Oscillations between two synapses. This video is an

animation of the same simulation that is shown in Figure 7A.

Pulling force density, 40 pN/mm; microtubule length, 16 mm;

effective cytoplasm viscosity, 2 pN s/mm2.

Found at: doi:10.1371/journal.pcbi.1000260.s008 (5.51 MB

MOV)
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