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Abstract

The study of gene and protein interaction networks has improved our understanding of the multiple, systemic levels of
regulation found in eukaryotic and prokaryotic organisms. Here we carry out a large-scale analysis of the protein-protein
interaction (PPI) network of fission yeast (Schizosaccharomyces pombe) and establish a method to identify ‘linker’ proteins
that bridge diverse cellular processes - integrating Gene Ontology and PPI data with network theory measures. We test the
method on a highly characterized subset of the genome consisting of proteins controlling the cell cycle, cell polarity and
cytokinesis and identify proteins likely to play a key role in controlling the temporal changes in the localization of the
polarity machinery. Experimental inspection of one such factor, the polarity-regulating RNB protein Sts5, confirms the
prediction that it has a cell cycle dependent regulation. Detailed bibliographic inspection of other predicted ‘linkers’ also
confirms the predictive power of the method. As the method is robust to network perturbations and can successfully
predict linker proteins, it provides a powerful tool to study the interplay between different cellular processes.
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Introduction

The eukaryotic cell cycle is one of the most important and

evolutionary conserved processes of cells [1,2]. The cell cycle

integrates signals from multiple pathways to control tissue growth

and homeostasis in multicellular organisms, as well as reproduc-

tion and proliferation in single cell organisms [3]. To ensure cell

integrity, the cell cycle regulates and is regulated by other key

processes such as DNA replication, cytokinesis and cell growth [4–

9]. Disruption of the regulation between the cell cycle and other

cellular processes can cause a myriad of cellular pathologies

including defects in cell shape, abnormal cell growth and

aneuploidy, potentially leading to cancer [10].

With the accumulation of data from high-throughput biology as

well as the generalisation of manually curated online databases, we

now can mine existing biological networks to make experimentally

verifiable predictions about system-wide properties of genes and

gene products. In this work, we present a new method to search for

proteins that serve as linkers between distinct functional sub-

networks. Because of the well-characterized interactions between

the cell cycle and other processes in the fission yeast Schizosacchar-

omyces pombe, we focus our analysis on this organism, where these

processes have not yet been investigated yet by protein interaction

network analysis methods.

The fission yeast - a rod-shaped unicellular eukaryote - is ideally

suited to study the relationship between cell cycle and cell polarity

regulation, as its highly polarized growth pattern is tightly

correlated with cell cycle progression [7,11]. After cytokinesis,

newborn S. pombe cells resume growth in G1 in a monopolar

fashion from their ‘old end’ - the cell end that existed prior to

division - and later in early G2 activate growth at their ‘new end’

derived from the site of septation, an event termed new-end take-

off or NETO [12]. Bipolar growth then continues through G2

until cells reach a critical size, after which cells enter M phase

again. At that point cells stop growing [13], mitosis takes place and

each cell divides by growing a septum in its middle. Daughter cells

resume their cyclic pattern of growth at the ends and division at

the middle, a pattern that relies on the cytoskeleton of actin and

microtubules and on diverse polarity-regulating proteins (‘polarity

factors’). Cytokinesis, polarity, and the cell cycle have been

extensively studied in fission yeast –using both experiments and

mathematical modelling [14–18]. The insights gained from studies

in fission yeast often carry over to higher eukaryotes, as the

molecular machinery controlling those processes has been highly

conserved throughout evolution [1,19,20].

Several proteins have been identified that play important roles

connecting these processes in fission yeast. For example, the

polarized growth-regulating DYRK kinase Pom1 [21] was

recently shown to form a spatial gradient that is used by the cell

cycle machinery to sense the length of the cell [17,22,23]. Another

link was observed between the morphogenesis-related NDR kinase

network (MOR) and the septation initiation network (SIN) [24].
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MOR is important for the localization of actin patches to sites of

polarized growth, while SIN is responsible for triggering cytoki-

nesis. It was discovered that SIN inhibits the MOR pathway,

through inhibition of the Orb6 activator Nak1. MOR itself also

interferes with SIN, and this antagonism is required for proper

progression through the cell cycle [25,26]. Furthermore, a similar

antagonism between the MOR and SIN pathways has also been

observed in higher eukaryotes [27,28]. The NETO transition from

monopolar to bipolar growth and the switch from polarized

growth to actin ring-mediated cell septation are also controlled by

the cell cycle [13], thus the cell cycle machinery enforces a major

control on both polarized growth and cytokinesis. Although many

polarity or cytokinesis regulators contain potential phosphoryla-

tion sites for the cell cycle-regulating Cyclin-Dependent Kinases

[29] (CDK), the molecular details of these couplings are not well

known. In the other direction, if either polarized cell growth or

cytokinesis is inhibited, both can send signals to stop the cell cycle

[30,31], further underlining that these three functional modules

are highly interlinked.

To tackle the interplay between different cellular processes, we

utilized a network theory approach. Hitherto, network based

approaches have only been used in a limited number of organisms,

due to the paucity of genome-wide interaction data available for

most species. Recently, however, improvements in automatic

experimental annotation, literature mining [32], machine learning

[33] and orthology annotations [34], are allowing the use of

network approaches in a wider range of organisms. For example,

‘meta databases’ such as STRING [35,36], benchmark informa-

tion from multiple sources and provide for each possible

interaction a confidence score that reflects the likelihood of a set

of proteins of actually interacting. Here, we take advantage of such

developments and build on the efforts of the fission yeast

community in annotating protein functions [37–39], to establish

a new method to identify proteins linking diverse cellular

processes, based on integrating Gene Ontology (GO) [40,41]

and Protein-Protein Interaction (PPI) data together with network

theory based measures. Network-based approaches in biology

have been used in the past to identify community structures, study

lethality, identify specific regulatory circuits and study hierarchical

organization [42]. In particular, the nature of large scale protein-

protein interaction networks has recently been under considerable

debate with different groups disagreeing about the modularity of

networks, as well as the properties of the nodes responsible for

bringing together different modules [43–46]. In this work, we

sidestep the difficult problem of identifying hierarchical modules in

a large, genome-wide network and focus instead on a method to

identify proteins that link different cellular processes. To do this,

we use the highly characterized sub-genomic network consisting of

proteins regulating the cell cycle, cytokinesis, and polarized cell

growth in fission yeast. We propose a new network measure,

termed ‘linkerity’, and use it to predict a novel role for a number of

proteins as key bridges between these biological processes.

Results

Constructing and validating the fission yeast protein
interaction network

We constructed the fission yeast protein-interaction network

using data from STRING [35,36] and BioGRID [47]. By applying

a cutoff on the confidence score from STRING, we can reject

interaction pairs for which there is a limited amount of evidence

(see Materials and Methods for details on data in STRING) and

use the remaining edges to construct a non-directed and non-

weighted network.

We then examined the effects of increasing the cutoff in

STRING confidence scores in both the genome-wide interaction

dataset of fission yeast and that of the better characterized budding

yeast Saccharomyces cerevisiae on the network topology. Increasing the

cutoff decreased the amount of nodes (Figure 1A) and the edge

density (Figure 1B) in the largest component (the connected

component in the network containing the highest number of edges

and nodes) of both the fission and budding yeast networks (Tables

S1, S2). This decrease was less sharp in budding yeast compared to

fission yeast due to the extensive amount of genome-wide

interaction experiments carried out in the former, increasing the

amount of high-confidence interactions. Interestingly, in the ‘core’

sub-network consisting of proteins involved in cell cycle regulation,

polarity and cytokinesis (Figure 2 for fission yeast and Figure S1 for

budding yeast), the drop off in the number of nodes and edges was

far less significant in both yeasts, suggesting that interaction data

for the core fission yeast network tends to be more reliable than

interaction data for the rest of the network (Figure 1, red stars

versus red dots, also Tables S1, S2, S3, S4). As a more stringent

test, we constructed networks for both organisms using only data

from BioGRID [47]. BioGRID is a database that only contains

data from manually annotated experiments (distinguishing be-

tween experiments that show direct physical interaction and

genetic interactions). Networks built using the BioGRID physical

interaction data also show that the core networks of fission yeast

and budding yeast are relatively dense, while the fission yeast

organism-wide network is rather sparse (Figure 1). Even with the

relatively high coverage of the core (regulation of cell cycle,

cytokinesis, polarity) network in fission yeast, it is important to note

that fission yeast lacks any genome-wide protein-protein interac-

tion experiments, and as such, several of the interactions predicted

by STRING are based on indirect evidence such as genetic

interactions, inference from homology, or literature mining

[35,36].

As no analysis of the fission yeast network has been previously

published, we performed a few checks to verify that our network

construction procedure was giving sensible results, and that the

data for fission yeast available in STRING was of sufficiently high

quality. As a first check, we sought to replicate a number of

analyses previously performed with budding yeast (Table 1). At a

cutoff of 0.7 (defined by STRING as a ‘high confidence’

Author Summary

Analysis of protein interaction networks has been of use as
a means to grapple with the complexity of the interactome
of biological organisms. So far, network based approaches
have only been used in a limited number of organisms due
to the lack of high-throughput experiments. In this study,
we investigate by graph theoretical network analysis
approaches the protein-protein interaction network of
fission yeast, and present a new network measure,
linkerity, that predicts the ability of certain proteins to
function as bridges between diverse cellular processes. We
apply this linkerity measure to a highly conserved and
coupled subset of the fission yeast network, consisting of
the proteins that regulate cell cycle, polarized cell growth,
and cell division. In depth literature analysis confirms that
several proteins identified as linkers of cell polarity
regulation are indeed also associated with cell cycle and/
or cell division control. Similarly, experimental testing
confirms that a mostly uncharacterized polarity regulator
identified by the method as an important linker is
regulated by the cell cycle, as predicted.

Linkers of the Fission Yeast Protein Network
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threshold), the genome-wide fission yeast network has 2770 nodes

with at least one connection and 20432 edges compared to 5477

nodes and 105429 edges found in budding yeast, although they

have approximately similar number of proteins. We calculated the

degree distribution for the nodes in the network, and observed

that, as previously described for numerous other complex networks

[48], the fission yeast PPI network has a scale-free distribution

(Figure S2). We also repeated analyses done in numerous other

studies examining the relationship between network measures and

gene deletion lethality [43–45]. As reported for budding yeast, we

Figure 1. Dependence of network measures on protein-protein interaction data quality. As we increase the minimal accepted confidence
(cutoff) for the PPI data of the STRING database, the number of nodes in the largest connected component (A) and the network density (B) both
decrease for all networks. This decrease is faster in fission yeast compared to budding yeast, and faster in the full organism network compared to the
core network. Triangles overlaid on each curve show the same network measures for the PPI network based on the BioGRID database, the position on
the x-axis of BioGRID data is calculated using linear interpolation to estimate the corresponding cutoff in STRING which would give a similarly-sized
network, thus the overlay of the BioGRID data gives an indication how this relates to different cutoff STRING data. As can be seen from the figure
panels the fission yeast core network is quite robust to cutoff changes and behaves similarly to the core network of budding yeast cells. This is also
true for the core networks based on BioGRID data.
doi:10.1371/journal.pcbi.1002732.g001

Figure 2. The cell cycle + cytokinesis + polarity = core interaction network of fission yeast proteins. (A) Venn diagram showing the
overlap among the different Gene Ontology functional groups for the proteins belonging to the core network. Proteins with multiple functional
annotations have colours that are the sum of the colours of the individual functional annotations; proteins belonging to all three functional groups
are in white. (B) Protein-protein interactions inside the fission yeast core network (from the STRING database at cutoff 0.7). Node colours are the same
as in panel A. Node size is proportional to the degree of each protein, and node order within a category (clockwise) is also determined by degree. 165
black edges link proteins that do not share functional annotations, while 1869 grey edges link proteins that have at least one common GO annotation
(thus white nodes have only grey links). White nodes (nodes belonging to all categories) are shown in the inner circle in the middle of the network.
doi:10.1371/journal.pcbi.1002732.g002

Linkers of the Fission Yeast Protein Network
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observed that degree (the number of interactions with other

proteins) is the best predictor network measure of gene deletion-

induced lethality in fission yeast, and that ratio of these essential

genes among hubs (the top 20% of proteins by degree) is even

higher in fission yeast than in budding yeast (see Text S1).

Since there is no high-throughput genome-wide interaction data

available for fission yeast, we tested the possibility that highly

investigated proteins might have more interactions. To check this,

we tested to see whether the number of abstracts in PubMed

discussing a particular protein was correlated with the degree of

that protein in the network. The Pearson correlation between the

number of PubMed abstracts citing a protein and its degree in the

network was 0.13 for budding yeast (p-value,10219) and 0.14 for

fission yeast (p-value,10213) (details in Tables S1, S2), suggesting

there is no fission yeast-specific bias for proteins with large

amounts of publications in STRING networks. However, a large

amount of evidence for the fission yeast interactions in STRING is

obtained from homology, and specifically from interactions of

homologues proteins in budding yeast. As essential genes are more

likely to be conserved [49,50] and STRING is more likely to

identify homology between highly conserved genes, it is possible

that this might introduce a subtle bias making essential genes

appear to be more highly connected in virtue of their higher

conservation. This is consistent with the observation that a very

high percentage of hubs in fission yeast appear to be essential (Text

S1).

The core network of regulators of the cell cycle, cell
polarity and cytokinesis

The sub-network of all proteins regulating cell cycle, cytokinesis

and polarized growth, henceforth, the ‘core’ network (see

Materials and Methods for definitions of exact GO terms used)

in fission yeast contains 550 proteins: 384 of those are associated

with regulation of cell cycle, 155 with cytokinesis and 139 with

polarity. Using a cutoff of 0.7 in STRING, 429 of the total 550

proteins are connected to the largest connected component of the

core network. Most of the proteins not in the network have no

known interactions, and the second largest connected component

contains only 4 proteins, thus we focus only on the interaction

network of the largest connected component. There are a high

number of proteins with multiple functions in the network

(Figure 2A), 16 of them (Alp4, Cdc15, Gsk3, Lsk1, Mor2, Orb6,

Pab1, Pmo25, Pom1, Ppb1, Ras1, Scd1, Shk1, Sid2, Tea1, Wsp1)

are important for all three cellular processes and 77 have dual

functions. The ratio of multifunctional proteins is quite similar to

the ratio in the analogous core budding yeast network (Figure S1).

Interestingly the budding yeast core network contains less nodes

than the fission yeast core network (although it is more densely

connected), this could be a consequence of the extensive studies of

cytokinesis [19], cell cycle [51] and cell polarity [13] and their

careful annotation in fission yeast [37–39], but it also reflects the

loss of some of the conserved eukaryotic cell cycle genes from

budding yeast [29,52].

The core interaction network contains several interactions

between proteins that do not share a GO annotation; however the

majority of links (91%) are between proteins which share at least

one functional annotation among those under consideration

(regulation of cell cycle, cytokinesis, and polarity) (Figure 2B).

To probe this, we examined the relationship between the

functional annotation of a node and that of its interaction

partners. In fission yeast, any protein with a given functional

annotation was 11 times (1.9 would be expected randomly, see

Figure S3A) more likely to interact with another protein with the

same functional annotation than with another protein with

different functional annotations (for the budding yeast core

network, this ratio was 4.5 vs. 1.06 expected, see Figure S3B).

Since fission yeast has more proteins that belong to all three

categories (16 in fission yeast versus 6 in budding yeast), we tested

to see whether this observed functional modularity was due to their

presence. We removed all proteins belonging to all three categories

from both networks and repeated the analysis. This did not

significantly alter the results as the ratios remained after the

removal (10.38 times more likely for fission yeast and 4.16 for

budding yeast) suggesting that the functional modularity observed

in fission yeast is not caused by the presence of highly connected

proteins with multiple annotations, but rather that the fission yeast

network is characterized by strong connections between local

communities that share functional annotations. It is however

important to note that the GO categories ‘regulation of cell cycle’

and ‘cytokinesis’ are partially overlapping. In particular ‘regulation

of cell cycle cytokinesis’ is a child term of both ‘regulation of cell

cycle’ and ‘cytokinesis’. Even when taking this overlap into

account in the analysis, we still observe a high degree of functional

modularity in the core networks of both fission and budding yeast

(not shown).

We further analyzed this effect using a community detection

algorithm, which identifies local communities in a network and

allows their overlap – as we have nodes with multiple annotations.

We applied the k-clique propagation algorithm [53,54] and

examined the communities generated by the method with k = 4.

While the communities generated by the algorithm do not exactly

match the functional annotations, we find that the cliques

generated by the algorithm are primarily formed by proteins that

share functional annotations (Figure 3A,B). Upon closer exami-

nation, the few proteins that do not share a functional annotation

with the other members of a clique seem to have related roles: for

example, in the 5th clique on Figure 3B, the lone ‘non-polarity’

protein is Rgf3, which was shown to play an important cell-wall

Table 1. Network statistics and gene essentiality comparison between the two yeasts.

budding yeast fission yeast references

Degree Distribution: Scale Free Scale Free [105]

BC Distribution: Scale Free Scale Free [106]

Network measure most predictive of lethality: Degree Degree [45,107]

% of essential genes in hubs 39 56 [45]

% of essential genes in bottlenecks 31 47 [45]

Quality check of the fission yeast PPI network in comparison to earlier published data on the budding yeast PPI network. Hubs are the top 20% of nodes in the network
according to degree. Bottlenecks are the top 20% of nodes in the network according to betweenness centrality (BC).
doi:10.1371/journal.pcbi.1002732.t001

Linkers of the Fission Yeast Protein Network
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remodeling role downstream of Rho1, one of the key regulators of

polarity [55,56] (consult Table S5 for all clique members).

Identification of ‘linker’ proteins by network analysis
To systematically study proteins linking different cellular

processes, we next used a network-based approach aiming to

identify proteins that function as ‘linkers’ between different

functional categories (Figure 4A). To do so, we constructed

protein-protein interaction networks consisting only of proteins

with one of the investigated functional annotations (cell cycle,

cytokinesis or polarity regulation). We then calculated the

betweenness centrality score for every node in each of these

networks and in the merged core network. Betweenness Centrality

(BC) measures how often a node is found in the shortest path

between pairs of other nodes in the network; intuitively, it can be

thought of as a measure of how central a node is in a network. If a

node has a low centrality score it is localized at the fringe of a

network, while if it has a high score it is localized near the centre.

Next we ranked the proteins based on their BC score (in case of a

tie, these proteins got their average rank). To ensure that this

ranking method is robust even in the presence of imperfect

interaction data certainly missing important links, we randomly

added 10% extra edges to all the networks 1000 times, and

recalculated the ranking of all proteins at each iteration (Figures

S4). While the exact ranking of proteins is not very robust to

addition of extra edges, if we examine all the proteins in the top

20%, we can observe that most fluctuate out of the top 20% only

very rarely, and that we nearly never observe a protein in the top

10% drop out of the top 20%. It is also reassuring that the top of

the rankings starts with expected key regulators of each function:

the polarity landmark Tea1 [57–59], the actin-regulating Rho

GTPase Cdc42 [60,61] and actin (Act1) all came on the top of the

polarity list. At the same time Cdc2, Wee1 and Cdc25 [62] are on

the top of the cell cycle list (and also on the top of the core list) and

the SIN scaffold Cdc11 [63] and the CDK counteracting, SIN

activator phosphatase Clp1 [64,65] are leading the cytokinesis

ranking (Figure S4 and Table S3).

In the next step we compared the betweenness centrality rank of

every protein in a sub-network to its relative rank in the core

network. Only proteins that were originally in the sub-network

were considered during this ranking based on scores they got for

their position in the core network. We then calculated the ratio of

the relative rank in the core network and the rank in the sub-

network. We termed this calculated value ‘linkerity’, as this value is

high for proteins that are found at the fringe of the network of

proteins controlling a given cellular process, but central when

considered in the context of a bigger network (Figure 4A):

linkerity~
Ranksub{network

Rankcore

ð1Þ

Proteins with high linkerity, we hypothesized, are likely to play a

crucial role to function as linkers between different cellular

processes. Specifically, we focused on the relationship of the

polarity network to the rest of the core network to clarify how the

cell cycle and the cytokinesis machinery control the temporal

changes in the localization of polarized growth zones (top of

Table 2, consult Table S3 for the rest of the list). Here, we show

the top 10 proteins with the highest linkerity scores. These proteins

became far more central when the polarity sub-network was

embedded into the core network. Most of these proteins have GO

annotations for multiple processes (among the annotations under

consideration), thus their linking capacity is not that surprising.

Novel linkers of polarity regulation could be those that were not

associated with cytokinesis or cell cycle control but gained a high

linkerity score in our analysis. The formin For3 [66], the AMP-

activated, Snf1-like protein kinase Ssp2 [67,68], the RNB-like

protein Sts5 [69] and the MRG family protein Alp13 [70] are

examples of proteins that match this. For3 is a well-characterized

regulator of Tea1 to Cdc42 signalling [71,72], the other three are

less well characterized. The Rho GTPase Rho4 [73] might be also

an interesting linker candidate as it has established roles in polarity

and cytokinesis regulation, but its exact function is not well

characterized and it has no association to cell cycle regulation.

Despite this, Rho4 has a central position in the core network that

contains 75% cell cycle proteins (Figure 2A), furthermore its

expression is cell cycle regulated [74]. The highest linkerity

proteins from the cytokinesis and cell cycle regulation networks

also contain a number of proteins which are also associated with

polarity regulation (Table 2). Scd1, Pom1 and Tea1 are on the top

of the cell cycle linkerity list and Pmk1 [75], Shk1 and Tea1 lead

the cytokinesis list after Bgs1, which is essential for cell wall

synthesis [76], but has no polarity related GO annotation. These

are on the edge of the cell cycle regulation or cytokinesis network

but became central when they are merged with the polarity

Figure 3. Segregation of functional communities in the core
network. A clique propagation algorithm was used to identify locally
highly connected communities of the core network. The ten cliques
generated by the algorithm segregate in the interaction network if laid
out by a force-based algorithm that brings closer together the stronger
interacting groups (A). Node colour determined by the functional
annotation (same as Figure 2, inset on panel B here). Proteins belonging
to the same clique share the same border colour. Proteins belonging to
the same clique largely share functional annotations. Pie charts show
the functional distribution of proteins found in each clique (B).
Numbers report the number of proteins with the annotations
corresponding to the given colour coded annotation (see inset for
colours).
doi:10.1371/journal.pcbi.1002732.g003

Linkers of the Fission Yeast Protein Network
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network, thus these can be also considered as linkers. As above for

BC scores, we analysed the robustness of linkerity in the presence

of imperfect network interaction data: we added or removed 10%

of the edges from the core network at random or following a

preferential attachment model and calculated linkerity scores for

all proteins. Figure 4B reports the average and standard deviation

from 500 random networks with 10% extra edge (other cases in

Figure S5) for the top linkerity polarity proteins. Importantly the

top 10 of the unperturbed list (Table 2) can be found in the top 16

of the list after 10% possible missing links were considered

(Figure 4B).

As discussed above, in both fission yeast and budding yeast, we

observe a high degree of functional modularity, i.e. proteins tend

to interact with proteins that share their functional role. Since

linker proteins play a special role in bringing together different

cellular processes, we examined whether proteins with high

linkerity interacted with proteins with different functional roles

at a higher rate than low linkerity proteins. For all the proteins of

the core network we calculated the number of its interactors

(network neighbours) with cell cycle, cytokinesis and polarity

annotations (Table S3). Then for every protein in each functional

category (Figure 2) we calculated the ratio of the number of its

interactions with proteins with the two other functional annota-

tions to the number of its interactions with proteins with the same

functional annotation. We observed that high linkerity is

significantly correlated with having a high ratio of heterogeneously

annotated neighbours across all functional categories in both

yeasts, suggesting that linker proteins do play an important role in

bridging proteins from different functional groups (see Text S2 for

details).

Sts5 is a novel linker protein bridging cell polarity to cell
cycle

Among predicted linker proteins we focused on Sts5, which is

known to genetically interact with Ssp2 [69], which itself is likely to

be linked with the cell cycle machinery as ssp2D cells cannot start

mitosis when nutrient-starved [77]. Sts5 is an orthologue of

budding yeast SSD1 [78] and therefore a candidate translational

Figure 4. Concepts of ‘linker’ protein detection and robustness of the method. (A) ‘Linker’ proteins are found at the edge of a sub-network,
but are central in the context of a larger network. Such proteins have low betweenness centrality (BC) score when considered in the context of their
sub-network, but have a high BC score in the core network even though they do not have a functional annotation to the other category making up
the core network. Black edges indicate edges between proteins that do not share functional annotations, while the other edges are gray. Table on
right gives ranks and linkerity measures for all nodes in network ‘A’ in the same style as Table 2 does. (B) Analysis of the robustness of linkerity scores
for the polarity network of fission yeast cells. We added 10% extra edges randomly to the network, and computed the linkerity score of all proteins
after each iteration. Bars show mean ranking with standard deviation. Blue dashed line indicates cutoff for top 10% and red line marks the top 20%
(results of other type of network perturbations are reported in Figure S5).
doi:10.1371/journal.pcbi.1002732.g004

Linkers of the Fission Yeast Protein Network
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repressor. It is reported to control actin localisation in interphase

and sts5D was shown to be compensated by mutations in Ssp2.

Furthermore, Sts5 mRNA levels were shown to oscillate [74,79].

To examine the interplay between Sts5 and the cell cycle, we

tagged the endogenous protein with a triple GFP tag and

visualized its localization together with that of mCh-Atb2 (Alpha

tubulin 2), which labels microtubules and hence served as a cell

cycle stage marker. In interphase cells, Sts5 had a mostly diffuse

cytoplasmic localization, however during mitosis it appeared to

localize in dotted, cytoplasmic bodies (Figure 5A). The number of

Sts5 dots increased throughout mitosis and peaked coinciding with

the assembly of the Post Anaphase Array (PPA) of microtubules

(Figure 5B). Time-lapse movies of mitotic cells also confirmed that

the number of cytoplasmic dots increased until the formation of

the PAA and sharply dropped to zero as cells entered interphase

(Figure S6). Previous studies of Sts5 [69] showed that it was

required for correct cell growth and actin patch localization during

interphase. Taken together with our results, this suggests that the

cell cycle controls Sts5 activity by gradually sequestering it in

cytoplasmic bodies during mitosis.

Discussion

In this work, we have carried out the first network analysis

based, large-scale identification of proteins linking various cellular

processes in the fission yeast protein-protein interaction network.

Although data for fission yeast mostly comes from manually

annotated experiments, literature mining and computational

inference, the network displays features comparable to those

observed in other organisms. We have shown that the relationship

between lethality and different network measures holds in fission

yeast, and that network based approaches can give meaningful and

interesting results even in organisms lacking high-throughput

interaction experiments.

Our analysis of the core network of all proteins regulating cell

cycle, cytokinesis, and polarized growth revealed a striking degree

of functional modularity, which we have found to be highly robust

to the deletion of key nodes in the network. This functional

modularity was also observed when examining the communities

detected by a clique propagation algorithm. Detected communities

had very low heterogeneity between the functional annotations of

member proteins. We investigated this modularity further by using

a network approach to identify linker proteins bridging different

functional categories. We propose a new network measure,

linkerity, which is the ratio of the ranking by betweennness

centrality measures of all the nodes belonging to a given sub-

network considered in the sub-network alone and considered in

the context of a larger network (Figure 4A). This new network

measure does not appear to show strong correlation with other

existing network measures (Text S3). Due to the non-linear

distribution of betweenness centrality measures in real systems

[48], it might be necessary to normalize this linkerity measure in

case linkers between large sub-networks are investigated.

We tested this concept on the connections of the polarized cell

growth regulatory network to the cytokinesis and cell cycle

networks of fission yeast cells. These are highly characterized and

strongly interacting networks and the connection between these

processes is of high importance in other organisms [7,13,80–82].

We confirmed that many of the highest linkerity scoring proteins

in the polarity network were already known to play important

roles in multiple processes. Among these the F-BAR protein

Cdc15 provide good validation as it was already shown to play a

role in switching from polarized growth to cytokinetic-actin ring

formation in mitosis [83]. Similarly Skb1 [84] and Cdr1 [17,23]

were shown to serve as links between cell cycle and cell polarity.

All these proteins shifted from a low ranking in the polarity

network to a high rank in the core network (Table 2), and thus

their role in polarity regulation might come from the pleotropic

behavior of these proteins or from their active role in connecting

polarized growth regulation to cell cycle and cytokinesis. We also

discovered that the proteins with high linkerity tend to interact

Table 2. Top ten proteins with highest Linkerity measures
from the three sub-networks.

Protein Name GO terms RankSub RankCore Linkerity

Polarity proteins

Rho4 Pol, Cyt 73.5 8 9.19

For3 Pol 35 5 7

Ssp2 Pol 73.5 19 3.87

Skb1 Pol, CC 38 13 2.92

Sts5 Pol 25 9 2.78

Cdr1 Pol, CC 73.5 29 2.53

Act1 Pol, Cyt 5 2 2.5

Cdc15 Pol, Cyt, CC 57 23 2.48

Alp13 Pol 54 22 2.45

Ppb1 Pol, Cyt, CC 27 12 2.25

Cytokinesis proteins

Bgs1 Cyt, CC 12 3 4

Pmk1 Pol, Cyt 64 16 4

Shk1 Pol, Cyt, CC 15 4 3.75

Tea1 Pol, Cyt, CC 32 9 3.55

Rho4 Pol, Cyt 17 7 2.43

Pab1 Pol, Cyt, CC 67 29 2.31

Cdc7 Cyt, CC 29 13 2.23

Plo1 Cyt, CC 24 11 2.18

Klp5 Cyt 30 14 2.14

Fin1 Cyt, CC 97 46 2.11

Cell cycle proteins

Scd1 Pol, Cyt, CC 288 39 7.38

Pom1 Pol, Cyt, CC 184 26 7.08

Tea1 Pol, Cyt, CC 143 25 5.72

Bgs1 Cyt, CC 30 8 3.75

Cdc10 CC 67 18 3.72

Cdc15 Pol, Cyt, CC 179 63 2.84

Cdc13 CC 15 6 2.5

Its3 Cyt, CC 234 94 2.49

Mal3 Pol, CC 123 50 2.46

Pmh1 Pol, Cyt, CC 76 34 2.23

Proteins were ranked according to BC in the polarity/cytokinesis/cell cycle
regulation sub-networks (RankSub column) as well as in the core network
(RankCore column). Proteins with the same BC score were given the same
ranking. In the core network, we considered proteins that also belonged to the
investigated sub-network and skipped all other proteins (thus we had three
different core network rankings). The cell cycle network gives higher linkerity
scores, since it contains more nodes, thus higher ranking jumps are possible.
Consult Table S3 for the rest of the lists. Table S4 contains the same data for
budding yeast cells. The second column gives the GO annotations of each
protein among polarity (Pol), cytokinesis (Cyt) and cell cycle (CC) related GO
terms as defined on Figure 2.
doi:10.1371/journal.pcbi.1002732.t002
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with a more diverse set of proteins than those with low linkerity.

This suggests that high linkerity proteins might play a pleiotropic

role by linking together different functional processes [85,86].

Sts5 had the second highest ranking in the polarity network

among the top ten linkerity proteins (after actin, Act1 that is also

essential for cytokinesis). Sts5 is known to play an important role in

controlling the localization of the actin machinery to cell ends

during interphase, although Sts5 is localized in the cytoplasm [69].

We have shown that Sts5 is localized in cytoplasmic dots during

mitosis, but diffuse during interphase, implying that its localization

is cell cycle regulated. Growing tip localized polarity proteins

change their localization when cells enter mitosis [13,87], but it is

not expected from a cytoplasmic protein to localize into clusters in

a cell cycle dependent manner. The overall level of Sts5 protein

slightly increases upon entry to mitosis (Figure S6), but its activity

reaches its lowest level as its accumulation into cytoplasmic dots

reaches a peak. This suggests that the cell cycle controls polarity by

sequestering Sts5 in and out of cytoplasmic bodies, and the

triggered release and sequestration function as switches between

polarized cell growth and cytokinesis. The exact nature of those

cytoplasmic bodies is still unclear, however the budding yeast Sts5

homologue SSD1 was shown to localize to P-bodies [88], the

cytoplasmic centers of mRNA degradation. Interestingly, like Sts5,

Ssp2 and the stress pathway kinase Wis4 are also localized into

cytoplasmic dots [89] and it was proposed that the stress pathway

and Sts5 might act in opposing manner on cell polarity [68]. It will

be important in the future to investigate if these proteins co-

localize in the observed cytoplasmic dots and how these are exactly

controlled by the cell cycle.

Sts5 was previously shown to genetically interact with members

of the stress pathway [69]. A number of other kinases associated

with stress response (such as Sty1, Skb1, Orb6, Pmk1, Mkh1) have

been shown to have defects in NETO [84,89] and many of these

appear highly ranked in our linkerity lists (Table 2). Furthermore,

the cell end-localized polarity factor Tea4 was also shown to

interact with the stress pathway [90]. These make the stress

pathway a particularly intriguing target for further analysis in the

search for proteins linking cell cycle and polarity, as it may play a

special role as a pleiotropy integrator of both internal and external

cellular signals in response to different stimuli in fission yeast and

also in higher eukaryotes [91,92]. The linkerity analysis of

cytokinesis and cell cycle regulatory proteins (bottom parts of

Table 2) also give some interesting predictions. For instance the

high linkerity of the transcription factor Cdc10 [93] in the cell

cycle network suggests its role controlling the transcription of

important polarity and cytokinesis genes, especially with key

regulators, such as Cdc15, Scd2, Sts5, Rho4 and Sid2 having

periodic transcriptional profile [74,79].

While we believe that the method presented here can be applied

to other organisms and cellular processes to find linker proteins,

different model organisms offer unique advantages and challenges.

In this study, we took advantage of the extensive annotation of

Figure 5. Localization in cells of Sts5 during the cell cycle. (A) Imaging of fission yeast cells co-expressing Sts5-3GFP and mCh-atb2 (labelling
the different microtubule structures seen through the cell cycle, and hence acting as cell cycle stage indicators). Interphase cells (I) have diffuse Sts5
localization (with a few cytoplasmic speckles) while cells in mitosis (either in anaphase (A) or during the time of the post anaphase array (PAA)) have
several Sts5 cytoplasmic dots. Scalebar: 5 mm. (B) Population based analysis of cycling cells revealed that at metaphase the number of Sts5 speckles
greatly increases and sharply drops during septum formation. Average and standard deviation of number of dots were automatically detected in
multiple cells (see Materials and Methods for details).
doi:10.1371/journal.pcbi.1002732.g005
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proteins by the fission yeast community to define discrete sub-

networks, bypassing the very difficult problems involved in

defining meaningful ‘communities’ using purely network based

approaches [46,54,94]. While this approach has its advantages, it

is important to be aware of any partial overlaps between the used

GO terms due to the presence of common child terms. The

amount of overlap between child terms is also not consistent across

multiple organisms, requiring special care when doing compari-

sons that involve multiple organisms (for example, the ‘‘regulation

of cell cycle cytokinesis’’ is a child term of both ‘‘regulation of cell

cycle’’ and ‘‘cytokinesis’’ and it contains 47 proteins in fission

yeast, and only 4 proteins in budding yeast). Furthermore, while

we have shown that the ranking of proteins within the

communities is robust to noise, the actual communities detected

by various algorithms as well as the structure of the network are

strongly influenced by the granularity and quality of the

interaction data used (Text S4 and [95]). In fission yeast, where

interaction data is relatively sparse but there is extensive functional

annotation, it makes sense to use GO annotations to define

functional sub-networks [38]. Very recent network predictions

based on machine-learning methods [33] will enable us to perform

more careful analysis in this organism as well. Other organisms

with larger gene sets will often have a lower annotation coverage

[96]; in these cases functional groups in the PPI network need to

be identified by community detection algorithms or predefined by

the authors [80]. Once such functional groups are established, the

described method provides a good means to identify proteins likely

to have a role in connecting functional regulatory networks in any

organism. Likewise, the defined linkerity measure can be used to

identify key linker nodes of sub-networks in any complex network

[54,97–99].

Materials and Methods

Bioinformatics data compilation
To obtain a list of proteins associated with specific cellular

processes, we used the Gene Ontology (http://www.

geneontology.org/) and downloaded all gene products associated

with a given term. It is important to note that while ‘cytokinesis’

(GO:0000910) and ‘cell cycle regulation’ (GO:0051726) have

specific terms that cover all proteins commonly associated with

those processes, for polarity S. pombe proteins are split between

‘establishment or maintenance of cell polarity’ (GO:0007163) and

‘cell morphogenesis’ (GO:0000902). In the analysis, we thus used

the umbrella term ‘polarity’ to include proteins in both of these

categories. Data in STRING (http://string-db.org/) is present at

different confidence scores. Confidence scores in STRING

represent the likelihood of the two proteins actually interacting,

and depend on the reliability of the source of the interaction. For

example, an interaction that is reported in a single experiment

will have a far higher confidence score than an interaction that is

inferred through text mining or homology alone. We studied the

effect of a cutoff in this confidence score on network size defined

as the fraction of all proteins connected with at least one other

protein; the main component size defined as the fraction of all

proteins connected to the largest component in the network; and

the edge fraction defined as the fraction of all edges found,

compared to the theoretical maximum. To download the number

of PubMed abstracts mentioning the name of a protein in the

network, we relied on the Entrez module of the Biopython

package (http://biopython.org/wiki/Biopython). Statistical anal-

ysis, including calculation of correlations, was carried out using

the Statistics module of the SciPy package (http://www.scipy.

org/). All network measures were calculated using pre-existing

algorithms implemented in NetworkX (http://networkx.lanl.gov/

). For community structure detection we used the k-clique

propagation algorithm originally described in [53], and imple-

mented in NetworkX [100]. Packages were packaged in the

Enthought Python Distribution courtesy of Enthought (http://

www.enthought.com/).

Network analysis workflow
The pipeline used to create the networks was:

1. We connected to the MySQL Gene Ontology database using

custom python scripts, and downloaded all proteins associated

with a given biological process.

2. We took all proteins downloaded and used them to query

STRING, downloading all the information about protein-

protein interactions in PSI-MI-TAB format. It is important to

note that STRING and Gene Ontology sometimes identify the

same gene by a different name, therefore special care was taken

to use consistent nomenclature.

3. We parsed the PSI-MI-TAB file and transformed it into a

NetworkX graph, which we could then study using both

algorithms built into NetworkX as well as custom scripts.

We repeated the analysis described in the main text using

networks obtained from BioGRID. In that case, instead of using

STRING in step 2 we parsed the full network of a given organism

from a PSI-MI-TAB file available for download on the BioGRID

website, then extracted the sub-graph containing the nodes

obtained in step 1 and edges of physical interactions stored in

the database. The results presented are based on the state of all

databases on 13 March 2012. The calculated network measures,

PubMed citations and all presented numerical results are detailed

in the Excel files of Tables S1, S2, S3, S4.

All Python scripts used to download data from databases as well

as for analysis are available upon request.

Strains and strain construction
The S. pombe strain used in this study was MH123 (h- sts5-3GFP-

L-nat Z2-mCh-atb2-hph leu1 ura4 ade6-M216 his7). Conventional

PCR-based gene targeting methods for S. pombe were used for gene

tagging [101–103].

Live microscopy cell imaging
Prior to imaging, S. pombe strains were grown at 32uC in yeast

extract with supplements (YES) (5) to exponential growth. Aliquots

of 300 ml cells were mounted onto 1.5 coverslip glass-bottomed

plastic dishes (MatTek; P35G-1.5-14-C) pre-coated with 10 ml

1 mg/ml lectin (Sigma; L1395 and Patricell Ltd; L-1301-25) that

had been allowed to air dry. After a 30-minute incubation, cells

unbound to the lectin-coated glass were removed by washing with

minimal medium (EMM) [101–103] and the bound cells were kept

in a final suspension of 1 ml EMM.

Imaging was performed with both: an OMX microscope

(Applied Precision) in conventional resolution mode, with an

Olympus UPlanSapo 6100 oil immersion lens (NA1.4) and 1.512

RI immersion oil (Applied Precision); and a DeltaVision micro-

scope (Applied Precision), comprising an Olympus 1671 widefield

microscope, an Olympus UPlanSapo 6100 oil immersion lens

(NA1.4) and an Photometrics CoolSNAP HQ2 camera. For

analysis of Sts5-3GFP speckle number, stacks were taken at

0.4 um apart for 16 focal planes on the Deltavision microscope.

Time lapses were taken for single focal planes at ten-minute

intervals on the DeltaVision microscope.
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Automated analysis of Sts5-3GFP speckle number
Cells within microscopy image fields were automatically

segmented from the transmitted light channel using an algorithm

developed in-house and coded in Matlab. For each cell, the cell-

cycle stage was determined manually by looking at the mCh-Atb2

channel.Sts5-GFP speckles were detected using the spot detection

module of the ICY software (http://icy.bioimageanalysis.org/;

[104]

Supporting Information

Figure S1 The cell cycle + cytokinesis + polarity = core
interaction network of budding yeast proteins. (A) Venn

diagram showing the overlap among the different Gene Ontology

functional groups in the proteins present in the core network of

budding yeast. Proteins with multiple functional annotations have

colours that are the sum of the colours of the individual functional

annotations, proteins belonging to all three functional groups are

in white. (B) Protein-protein interaction in the budding yeast core

network (from the STRING database at cutoff 0.7). Node colour

same as in panel A. Node size is proportional to degree of the

protein, and node order within a category (clockwise) is also

determined by degree. 469 Black edges link proteins that do not

share functional annotations, while 2146 grey edges link proteins

that have at least one common GO annotation (thus white nodes

have only grey links). White nodes (nodes belonging to all

categories) are shown in the inner circle in the middle of the

network.

(PDF)

Figure S2 Scale free distribution of networks. We

calculated the degree of every node in the largest connected

component of the genomwide network for both fission yeast (A)

and budding yeast (B). We then calculated a histogram for

frequency of degree (with number of bins equal to the maximum

degree observed in the network) and plotted log(frequency) vs

log(degree). Best fits to log(P(k)),log (ck2c) were calculated using a

least square minimization algorithm from scipy (http://www.

scipy.org/).

(PDF)

Figure S3 Functional modularity in the core networks.
To calculate how much the functional modularity (the ratio of

interactions between nodes with a shared GO category versus

interactions between nodes with no GO category in common)

observed for the core network of budding and fission yeast

deviated from a random network, we kept all the category labels

for all the nodes, but rewired the network either completely at

random (A, C), or using a method that preserves degree-

distribution (B, D) [108]. To rewire the networks at random, we

removed every edge from the network then added an edge

between any two nodes chosen at random until the total amount of

edges in the network was equal to the original amount. To

preserve degree distribution of the networks, we performed a

double edge swap across the network. We picked two existing

edges at random between nodes (u,v) and (x,y). We then added an

edge between (u,x) and (y,v) and removed the original edge. Red

arrows indicate the observed ratio for the core network, the

distributions represent 1000 different random networks and their

functional modularity.

(PDF)

Figure S4 Robustness analysis for the betweenness
centrality ranking for polarity, cytokinesis and cell cycle
networks in fission yeast. We analysed the robustness of

ranking proteins by BC centrality in the presence of imperfect

network interaction data. We added 10% extra edges at random to

the network, calculated BC for every node after adding the edges,

and ranked all the proteins. We calculated the mean and standard

deviation for the rank of every protein in the network after

repeating the procedure 1000 times. We normalized the rank of all

proteins (Rank/number of nodes) and plotted the top 20% of

nodes and their mean and standard deviation. The blue dotted

line represents the cutoff for top 10% nodes, and the red dotted

line represents the cutoff for top 20% of nodes. A, B, C are the top

20% proteins of regulation of cell cycle, cytokinesis and polarity of

fission yeast.

(PDF)

Figure S5 Robustness analysis of linkerity of proteins in
the fission yeast polarity network. We systematically

analysed the robustness of linkerity in the presence of imperfect

network interaction data. We added 10% edges preferentially to

nodes with high degree (A) or removed 10% edges at random (B)

to the core network. In the preferential attachment model, the

probability P that a given node N had of gaining an edge was

directly proportional to its degree P(N),Degree(N). In the random

model P(N),k where k is a constant. Probabilities were normalized

to increase or decrease the total edges of the network by 10%. We

calculated the mean and standard deviation for the betweenness

centrality of every protein belonging to the polarity sub-network

after repeating the procedure 1000 times. We plotted the top 20%

of nodes and their mean and standard deviation. The blue dotted

line represents the cutoff for top 10% nodes, and the red dotted

line represents the cutoff for top 20% of nodes.

(PDF)

Figure S6 Time-lapse analysis of Sts5 localization in
fission yeast cells. Microtubules are visualized using mCherry

labeled tubulin (Atb2) to identify cell cycle stage (A and B right

column and Sts5-3GFP is visualized on the left). As the cell cycle

progresses, Sts5 starts to accumulate into cytoplasmic dots, which

then rapidly disappear upon septum formation. C is an automatic

quantification of the amount of cytoplasmic dots in cells at

different stages of the cell cycle.

(PDF)

Table S1 Analysis of the genome-wide fission yeast
network. See detailed description under Table S2.

(XLS)

Table S2 Analysis of the genome-wide budding yeast
network. Tabulated file (in .xls format) containing network

measures for all protein in the largest connected component of the

genome-wide network of fission (S1) and budding (S2) yeast.

Columns include: Common name: Common name. System-
atic name: Systematic name (for fission yeast), GO database ID

(for budding yeast) Description: Brief description of known

protein activity. PubMed count: Number of abstracts discussing

that particular protein in fission yeast available in PubMed.

Lethality: E (Essential) If deletion of the gene causes lethality, V
(Viable) otherwise. Scores: Betweenness Centrality and Degree

scores for the protein in the network using either STRING

interaction data (at increasing cutoffs, 0.4, 0.7, 0.9) or data from

BioGRID (only the physical protein-protein interaction data).

Genes with no entry at a given cutoff have no other interactions

with any proteins in the network.

(XLS)

Table S3 Analysis of the core fission yeast network. See

detailed description under Table S4.

(XLS)
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Table S4 Analysis of the core budding yeast network.
Tabulated file (in .xls format) containing network measures for all

protein in the core network of fission (S3) and budding (S4) yeast.

Columns include: Common name: Common name. System-
atic name: Systematic name (for fission yeast), GO database ID

(for budding yeast) Description: Brief description of known

protein activity. PubMed count: Number of abstracts discussing

that particular protein in fission yeast available in PubMed.

Lethality: E (Essential) If deletion of the gene causes lethality, V
(Viable) otherwise. GO Categories: Which of the three

categories (Cytokinesis (CY), Polarity (P), Cell Cycle (CC)) does

the protein belong too? Scores: Betweenness Centrality and

Degree scores and ranks for all the sub-networks the protein

belongs to, as well as the core network. In the sub-network,

betweenness rank (Ranksub-network) is calculated by ranking all the

proteins from highest to lowest according to their betweenness. In

the core network, the betweenness rank (Rankcore) is calculated only

between proteins that are found in the original sub-network. To

avoid artifacts due to the presence of multiple proteins with 0

betweenness, we assign consecutive proteins with the exact same

score have the same rank, which is simply defined as the average of

their ranking [109]. For example: in a network of 6 proteins [A, B,

C, D, E, F], with BC values of [10, 10, 7, 5, 5, 5], the ranking

would be: [(A, 1.5), (B, 1.5), (C, 3), (D, 5), (E, 5), (F, 5)] Linkerity:

Linkerity calculated for all the categories as given in Equation 1.

Note that the linkerity for a protein that doesn’t shift in rank is 1 by

definition.

(XLS)

Table S5 All members of the cliques identified on
Figure 3B. List of all proteins belonging to the cliques described

in Figure 3. Clique 1 corresponds to the top left clique in Figure 3B,

with cliques increasing moving from left to right.

(PDF)

Text S1 Predicting essentiality by network measures in
fission and budding yeast.

(PDF)

Text S2 Analysis of the neighbors of high linkerity
proteins.

(PDF)

Text S3 Correlation between linkerity and other net-
work measures.

(PDF)

Text S4 Linkerity at various network confidences.

(PDF)

Acknowledgments

The authors are thankful to L.J. Jensen, V. Wood, J. Bahler, H. Moriya, K.

Nakano, M. Toya, J. Pines, M. Godinho Ferreira, T. Surrey, J. Howard, A.

Ciliberto, C. Pal, A. Sveiczer, C. Bakal and the Carazo-Salas, Csikasz-

Nagy and Sato groups for help and comments

Author Contributions

Conceived and designed the experiments: FV RECS ACN. Performed the

experiments: FV JD AC. Analyzed the data: FV AB AC ACN. Contributed

reagents/materials/analysis tools: AB FJ MS. Wrote the paper: FV RECS

ACN.

References

1. Nurse P (1990) Universal control mechanism regulating onset of M-phase.

Nature 344: 503–508. doi:10.1038/344503a0.

2. Nurse P (2002) Cyclin dependent kinases and cell cycle control (nobel lecture).
Chembiochem 3: 596–603. doi:10.1002/1439-7633(20020703)3:7,596::AID-

CBIC596.3.0.CO;2-U.

3. Morgan DO (2006) The Cell Cycle: Principles of Control. New Science Press,
Ltd.

4. Enoch T, Carr AM, Nurse P (1992) Fission yeast genes involved in coupling

mitosis to completion of DNA replication. Genes Dev 6: 2035–2046.
doi:10.1101/gad.6.11.2035.

5. Lacroix B, Maddox AS (2012) Cytokinesis, ploidy and aneuploidy. J Pathol

226: 338–351. doi:10.1002/path.3013.

6. Diffley JFX (2011) Quality control in the initiation of eukaryotic DNA

replication. Phil Trans R Soc Lond B Biol Sci 366: 3545–3553. doi:10.1098/
rstb.2011.0073.

7. Martin SG (2009) Geometric control of the cell cycle. Cell Cycle 8: 3643–3647.

8. Verde F, Mata J, Nurse P (1995) Fission yeast cell morphogenesis: identification

of new genes and analysis of their role during the cell cycle. J Cell Biol 131:
1529–1538.

9. Kellogg DR (2003) Wee1-dependent mechanisms required for coordination of
cell growth and cell division. J Cell Sci 116: 4883–4890. doi:10.1242/jcs.00908.

10. Wilson PD (1997) Epithelial cell polarity and disease. Am J Physiol 272: F434–

42.

11. Mitchison JM (1990) The fission yeast, Schizosaccharomyces pombe. Bioessays
12: 189–191. doi:10.1002/bies.950120409.

12. Mitchison JM, Nurse P (1985) Growth in cell length in the fission yeast

Schizosaccharomyces pombe. J Cell Sci 75: 357–376.

13. Hayles J, Nurse P (2001) A journey into space. Nat Rev Mol Cell Biol 2: 647–

656. doi:10.1038/35089520.

14. Vavylonis D, Wu J-Q, Hao S, Shaughnessy BO, Pollard TD, et al. (2007)
Assembly mechanism of the contractile ring for cytokinesis by fission yeast.

Science 319: 97–100. doi:10.1126/science.1151086.

15. Wu J-Q, Sirotkin V, Kovar DR, Lord M, Beltzner CC, et al. (2006) Assembly
of the cytokinetic contractile ring from a broad band of nodes in fission yeast.

J Cell Biol 174: 391–402. doi:10.1083/jcb.200602032.

16. Csikász-Nagy A, Gyorffy B, Alt W, Tyson JJ, Novák B (2008) Spatial controls

for growth zone formation during the fission yeast cell cycle. Yeast 25: 59–69.

doi:10.1002/yea.1571.

17. Martin SG, Berthelot-Grosjean M (2009) Polar gradients of the DYRK-family

kinase Pom1 couple cell length with the cell cycle. Nature 459: 852–856.

doi:10.1038/nature08054.

18. Csikász-Nagy A, Kapuy O, Gyorffy B, Tyson JJ, Novák B (2007) Modeling the
septation initiation network (SIN) in fission yeast cells. Curr Genet 51: 245–

255. doi:10.1007/s00294-007-0123-4.

19. Pollard TD, Wu J-Q (2010) Understanding cytokinesis: lessons from fission
yeast. Nat Rev Mol Cell Biol 11: 149–155. doi:10.1038/nrm2834.

20. Csikász-Nagy A, Battogtokh D, Chen KC, Novák B, Tyson JJ (2006) Analysis

of a generic model of eukaryotic cell-cycle regulation. Biophys J 90: 4361–4379.

doi:10.1529/biophysj.106.081240.

21. Bähler J, Pringle JR (1998) Pom1p, a fission yeast protein kinase that provides
positional information for both polarized growth and cytokinesis. Genes Dev

12: 1356–1370.

22. Hachet O, Berthelot-Grosjean M, Kokkoris K, Vincenzetti V, Moosbrugger J,
et al. (2011) A Phosphorylation Cycle Shapes Gradients of the DYRK Family

Kinase Pom1 at the Plasma Membrane. Cell 145: 1116–1128. doi:10.1016/
j.cell.2011.05.014.

23. Moseley JB, Mayeux A, Paoletti A, Nurse P (2009) A spatial gradient

coordinates cell size and mitotic entry in fission yeast. Nature 459: 857–860.

doi:10.1038/nature08074.

24. Krapp A, Simanis V (2008) An overview of the fission yeast septation initiation
network (SIN). Biochem Soc Trans 36: 411–415. doi:10.1042/BST0360411.

25. Ray S, Kume K, Gupta S, Ge W, Balasubramanian M, et al. (2010) The

mitosis-to-interphase transition is coordinated by cross talk between the SIN
and MOR pathways in Schizosaccharomyces pombe. J Cell Biol 190: 793–805.

doi:10.1083/jcb.201002055.

26. Gupta S, McCollum D (2011) Crosstalk between NDR kinase pathways

coordinates cell cycle dependent actin rearrangements. Cell Div 6: 19.
doi:10.1186/1747-1028-6-19.

27. Cornils H, Kohler RS, Hergovich A, Hemmings BA (2011) Downstream of

human NDR kinases: impacting on c-myc and p21 protein stability to control
cell cycle progression. Cell Cycle 10: 1897–1904.

28. Hergovich A, Cornils H, Hemmings BA (2008) Mammalian NDR protein

kinases: from regulation to a role in centrosome duplication. Biochim Biophys

Acta 1784: 3–15. doi:10.1016/j.bbapap.2007.07.017.

29. Jensen LJ, Jensen TS, de Lichtenberg U, Brunak S, Bork P (2006) Co-evolution
of transcriptional and post-translational cell-cycle regulation. Nature 443: 594–

597. doi:10.1038/nature05186.

30. Rupes I, Webb BA, Mak A, Young PG (2001) G2/M Arrest Caused by Actin
Disruption Is a Manifestation of the Cell Size Checkpoint in Fission Yeast. Mol

Biol Cell 12: 3892–3903.

31. Liu J, Wang H, Balasubramanian M (2000) A checkpoint that monitors

cytokinesis in Schizosaccharomyces pombe. J Cell Sci 113: 1223–1230.

Linkers of the Fission Yeast Protein Network

PLOS Computational Biology | www.ploscompbiol.org 11 October 2012 | Volume 8 | Issue 10 | e1002732



32. Jensen LJ, Saric J, Bork P (2006) Literature mining for the biologist: from
information retrieval to biological discovery. Nat Rev Genet 7: 119–129.

doi:10.1038/nrg1768.

33. Pancaldi V, Sarac OS, Rallis C, McLean JR, Prevorovsky M, et al. (2012)
Predicting the Fission Yeast Protein Interaction Network. G3: Genes|Gen-

omes|Genetics 2: 453–467. doi:10.1534/g3.111.001560.

34. Wood V (2006) Schizosaccharomyces pombe comparative genomics; from
sequence to systems. In: Sunnerhagen P, Piskur J, editors. Comparative

Genomics using fungi as models. Comparative Genomics using fungi as
models. Springer. pp. 233–285.

35. Jensen LJ, Kuhn M, Stark M, Chaffron S, Creevey C, et al. (2009) STRING 8–

a global view on proteins and their functional interactions in 630 organisms.
Nucleic Acids Res 37: D412–6. doi:10.1093/nar/gkn760.

36. von Mering C, Jensen LJ, Kuhn M, Chaffron S, Doerks T, et al. (2007)

STRING 7–recent developments in the integration and prediction of protein
interactions. Nucleic Acids Res 35: D358–62. doi:10.1093/nar/gkl825.

37. Aslett M, Wood V (2006) Gene Ontology annotation status of the fission yeast

genome: preliminary coverage approaches 100%. Yeast 23: 913–919.
doi:10.1002/yea.1420.

38. Wood V, Harris MA, McDowall MD, Rutherford K, Vaughan BW, et al.

(2012) PomBase: a comprehensive online resource for fission yeast. Nucleic
Acids Res 40: D695–9. doi:10.1093/nar/gkr853.

39. Bitton DA, Wood V, Scutt PJ, Grallert A, Yates T, et al. (2011) Augmented

annotation of the Schizosaccharomyces pombe genome reveals additional
genes required for growth and viability. Genetics 187: 1207–1217.

doi:10.1534/genetics.110.123497.

40. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, et al. (2000) Gene
ontology: tool for the unification of biology. The Gene Ontology Consortium.

Nat Genet 25: 25–29. doi:10.1038/75556.

41. Gene Ontology Consortium (2012) The Gene Ontology: enhancements for
2011. Nucleic Acids Res 40: D559–64. doi:10.1093/nar/gkr1028.

42. Vaggi F, Jordan F, Csikász-Nagy A (2011) Keystone species of the molecular
network of cellular functions. In: Jordan F, Jorgensen SE, editors. Models of the

Ecological Hierarchy. Elsevier Press. pp. 71–86.

43. Han J-DJ, Bertin N, Hao T, Goldberg DS, Berriz GF, et al. (2004) Evidence for
dynamically organized modularity in the yeast protein-protein interaction

network. Nature 430: 88–93. doi:10.1038/nature02555.

44. Batada NN, Hurst LD, Tyers M (2006) Evolutionary and physiological
importance of hub proteins. PLoS Comput Biol 2: e88. doi:10.1371/

journal.pcbi.0020088.

45. Yu H, Kim PM, Sprecher E, Trifonov V, Gerstein M (2007) The importance of
bottlenecks in protein networks: correlation with gene essentiality and

expression dynamics. PLoS Comput Biol 3: e59. doi:10.1371/journal.pcbi.
0030059.

46. Batada NN, Reguly T, Breitkreutz A, Boucher L, Breitkreutz B-J, et al. (2006)

Stratus not altocumulus: a new view of the yeast protein interaction network.
PLoS Biol 4: e317. doi:10.1371/journal.pbio.0040317.

47. Stark C, Breitkreutz B-J, Reguly T, Boucher L, Breitkreutz A, et al. (2006)

BioGRID: a general repository for interaction datasets. Nucleic Acids Res 34:
D535–9. doi:10.1093/nar/gkj109.

48. Barabási A-L (2009) Scale-free networks: a decade and beyond. Science 325:

412–413. doi:10.1126/science.1173299.

49. Kim D-U, Hayles J, Kim D, Wood V, Park H-O, et al. (2010) Analysis of a

genome-wide set of gene deletions in the fission yeast Schizosaccharomyces

pombe. Nat Biotechnol 28: 617–623. doi:10.1038/nbt.1628.

50. Decottignies A, Sanchez-Perez I, Nurse P (2003) Schizosaccharomyces pombe

essential genes: a pilot study. Genome Res 13: 399–406. doi:10.1101/gr.

636103.

51. Forsburg S, Nurse P (1991) CELL CYCLE REGULATION IN CEREVISIAE

AND POMBE. Ann Rev Cell Biol 7: 227–56.

52. Cross FR, Buchler NE, Skotheim JM (2011) Evolution of networks and
sequences in eukaryotic cell cycle control. Phil Trans R Soc Lond B Biol Sci

366: 3532–3544. doi:10.1098/rstb.2011.0078.
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