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Abstract

Large-scale genome sequencing gained general importance for life science because functional annotation of otherwise
experimentally uncharacterized sequences is made possible by the theory of biomolecular sequence homology. Historically,
the paradigm of similarity of protein sequences implying common structure, function and ancestry was generalized based
on studies of globular domains. Having the same fold imposes strict conditions over the packing in the hydrophobic core
requiring similarity of hydrophobic patterns. The implications of sequence similarity among non-globular protein segments
have not been studied to the same extent; nevertheless, homology considerations are silently extended for them. This
appears especially detrimental in the case of transmembrane helices (TMs) and signal peptides (SPs) where sequence
similarity is necessarily a consequence of physical requirements rather than common ancestry. Thus, matching of SPs/TMs
creates the illusion of matching hydrophobic cores. Therefore, inclusion of SPs/TMs into domain models can give rise to
wrong annotations. More than 1001 domains among the 10,340 models of Pfam release 23 and 18 domains of SMART
version 6 (out of 809) contain SP/TM regions. As expected, fragment-mode HMM searches generate promiscuous hits
limited to solely the SP/TM part among clearly unrelated proteins. More worryingly, we show explicit examples that the
scores of clearly false-positive hits, even in global-mode searches, can be elevated into the significance range just by
matching the hydrophobic runs. In the PIR iProClass database v3.74 using conservative criteria, we find that at least
between 2.1% and 13.6% of its annotated Pfam hits appear unjustified for a set of validated domain models. Thus, false-
positive domain hits enforced by SP/TM regions can lead to dramatic annotation errors where the hit has nothing in
common with the problematic domain model except the SP/TM region itself. We suggest a workflow of flagging
problematic hits arising from SP/TM-containing models for critical reconsideration by annotation users.
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Introduction

Following the request of a collaborator to hypothesize about the

function of Eco1, an uncharacterized yeast gene at that time, the

application of the full battery of sequence-based prediction tools

[1,2] revealed an apparently significant hit to the Pfam domain

PF00583 [3] in the local search mode Figure S1). This finding

helped to identify a potential acetyl-CoA binding site and,

subsequently, the hypothesis of Eco1’s acetyltransferase function

was proven experimentally [4]. At about the same time, another

collaborator inquired about the function of the protein ‘‘Alt a 1’’ of

the fungus Alternaria alternata (AAB40400). The same approach

revealed an apparently significant hit to the Pfam domain

PF00497 (Figure S2) indicating some relationship to bacterial

extracellular solute-binding proteins. The initial hope of having

found at least something to follow up faded away quickly when it

became clear that the query has just a signal peptide (SP) in

common with the proteins belonging to domain PF00497. This SP

has artificially elevated the alignment score into the significance

range and, thus, created the impression of functional relatedness.

Why do the domain models perform so differently?

The theory of biomolecular sequence homology and its practical

application for predicting function for uncharacterized genes by

annotation transfer from well-studied homologues is one of the few

achievements of theoretical biology that have significance for all

fields of life science [5,6]. Similarity of amino acid sequences

implies, to a certain degree, similarity in 3D structure and

biological function [7–9]. Even apparently unrelated sequences

with essentially zero sequence identity can adopt the same

structural fold. This fact is rationalized by the conservation of

the seemingly random, intricate hydrophobic pattern in the amino

acid sequence of globular proteins that is required to form the

tightly packed hydrophobic core of the tertiary structure [10]. This

level of statistically significant sequence similarity is thought to

arise from common ancestry under the pressure of selection at

each step of mutational divergence with only rare instances of

convergent evolution [11,12]. The corresponding evolutionarily

favored amino acid exchanges tend to maintain side chain
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hydrophobicity, charge and side chain volume. Not surprisingly, it

is these exchanges that score highly in the BLOSUM62 matrix

[13] used in the BLAST/PSI-BLAST suite [14,15].

This general theme has received two variations. The first is

introduced by the notion of the protein domain [16–18] and the

existence of multi-domain proteins. Structurally, domains are

protein sequence segments that form their own 3D structure with

its independent hydrophobic core (and with a generally more polar

surface); thermodynamically, they fold and melt independently;

from the evolutionary point of view, these sequence segment are

shuffled in the genome as independent units and are re-used in

different contexts [5]. With respect to the homology search, the

notion of domains leads to segmentation of protein sequences

where the segments represent homologous members of a sequence

family with the same type of domain. The family collection can

become laborious; thus, protein domain libraries have appeared as

a collective effort of the scientific community. Among the

collections, there are PROSITE [19], BLOCKS [20], PRINTS

[21], SUPERFAMILY [22], CDD [23], TIGRFAM [24], Panther

[25], ProDom [26], EVEREST [27], the libraries of Y. Wolf and

L. Aravind published with IMPALA [28] and, as the most

systematically developed primary collections, Pfam [3] and

SMART (Simple Modular Architecture Research Tool [29]).

The second issue is that many segments do not have globular

structures at all [30–32]. They can be of fibrillar nature,

transmembrane (TM) helices, disordered regions, etc. Typically,

these regions have a clear amino acid compositional bias or a

primitive repetitive pattern. Sequence similarity between two

sequence segments of this type does not necessarily mean common

ancestry but is obviously an enforced result of physico-chemical

constraints. For example, long hydrophobic stretches such as

transmembrane helices appear similar regardless of ancestry and,

as in the introductory example, all signal peptides [33] but also

GPI lipid anchor sites [34,35] or coiled coil regions [36] must look

alike to a certain degree. Many types of polar non-globular

regions, for example serine-rich segments, readily compensate for

insertions/deletions or substitutions as long as the integral

properties of the respective subsegments remain unchanged.

Consequently, convergent evolution might have a more significant

role for non-globular sequences.

Thus, sequence similarity can either be due to homology

(common ancestry) or convergent evolution (common selective

pressure). The criterion of sequence similarity for inferring

homology is actually applicable only to globular segments and

non-globular parts should be excluded from starting sequences in

homology searches. The special case with amino acid composi-

tional bias was recognized early and it was always advised to

exclude those segments from similarity searches when hunting

after distantly related proteins. For the BLAST/PSI-BLAST suite,

the SEG program was advised to suppress at least the most

obvious low complexity regions [14,37] besides the application of

statistical corrections for compositional bias [37,38]. Sequence

family searching heuristics should consider excluding also other

types of non-globular segments such as coiled coil regions from the

similarity search [39]. In the original concept of SMART [40],

special care was paid to determine domain boundaries correctly, to

include all secondary structural elements of globules, for example

by matching the alignment section with known 3D structures, and

to exclude all sequence parts such as polar or proline-rich linker

regions that do not belong to the domain considered.

The unsupervised inclusion of transmembrane helices and signal

peptide segments in homology searches is especially prone to

erroneous addition of unrelated sequences to the sequence family

under study since the systematic coincidence of hydrophobic

positions creates the appearance of similarity in the hydrophobic

pattern, otherwise the key to sequence homology among globular

sequence segments [10]. The consequently generated high similarity

score as in the introductory example of ‘‘Alt a 1’’ might support an

otherwise unjustified annotation transfer and lead to wrongly

predicted function if it were not detected by manual checks.

Similar precautions are generally out of scope when protein

domain model libraries are applied for function prediction over

query sequences, especially in a genome-wide mode. It is desirable

to have systematic factors that might cause spurious annotations

such as isolated similarities to signal peptides or some types of

transmembrane helices be suppressed during the annotation

workflow.

When checking domain databases for the inclusion of trans-

membrane helices and signal peptides into the domain model, we

found more than thousand domain instances in Pfam and a couple

of examples even in SMART. These hidden Markov models

(HMMs) can be a systematic cause of spurious similarity hits

especially if the HMM-based sequence scan is applied in the local

search mode. In this work, we wish to emphasize that these domain

models can also give rise to wrong hits even in the global search

mode where the high score from the membrane-helical part can

mask the absence of match for the associated globular domains. For

support of the reader, database search results, alignments, domain

library entry lists and files with ‘‘cleanup’’ domain models as

referred to in the following text are provided as supplementary

material at the associated WWW site http://mendel.bii.a-star.edu.

sg/SEQUENCES/ProblemDomains-TM+SP/.

Results

Search for transmembrane helices and signal peptides
included in SMART database alignments and validation
of findings

Since the SMART database [29] is relatively small and the

alignments are very well curated, its alignments were used as a test

Author Summary

Sequence homology is a fundamental principle of biology.
It implies common phylogenetic ancestry of genes and,
subsequently, similarity of their protein products with
regard to amino acid sequence, three-dimensional struc-
ture and molecular and cellular function. Originally an
esoteric concept, homology with the proxy of sequence
similarity is used to justify the transfer of functional
annotation from well-studied protein examples to new
sequences. Yet, functional annotation via sequence
similarity seems to have hit a plateau in recent years since
relentless annotation transfer led to error propagation
across sequence databases; thus, leading experimental
follow-up work astray. It must be emphasized that the
trinity of sequence, 3D structural and functional similarity
has only been proven for globular segments of proteins.
For non-globular regions, similarity of sequence is not
necessarily a result of divergent evolution from a common
ancestor but the consequence of amino acid sequence
bias. In our investigation, we found that protein domain
databases contain many domain models with transmem-
brane regions and signal peptides, non-globular segments
of proteins having hydrophobic bias. Many proteins have
inherited completely wrong function assignments from
these domain models. We fear that future function
predictions will turn out futile if this issue is not
immediately addressed.

1,001 Problems with Protein Domain Databases
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ground for a SP/TM detection algorithm as described in detail in

the Methods section.

In brief, we recovered the full length protein sequences that

contained the segments in a given alignment of SMART version 6,

applied 5 TM and 2 SP predictors published in the literature and we

checked overlap of predicted SP/TM regions with the alignment

segments. For an alignment position to be considered part of a

predicted TM or SP region, the respective residue must be included

into the predicted range in a critical number of sequences and by a

certain number of prediction tools determined by a statistical

criterion based on the binomial distribution (significance value 0.05).

For each predicted TM or SP region, we derive a score as the

arithmetic mean of the logarithmic probabilities of SP/TM

prediction over all alignment columns involved (Methods,

equation 5). The false-positive prediction rate was assessed using

the SCOP a-helical proteins and the SCOP membrane class

(Structural Classification of Proteins [41,42]) to determine TM-

and SP-score cutoffs with false-positive rates below 5%.

In contrast to the Pfam test described below, SMART version 6

alignments contain pleasantly few SP/TM regions. With a TM-score

cutoff of $212 (FP rate of 4.67%) and SP-score cutoff of $21 (FP

rate of 4.02%), the number of predicted TM helices and signal

peptides are 40 and 5 respectively. At the domain level, this translates

to 13 problematic domains with TMs and 5 with SPs, respectively

(Table 1). Thus, the fraction of problematic domains is very low with

1.6% (13/809) having TMs and 0.6% (5/809) SPs segments.

These 18 predictions were manually validated: (i) If the

respective predicted segments were indeed structural helices and

not SPs/TMs, they should be part of one of the nearest globular

domains in the sequence. The alignment sequences were searched

against the sequences with known 3D structure from the Protein

Data Bank (PDB) for any significant hits (with the generous Blast

E-value#0.1) and we checked whether the predicted SP/TM

region overlaps with the segment covered by the structure. If the

predicted SP/TM region was missing in the structure or if it was

described as a TM helix in the structural report, we considered the

Table 1. Summary of predicted/validated non-globular segments and supporting evidence for the 18 SMART version 6 domains.

Domain name Type Predicted segments
Validated
Segments Comments

SM00019 : SF_P (Pulmonary surfactant protein) TM 33–58 1–58# The N-terminal propeptide 1–58 of NP_003009
forms a TM when induced by a Brichos domain [99].

SM00157 : PRP (Major prion protein) TM 117–140 112–135# Latent transmembrane region in human prion
protein BAG32277 [100,101].

SM00665 : B561 (Cytochrome B561/ferric
reductase TM domain)

TM 4–146 N/a Intrinsic membrane protein [102].

SM00714 : LITAF (LPS-induced tumor necrosis
factor a factor)

TM 38–61 N/a The LITAF domain appears to have a membrane-
inserted motif (although without transmembrane
segment) [103].

SM00724 : TLC (TRAM, LAG1 and CLN8
homology domains)

TM 10–76; 216–238; 287–307 N/a Proof for 8 membrane-spanning segments in
Lag1p (NP_011860) and Lac1p (NP_012917) [104]

SM00730 : PSN (Presenilin, signal peptide
peptidase, family)

TM 5–27; 113–134; 214–285;
600–649

4–25#; 115–133#;
214–231#; 241–257#;
260–283#; 602–621#;
628–644#

Out of 10 TM regions shown for human presenilin-1
(AAB46371), 9 are in the domain alignment out of
which 7 are predicted here [105].

SM00752 : HTTM Horizontally transferred
transmembrane domain

TM 12–25; 75–95; 275–294;
338–357

N/a Domain is known to have 4 TM regions [80].

SM00756 : VKc (catalytic subunit of vitamin K
epoxide reductase)

TM 12–30; 104–192 13–32#; 142–189# VKORC1 (Q9BQB6) is a membrane protein [106].

SM00780 : PIG-X (Mammalian PIG-X and yeast
PBN1)

TM 230–248 230–252# PBN1 (CAA42392) is a type I transmembrane
protein in the endoplasmic reticulum [107].

SM00786 : SHR3_chaperone (ER membrane
protein SH3)

TM 7–111; 167–186 N/a Shr3p (NP_010069) has 4 membrane
segments [108].

SM00793 : AgrB (Accessory gene regulator B) TM 42–204 N/a S. aureus ABW06464 is a membrane protein [109].

SM00815 : AMA-1 (Apical membrane antigen 1) TM 522–527 515–602# Segment missing in structure 1W81_A [110].

SM00831 : Cation_ATPase_N (Cation
transporter/ATPase, N-terminus)

TM 72–90 65–94# Segment maps to a TM helix of the ß-domain of
1KJU_A [111].

SM00190 : IL4_13 (Interleukin 4/13) SP 1–20 1–23# Annotated as secreted. Segment missing in
structure 1ITL_A [112].

SM00476 : DNaseIc (deoxyribonuclease I) SP 1–19 1–17# Annotated as secreted. Segment missing in
structure 1DNK_A [113].

SM00770 : Zn_dep_PLPC (Zn-dependent
phospholipase C, a toxin)

SP 4–26 1–64# Annotated as secreted. Segment missing in
structure 1OLP_A [114].

SM00792 : Agouti SP 1–19 1–89# Annotated as secreted. Segment missing in
structure 1Y7J_A [115].

SM00817 : Amelin (Ameloblastin precursor) SP 11–28 1–26# Protein AAG27036 [116] is secreted to enamel matrix.

Both the predicted and, if explicitly available in the literature, the validated segments of TM regions or signal peptides are provided in the sequence count of the
respective SMART domain alignment. In cases marked with ‘‘#’’, the sequence positions are with respect to the reference sequence given in the comments.
doi:10.1371/journal.pcbi.1000867.t001
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prediction as validated. (ii) Without structural hits, we searched the

scientific literature for topological information about membrane

embedding of reference sequence segments.

As the information collated in Table 1 confirms, none of the 18

cases is a false-positive SP/TM prediction. Thus, we conclude that

the SMART domain database contains at least 18 problematic

domain models. It is of interest to note that, except for 4 cases with

accessions below SM00600, all other problematic domains have

been added to SMART only in recent years (Figure 1).

Detection of more than a thousand domains in the Pfam
database with SP/TM regions

Given that our SP/TM detection procedure provides statistical

error measures for the prediction, it can be reasonably applied on

the body of Pfam domain models. When this work was started, the

available Pfam version was release 23 constructed with the

HMMER2 package. About 19% (1937 out of 10340) of Pfam-A

domains in release 23 [3,43–45] do not have more than 4 seed

sequences in the alignment and, consequently, there is not enough

statistical power for rejecting the null hypotheses even if the

predicted SP/TMs are true (see Methods). In Figure 2, we show

the distributions of the TM- and SP-scores per predicted SP/TM

region for the alignments of the remaining 8403 domains of Pfam-

A. Both histograms exhibit a bimodal distribution where true-

positives cluster at high scores and false-positive predictions

aggregate at low scores (see Methods). If we apply the same SP/

TM-score cutoffs as in the SMART exercise (212 and 21

respectively), the number of predicted TM helices and signal

peptides are 3849 and 164 respectively.

At the domain level, this implies 1079 (10.4%) and 164 (1.6%)

out of 10340 Pfam-A domains having TM or SP regions included

into the domain alignment (Figure 3). The extent of the non-

globular part introduced by TM regions together with the polar

linkers between them in the domain alignments of Pfam can be

huge (more than 500 positions). Whereas SMART strived for

excluding non-globular parts from the domain alignments and

included a few critical domains only recently, this has not been a

matter for Pfam at all (Figure 1). The accumulation of problematic

domains was even over all the history of Pfam. Interestingly, our

conservative estimate of 10.4% (1079/10340) for TM-containing

Pfam-A domains measures well against the estimated 16.7%

(1365/8183) for Pfam-A release 19 reported by Bernsel et al. [46]

who just applied TMHMM. It should be noted that their result is

from a plain application of TMHMM without any additional false-

positive hit suppression.

Among our 164 domains with SP predictions, we might expect

6.6 (,7) wrong predictions. On average, each domain with

predicted TM regions contains about 3.6 (3849/1079) TM helices,

out of which 0.17 (4.67% of 3.6) represent false-positive TM

helices. We might expect that about 50 domains out of the 1079

domains are wrongly included into this list. Even if we remove

those values from the total number of 1214 problematic domain

models (1050 TM, 135 SP and 29 concurrent TM and SP errors),

Pfam-A release 23 still contains more than 1001 critical cases as

claimed in the title of this article.

Inclusion of non-globular sequences leads to
false-positives in homology searches, a serious source of
errors in protein function annotation

The domain alignments in Pfam and SMART are used for the

derivation of hidden Markov models (HMMs) that, in turn, are

applied for searching matches in query sequences with programs

of the HMMER packages [47–49] with HMMER2 being the

currently validated version. It should be noted that both the local

and the global search modes for domain hits are available.

With SP/TM regions as part of the domain alignment, the

respective HMMs are no longer useful for local mode searches

since a match in the TM or SP region alone without any other

sequence similarity to the query sequence can be sufficient to cause

a false-positive fragmentary domain hit as in the introductory case

of ‘‘Alt a 1’’. Further illustrative examples are provided in Table

S1 and Figure 4. We especially searched for sequence examples

having both hits with a SP/TM region containing domain model

(with an alignment restricted to the SP/TM region only) as well as

Figure 1. Cumulative plots of SMART version 6 and Pfam release 23 problematic domains. In SMART version 6, the total number of
domains with predicted SP/TM segments peaks at 18, which made up 2.2% of 809 SMART domains (see top). Red triangles mark time points for the
years 1998, 2002 and 2009 when the total number of domain models was 86, 600 and 809 respectively. In Pfam, the total number of problematic
domains peaks at 1214, which made up 11.8% of 10340 Pfam domains (see bottom). Likewise, red triangles marked the years 1999, 2002 and 2008
with 1465, 3360 and 10340 Pfam entries respectively.
doi:10.1371/journal.pcbi.1000867.g001
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multiple other prediction tool hits that provide intrinsic annotation

contradictions. Thus, we have two arguments supporting the idea

that the SP/TM region containing hit is false-positive.

One of the referees brought up the argument that some of the

sequences in Table S1 (and also in the subsequent Table S2) have

become obsolete. In the revised Tables S1 and S2, we show that

none of the sequence examples have disappeared; instead, the

sequence entries have been updated and, in none of the cases of

sequence edition, the computation results have been changed to

the extent of compromising the conclusion. It needs to be

emphasized that sequence-based prediction tools should be

applicable to all types of sequences including naturally occurring

ones, mutated versions, synthetic constructs as well as all types of

hypothetical sequences. It is this ability of protein sequence

analysis that makes it so powerful to conclude from genome

sequences. For example, it should be noted that, sometimes, the

absence of a domain hit is taken as indication of a sequence

representing a non-coding RNA.

The model Herpes_glycop_D (PF01537.9) has a membrane-

helix region that, together with its linkers on both side, are the sole

part of a match in the fragmented search mode for a large variety

of taxonomically and functionally diverse proteins out of which

eight architectures are presented here. Similarly, the TM region

(plus surrounding polar linkers) of model CDC50 (PF03381.7)

significantly hits proteins with at least three different architectures

in the fragmented HMM search.

For another 4 domain models Cation_ATPase_N (PF00690.1),

GSPII_F (PF00482.11), PAP2 (PF01569.13) and HCV_NS4b

(PF01001.11) provided as further illustration examples, the

respective TM region hit a single TM helix segment of several

seemingly unrelated proteins. In all cases, their alignment scores

were above their family-wise gathering score thresholds.

Figure 2. Histograms of average log probability per predicted transmembrane helix and per predicted signal peptide in Pfam
release 23. The top part shows the histogram of average log probability per predicted transmembrane helix; the bottom part shows the same per
predicted signal peptide. The log probability provided on the x-axis is calculated with equations 5 and 6. At the TMcutoff of $212 (false-positive rate
4.67%) and SPcutoff of $21 (false-positive rate 4.02%), the number of predicted TM helices and signal peptides are 3849 and 164 respectively.
doi:10.1371/journal.pcbi.1000867.g002

Figure 3. Average log probability plot of transmembrane helix and signal peptide predictions per domain. The top part shows the
average log probability per predicted transmembrane helix calculated per domain; the bottom part shows the same per predicted signal peptide.
Whereas the y-axis shows the log probability in accordance with equation 6 applied over all predicted segments for a given domain, the x-axis
represents their cumulative length. At the TMcutoff of $212 and SPcutoff of $21 (horizontal dashed lines), the number of problematic TM and SP
domains are 1079 and 164 respectively. The total number of problematic domains is 1214 (1050 TM, 135 SP and 29 concurrent TM and SP).
doi:10.1371/journal.pcbi.1000867.g003
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Not surprisingly, the global search mode that forces a complete

match of the domain model over a subsegment of the query

sequence is the standard regime for running hmmsearch and

hmmpfam of the HMMER2 package. Typically, a positive hit is

recognized either by a score above a so-called gathering threshold

(which is supplied together with and determined empirically by the

creator of the Pfam domain model) or an E-value below a trusted

limit (such as 0.1, see page 23 of the HMMER2 user guide). It is

particularly worrying that a number of domain models with SP/

TM regions included generate quite convincing E-values for

unrelated sequences even in the global search mode. In all these

cases, matches of a hydrophobic region in the query with the

hydrophobic segments of these validated SP/TM regions is the

reason for the elevated score that frequently surpasses even the

gathering score threshold.

To investigate the effects of SP/TM regions in homology

searches, two separate HMM searches against the NR database

were performed for each domain under study. The first run relied

on an HMM using the original alignment. For the second run, we

constructed a ‘‘cleanup’’ alignment via the removal of the

predicted TM or SP segments. The two HMMs for the hmmls

style of search (global with respect to the domain and local to the

query sequence) were built from the alignments using the

commands ‘hmmbuild –F –amino model-file alignment-file’ and

‘hmmcalibrate –seed 0 –num 5000’. When contrasting the results

of the two HMM runs at E-value#0.1, we assume all hits of the

cleanup model as true-positives and scrutinize all additional hits of

the original model as potential false-positive hits. We screened

them for potentially contradictory annotation using sequence-

analytic tools [1,2] and scientific literature. Below, we describe

several representative cases (Table S2, Figure 5).

The model PIG-P (PF08510.4) includes a segment with TM

helices (positions 1–91) and hydrophilic region (positions 92–208).

In the global-mode search against the non-redundant database,

the first 100 alignment positions of the model (i.e., the N-terminal

part with the 2 TM helices) hit a pair of C-terminal TM helices in

the four protein targets listed in Table S2 (Figure 5). The positions

of the HMM covering the cytoplasmic part of Pig-P [50]

correspond mostly to a single large gap in the alignment with

any of the four hit sequences (and this gap has only a marginal

influence on the total score). The E-values both with the

HMMER2 and HMMER3 suites are very convincing (between

e-27 and e-09) and the scores are all far above the gathering

threshold. Nevertheless, these are certainly false-positive hits.

Whereas, the Pig-Ps are endoplasmic reticulum proteins [50],

EAY79580.1, EAZ17037.1 and XP_001842924.1 have nucleic

acid binding domains and are most likely nuclear proteins and

XP_761344.1 appears mitochondrial due to a CIA30 domain

[51]. Just having two TMs and their short linker matching is a

poor argument for common ancestry.

The PAP2 (type 2 phosphatidic acid phosphatase) domain

model (PF 01569.13) hits the sequence XP_418136.2 (Table S2,

Figure 5) in an internal segment. Inspection of the alignment

shows that the only high scoring similarity regions belong to the

two transmembrane segments and there are two large gaps

corresponding to non-membrane segments in PAP2 proteins. Most

Figure 4. Examples of domain architectures of false-positive
HMM hits caused by TM helices in the fragment-mode search.
We show illustrative examples for six Pfam release 23 models:
Herpes_glycop_D (PF01537.9), CDC50 (PF03381.7), Cation_ATPase_N

(PF00690.18), GSPII_F (PF00482.11), PAP2 (PF01569.13) and HCV_NS4b
(PF01001.11). The black boxes denote the problematic domain
annotations in the respective sequences. Additional material such as
hmmpfam outputs and alignments are available at the associated BII
WWW site for this work. Domain architecture illustrations were created
with DOG 1.5 [98].
doi:10.1371/journal.pcbi.1000867.g004
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importantly, the two motifs A and C characteristic for PAP2

proteins are not conserved and the motif B is completely absent in

the sequence hit [52]. Thus, this is a false-positive finding

regardless of impressive scores and E-values.

The members of the EMP24_GP25L family (PF01105.15,

Table S2) have a polar region, a coiled coil segment followed by a

transmembrane part in their model [53]. Sequence CAN62859.1

(Figure 5) generates a significant, yet false-positive hit to the

respective HMM although it does not have any traces of a heptade

repeat in the sequence.

In the model for PTPLA (PF04387.6, Table S2), the first 30 N-

terminal positions of the HMM contain the active site motif that is

critical for function and, thus, for family membership [54,55]. The

alignment of EAY72555.1 (Figure 5) with the respective HMM has

a large gap in this region; nevertheless, the matches with two

transmembrane conveniently shift the E-value into the region of

statistical significance although, this time, the score is below the

gathering threshold.

The Lamp domain (PF01299.9, Table S2) characteristic of

lysosomal glycoproteins hits sequences XP_487300.2 and

XP_916963.1 of ATP synthases (Figure 5) significantly both with

regard to score and E-value. Inspection of the alignments shows

that a segment of about 120 HMM positions out of 340 is absent in

the sequence hits since the respective region is covered by three

large gaps. As a result, several critical functional motifs (cysteines

1–5 and the cytoplasmic tail GY motif [56]) are missing in the hits.

The total score is rescued by the transmembrane region match.

The typical architecture of MttA_Hcf106 (PF02416.8, Table

S2) proteins (known to be involved in sec-independent transloca-

tion [57]) comprises of a TM segment followed by an amphipathic

helix and an acidic domain. The alignment of the respective

HMM with the false-positive hit sequences ZP_00374359.1, an

RNA polymerase, and ZP_02966160.1 (Figure 5), a putative

phosphatase, shows good match in the TM segment (in the case of

ZP_02966160.1, with its signal peptide !!) followed by a moderate

fitting to the amphipathic helix segment and an almost complete

absence of the acidic part.

HAMP protein segments comprise of two a-helices connected

with a linker having a characteristic motif [58]. In addition, the

domain model PF00672.17 (Table S2) includes a preceding

transmembrane segment which causes significant, yet false-positive

global search HMM hits in four proteins (see Table S2, Figure 5)

although none of them has traces of the linker region (covered by a

gap in the alignment).

The architecture of the Nodulin_late domain (PF07127.3,

Table S2) consists of a signal peptide followed by a region with two

characteristic cysteine pairs [59]. The protein ABD33411.1 is

annotated as a nodulin_late protein in the database and, indeed,

the respective HMM produces a significant hit by any commonly

used statistical criterion; yet, the hit is false-positive (Figure 5) since

the alignment is good only in the signal peptide region but this

match is followed by two large gaps and none of the cysteine pairs

is conserved.

Further, the domain model GRP (PF07172.3, Table S2) for cell-

wall related proteins comprises of an N-terminal signal peptide

followed by a glycine-rich region [60]. The respective HMM

matches the C-terminal part of CAL51691.1, a putative RNA

helicase (Figure 5). Surprisingly, the signal peptide part of the GRP

domain matches the C-terminal two secondary structural elements

of the GUCT domain (PF08152.4) in CAL51691.1 (a b-strand and

an a-helix in the homologous structure 2E29 chain A [61]).

Our final example illustrates the issue with multiple TM

segments. If the linkers between them differ among query and

model, the gap penalties offset some part of the score accumulated

Figure 5. Examples of domain architectures of false-positive
HMM hits caused by TM helices/signal peptdes in the global-
mode search. Findings for nine Pfam release 23 models Pig-P
(PF08510.4), PAP2(PF 01569.13), EMP24_GP25L (PF01105.15), PTPLA
(PF04387.6), Lamp (PF01299.9), MttA_Hcf106 (PF02416.8), HAMP
(PF00672.17), Nodulin_late (PF07127.3) and GRP (PF07172.3) are shown.
The black boxes denote the problematic domain annotations in the
respective sequences. Additional material such as hmmpfam outputs
and alignments are available at the associated BII WWW site for this
work. Domain architecture illustrations were created with DOG 1.5 [98].
doi:10.1371/journal.pcbi.1000867.g005
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by the hydrophobic position matches. The case of claudin

proteins, small membrane glycoproteins with 4 TM helices and

a length below 200 AA, is instructive in this respect. In a global

search mode with the PMP22_claudin model (PF00822.12), the

respective HMM hits numerous sequences of c-subunits of

voltage-dependent Ca-ion channels with E-values in the order of

e-7. Closer inspection of the seed alignment showed that just a

single channel sequence (CCG2_mouse) was included although

they are not related to the family [62]. If we remove this entry, the

new HMM still hits to 4TM c-subunits of voltage-dependent Ca-

ion channels (e.g., NP_542375.1, NP_542424.1) as well as to the

3TM XP_533601.2 (Natural killer cell protein) with E-values in

the order of 0.08. In all cases, the sequence similarity is confined to

matches of the hydrophobic segments.

Inclusion of non-globular sequences leads to false-
negatives in homology searches thus decreases
sensitivity of the domain model

The decrease in specificity of domain models harboring SP/TM

regions is also accompanied by a decrease in sensitivity. In general,

the need to have additional good alignment scores for the SP/TM

pieces can become a burden for any true-positive sequences that

are incompletely sequenced or missing the SP/TM-region pieces

naturally.

By contrasting the HMM runs between the original and cleanup

models, potential false-negatives were identified as hits that were

found only by the cleanup models. Then (see Methods), we re-

computed the scores/E-values for the original HMM as well as

another set of scores/E-values using the same HMM and EVD

parameters from the original model but without the SP/TM

segments (cleanup case). Finally, the two sets of scores/E-values

were compared to find hits where their original score/E-values

were less significant than their re-computed ones (i.e. without SP/

TM). These were considered as false-negatives.

In Table S3, we show selected false-negative examples of several

domain models with validated SP/TM-regions where their re-

computed scores/E-values drastically improved without their SP/

TM segment scores. All re-computed hits’ scores except for

NP_848488.2 were clearly above their gathering score thresholds.

Previously, all these hits would be treated as false-positives if

gathering score thresholds were considered. In essence, the

negative scores of the SP/TM segments (due to their absence in

the corresponding sequence) had acted as heavy penalties on the

total scores, thus, it was concluded that these hits were

insignificant.

Significant rates of problematic function annotations in
existing sequence databases due to SP/TM regions in
domain models

It was already suggested in the literature that unsupervised

annotation transfer based on spurious sequence similarities has

created a myriad of false function annotations for sequences from

genome projects [63–65]. If care is not exercised, the inclusion of

SP/TM regions into domain models can become a perfect recipe

for protein annotation disaster.

We explored this issue for PIR (Protein Identification Resource)

iProClass v3.74 [66] and retrieved sequences with Pfam accession

IDs for the problematic domains in Table 2. These sequences were

re-annotated using HMMER2 hmmpfam in global-search mode

(with parameter –null2). Interestingly, a number of sequences

returned zero hmmpfam hits (searched for with a very permissive

E-value #10) despite being annotated with the respective domains

in the database and these are clearly false annotations (column 5).

For each sequence with reproduced hit, summing up the match,

insert and state transition log-odd scores (provided in the Pfam

model) over its emitted HMM sequence allowed us to recalculate

its total score as well as the SP/TM-region- (column 2) and non-

SP/TM-segment-specific parts of the score log odd scores. We

tagged a sequence as a potential false-positive hit if the total score

was at least the gathering score threshold GA while its non-SP/

TM-segment-specific score contribution was less than the expected

non-SP/TM specific gathering score threshold GnonSPTM (column

4, see Methods); thus, only the match to the SP/TM hydrophobic

region carries the hit over the threshold. Surprisingly, the number

of unjustified annotations is between 2.1 to 13.6% depending on

the type of domain (column 6); thus, the annotation error due to

spurious SP/TM matches can be quite substantial.

Sequence complexity of SP/TM-regions
The fact that signal peptide or transmembrane helix segments

are of lower sequence complexity than their globular counterparts

is not widespread general knowledge. To our current understand-

ing, there is only a comment about this issue in the BAliBASE

article of Bahr et al. [67] where the notion is considered ‘‘self-

evident’’ without provision of any supporting data.

In brief, we extracted all sequences from Uni-Prot (release 14.4)

with the feature keys ‘‘signal’’ and ‘‘transmem’’. Among the single-

transmembrane proteins, we selected those characterized as

‘‘anchor’’ in a special group. For multi-TM region proteins, we

selected those who have 5–9 annotated TM segments. Addition-

ally, we got the experimentally verified a-helical TM regions as

provided by TMPDB (release 6.3) [68]. As a reference point for

helices in globular proteins, we took the set of alpha-helices in

PDB (extracted from PDBFIND2.txt as of April 2010 [69]) with

14–28 amino acid residue length surrounded by coil regions.

Within all sets, sequence redundancy was suppressed with Cd-hit

and a 50% sequence identity threshold [70].

In our calculations, we find that only 3% of residues in a-helices

in globular domains are covered by hits of the quite stringent low

complexity tool SEG (parameters window 12, 2.2, 2.5) [71]

whereas this is the case for 18% for all residues in transmembrane

helices extracted from TMPDB. Similarly, 24% of residues in

signal peptides in UniProt are hit by the same SEG tool. Thus, SP

and TM regions are more likely to be of low complexity than

structural helices of comparable length.

Interestingly, the values for the Uni-Prot sets are 30% for single

transmembrane proteins, 33% for single transmembrane proteins

with the region annotated as ‘‘anchor’’ but only 12% for multi-

transmembrane proteins. Thus, the problems with non-relevant

matches in hydrophobic regions are more likely to occur, as a

trend, in proteins having signal peptides or only a few

transmembrane segments compared with cases of multi-mem-

brane-spanning proteins.

Discussion

The notion of domain and the issue of SP/TM regions
There is no substitute for computational methods in large-scale

functional annotation of sequence data and sequence similarity as

surrogate for homology has to remain a decisive factor for function

assignment [72]. E-value guided extrapolation of protein domain

annotation has been a cornerstone for understanding completely

sequenced genomes. There is about a decade of experience of

using HMMER2 with a Pfam release 23-style or SMART domain

library. These tools have indeed had tremendously high impact

and have done a very good job.
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The fundamental consideration in this article, namely the

difficulty to interpret sequence similarity as a result of similarity of

non-globular segments, (especially signal peptides or transmem-

brane regions) within the current theory of sequence homology,

the basis of annotation transfer, goes beyond the specific criticism

for a few domain models. In this context, it appears necessary to

recall what the notion of a protein domain implies. In the

introduction of their article, Veretnik et.al. [18] provide a list of

definitions extracted from the literature and applicable in a variety

of research contexts. The criteria involve sequence or 3D structure

similarity, structural compactness, assignment and atomicity of

associated biological function; yet, not any conserved piece of

sequence can be considered a domain.

In the special case of globular domains that have tertiary

structure, sequence similarities imply sequence homology as well as

fold and function similarity. If 3D structures are known, domains as

compact (having an own hydrophobic core) and spatially distinct

units of protein structures that share significant structural similarity

can be grouped together (for example, in libraries such as SCOP

[41,42] or CATH [73]). Structural domains are also units for

folding and, in the thermodynamic sense, for melting [16]. It should

be noted that, even for globular domains, sequence similarity does

not guarantee the same structure and function, especially with

sequence identities below 25% [7,8,74]. Whereas fold similarity is

usually a consequence of hydrophobic pattern similarity, neverthe-

less, lots of the structural detail can be different affecting issues of

conformational flexibility, binding specificity, catalytic activity,

substrate preferences and, thus, biological function [1,5].

Although structure-based domain libraries aim at providing

complete and well-defined annotation about a domain, the

antecedent of requiring structural information and associated

function makes it exclusive for only a small number of well-studied

proteins. Thus, many more proteins in sequence databases remain

difficult to characterize under this definition.

Table 2. Unjustified annotation percentage of validated problematic domains in protein information resource (PIR) iproclass v3.74
(Global-mode search).

Domain Name

Type, validated
region of model
(size)

No. of
retrieved
sequences

No. of FP hits where
v§§GA,

vnonSPTM vvGnonSPTM

No. of annotations
without hmmpfam
hits (E.10)

Total No. of
unjustified
hits (%)

PF00690.18 : Cation_ATPase_N (Cation transporter/ATPase,

N-terminus), GA = 18.90, �GGSPTM = 9.58, �GGnonSPTM = 18.79,

c = 29.47, �AA = 276.19

TM,66–87 (87),
ref.[111]

3684 74 3 77 (2.1%)

PF01105.15 : EMP24_GP25L (Endoplasmic reticulum and
golgi apparatus trafficking proteins), GA = 216.00,
�GGSPTM = 13.82, �GGnonSPTM = 220.28, c = 29.54, �AA = 2208.58

TM,141–167 (167),
ref. [53]

1029 8 33 41 (4.0%)

PF01299.9 : Lamp (Lysosome-associated membrane

glycoprotein), GA = 287, �GGSPTM = 18.34,
�GGnonSPTM = 295.80, c = 29.54, �AA = 2614.95

TM,304–340 (340),
ref. [56]

164 2 12 14 (8.5%)

PF01544.10 : CorA (CorA-like Mg2+ transporter protein)

GA = 261.3, �GGSPTM = 28.57, �GGnonSPTM = 280.17, c = 29.70,
�AA = 2503.57

TM,341–407 (407),
ref. [117]

2717 15 71 86 (3.2%)

PF01569.13 : PAP2 (type 2 phosphatidic acid phosphatase)

GA = 8.3, �GGSPTM = 21.70, �GGnonSPTM = 23.92, c = 29.47,
�AA = 2120.86

TM,102–177 (177),
ref. [52]

5231 108 19 127 (2.4%)

PF02416.8 : MttA_Hcf106 (sec-independent translocation

mechanism protein) GA = 7, �GGSPTM = 17.88,
�GGnonSPTM = 21.30, c = 29.58, �AA = 2102.29

TM,1–19 (74), refs.
[57,118]

2085 283 0 283 (13.6%)

PF04387.6 : PTPLA (protein tyrosine phosphatase-like

protein), GA = 25, �GGSPTM = 13.59, �GGnonSPTM = 20.97,

c = 29.56, �AA = 2291.27

TM,89–168 (168), refs.
[54,55]

277 3 3 6 (2.2%)

PF04612.4 : Gsp_M (General secretion pathway, M protein)

GA = 25, �GGSPTM = 24.68, �GGnonSPTM = 10.16, c = 29.85,
�AA = 2247.83

TM,1–40 (165), ref.
[119]

401 19 6 25 (6.2%)

PF07127.3 : GRP (plant glycine rich proteins) GA = 17.2,
�GGSPTM = 14.64, �GGnonSPTM = 12.16, c = 29.59, �AA = 2173.44

SP,1–49 (134), ref.
[60]

207 12 4 16 (7.7%)

PF08294.3 : TIM21 (Mitochondrial import protein), GA = 220.3,
�GGSPTM = 0.19, �GGnonSPTM = 210.88, c = 29.61, �AA = 2309.20

TM,1–36 (157), ref.
[120]

118 7 1 8 (6.8%)

PF08510.4 : PIG-P (phosphatidylinositol N-acetyl-glucosaminyl

transferase subunit P), GA = 211.4, �GGSPTM = 40.20,
�GGnonSPTM = 242.07, c = 29.53, �AA = 2233.36

TM,1–67 (153), ref.
[50]

143 4 0 4 (2.8%)

In the first column, we list selected Pfam domains with their accession, identifier, description and their gathering score (as in Pfam release 23) that have TM and/or SP
regions included into the model. The region in the domain alignment that includes the validated SP/TM segments (together with interlinking loops as described in
Methods) and the corresponding references are provided in the second column. The number of retrieved sequences from iProClass v3.74 with respect to each domain is
given in the third column. The number of unjustified hits that returns results (and also satisfied the criteria) and without results are given in the next two columns. The
last column gives the total and percentage of the unjustified hits with respect to the number of retrieved sequences. In addition, the log odd scores were re-derived
from the match/insert/state transition scores provided by the respective HMM model. The reproduced scores v varied from the original scores at 0.5760.34. GA and
�GGnonSPTM (see equations 19 and 20) denote the domain gathering score threshold and the expected non-SP/TM-specific gathering score threshold respectively.
Additional material such as hmmpfam outputs and alignments are available at the associated BII WWW site for this work.
doi:10.1371/journal.pcbi.1000867.t002
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Meanwhile, a complementary domain definition based on the

sequence homology also evolved independently. In the sequence-

analytic context, domains as the basic components of proteins are

families of sequence segments of minimal length (i) that are similar

to each other with statistical significance, (ii) that provide for a

specific biological function at the molecular level (‘‘atom’’ of

molecular function [5]) and (iii) that occur in different sequence

domain contexts as they are reshuffled by evolution [75–77].

Indeed, this notion is the basic to the approach of sequence

homology-based domain libraries like SMART and Pfam. Yet,

there is a caveat: Because of the statistical significance criterion,

similarity between sequences to be established requires them to be

without any type of amino acid compositional bias or primitive

repetitive pattern. This condition essentially brings together the

structural and the sequence-analytic definition of domain since

both, essentially, become applicable only to the globular domain

type. The exclusion of sequential bias makes the application of the

sequence homology theory to non-globular sequence segments (in

contrast to globular segments) at least a borderline case and, often

(certainly at low sequence identity), disables sequence similarity as

argument for common ancestry, similarity of structure (if there is

any 3D structure at all) and function.

It is crucial to note that similarity of sequences can either be due

to homology (common ancestry) or convergent evolution (common

selective pressure due to physical requirements or biological

function). We wish to emphasize that generally applied sequence-

statistical criteria for deducing homology have been derived from

studies of globular domains. In these cases, conservation of an

intricate, only apparently random hydrophobic pattern is

necessary for composing the hydrophobic core and, thus, for fold

conservation [1,10].

This condition is generally not fulfilled for non-globular

segments (e.g., transmembrane helices, signal peptides, inter-

domain linker regions, segments carrying lipid-attachment sites,

etc.); thus, their functional annotation requires other methods than

just annotation transfer based on position-wise sequence similarity.

It appears likely that many types of non-globular segments re-

occurring in evolutionary very distant proteins are rather the result

of convergent evolution than common ancestry; for example, the

likelihood of a de novo appearance of a phosphorylation site in a

generally serine-rich stretch seems quite high in evolutionary time

scales. This issue would deserve a more explicit study on its own.

In a generalized theme, SP/TM segments are usually the results

of physico-chemical constraints and do not confer the specific

biological function of the protein. Therefore, missing alignments in

the SP/TM regions is less detrimental than that of the non-SP/

TM regions if the membrane-embedded region is just used as

translocation signal.

About the suitability of HMM-type models to infer
homology from SP/TM-region containing sequences

To further the argument, in the framework of HMM, there is

no clear demarcation of SP/TM and non-SP/TM regions towards

the computation of the alignment scores. Hence, this questions the

correctness of inclusion of SP/TM regions into the HMM or, at

least, makes a separate consideration for them a matter of necessity

in the context of the homology argument.

Our arguments raise the question whether position-specific

scoring matrices (PSSM), HMMs or profiles are indeed the

appropriate tool to classify all kinds of non-globular segments with

regard to sequence homology. Matching the hydrophobic pattern

alone is recognized insufficient for inferring homology among

proteins with transmembrane helices. In previous reports [46,78],

sequence similarity was attempted to be complemented with

topology requirements. Anantharaman and Aravind [79] in their

discussion with the reviewer list further arguments such as

conservation of functional residue patterns, conservation of the

number of TMs, the linker length, etc. Similar arguments are

provided by Schultz [80]. If common ancestry is not a necessary

requirement, PSSMs or HMMs are useful to test aspects of

sequence similarity in context of physical pattern constraints (for

example, as in the case of TMHMM [81] for the purpose of

transmembrane helix prediction).

The case of SPs/TMs is of special importance since their

hydrophobic stretches can create the false appearance of similarity

to the respective hydrophobic core of the target template based on

a hydrophobic pattern match. Alignments with many hydrophobic

residues in the same columns generate high scores; thus, a SP/TM

match can elevate an otherwise mediocre HMM score into the

range of significance. The inclusion of a SP/TM into the domain

model can compromise the selectivity of HMMs towards specific

families and create hits not only to neighboring sequence families

within the superfamily but also beyond. Whereas errors of the first

kind might be considered not dramatic, we show with examples in

Tables S1 and S2 that, most importantly, drastic cases of

misannotation can happen.

Thus, the reliability in homology inference is greatly influenced

by the amount of non-globular content in such domain library

entries. We find that, even in the very well curated SMART

domain collection (version 6), there are 18 domain models (out of

809) that include TMs or SPs. Based on our conservative

approach, we find that clearly more than 1000 domains harbor

SP/TM segments in Pfam release 23 (out of 10340 entries). To

make matters worse, we observe a growing trend of addition of

SP/TM region-containing domain models in Pfam and especially

in SMART during the recent years (Figure 1).

In the Results section, we provide convincing examples that

these domains have the potential to lead to annotation problems.

They do not only cause promiscuous hits in fragment-mode HMM

searches (Table S1). As we could see, the problems persist in the

global-mode HMM searches by elevating the hits to significant

levels beyond any normally applied E-value cutoffs or gathering

score thresholds for a variety of SP/TM-region containing domain

models (Table S2).

Therefore, our finding might suggest the mandatory removal of

SPs/TMs from domain models. We do not recommend this at this

stage. Such a strategy is not easy to implement due to several

reasons. The required editing of domain libraries given their

current status would be quite laborious and appears impractical in

the short term. Then, there is also the issue with some multi-TM

region protein domain models where there is little or no soluble

globular component. Further, the biological significance of

sequence similarity of proteins with TM regions and its

relationship to homology has been studied only in a few cases

[79,80,82,83].

Notably with regard to signal peptides, the Pfam team has

conveyed to us the removal of signal peptides in most domain

models for future releases (Alex Bateman, personal communica-

tion). Similarly, it appears reasonable to remove TM regions from

models where they are not integral parts of the globular domain

and, especially, where the domain occurs also outside the TM

region context. An excellent match between SP/TM regions of

non-relevant proteins is possible just because of their uniform

hydrophobicity and this match will elevate scores in alignments.

Often, this might be insufficient to overcome thresholds of

significance but, as we see in our experience, it can happen and

it happens systematically for some types of models. Most likely, the

problems arise with domains having one or very few TM regions
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which are the majority of cases in Pfam (366 with 1 TM helix, 170

with 2 TM helices, 127 with 3 TM helices, 416 with more than 4

TM helices as with our conservative estimates). As we have seen,

the trend to low sequence complexity is especially strong for

proteins segments representing a signal peptide or a single-TM

anchor. Both the exclusion of signal peptides and of transmem-

brane helix anchors from domain models would remove the bulk

(but not all) of the problems described in this article. Among all

SP/TM regions, signal peptides, signal anchors and single TM

regions have a trend to considerably more pronounced sequence

complexity than TM regions in multi-TM proteins (see Results).

In addition, we propose two other possible workarounds: First,

one might process each query sequence with tools recognizing

non-globular segments including those for SP/TM regions and

mask them with X-runs before comparing the query with domain

libraries. Yet, this would not exclude cases such as SPs in HMMs

hitting structural helices (see the GRP example CAL51691.1 from

Table S2). Alternatively, we offer a supplementary, ‘‘cleanup’’

version of Pfam release 23 (see the file ‘‘Pfam_rel23_glo-

balHMM_cleanup.rar’’ at the WWW site for this article). In cases

of problematic domain models with SPs/TMs, hits of query

sequences both with the original HMM as well as with the HMM

derived from the reduced alignment without the respective SPs/

TMs are to be compared. We suggest considering collinear hits of

both models as benign whereas hits from only the original HMM

should be flagged as problematic pending manual check by the

user of the annotation. For this purpose, we supply versions of the

domain model that are cleaned from transmembrane helical and

signal peptide inclusions (see associated WWW site for this work).

Whereas this work explores the issue of SPs/TMs in domain

models mainly based on an analysis of HMMER2 and Pfam

release 23, both have concurrently been updated to HMMER3

and Pfam release 24 [84]. We wish to underline that this revision

does not resolve the problems described in this paper. For 16 out

of the 17 sequence examples provided in Table S2, using

HMMER3 with Pfam release 24 produces the same false-positive

hits. In the remaining case of CAL51691.1 and domain model

GRP (PF07172), the alignment of the respective domain entry has

not changed and the absence of hit appears due to an increased

gathering score (17.2 for global-mode and 15.9 for fragment-mode

HMMER2-search in Pfam release 23 in contrast with 22.7 for

HMMER3 and Pfam release 24). We do not think that the

transition to HMMER3 resolves the problem of SPs/TMs

included into seed alignments since SPs/TMs will contribute to

the score similarly to buried structural helices regardless of any

composition-based corrections. On the contrary, we have seen that

the fragment-mode search with HMMER2 has essentially been

useless in the E-value guided mode because of many false hits; for

the current HMMER3 beta-release, this is the only search mode

available so far.

E-value guided domain search versus gathering threshold
criteria

As a remedy, switching from the E-value guided hit finding to

gathering score thresholds is proposed. This is problematic from

several viewpoints. The HMM concept has the beauty of a

rigorous probabilistic formulation that allows a natural treatment

for substitutions and gaps in the same formalized framework.

Further, the introduction of E-values provides a handle to

compare various types of predictions that hit the same sequence

region. Unfortunately, the gathering score concept (an expert-

defined domain-specific score threshold for homologous hit

selection) brings in an arbitrary component into the prediction

process.

Firstly, the determination of a gathering score is not guided by a

fundamental consideration but, instead, depends on the data and

literature situation at the time of seed alignment collection.

Regardless, how carefully a gathering score is selected by the

expert, it remains a subjective decision. The sequence with a true

model hit with lowest score (as well as the false hit with the highest

score) critically depends on the size of the non-redundant protein

database, the variety of sequences therein and the quality of the

seed alignment at the time of model construction. Sequence

databases have a strong growth due to increasingly cheaper

sequencing. With time, our biological knowledge grows and we

know more about previously uncharacterized sequences. Not

surprisingly, gathering thresholds have an inherent trend to be

increased with time even if the underlying seed alignments do not

change.

For example in the case of PF00583 (Acetyltransferase) in the

introductory Eco1 example, the gathering scores have evolved the

following way: Pfam5 (1999) with 6.5 (global mode/gm) and 6.5

(fragment- mode/fm), Pfam6 (2000) with 15 (gm) and 15 (fm) (with

some shortening of the alignment compared with Pfam5), Pfam7

(2001) with 18.2 (gm) and 16.3(fm). The reader is invited to return

to Figure S1 to verify that only the Drosophila melanogaster sequence

AE003559 would make it over the gathering score threshold in

2000 and later whereas the Pfam5 gathering score would clearly

support many homologues. Thus, the experimentally verified

discovery of the Eco1 acetyltransferase might have been overseen

after 2000 based on a gathering score criterion but it would never

disappear from the radar in an E-value guided search at any time

point. As for the other introductory example, the PF00497

(SBP_bac_3) model, the fragment-mode gathering thresholds have

also been heavily changed over time: For Pfam5 (1999) and Pfam6

(2000) GA = 220 (fm), whereas, for Pfam7 (2001), GA = 49.9 (fm);

thus, the sequence ‘‘Alt a 1’’ would have been a hit based on the

gathering threshold criterion until the year 2000 but it would be

suppressed with the more recent versions of Pfam. At the same

time, the E-value generated by the example did not change.

Secondly, gathering scores hide the problem of balance between

true-negative and false-positive hits. Although increasing gathering

scores (as there is a trend in Pfam releases) reduce false-positive hit

rates, this approach excludes a growing number of true hits and,

thus, also limits the extrapolation power of domain models into the

space of uncharacterized sequences. On the contrary, an E-value

gives insights into the orders of magnitude of error rates when

assuming the annotation transfer to be correct. The user of a

gathering threshold guided assignment does have the illusion of

dealing with ultimately correct hits; in contrast, an E-value

provides a quantitative and typically non-zero statistical measure

for annotation error.

Thirdly, gathering thresholds do not relate well with the

statistics of hit distribution in the non-redundant database. In the

HMMER2 manual, Sean Eddy says on page 22 ‘‘Calibrated

HMMER E-values tend to be relatively accurate. E-values of 0.1

or less are, in general, significant hits’’. Further on page 43, he

writes ‘‘The best criterion of statistical significance is the E-value.

The E-value is calculated from the bit score. It tells you how many

false positives you would have expected to see at or above this bit

score. Therefore a low E-value is best; an E-value of 0.1, for

instance, means that there’s only a 10% chance that you would’ve

seen a hit this good in a search of non-homologous sequences.

Typically, I trust the results of HMMER searches at about E = 0.1 and

below, and I examine the hits manually down to E = 10 or so.’’

Whereas the E-values in the order of 0.1 are generally

considered being below the significance threshold (and they are

for many good domain models as we observed in our practice), we
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find actually no general relationship between domain-specific

gathering scores and E-value thresholds for Pfam release 23

(Figure 6). In fact, the gathering score thresholds can result in

vastly different E-value thresholds (range 10235 to 105). Never-

theless, E-value thresholds close to the empirical value of 0.1 are

most frequent in Pfam (see bottom part of Figure 6 with the peak

of the E-value threshold histogram at 0.07) and one wonders why

there are domains at all where the E-value corresponding to the

gathering score does dramatically differ from 0.1. There might be

many reasons for this discrepancy and its resolution would require

dedicated research. It would be of interest to see how the growth of

sequence databases as well as of the biological knowledge (in

contrast to the more static seed alignments and domain models)

has an effect here. We also suggest that, among other factors,

incompleteness of the seed alignments with regard to the actual

sequence variety (due to sequences that became available after

model construction), alignment length (actually involving several

domains in one model instead of one), the presence of non-

globular segments or other issues of alignment quality might play a

role here.

Lastly, E-values are comparable since they are a statistical

measure but gathering score thresholds are not and, therefore,

scores calculated from different domain models or prediction tools

cannot be compared. This makes decisions among domain models

and other prediction tools hitting the same segment in the query

difficult. For example, the sequence XP_001939830.1 (Table S1,

entry 19) illustrates this point. It is a hit in the fragment mode both

by MFS_1 (over positions 49 to 388, E = 1.9e-21, score = 79.3.

gatheringscore = 25.4) and HCV_NS4b (over overlapping posi-

tions 178 to 211, E = 4.8e-5, score = 14.6.gathering score = 14.5).

Whereas the first is a full domain hit, the second one covers

essentially only a TM region. Although both are above gathering

score, the E-value clearly supports finding the correct annotation.

We do not want to create the impression that we wish to nail

down the Pfam team on, maybe, some unfortunately selected

thresholds for previous releases. Also, the specific examples (rather

the existence of such examples) are not relevant for the conclusions

in this paper. We have to live with some error rate. In contrast, it is

important that the theoretical fundamentals are reliable, that

systematic causes for possibly questionable annotations are

increasingly suppressed and that, together with the Pfam team,

the community develops the theory.

About the state of automated annotation transfer in
public databases

It is difficult to assess the total amount of wrong annotations

currently persisting in public sequence databases since most of the

protein sequences have never been a target of experimental study.

With regard to theoretically derived function descriptions, the

individual teams contributing to sequence databases, apparently,

apply criteria with differing stringency and rigor. It appears that

unrestrained annotation transfer justified by spurious sequence

similarities is a major cause for annotation errors [64,65] and this

process is facilitated by the convenience of automated annotation

pipelines. Analogous to a self-replicating virus, any first annotation

error perpetually propagates itself to any existing or new sequence

database by the virtue of annotation transfer ironically [64,65].

In their analysis of database annotations for 37 enzyme families,

Schnoes et al. [74] find approximately 40% of submitted sequences in

2005 were misannotated while none carried wrong annotation in

1993. It should emphasized that, in most cases, the misannotation

involves an enzyme family or superfamily mix-up. To note, the fold as

Figure 6. Relationship between the gathering score and the corresponding E-value threshold for Pfam domain library release 23.
Whereas the y-axis shows the gathering score threshold (GA) for the global-mode search, x-axis shows the corresponding E-value threshold (in
decimal log scale) calculated with the domain-specific extreme-value function with parameters provided in the corresponding HMM file (for an NR
database size of 7365651 sequences) for this score. The upper plot represents the distribution for 9126 domains without detected SP/TM region, the
middle part shows the same for the 1214 domains with SP/TM problems. Effectively, there is no clear correlation between gathering score and E-
value threshold. If E-values close to 0.1 are considered significant, all dots should be close to the ‘‘21’’ line (horizontal dashed lines) in this graph and,
indeed, there is some agglomeration of data points in that area; yet, there are numerous outliers. Note that the E-values are computed using the
equation

E~N 1{exp {exp {lGAzlmð Þ½ �f g

where N is the database size, m and l are the extreme value distribution (EVD) parameters of the domain model. The bottom plot depicts the
histogram of the 10340 domains in Pfam rel.23. The median of all log E-values that corresponded to the domain-specific GAs is found to be 21.16.
This translates to an E-value of 0.07.
doi:10.1371/journal.pcbi.1000867.g006
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well as the overall function have been recognized correctly. We want

to caution that the disregard of non-globular segments in context of

homology-based conclusions can contribute to annotation errors.

This may mean not just missing the correct subfamily but leading

function assignment far astray. In the examples provided in this

article, the true function of the protein hits has nothing in common

with the problematic domain model hit except for the occurrence of a

hydrophobic region that matches the SP/TM segment(s).

Thus, the criteria for sequence homology in their present form

appear not directly applicable to non-globular segments. SPs/TMs

as part of domain models lead to pollution of database annotations

as our PIR iProClass v3.74 analysis demonstrates. As a matter of

fact, it is very difficult to prove wrong annotation for experimen-

tally uncharacterized sequences otherwise than by detecting logical

contradictions. Whereas the examples in Tables S1 and S2 have

been carefully scrutinized manually against structural and

literature information, the same approach is out of question for

a database-scale study, even for selected domain models as in

Table 2. Therefore, we applied a criterion based on score partition

into the SP/TM-specific part and the remainder to estimate the

amount of false-positive hits to get at least a lower boundary

estimate for the scale of the problem. We did show the existence of

problematic annotations from a few to over ten percent for a

validated set of 11 Pfam domains that include SP/TM regions.

Conclusions
To conclude, sequence similarity among non-globular protein

segments does not necessarily imply homology. Since matching of

SPs/TMs creates the illusion of alignable hydrophobic cores, the

inclusion of SPs/TMs into domain models without precautions can

give rise to wrong annotations. We find that clearly more than 1001

domains among the 10340 models of Pfam release 23 suffer from this

problem, whereas the issue is of relatively low importance for

domains of SMART version 6 (18 out of 809). As expected,

fragment-mode HMM searches generate promiscuous hits limited to

solely the SP/TM part among clearly unrelated proteins for these

models. More worryingly, we show explicit examples that the scores

of clearly false-positive hits even in global-mode searches can be

elevated into the significance range just by matching the hydropho-

bic runs. In the PIR iProClass database v3.74, we find that between

2.1% and 13.6% of its annotated Pfam hits appear unjustified for a

set of validated domain models. We suggest a workflow of flagging

problematic hits arising from SPs/TMs-containing models for

critical reconsideration by annotation users. On the other hand,

we have also seen that the inclusion of SP/TM regions into domain

models can give rise to false negatives by imposing the need to have

good scores over these regions in the query sequences when the

actual domain occurs without the SP/TM context.

Materials and Methods

Assessment of false-positive detection of SP/TM
segments by unsupervised prediction

It is well known that the problem of transmembrane helix

prediction is not so much the detection of true hits as the

suppression of false-positives [85]. In our context, it is important to

have as few as possible wrong SP/TM predictions (and to carefully

control their fraction) even on the expense of loosing true

examples. Further, SP/TM prediction tools are designed for

application to a single sequence, not to an alignment possibly

polluted with gaps and/or shifts among predicted SP/TM regions

among various sequences. Therefore, we developed the following

procedure and statistical criteria for processing outputs of

academically available SP/TM predictors.

In the general case, domain models are characterized by both

seed and full alignments. We think that, in our context, operating

with seed alignments is preferable since they are manually

validated and are supposed to have lower levels of inclusions of

unrelated sequences.

For a given domain model alignment, each sequence was

subjected to sets of transmembrane (TM) and signal peptide (SP)

segment predictors. We have used the following TM predictor

tools – DASTM [85,86], TMHMM [81], HMMTOP [87], SAPS

[88], PhobiusTM [89,90] and SP predictors – SignalP [29,33,91],

PhobiusSig [89,90]. The variable M denotes the number of

predictors in each set (M~5 and M~2 for TM and SP

predictions respectively).

For each predictor m, only the positive or negative SP/TM

predictions for each residue aij (where i is the sequence and j the

alignment position) were considered, their respective prediction

scores were ignored. Essentially, each positive/negative prediction

can be seen as a Bernoulli random variable Iij (an indicator

variable assuming values one or zero). Collectively, a set of

Bernoulli variables for each column j (made up by a number of

sequences in the alignment) can be treated as a binomial random

variable Xj having the value k (sum of Iij over all sequences i).

To ensure that columns of domain alignments with an unequal

number of sequences and/or gap instances are treated compara-

bly, a hypothesis testing step is introduced [92]. Let n be the

number of sequences (excluding gaps in the particular column) in

the alignment. With p, we denote the actual (a priori unknown)

probability of the residue aij to belong to a true SP/TM segment.

For each test, one wishes to determine if each column is a SP/TM

residue given the observed predictions under equal chance

condition. Hence, the null and the alternative hypotheses are

stated as Ho : pƒ0:5,HA : pw0:5. The type I error is defined as

P(X§k)~
Xn

x§k

n

x

� �
px(1{p)n{x ð1Þ

We assume the null hypothesis is rejected at a significance level of

aƒ0:05. This means that, for alignments of four sequences and

less, P X§kð Þ§1{P Xƒ3ð Þ~0:0625 and, therefore, the null

hypothesis is never rejected. The statistical test requires alignments

of 5 sequences or more. For each rejected hypothesis, the

corresponding expected positive predictions kexp is calculated as

kexp~P(Xƒk)|k ð2Þ

Otherwise, kexp is set to zero. Finally, the estimated probability

p̂pj,m of column j to represent a residue of a true SP/TM segment is

given as

p̂pj,m~

kexp

n
if kexp§1

0:01 if kexp~0

8<
: ð3Þ

The lower line in equation 3 is to avoid logarithms of zero in

formulas below. Collectively, each domain alignment leads to a

matrix of J column probabilities p̂pj with M predictors for each

segment type (TM or SP). The total logarithmic probability per

column for either type of predictors is given as

log p̂pj,total~
XM
m~1

log p̂pj,m ð4Þ
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If log p̂pj,totalwM log 0:01ð Þ, we assume that position j belongs to a

predicted SP/TM segment. We define the indicator functions Fj

being unity in this case and zero in the other. Thus, a section of

continuous alignment positions of unities in Fj is called a predicted

TM (or SP) segment. The average logarithmic probability Sp̂pT of

this segment is given as

logSp̂pT~
1

R

XR

r

log p̂pr,total ð5Þ

where R is the total number of predicted residue columns for the

given SP/TM segment and r is the starting position of this TM

helix or signal peptide.

In practice, some of the predicted transmembrane helices and

signal peptides can be fragmented due to small gaps in the

alignment. In the case of signal peptide fragments, it is reasonable

to assume that all the fragments come from a single signal peptide.

Consequently, the average logarithm probability of SP prediction

per domain is simply calculated using (5) summing over the

smallest region that contains both the N-terminal alignment

position and the C-terminal boundary of the most C-terminal

predicted segment.

However, for the case of the fragmented TM helices, the

situation can be complicated by occurrences of multiple

transmembrane segments within the alignment. As indicator

which fragments to unite into one segment, we use the raw TM

predictions. The indicator function Qj,m is set to unity at position j
where predictor m generates k§1 (union of the column-wise TM

predictions in all sequences); otherwise, it is equal to zero. The

composite indicator function Qj is set to unity only at positions j
where Qj,m~1 for all predictors that produce overlapping hits

(intersection of predicted TM segments among all predictors).

Similarly to predicted segments in Fj , continuous runs of ones can

be delineated in Qj . If two predicted segments in Fj overlap with

the same predicted segment in Qj , the zero values of Fj in-between

the two segments are restored to unity. The union operation

preserves the continuity within a helix while the intersection

operation maintains separation between helices. Finally, the

average logarithm probability Sp̂pT for a predicted TM segment

consisting of G united fragments is given as weighted average

logSp̂pT~

PG
g~1

Rg logSp̂pgT

PG
g~1

Rg

ð6Þ

where Rg is the total number of predicted TM residue columns in

the gth TM helix fragment. Only predicted segments with a

logSp̂pT above a cutoff (TMcutoff or SPcutoff respectively; see below)

are considered in the further analysis; others are discarded and the

respective positions in Fj are set to zero.

We have used our algorithm also to find SP/TM regions in a-

and membrane proteins classified by SCOP [41,42] as a

benchmark for finding TMcutoff. In this case, a single sequence

and not an alignment is available; thus, we start with equation 3

and the conditions kexp~k and n~1.

Specific considerations for transmembrane and signal
peptide predictions

For the TM prediction problem, only the individual TM helix

has been defined so far. To define a TM region that composes of

one or more TM helices, adjacent TM helices separated by less

than 40 amino acid residues are concatenated to form a region.

The choice of 40 amino acids is based on the current knowledge

that the smallest known globular domains such as Zinc fingers

[93–97] are above 40 residues in length; thus, the inter-TM-helix

residues just form some type of linker.

For the SP prediction problem, it is relevant that the actual N-

terminus might be missing in the domain alignment. Thus, two

rounds of SP predictions are necessary. After the initial round, the

domain sequences with positive SP predictions are subjected to

blastp runs (with parameters ‘-M BLOSUM62 -G 11 -E 1 -F F -I

T’) against NR database to retrieve their full sequence data. Only

the full sequence data with percent identity $95% and Blast E-

value #0.01 are then subjected to SP predictions. Finally, only

overlapped SP predictions that are confirmed in both rounds are

retained for further processing.

Determination of domain error cutoffs
The appropriate cutoff for predicted TM and SP segments in

domain alignments have been determined with the help of the

SCOP v1.75 [41,42] a protein, membrane class database and

SMART version 6 database [29,40].

TM prediction hits among SCOP a class proteins are false-

positives since the database contains predominantly structural helices.

On the other hand, the membrane class contains mostly TM helices

that made up the true-positive hits for these predictors. Figure 7

shows the histograms of the structural (top) and transmembrane

(bottom) helices respectively. The clear separability between the two

histograms strongly demonstrated that these two classes of helices are

distinct. Table 3 gives the associated false-positive and false-negative

rates of TM predictions at the various TM cutoffs.

In the case of the signal peptide prediction, both a- and

membrane SCOP classes will deliver false-positive hits while the

domain models from SMART with signal peptide are true positive

hits. Figure 8 shows the histograms of false (top) and true signal

peptides (bottom) respectively. In all, 45 out of 49 seed sequences

for 5 SMART domains (SM00190 IL4_13, SM00476 DNaseIc,

SM00770 ZN_dep_PLPC, SM00792 Agouti, SM00817 Amelin)

were found to contain a predicted signal peptide. Out of them,

predicted signal peptides for sequences from 4 domain models

(except SM00817) were validated by their absence as a structural

helix in the respective PDB entries (see Results, Table 1). Table 4

gives the associated false-positive and false-negative rates of SP

predictions at different SP cutoffs.

Decomposition of HMM log odd scores into sequence
segment specific components

In the following, the reader is assumed to be familiar with

chapter three of [47] and our derivations starts with a

reformulated version of their equation 3.6. Let the observed and

hidden state sequences be Y and X . The joint probability of the

observed and hidden state sequences is given as

P(Y ,X )~P(Y0:::YL; X0:::XL; a,b) where a and b are the

emission and state transition probabilities of the model, and L is

the length of the sequence. Upon expanding the equation, we get

P(Y ,X )~P(Y jX )P(X )

~ P
L

i~0
P YijXið Þ|P XLjXL{1ð ÞP XL{1jð

XL{2Þ . . . P X1jX0ð ÞP X0ð Þ

~ P
L

i~0
P(YijXi)|P(X0) P

L

i~1
P(XijXi{1)

ð7Þ
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The marginal probability of the observed sequence Y can be then

be summed across all hidden sequence X as

P(Y )~
X

x

P(Y ,X ) ð8Þ

Often the most probable path given by X � (given by the Viterbi

algorithm) is a good approximation to P(Y ). Hence we have

P(Y )&P(Y ,X �) ð9Þ

In the HMM formalism, we use the log odd scores v for scoring

sequences. Therefore, for an observed sequence Y , this is given as

v~log2

P(Y ; aHMM ,bHMM )

P(Y ; anull ,bnull)
ð10Þ

Assume that X �~X . Using (7) to (10), the log odd score v can be

rewritten as

v~log2

P(Y ,X ; aHMM ,bHMM )

P(Y ,X ; anull ,bnull)

~log2

P
L

i~0
P(YijXi; aHMM )

P
L

i~0
P(YijXi; anull)

|
P(X0; bHMM ) P

L

i~1
P(XijXi{1; bHMM )

P(X 0; bnull) P
L

i~1
P(XijXi{1; bnull )

2
664

3
775

~
XL

i~0

log2

P(YijXi; aHMM )

P(YijXi; anull )
z
XL

i~1

log2

P(XijXi{1; bHMM )

P(XijXi{1; bnull)
z

log2

P(X0; bHMM )

P(X0; bnull)

~
XL

i~0

log2 e(YijXi)z
XL

i~1

log2 t(XijXi{1)zlog2 t(X0)

ð11Þ

where e and t are the emission and state transition log odd scores.

Thus, the total score is represented as a linear combination of

Figure 7. Histograms of average log probability per predicted transmembrane helix for SCOP v1.75 a-proteins class and membrane
protein class. The top (average log probability per predicted transmembrane helix for SCOP v1.75 a-proteins class) and bottom (average log
probability per predicted transmembrane helix for SCOP v1.75 membrane protein class) histograms represent the false-positive and true-positive
distributions for TM predictions respectively. The total number of predicted structural and membrane helices is 2293 and 5592 respectively.
doi:10.1371/journal.pcbi.1000867.g007

ð11Þ

Table 3. FP and FN rates of TM predictions based on different TM cutoffs.

Average log probability of TM prediction No. of FP FP rate (%) No. of FN FN rate (%)

$26 21 0.91 4519 80.81

$27 37 1.61 3401 60.82

$28 45 1.96 2520 45.06

$29 47 2.04 1593 28.49

$210 72 3.14 910 16.27

$211 84 3.66 526 9.41

$212 107 4.67 418 7.48

$213 125 5.45 381 6.81

$214 206 8.98 362 6.47

The first column gives the various cutoffs for the average log probability of TM helix prediction (refer to equations 5 and 6). The next two columns denote the number
and percentage of false-positive TM helices with respect to 2293 predicted helices from SCOP a-proteins based on the corresponding cutoff rate. Similarly, the last two
columns describe the number and percentage of false-negative TM helices with respect to 5592 predicted helices from SCOP membrane proteins.
doi:10.1371/journal.pcbi.1000867.t003
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sequence position-specific terms (plus some position-independent

constants and, what is not considered here, the so-called null2

correction). Therefore, the HMM log odd score can be decomposed

into sequence segment-specific contributions, for example those

arising from its globular and non-globular regions:

v~vglobzvnonglobzlog2 t(X0) ð12Þ

where vglob~
PLglob

i~0

log2 e(Yi DXi; aHMM ,aNULL)z
PLglob

i~1

log2 t(Xi D

Xi{1; bHMM,,bNULL),

vnonglob~
XLnonglob

j~0

log2 e(Yj jXj ; aHMM ,aNULL)z

XLnonglob

j~1

log2 tnonglob(Xj jXj{1; bHMM ,bNULL)

Lglob,Lnonglob are the total lengths of the globular and non-globular

segments respectively; aHMM ,aNULL are the emission probabilities

of the HMM and the null model respectively; bHMM ,bNULL are the

transition probabilities of the HMM and the null model

respectively. In our work, we consider the SP/TM segments

defined by Fj~1 as non-globular part and the rest as globular.

Estimation of the non-SP/TM component of the
gathering score threshold

Here, equation (12) that denotes the total score v can be re-

written as the sum of a non-SP/TM-specific vnonSPTM , a SP/TM-

specific vSPTM , and a position-independent score c for a sequence

as follows

v~vnonSPTMzvSPTMzc ð13Þ

In the following, we wish to derive the relative contribution of

vnonSPTM and vSPTM at scores v close to the gathering score GA.

We assume that the proportion between vnonSPTM and vSPTM as

represented by the sequences from the seed alignment holds also

for lower scores of true hits. Let the random variables VSPTM

and VnonSPTM denote the SP/TM-specific scores vSPTM and

non-SP/TM specific scores vnonSPTM of N seed sequences of the

domain model. The sample mean V of the random variables are

given as

Figure 8. Histograms of average log probability per predicted signal peptide for SCOP v1.75 a- and membrane protein class and
SMART version 6. The top (average log probability per predicted signal peptide for SCOP v1.75 a- and membrane protein class) and bottom
(average log probability per predicted signal peptide for SMART version) histograms represent the false-positive and true-positive distributions for
the SP predictions respectively. The total number of predicted signal peptides for SCOP a- and membrane proteins is 193 and 379 respectively, while
the total number for SMART is 45. All except SM00817 Amelin (no available structure) were validated against their respective PDB entries.
doi:10.1371/journal.pcbi.1000867.g008

Table 4. FP and FN rates of SP predictions based on different SP cutoffs.

Average log probability of SP prediction No. of FP FP rate (%) No. of FN FN rate (%)

$20.5 20 3.50 8 17.78

$21 23 4.02 1 2.2

$22 38 6.64 1 2.2

$23 38 6.64 1 2.2

$24 44 7.69 1 2.2

The first column gives the various cutoffs for the average log probability of SP prediction (refer to equation 5). The next two columns denote the number and
percentage of false-positive SP with respect to 572 predicted SP from SCOP a- and membrane proteins based on the corresponding cutoff rate. Similarly, the last two
columns describe the number and percentage of false-negative SP with respect to 45 predicted SP in seed sequences from SMART version 6 alignments.
doi:10.1371/journal.pcbi.1000867.t004
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VnonSPTM~
1

N

XN

n~1

vn,nonSPTM ð14Þ

VSPTM~
1

N

XN

n~1

vn,SPTM ð15Þ

Here, we introduce a scaling factor in the form of random

variable A as a shift factor in the logarithmic scale that relates

the random variables VSPTM , VnonSPTM and the constant c to the

constant GA (gathering score threshold provided the domain

model). The relationship can be written as

GA~VnonSPTMzVSPTMzczA ð16Þ

Equation (16) can further be expressed in terms of two random

variables GnonSPTM and GSPTM that denote the SP/TM-specific

and non-SP/TM-specific gathering score threshold means

respectively.

GA~ VnonSPTMz
LnonSPTM

L
A

� �
z VSPTMz

LSPTM

L
A

� �
zc

~GnonSPTMzGSPTMzc

ð17Þ

To obtain the mean of GnonSPTM , we first need to solve for A by

rewriting equation (16) in terms of A as given

A~GA{VnonSPTM{VSPTM{c ð18Þ

Consequently, taking the expectation of A (the sample mean

over the seed alignment), we get

A~GA{VnonSPTM{VSPTM{c ð19Þ

Finally, the non-SP/TM specific contribution �GGnonSPTM to the

gathering score threshold is given as

GnonSPTM~VnonSPTMz
LnonSPTM

L
A ð20Þ

Similarly, a SP/TM-specific threshold �GGSPTM can be calculated.

For the 11 domain models in Table 2, �AA is vastly negative and

ranges from 276.19 (Cation_ATPase_N) to 2614.95 (Lamp); thus,

vnonSPTM is much larger than �GGnonSPTM for any seed sequence.

Estimation of unjustified annotation instances in the
database

For a set of sequences with a common problematic domain

annotation, each sequence score can be represented by

v,vnonSPTMð Þ. If we assume that all true hits must score above the

gathering score GA and the threshold �GGnonSPTM as derived in the

previous section is truly the lower boundary for a score contribution

from the non-SP/TM part of a correct domain hit, the validity of

the annotation can be assessed by comparing v,vnonSPTMð Þ with

GA,�GGnonSPTM

� �
. If v§GA and vnonSPTM§GnonSPTM , the domain

hit is considered true-positive. If vvGA and vnonSPTM§GnonSPTM ,

the SP/TM part of the domain hit is degenerated; yet, the non-SP/

TM part is well represented and we consider these hits false-

negatives. In all cases with vnonSPTMvGnonSPTM , we consider the

annotation with the domain unjustified. Even if the total score is

above the gathering score, formally, the shift to the significant range

is only achieved by a large score from the SP/TM region.

We find that our derivation for �GGnonSPTM is credible since it

does not compromise the sensitivity of the domain models. The

fraction of false-negative hits over the total retrieved sequences per

problematic domain ranges between 0 to 5% (with the only outlier

GRP at 10.1%).

Supporting Information

Figure S1 PF00583 hits leading to the Eco1 function discovery.

Found at: doi:10.1371/journal.pcbi.1000867.s001 (0.03 MB PDF)

Figure S2 False-positive hit of PF00497 in Alt a 1.

Found at: doi:10.1371/journal.pcbi.1000867.s002 (0.01 MB PDF)

Protocol S1 Mini-site with supplementary information, archive

created with WinRAR (to be downloaded from http://www.

rarlab.com/download.htm). Besides HMMER outputs, align-

ments, etc. for Tables S1, S2 and S3 and for Figures 4 and 5,

we provide lists of affected Pfam models as well as HMMs for these

domains without the respective SP/TM segments. The content of

this file may also be found at http://mendel.bii.a-star.edu.sg/

SEQUENCES/ProblemDomains-TM+SP/.

Found at: doi:10.1371/journal.pcbi.1000867.s003 (32.83 MB

WinRAR)

Table S1 Summary of selected sequence hits with problematic

domain annotations (fragment-mode search).

Found at: doi:10.1371/journal.pcbi.1000867.s004 (0.04 MB PDF)

Table S2 Summary of selected sequence hits with problematic

domain annotations (global-mode search).

Found at: doi:10.1371/journal.pcbi.1000867.s005 (0.05 MB PDF)

Table S3 Summary of selected false-negative sequence hits with

problematic domain annotations (global-mode search).

Found at: doi:10.1371/journal.pcbi.1000867.s006 (0.05 MB PDF)
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